
Multiobjective Prototype Optimization with
Evolved Improvement Steps

Jiri Kubalik1, Richard Mordinyi2, and Stefan Biffl3

1 Department of Cybernetics
Czech Technical University in Prague

Technicka 2, 166 27 Prague 6, Czech Republic
kubalik@labe.felk.cvut.cz

2 Space-Based Computing Group
Institute of Computer Languages
Vienna University of Technology

Argentinierstr. 8, A-1040 Vienna, Austria
richard@complang.tuwien.ac.at

3 Institute of Software Technology and Interactive Systems
Vienna University of Technology

Favoritenstr. 9/188, A-1040 Vienna, Austria
Stefan.Biffl@tuwien.ac.at

Abstract. Recently, a new iterative optimization framework utilizing
an evolutionary algorithm called ”Prototype Optimization with Evolved
iMprovement Steps” (POEMS) was introduced, which showed good per-
formance on hard optimization problems - large instances of TSP and
real-valued optimization problems. Especially, on discrete optimization
problems such as the TSP the algorithm exhibited much better search ca-
pabilities than the standard evolutionary approaches. In many real-world
optimization problems a solution is sought for multiple (conflicting) op-
timization criteria. This paper proposes a multiobjective version of the
POEMS algorithm (mPOEMS), which was experimentally evaluated on
the multiobjective 0/1 knapsack problem with alternative multiobjective
evolutionary algorithms. Major result of the experiments was that the
proposed algorithm performed comparable to or better than the alter-
native algorithms.

Keywords: multiobjective optimization, evolutionary algorithms, mul-
tiobjective 0/1 knapsack problem.

1 Introduction

In many real-world optimization problems a solution is sought that is optimal
with respect to multiple (often conflicting) optimization criteria. Multiple objec-
tives specify quality measures of solutions that typically do not result in a single
optimal solution. Instead there is a set of alternative solutions that are optimal
in a sense that (i) none of them is superior to the others and (ii) there is no
superior solution in the search space that to these optimal solutions considering

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 218–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multiobjective Prototype Optimization with Evolved Improvement Steps 219

all objectives. Thus, a good multi-objective optimization technique must be able
to search for a set of optimal solutions concurrently in a single run.

For this purpose, evolutionary algorithms seem to be well suited because they
evolve a population of diverse solutions in parallel. Many evolutionary-based
approaches for solving multiobjective optimization problems have been proposed
in the last 25 years.

The recently introduced POEMS optimization framework proved to be effi-
cient for solving hard optimization problems - the Traveling Salesman Problem
(TSP)[4], a binary string optimization problem [4], a real-valued parameter op-
timization problem [5], and a network flow optimization problem [6]. This paper
introduces an extension of the basic POEMS algorithm for solving multiobjective
optimizations.

For an experimental evaluation of the presented approach a multiobjective
0/1 knapsack problem was used, which is a well-known NP hard combinatorial
optimization problem, the particular formulation of the problem is given in Sec-
tion 5. Results achieved by our approach were analyzed and compared to several
evolutionary-based approaches presented in [9]. First results indicate that the
proposed multiobjective POEMS algorithm performs very well on the test prob-
lem. It also scales well as it outperforms the alternative algorithms even on the
largest instances of the problem.

This paper is structured as follows. First, a short overview of multiobjective
optimization techniques is given with a focus on evolutionary-based approaches.
Section 3 briefly describes the single-objective POEMS algorithm. In section
4, the multiobjective version mPOEMS is introduced. Section 5 describes the
test problem, test datasets, and the configuration of the multiobjective POEMS
algorithm used in the experiments. Results achieved with our approach are ana-
lyzed in section 6. Section 7 concludes and suggests directions for analyzing and
improving the proposed approach.

2 Multiobjective Optimization Techniques

There are many evolutionary approaches for solving multiobjective optimiza-
tion problems. The most distinguishing features are (i) the fitness assignment
strategy for evaluating the potential solutions, (ii) the evolutionary model with
a specific selection and replacement strategy, and (iii) how the diversity of the
evolved population is preserved. Note the last issue is extremely important as the
desired outcome of the algorithm is a set of optimal solutions that is as diverse
as possible. One of the early approaches is Schaffer’s Vector Evaluated Genetic
Algorithm (VEGA) [7] that does not make the use of a single fitness value when
selecting solutions to a mating pool. Instead, it carries out selection for each
objective separately. Then, crossover and mutation are used in a standard way.
Another approaches make the use of a weighted-sum aggregation of objectives in
order to assign a scalar fitness value to solutions, see [1]. However, such methods
are highly sensitive to the weight vector used in the scalarization process.

220 J. Kubalik, R. Mordinyi, and S. Biffl

Perhaps the most widespread and successful are multiobjective evolutionary
algorithms that use a concept of dominance for ranking of solutions. By definition
[1], a solution x dominates the other solution y, if the solution x is no worse
than y in all objectives and the solution x is strictly better than y in at least one
objective. Naturally, if solution x dominates solution y then x is considered better
than y in the context of multiobjective optimization. However, many times there
are two different solutions such that neither of them can be said to be better
than the other with respect to all objectives. When this happens between two
solutions, they are called non-dominated solutions.

The concept of dominance can be used to divide a finite set S of solutions
chosen from the search space into two non-overlapping sets, the non-dominated
set S1 and the dominated set S2. The set S1 contains all solutions that do
not dominate each other. The set S2, which is a complement of S1, contains
solutions that are dominated by at least one solution of S1. If the set S is the
whole feasible search space then the set S1 is a set of optimal solutions called
Pareto-optimal solutions and the curve formed by joining these solutions is called
a Pareto-optimal front. Note that in the absence of any higher-level information,
all Pareto-optimal solutions are equally important [1]. That is why the goal in
a multiobjective optimization is to find a set of solutions that is (i) as close as
possible to the Pareto-optimal front and (ii) as diverse as possible so that the
solutions are uniformly distributed along the whole Pareto-optimal front.

Of the Pareto-based approaches, perhaps the most well-known are Pareto
Archived Evolution Strategy (PAES) [3], Non-dominated Sorting GA (NSGA and
NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA and SPEA2). We
just briefly describe the NSGA-II [2] and SPEA2 [9] algorithms, because we chose
them for as alternative approaches for the empirical comparisonwith our approach.

SPEA2 uses a regular population and an archive (a set of constant size of
best solutions found so far). An archive truncation method guarantees that the
boundary solutions are preserved. Fitness assignment scheme takes for each in-
dividual into account how many individuals it dominates and it is dominated by
which is further refined by the incorporation of density information. In order to
maintain a good spread of solutions, NSGA-II uses a density estimation metric
called crowding distance. The crowding distance of a given solution is defined
as the largest cuboid enclosing the solution without including any other solu-
tion in the population. Then, so called crowding comparison operator guides the
selection process towards solutions of the best non-domination rank and with
crowding distance. In each generation, a population Qt of offspring solutions is
generated from the current population of solutions Pt. The two populations are
merged together resulting in the temporary population Rt of size 2 ·N , where N
is the population size. From this population a better half of solutions is chosen
in the following way to constitute a new population Pt+1. First, the population
Rt is sorted according to non-domination. Then the solutions are taken starting
from the best non-domination level and are put to the new population Pt+1. If
a set of solutions of currently processed non-domination level is bigger than the

Multiobjective Prototype Optimization with Evolved Improvement Steps 221

remaining empty space in the population Pt+1, then the best solutions in terms
of the crowding distance are used only.

3 Singleobjective POEMS

Standard evolutionary algorithms (EAs) typically evolve a population of can-
didate solutions to a given problem. Each of the candidate solutions encodes a
complete solution, e.g., a complete set of the problem parameters in parame-
ter optimizations, a complete schedule in the case of scheduling problems, or a
complete tour for the traveling salesman problem. This implies, especially for
large instances of the solved problem, that the EA operates with very big and
complex structures.

In POEMS [4], the evolutionary algorithm does not operate on a population of
complete solutions to the problem to be solved. Instead, one candidate solution,
called the prototype, is generated at the beginning and then it is iteratively im-
proved with the best-performing modification of the current prototype provided
by an EA, see Figure 1.

The prototype modifications are represented as a sequence of primitive ac-
tions/operations, defined specifically for the problem at hand. The evaluation of
action sequences is based on how well/badly they modify the current prototype,
which is passed as an input parameter to the EA. Moreover, sequences that
do not change the prototype at all are penalized in order to avoid generating
useless trivial solutions. After the EA finishes, it is checked whether the best
evolved sequence improves the current prototype or not. If an improvement is
achieved, then the sequence is applied to the current prototype and resulting
in the new prototype. Otherwise the current prototype remains unchanged for
the next iteration. The process of iterative prototype improvement stops when
the termination condition is fulfilled. A common termination condition is the
number of fitness evaluations performed in the run.

The following paragraphs briefly discuss POEMS implementation issues.

Representation of action sequences. The EA evolves linear chromosomes of
length MaxGenes, where each gene represents an instance of a certain action cho-

1 generate(Prototype)
2 repeat

3 BestSequence ← run EA(Prototype)
4 Candidate ← apply(BestSequence,Prototype)
5 if(Candidate is better than Prototype)
6 Prototype ← Candidate
7 until(POEMS termination condition)

8 return Prototype

Fig. 1. An outline of the single-objective POEMS algorithm

222 J. Kubalik, R. Mordinyi, and S. Biffl

sen from a set of elementary actions defined for the given problem. Each action is
represented by a record, with an attribute action type followed by parameters of
the action. Besides actions that truly modify the prototype, there is also a spe-
cial type of action called nop (no operation). Any action with action type = nop
is interpreted as a void action with no effect on the prototype, regardless of
the values of its parameters. A chromosome can contain one or more instances
of the nop operation. This way a variable effective length of chromosomes is
implemented.

Operators. The representation of action sequences allows to use a variety of
possible recombination and mutation operators such as standard 1-point, 2-point
or uniform crossover and a simple gene-modifying mutation. In [4] a generalized
uniform crossover was used, that forms a valid offspring as an arbitrary combi-
nation of parental genes. Both parents have the same probability of contributing
their genes to the child, and each gene can be used only once. The mutation
operator changes either the action type (activates or inactivates the action) or
the parameters of the action.

Evolutionary model. In general, the EA is expected to be executed many times
during the POEMS run. Thus, it must be designed and configured to converge
fast in order to get the output in short time. As the EA is evolving sequences
of actions to improve the solution prototype, not the complete solution, the
maximal length of chromosomes MaxGenes can be short compared to the size
of the problem. For example MaxGenes would be much smaller than the size
of the chromosome in case of binary string optimization or much smaller than
the number of cities in case of the TSP problem [4]. The relaxed requirement on
the expected EA output and the small size of evolved chromosomes enables to
setup the EA so that it converges within a few generations. Examples of typical
configurations can be found in [4], [5] and [6].

It is important to note, that the evolved improving alterations of the prototype
do not represent just local moves around the prototype. In fact, long phenotyp-
ical as well as genotypical distances between the prototype and its modification
can be observed if the algorithm possesses a sufficient explorative ability. The
space of possible modifications of the current prototype is determined by the
set of elementary actions and the maximum allowed length of evolved action se-
quences MaxGenes, see [4]. If the actions are less explorative and the sequences
are shorter, the system searches in a prototype neighborhood only and is more
prone to get stuck in a local optimum early. And vice versa, if larger alterations
of the prototype can be evolved using the primitive actions, the exploration capa-
bility the algorithm allows to converge to better and hopefully globally optimal
solutions.

4 Multiobjective POEMS

The multiobjective ”Prototype Optimization with Evolved iMprovement Steps”
(mPOEMS) belongs to a class of multiobjective optimization algorithms that

Multiobjective Prototype Optimization with Evolved Improvement Steps 223

1 generate(SolutionBase)
2 repeat

3 Prototype ← choose prototype(SolutionBase)
4 ActionSequences ← MOEA(Prototype, SolutionBase)
5 NewSolutions ← apply to(ActionSequences, Prototype)
6 SolutionBase ← merge(NewSolutions,SolutionBase)
7 until(termination condition is fulfilled)

8 return SolutionBase

Fig. 2. An outline of the mPOEMS algorithm

uses the concept of dominance. In this section we describe the way the set of
non-dominated solutions progressing towards the Pareto-optimal set is evolved
in mPOEMS. Note that in multiobjective optimization the goal is to find a set
of optimal solutions (as close as possible to the Pareto-optimal set) that are as
diverse in both the variable space and the objective space as possible. Thus, the
main differences between mPOEMS and POEMS are that

– mPOEMS maintains a set of best solutions found so far, called a solution
base, not just one prototype solution that is maintained in POEMS. In each
iteration of mPOEMS one solution from the set of non-dominated solutions
in the solution base is chosen as the prototype for which the action sequences
will be evolved by the EA.

– mPOEMS uses a kind of a multiobjective EA (MOEA) based on the dom-
inance concept, not just a simple EA. The output of the MOEA is a set
of action sequences (not just one action sequence) generating new solutions
that are merged with the current solution base resulting in a new version of
the solution base.

Figure 2 shows the main steps of the mPOEMS algorithm. It starts with
generating the initial solutions of the solution base. The size of the solution base
is denoted as SBSize and stays constant through the whole mPOEMS run.

The first step of the main body of the iterative process is the selection of
the prototype for the current iteration. The prototype is chosen among non-
dominated solutions of the solution base in a way that guarantees that all parts
of the non-dominated front of the evolved solution base are processed equally,
see paragraph ”prototype selection” below. The prototype is passed as an input
parameter to the multiobjective EA, where the action sequences possibly alter-
ing the prototype towards the Pareto-optimal set are evolved. The other input
parameter of MOEA is the current solution base that is used for evaluation pur-
poses, see below. MOEA returns the final population of action sequences, which
are then applied to the current prototype resulting in a set of new solutions.

Prototype selection. In each iteration a new prototype is chosen among non-
dominated solutions of the solution base. The selection scheme is designed so that

224 J. Kubalik, R. Mordinyi, and S. Biffl

all partitions of the non-domination set have as equal sampling rate as possible.
In the first iteration a set S of n candidate prototype solutions is chosen according
to the following procedure:

1. S = {}, i = 1, Choose a solution si by random
2. i + +, choose a solution si so that its normalized Euclidean distance to the

nearest solution in S is maximal,
S = S + si,

3. Repeat Step 2 until |S| = n.

The Euclidean distance between two solutions i and j is calculated with the
objective function values according to the following formula

dij =

√
√
√
√

m∑

k=1

(
o
(i)
k − o

(j)
k

uk − lk
)2,

where o
(i)
k and o

(j)
k are k-th objective values of solutions i and j, uk and lk

are the upper and lower bounds for the k-th objective and m is the number of
objectives. Each time a new prototype is to be chosen it is selected from the
set S by random and removed from the set. Also if any solution in S becomes
dominated by any solution in S it is removed from S. If the set is empty a new
sample S of non-dominated solutions is selected according to the above described
procedure.

The outline of the multiobjective EA used in mPOEMS is shown in Figure 3.
First, it generates a starting population of action sequences of size PopSize.
The action sequences are evaluated based on the quality of the solution that
is produced by applying the given action sequences to the prototype. Then,
the population of action sequences is evolved within a loop until some stopping
condition is fulfilled. In the first step of the loop, a new population of action
sequences is generated using standard operations of selection, crossover and mu-
tation. The action sequences are evaluated and assigned fitness values. Finally,
the new population and the old one are merged and PopSize solutions of the
best non-dominated fronts of that joint population are used to constitute the
resulting population.

Fitness assignment schema. Since we are dealing with multiobjective op-
timization problems, each solution is assigned multiple objective values. The
evaluation procedure uses a concept of dominance between solutions in order
to find a single fitness value specifying the solution quality in terms of its non-
domination level. In order to have more levels of non-domination that better
distinguishes solutions the evaluated solutions are merged with solutions from
the solution base resulting in a temporary set of solutions S (the prototype
solution is included in the set S as well). The process of calculating the level
of non-dominance starts with finding the non-dominated solutions among the
whole set S. These solutions belong to the first level of non-domination front
and are assigned a non-domination level NDlevel = 1. Then they are temporar-
ily disregarded from the set S and the set of non-dominated solutions is sought

Multiobjective Prototype Optimization with Evolved Improvement Steps 225

input: Prototype, SolutionBase
output: Population of evolved action sequences

1 generate(OldPop)
2 evaluate(OldPop)
3 repeat

4 NewPop ← evolutionary cycle(OldPop)
5 evaluate(NewPop)
6 OldPop ← merge(OldPop, NewPop)
7 until(EA termination condition is fulfilled)

8 return OldPop

Fig. 3. An outline of the multiobjective evolutionary algorithm used in mPOEMS

among the remaining solutions. These are the solutions of the second level of
non-domination and are assigned a non-domination level NDlevel = 2. The pro-
cess goes on until there is no solution left in S, i.e. every solution has assigned its
NDlevel value. In the second phase of the evaluation procedure, the evaluated
solutions are assigned their fitness value. Solutions that belong to a better than
or the same level of non-domination as the prototype solution are assigned a fit-
ness value equal to their NDlevel value. Solutions with the NDlevel higher than
the prototype solution are assigned a fitness value equal to NDlevel + 0.5 ∗ PD,
where PD is 1 if the given solution is dominated by the prototype, and 0 other-
wise. Note that the smaller fitness the better solution. So, the selection pressure
is towards the solutions that

1. belong to a better non-domination front than the prototype, if possible, and
2. are not dominated by the prototype solution.

Evolutionary model. New solutions produced by action sequences evolved by
the MOEA are merged with the current solution base resulting in a tempo-
rary population of size PopSize + SBSize. From this population a new solu-
tion base of size SBSize is selected according to the schema used in NSGA-
II. First, the joint set is sorted based on the non-domination. Then the non-
dominated fronts are added to the new solution base one by one, starting from
the best non-dominated front. The non-dominated front that can not fit the
whole into the remaining space in the new solution base is ranked according
to the crowding distance value introduced in [2], and only the best solutions
are added to the new solution base. This strategy together with the prototype
selection scheme ensures that (i) the boundary solutions of the non-dominated
front of the solution base will not get lost and (ii) the most unique solutions will
retain in the solution base and (iii) the non-dominated front will be sampled
uniformly.

226 J. Kubalik, R. Mordinyi, and S. Biffl

5 Test Data and Experimental Setup

Test problem. For experimental evaluation we chose a well-known NP-hard
Multiobjective 0/1 Knapsack Problem. We used the same formulation of the
problem as was used in the comparative study by Zitzler and Thiele [8] and we
compared results achieved by mPOEMS with alternative approaches presented
there. As stated in [8], the multiobjective 0/1 knapsack problem is a good test
problem, because its description is simple, yet the problem itself is difficult to
solve and the problem is important in practice.

The multiobjective 0/1 knapsack problem considered in [8] is defined in the
following way: Given a set of m items and a set of n knapsacks, with pi,j

being profit of item j according to knapsack i, wi,j being weight of item j
according to knapsack i, and ci being capacity of knapsack i, find a vector
x = (x1, x2, . . . , xm) ∈ {0, 1}m, such that

∀i ∈ {1, 2, . . . , n} :
m∑

j=1

wi,j · xj ≤ ci

and for which f(x) = (f1(x), f2(x), . . . , fn(x)) is maximum, where

fi(x) =
m∑

j=1

pi,j · xj

and xj = 1 iff item j is selected.
Since the solution of the problem is encoded as a binary string of length m,

many codings do not represent a feasible solution (i.e. the capacity constraint
of one or more knapsacks is violated). Thus, a greedy heuristic repair algorithm,
which was also used in [8], was applied to every illegal solution. It removes items
from the solution until all capacity constraints are fulfilled. Items with the least
profit/weight ratio are removed first.

Compared algorithms. Out of the algorithms tested in [9] we chose the fol-
lowing two – SPEA2 and NSGA-II. We used the largest datasets with 750 items
that were used in [9]. Both the datasets and the data of results presented in [9]
are available on the web [10]. Thirty independent runs were carried out with
mPOEMS on each test problem resulting in a similar set of values as in [9].

Performance measures and indicators. For all datasets the algorithms were
compared on the basis of the following performance measures

– Coverage of two sets C(X, Y), proposed in [8]. The measure is defined in
the following way: Given the two sets of non-dominated solutions found by
the compared algorithms, the measure C(X, Y) returns a ratio of a number
of solutions of Y that are dominated by or equal to any solution of X to
the whole set Y . Thus, it returns values from the interval [0, 1]. The value
C(X, Y) = 1 means that all solutions in Y are covered by solutions of the
set X . And vice versa, the value C(X, Y) = 0 means that none of the solu-
tions in Y are covered by the set X . For the problems with 2 knapsacks we

Multiobjective Prototype Optimization with Evolved Improvement Steps 227

also present plots showing the tradeoff fronts constituted of non-dominated
solutions of a union set of ten sets of non-dominated solutions obtained by
each algorithm on the given dataset. The plots also show the Pareto-optimal
front for the respective dataset if available.

– Size of the space covered S(X), proposed in [8] and modified in [9]. A ref-
erence volume between the origin and an utopian objective vector (defined
by the profit sums of all items in each objective) is taken into account. This
measure is defined as a fraction of that volume that is not dominated by the
final non-dominated solutions. So, the smaller the value of this measure the
better the spread of solutions is, and vice versa.

Configuration of mPOEMS. In [9], the total number of solutions sampled
(and evaluated) through the whole EA was 480.000 for 2 knapsacks, 576.000
for 3 knapsacks and 672 for 4 knapsacks. We used the same number of solution
evaluations NEvaluations for each dataset. Parameters of mPOEMS were constant
for all datasets as follows

– PopulationSize = 70. Size of the population of evolved action sequences.
– SolutionBaseSize = 100. The size of the solution base.
– MaxGenes = 50. The length of the evolved action sequences. Note, that it

is much smaller than the solution size m (which is 750 in this study).
– NIterations was 274, 330, and 384 for 2, 3, 4 knapsacks. The number of

iterations in mPOEMS algorithm, see repeat-until cycle in Fig. 2.
– NGenerations=25. The number of generations carried out in the MOEA.
– PCross = 0.8, PMutate = 0.2. Probability of crossover and mutation.
– Tournament = 3. Parameter of the tournament selection used in MOEA.
– n = 20. A size of the set S of candidates for the prototype.
– Both the solution base as well as the starting population of action sequences

in each iteration were initialized by random.

6 Results

Table 1 provides a comparison of mPOEMS and the other approaches on the
basis of the coverage of two sets performance measure C(X, Y). Each cell of the
table is interpreted so that it indicates a proportion of non-dominated solutions
obtained by the approach given in the corresponding column covered by the set
of non-dominated solutions obtained by the approach given in the correspond-
ing row. For example, for n = 4 we see that non-dominated solutions found by
mPOEMS dominate 96.1% of non-dominated solutions found by NSGA-II and
97.1% of non-dominated solutions found by SPEA2, while only 0.1% of mPO-
EMS non-dominated solutions are dominated by solutions found by SPEA2 and
none of them is dominated by solutions found by NSGA-II.

Table 2 shows the average values of the size of the space covered measure
achieved by the compared algorithms. It shows that mPOEMS is no worse on
any dataset and is significantly better (proved by t-test) on datasets with 2 and
4 knapsacks than the other two algorithms. This indicates, that mPOEMS finds
a better spread of non-dominated solutions than NSGA-II and SPEA2.

228 J. Kubalik, R. Mordinyi, and S. Biffl

Table 1. Comparison of mPOEMS, NSGA-II and SPEA2 using the coverage of two
sets measure on datasets with 2, 3 and 4 knapsacks and 750 items. n is the number of
knapsacks. Numbers in each cell show the fraction of non-dominated solutions obtained
by the algorithm in the given column that are dominated by non-dominated solutions
obtained by the algorithm in the given row.

NSGA-II SPEA2 mPOEMS

n=2
NSGA-II - 0.604 0.178
SPEA2 0.283 - 0.047

mPOEMS 0.708 0.966 -

n=3
NSGA-II - 0.02 0.0
SPEA2 0.887 - 0.323

mPOEMS 0.955 0.431 -

n=4
NSGA-II - 0.006 0.0
SPEA2 0.844 - 0.001

mPOEMS 0.961 0.971 -

Table 2. Comparison of mPOEMS, NSGA-II and SPEA2 using the size of the space
covered measure on datasets with 2, 3 and 4 knapsacks and 750 items

NSGA-II SPEA2 mPOEMS
n = 2 0.497 0.492 0.490
n = 3 0.689 0.689 0.688
n = 4 0.8195 0.822 0.8180

7 Conclusions and Future Work

This paper proposed a new multiobjective optimization algorithm mPOEMS
based on the single-objective POEMS, recently introduced in [4]. mPOEMS
extends the single-objective version of POEMS so that it (i) maintains a set
of best solutions found so far called solution base, (ii) uses multiobjective EA
(MOEA) instead of a simple EA to evolve a population alterations of the current
prototype, and (iii) employs a strategy for proper selecting the prototype in each
iteration.

mPOEMS was evaluated on a multiobjective 0/1 knapsack problem with 2
and 4 knapsacks (objectives) and 750 items. Results obtained by mPOEMS were
compared to the results achieved by two state-of-the-art multiobjective evolu-
tionary algorithms - NSGA-II and SPEA2, presented in [9]. The approaches
were compared using a performance measure checking the mutual dominance of
their outcomes and the size of the volume covered by the found non-dominated
solutions. Performance of mPOEMS is at least as good or even better as the
compared algorithms on all datasets. This is a very promising observation be-
cause the NSGA-II and SPEA2 were the best performing algorithms among the
algorithms analyzed in [9].

As this is the first study on the mPOEMS algorithm, there are many open
issues that should be investigated in the future:

Multiobjective Prototype Optimization with Evolved Improvement Steps 229

– Computational complexity of the algorithm and its sensitivity to parameters’
setting should be investigated.

– The performance of mPOEMS should be evaluated on other test prob-
lems with different characteristics, such as the problems with discontinuous
Pareto-optimal front.

– Since the mPOEMS is in fact a local search approach which uses an EA to
choose the next move to perform so it should be compared with other local
search approaches as well.

Acknowledgement

Research described in the paper has been supported by the research program
No. MSM 6840770012 ”Transdisciplinary Research in Biomedical Engineering
II” of the CTU in Prague.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Ltd., New York (2002)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–
197 (2002)

3. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
Pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172
(2000)

4. Kubalik, J., Faigl, J.: Iterative Prototype Optimisation with Evolved Improvement
Steps. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.)
EuroGP 2006. LNCS, vol. 3905, pp. 154–165. Springer, Heidelberg (2006)

5. Kubalik, J.: Real-Parameter Optimization by Iterative Prototype Optimization
with Evolved Improvement Steps. In: 2006 IEEE Congress on Evolutionary Com-
putation, pp. 6823–6829. IEEE Computer Society, Los Alamitos (2006) [CD-ROM]

6. Kubalik, J., Mordinyi, R.: Optimizing Events Traffic in Event-based Systems by
means of Evolutionary Algorithms. In: Event-Based IT Systems (EBITS 2007)
organized in conjunction with the Second International Conference on Availability,
Reliability and Security (ARES 2007), Vienna, April 10-13 (2007)

7. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. Genetic Algorithms and Their Applications. In: Proceedings of the
First International Conference on Genetic Algorithms, pp. 93–100 (1985)

8. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm For Multiobjective Optimization. In: Evolutionary Methods
for Design, Optimisation, and Control, Barcelona, Spain, pp. 19–26 (2002)

10. Zitzler, E., Laumanns, M.: Test Problem Suite: Test Problems and Test Data for
Multiobjective Optimizers,
http://www.tik.ee.ethz.ch/∼zitzler/testdata.html

http://www.tik.ee.ethz.ch/~zitzler/testdata.html

	Multiobjective Prototype Optimization with Evolved Improvement Steps
	Introduction
	Multiobjective Optimization Techniques
	Singleobjective POEMS
	Multiobjective POEMS
	Test Data and Experimental Setup
	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

