
A Model-Driven Architecture Approach Using Explicit Stakeholder Quality

Requirement Models for Building Dependable Information Systems

Stefan Biffl
1

biffl@ifs.tuwien.ac.at

Richard Mordinyi
2

richard@complang.tuwien.ac.at

Alexander Schatten
1

schatten@ifs.tuwien.ac.at
1Inst. of Software Technology and Interactive Systems, Vienna University of Technology

2Space-Based Computing Group, Inst. of Computer Languages, Vienna University of Technology

Abstract

Decision makers in safety-critical domains rely on
data from dependable information systems. Traditional
time- and safety-critical information systems, such as
traffic management systems, have been using proprie-
tary point-to-point data links, which are very depend-
able, but also time-consuming and costly to change
due to the need to manually adapt a multitude of de-
ployed systems.

In this paper we introduce a model-driven architec-
ture (MDA) system approach that describes explicitly
stakeholder quality requirements on dependable data
links between systems for decision support and gener-
ates new system versions that implement these re-
quirements. The MDA approach is expected to a) im-
prove the quality (assurance) of system requirements;
b) support more explicit feedback on the quality of
intermediate models during systems development; and
c) provide better auditing capabilities of the systems
development process.

Based on an industry case study we describe the
MDA concept of the system, the development process,
and how software quality can be measured and im-
proved.

1. Introduction

Much work of requirements engineering aims at

capturing the value of a software system from eliciting

and reconciling the value propositions of success-

critical stakeholders [1], [2]. Based on these require-

ments project management and quality assurance de-

rive internal and external measures for guiding soft-

ware development. While considerable research has

been done on internal views of quality [3], [4], the cus-

tomer view of quality seems to be more elusive [5].

One challenge is that elements of customer quality

need to be transformed and implemented properly in

many parts of the system (and the organization that
runs the system) in order to achieve these customer

quality goals.

In traditional software development, e.g., following

a waterfall or RUP approach, the many artifacts in the

software development are linked by the software proc-
ess and responsibilities of the software development

roles. However, these artifacts typically change con-

currently as requirements change, feedback from soft-

ware testing comes in, etc. Thus, a major challenge of

quality management is to ensure that a consistent pic-

ture of stakeholder value propositions gets propagated

throughout the software development process [6].

Model-driven architecture (MDA) development [7]

aims at generating systems from high-level system

models and requirements models, taking away much of

the concurrent manual changing of artifacts at the dif-

ferent stages of software development. Such an ap-
proach promises better leverage on building quality

(i.e., stakeholder value) into the software products and

should support the measurement of software quality at

different stages of the development life cycle [8], [9].

However, demonstrating effective quality assurance for

a) the high-level source models that contain the key

requirements and b) realistic solution scenarios for the

target architecture becomes more critical [10], [11].

In this paper we report on work-in progress from an

industry case study that a) introduces a MDA approach
for dependable systems’ information sharing middle-

ware, b) discusses the expected benefits and risks for

building and assuring stakeholder-related quality com-

pared to a traditional development approach.

The goal of the case study project, information
sharing network (ISN), is to provide decision makers

in safety-critical domains, such as real-time logistics

management or traffic control, with the most relevant

information in a timely manner. The ISN connects

business applications that provide and/or consume data

with defined quality levels, e.g., for accuracy, validity,

and refresh rates. Background information on the needs
to introduce new technology can be found in [17].

In the case study context, there are several views on

stakeholder quality: 1. Support for the operational de-
cision maker, i.e., provide the best currently possible

data quality without confusing the operator; 2. Adjust

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

the information supply to changing business needs, i.e.

include new data sources both flexibly and safely; and

3. Reconcile the business interests of the various
stakeholders in one organization or several organiza-

tions that provide, refine, transport and consume a

wide range of data, from logistics plans to vehicle posi-
tion information, weather forecasts and fleet capacity

utilization reports.

Core idea of the ISN project is to describe stakeholder

data access quality requirements and system infrastruc-

ture capabilities in explicit models (using semantic web

technology that allows to discover matching data con-

sumer needs and providers regarding data content and

service level requirements); then try to generate a sys-

tems configuration plan that satisfies the stakeholder

quality requirements (see Figure 3). The semantic web

technology supports the system design, but is not used
at run-time as rather strict timeliness and safety re-

quirements have to be met in an auditable way.

In the context of the industry case study we propose

a model-driven architecture (MDA) system approach

that allows to describe dependable data links between

systems for decision support and to generate new sys-

tem versions. With the approach we want to address

the following issues:

• Explicit models of requirements and target infra-

structure as well as tool-supported systems genera-

tions are expected to allow exploring design trade-
offs in different system variants [3], [4].

• Software Quality Management: Explicitly link

stakeholder value to development process for role-

specific access that supports the quality assurance

of requirements models [10] to strengthen the tra-

ditionally rather loose connection between the

multitude of developer models and in-process

products to stakeholder value.

• System verification and feedback to explicit mod-

els of system infrastructure capabilities: Measure

actual system capabilities in lab simulation, test
bed, and field [4], [12].

Research contributions of this paper are: a) to pro-

vide a real-world prototype study of an approach to

explicitly capture stakeholder value propositions and

carry them through development, test and operation in

an auditable way (as mandated in a safety-critical do-

main); and b) to discuss benefits and limitations of the

proposed MDA approach as an example of a software

process improvement initiative.

The remainder of this paper is structured as follows:

Section 2 summarizes related work on software devel-
opment using a model-driven architecture approach.

Section 3 introduces the research issues. Section 4 de-

scribes the industry case study and Section 5 discusses

results of the case study and suggests directions for

future work.

2. Model-Driven Architecture Background

The aim of the Model Driven Architecture (MDA)

is to separate the specifications of system functionality

and implementation [13]. The promise of MDA is to

create application code from requirements models [14]

automatically, instead of writing code manually, and

thus avoid common sources of errors and consequently

improve the resulting application quality.
Figure 1 shows on the left the structure of the MDA

approach: The separation of system functionality and

implementation specifications is modeled in the Plat-

form Independent Model (PIM), while separation of

that functionality on a specific technology platform is

described in the Platform Specific Model (PSM). Us-

ing a Computation Independent Model (CIM) the

MDA framework can construct the models in a formal

way, like UML [7]. The requirements of the future

system are described in the CIM, which is refined into

the PIM, normally by hand [14], [15]. The main point
of the PIM is to specify the structure and the behavior

of a system independently of the platform it may be

deployed to [13]. The PSM is the result of the PIM

transformation. The process refines the PIM based on

the specification described in the Platform Module

(PM) explaining how to use a specific platform [17].

The main advantages [7] of the MDA framework

are (1) results are automatically generated which is

expected to improve productivity, development dura-

tion, and cost; (2) the developer is likely to pay more

attention to CIM and PIM and to develop conceptual

models rather than deep logical and technical details;
(3) PIM is portable to different target platforms; (4)

once a transformation has been developed, it can be

reused whenever needed; (5) changes have to be done

in the PIM only if the target platform has changed; and

(6) new requirements in the CIM are passed to PIM

and PSM immediately and changes are reflected auto-

matically [14], [15], [16].

The column “MDA inspired approach” in Figure 1

shows the structure of the approach used in this paper.

Main differences to the generic MDA are: the results of

the transformations are systems configuration models
rather than code. From the structural similarity we ex-

pect similar properties of the approach as for the ge-

neric MDA.

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

Figure 1. A MDA inspired approach.

3. Research Issues

New software development approaches, such as

MDA, are expected to bring benefits to software de-

velopment like faster or more efficient development.

However, from a software quality point of view the

question remains whether the means for quality assur-

ance (QA) are comparable to or better than with a tra-

ditional approach; e.g., the complexity introduced by

the MDA architecture may make QA actually harder.

From the goal to measure and ensure stakeholder-
oriented quality of the product and the development

process, we derive the following research issues:

1. Explicit modeling of stakeholder requirements:

To what extent can domain-specific stakeholder value

elements be explicitly modeled as input to MDA and

QA?

2. Tool support and QA for requirements transfor-
mation: To what extent can the MDA approach trans-

form the explicit quality requirements models into a

running system without significant sources of defects

like manual interaction; better quality measurement

and feedback on intermediate models during systems
development?

3. Stakeholder-level quality measurement: How can

the required quality levels be measured and assured in

the MDA life cycle; i.e., auditing capabilities of the

systems development process?

4. Research Application

The case study project, information sharing network
(ISN), is an industrial prototype that explores new ap-

proaches for providing dependable data connections in

heterogeneous networks. Stakeholders are decision

makers in safety-critical domains, their data providers,

and information system developers. The ISN delivers

the middleware to connect business applications that

provide and/or consume data with defined quality lev-

els. The software engineering process that comes with

the ISN has to allow the measurement and feedback of

relevant quality aspects at every step during develop-

ment, test, and operation.
In this section we describe the MDA of the system,

the development process, and how software quality can

be measured and improved.

4.1. Scenario “Harbor Traffic Control”

The prototype case study, “Harbor Traffic Control”,

shown in Figure 2 presents a set of business applica-

tions and the ISN:cloud network consisting of nodes
and connected by edges.

Figure 2. “Harbor Traffic Control” scenario.

There are two types of nodes: red nodes handle

highly secure connections only, while green nodes do

not provide specific security mechanisms. An edge

refers to a network connection with specific character-

istics, e.g. bandwidth. Business applications are listed

on the left and on the right hand sides that they are
loosely coupled, i.e., they do not know anything of

each other apart from data providing and consuming

contracts. Each application is connected to at least one

network node. In our simplified example a business

application is a sink service that requires a specific

type of data to work properly; or a source service that

produces data needed by sink services. The ISN:cloud
network is a generic base for legacy applications rather

than an specifically designed for the scenario.

The real-world scenario describes source services,

like Sensor 1, Sensor 2 and Weather Station; and sink

services like the Habormaster or the Collision Detec-
tion Program (CDP). The CDP needs every 2 seconds

data updates provided by 3 reliable alarm sensors that

react to conditions out of predefined limits. The

Habormaster requires reliable sensor data on demand

that must not be older than 0.5 seconds, to update the

traffic situation overview and to coordinate the ships

navigating around the port and harbor facilities, like

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

locks. Based on the stakeholder data requirements in-

puts a new version of the ISN:cloud is generated,

tested, and deployed whenever needed; changes are

expected on a bi-weekly basis. The range of applica-

tion data demands is very wide, but all applications

have requirements on reliability, timeliness, safety,
service quality, failover, performance, auditability,

maintainability, and flexibility.

Development of the ISN:cloud focuses on explicit

stakeholder quality requirements models to define the

business application requirements (see Figure 3, “ex-

plicit models”):

• Communication contracts define the communica-

tion offers and needs of business application sys-

tems in the ISN:cloud. A contract has to identify

the business application in the network, provide

syntax of attributes for each message type of the

business system, and specify the way how the sys-
tem handles incoming and/or outgoing messages.

The most basic form of contract contains informa-

tion about the exchange trigger (on demand, event,

or periodical) and the attributes of the contract (ac-

curacy, confidentiality, urgency, priority).

• Global policies reflect interests of the organiza-

tions contributing to ISN and ISN-based applica-

tions; these policies specify the guidelines the

MDA transformation process has to follow when

building the system configuration plan. Such guide-

lines involve parameters concerning global settings
(e.g., route secure message over specific secure

nodes and edges only, the number of backup routes

for failover), optimization criteria (e.g. favor low

cost over speed), and operator restrictions (e.g. sen-

sor data has to be routed via a certain node).

• Failover parameters define the failover mechanism

behavior (automatic or user active) of the

ISN:cloud to adjust to failures (e.g., node or edge

failure) as well-defined graceful performance deg-

radation to the business applications and stake-

holders.

• Infrastructure capabilities describe the topology

of the network, connection capabilities like capac-

ity and type of connections, and useful information

on lower-level middleware such as protocols used

of the systems that contribute to ISN:cloud.

4.2. MDA software development life cycle

The tool support for development and transformation
in the MDA approach is the “ISN:Model Transforma-
tion Algorithm” (ISN:MTA).

Figure 3 presents the system development life cycle,

which follows the MDA structure in Figure 1, and the

steps to transform and validate stakeholder require-

ments. Life cycle details can be found in [17] as this

paper focuses on the quality assurance aspects of the

MDA approach.

4.3. MDA Quality Assurance

A major issue in safety-critical systems is quality

measurement, quality assurance, and auditing. We de-

scribe the key steps in the ISN life cycle that deal with

stakeholder-relevant QA.

Step 2: Before the models are used as input for the

ISN:MTA they have to pass the first QA checkpoint
where type checks and semantic validation tests ensure

formal consistency and validity of the models. If the

QA finds contradictions, the errors are reported and the

result of the process is fed back to the model descrip-

tions.

Step 4: The configuration plan created by the

ISN:MTA is checked by another QA checkpoint. Here

the intermediate models have to pass a static validity

test, i.e., checking whether there is at least one contract

matching source for each sink or whether there is a

route between two services. Errors are reported, which

can be used for correction in the models.
Step 6: The set of nodes that builds the ISN:cloud can

be tested in several scenarios in a lab environment be-

fore rolled out into field operation. Status and perform-

ance values are sent to the administrator, who may

change configuration settings of ISN:nodes directly.

Step 9: The values gained from monitoring the

ISN:cloud are valuable contributions to the work done

by the ISN:Tuner and Model Developer. Both roles

may perform changes based on the results from previ-

ous calculations in the hope to improve the quality of

the entire ISN:cloud and starting from step 1 again.
Although ISN:MTA represents another source of er-

ror, we think that using the approach does pay off. First

of all the ISN:MTA life cycle has been designed in a

way that allows the installation of several quality as-

surance checkpoints, the usage of monitoring compo-

nents and making improvements in the model descrip-

tions by using quality feedback methods offered by the

ISN:cloud. The ISN:MTA allows concentrating the

complexity of the system at a central part that can be

maintained by few experts. The advantage is in the

number of systems using the ISN:cloud. The result of

corrected problems appearing in one system

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

Figure 3. Generic MDA software development life cycle with QA steps.

configuration affects not just the quality of the

ISN:cloud itself but also any system based on ISN.

In the traditional development process, administra-

tors have just a partial view of the entire system and

may try to optimize their applications locally. This may

result in an overall system behavior that maybe was not

intended. However, the proposed MDA approach al-

ways has the view over the entire system trying to op-

timize it in a way by which each of the participating
systems can benefit.

Second, the models themselves may contain errors,

but similar to specifications in traditional engineering

these errors could be found with appropriate verifica-

tion. An advantage is the fact that those models support

role-oriented abstraction; thus the system models are

easier to understand and errors are easier to detect.

Although the life cycle contains several QA check-

points, the ISN life cycle itself may contain errors as

well. As these get detected and eliminated, the cor-

rected life cycle will have a positive impact on all

those projects using the ISN life cycle.

5. Discussion and Further Work

In an initial prototype case study similar to the

“Harbor Traffic Control” scenario sketched in Figure

2, the concepts of the ISN have worked satisfactory
according to the life cycle plan described in Figure 3.

MDA Explicit Requirements Models. The explicit

modeling of stakeholder requirements was found use-

ful. Compared to traditional development the input

models of the MDA gathered all relevant system capa-

bility parameters needed to understand whether the

stakeholder requirements could be fulfilled. This al-

lowed to provide feedback to the stakeholders on sys-

tem performance bottlenecks and a better-informed

negotiation of stakeholder contracts.

In the rather small example the use of semantic web

technology (ontologies) for the description of stake-

holder requirements (see Section 4.1) and infrastruc-

ture capabilities seemed to introduce considerable

overhead compared to the limited added benefit of the

semantic reasoning capabilities provided. However,

this technology approach can be expected to scale up
well to describe several hundreds of contracts and in-

frastructure elements, which would be hard to handle

in the traditional way of reconciling information scat-

tered over many places. Empirical studies are needed

to provide evidence on the performance in larger and

more complex contexts.

MDA Model Transformation. The MDA trans-

formation of the explicit stakeholder requirements into

expressive intermediate models on aspects of the over-

all systems configuration such as contract matching

and routing was found promising but needs more ex-

perience with design trade-offs and system tuning.
While the simple approaches used for routing in a sim-

ple context are comparable to manual routing by ex-

perienced administrators, there is room for improve-

ment to use the infrastructure more efficiently and at

the same time provide more robust connections. Also,

manual systems tuning took considerable effort of the

ISN:tuners; considerable effort could be saved by put-

ting some of the tuning parameters into the input mod-

els for the MDA, so these parameters can be used by

the ISN:MTA transformation algorithm and are part of

the systems performance feedback loop (see Figure 3).
A major MDA benefit for design quality comes

from the option to cheaply generate system versions

that can be analyzed to better understand the trade-offs

of different transformation strategies in the case study

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

context, e.g., the valuation of different contract match-

ing options on the traffic volume in the system.

Measurement of quality in MDA. A major im-

provement of quality definition and measurement have

been the role-specific explicit models of stakeholder

requirements, the infrastructure capabilities, and the
intermediate models coming from the ISN:MTA.

These models effectively and efficiently allow the in-

volved stakeholder roles to check the consistency of

their models using tool support. Further, the results

from running test scenarios documented in lab and

field tests in a way that allows efficient quality analysis

and comparison of the results with the original assump-

tions on infrastructure and traffic volume (from con-

tracts and policies) as well as the model assumptions

used when creating the intermediate models. Lessons

learned from this data analysis in a case study context

can be used to update the MDA input models in an
auditable way, e.g., on actually measured infrastructure

capabilities for cost settlement with network providers,

or for design optimization and the diagnosis of prob-

lems in the ISN:MTA transformation.

This seems particularly important as developing the

ISN:MTA takes learning iterations that depend on ac-

curate feedback that can be well relate to changes in

the input data and the transformation algorithm.

Note that the system described in this paper is par-

ticularly well suited for a MDA approach as the ISN is

a middleware that a) interacts primarily with other sys-
tems rather than human users; b) follows well-defined

behavior; and c) has stakeholder who mostly can pro-

vide consistent value propositions for rating a set of

system variants.

Future work. Next steps after developing the core

functionality of the MDA approach are systematic em-

pirical studies to ensure the correctness and sufficient

performance of the ISN:MTA and the resulting system

configurations. An important aspect is early modeling

for reliability design to consistently carry dependability

concerns from the early to the late stages of software

engineering.
For organizations that use a traditional systems de-

velopment approach a major question is when it is

worthwhile to introduce a new development approach,

such as MDA, which are expected to bring benefits to

software development like faster or more efficient de-

velopment. Again, empirical studies are needed to get

evidence on the actual benefits and risks in comparable

settings.

References

[1] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.
Grünbacher (eds.) (2005) Value-Based Software Engineer-
ing, Springer Verlag, 2005.

[2] B. Boehm, L. Huang, A. Jain, and R. Madachy, “Quality
as Stakeholder Value”, in Proceedings of the Second Work-
shop on Software Quality, 2004, pp 1-3.
[3] S. Kan; Metrics and Models in Software Quality Engi-
neering, 2nd Edition; Addison Wesley, 2002.

[4] N. Nagappan, L. Williams, M. Vouk, and J. Osborne;
“Early Estimation of Software Quality Using In-Process
Testing Metrics: A Controlled Case Study”; in Proceedings
of the third workshop on Software Quality, 2005, pp. 1-7
[5] S. Chulani , B. Ray , P. Santhanam , and R. Leszkowicz,
“Metrics for Managing Customer View of Software Quality”,
in Proceedings of the 9th International Symposium on Soft-
ware Metrics, 2003, p.189

[6] P. Grünbacher, S. Köszegi, and S. Biffl "Stakeholder
Value Propostion Elicitation and Reconciliation", in: S. Biffl,
A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher
(eds.) (2005) Value-Based Software Engineering, Springer
Verlag, 2005, p. 133-154.
[7] J.-N. Mazón, J. Trujillo, M. Serrano, and M. Piattini,
“Applying MDA to the Development of Data Warehouses”
in Proceedings of the 8th ACM international workshop on

Data warehousing and OLAP, 2005, pp. 57-66
[8] A. D’Ambrogio, “A Model Transformation Framework
for the Automated Building of Performance Models from
UML Models” in Proceedings of the 5th international work-
shop on Software and performance, 2005, pp. 75-86.
[9] A. Balogh and A. Pataricza, “Quality-of-Service Model-
ing and Analysis of Dependable Application Models”, Jan.
2007, http://www.cs.colostate.edu/csduml2006/CSDUML06-

FinalPapers /nr1_side1-12.pdf
[10] H. Kitapci, B. Boehm, P. Grünbacher, M. Halling, and
S. Biffl, "Formalizing Informal Stakeholder Requirements
Inputs", in Proceedings of the 13th international INCOSE
Symposium, 2003
[11] M. A. Babar and S. Biffl, "Eliciting Better Quality Ar-
chitecture Evaluation Scenarios: A Controlled Experiment
On Top-Down vs. Bottom-Up", in Proceedings of the 2006
ACM/IEEE international symposium on empirical software

engineering, 2006, pp. 207-316
[12] I. Rus, M. Halling, and S. Biffl "Supporting Decision-
Making in Software Engineering with Process Simulation
and Empirical Studies", Int. Journal of Software Engineering
and Knowledge Engineering, vol. 13, no. 5, pp. 531-545,
October 2003.
[13] J. Miller and J. Mukerji, “Model Driven Architecture
(MDA)”, January 2007, http://www.omg.org/docs/ormsc/01-

07-01.pdf
[14] S. Mellor, K. Scott, A. Uhl, and D. Weise, MDA dis-
tilled: principles of Model Driven Architecture. Addison-
Wesley, 2004.
[15] A. Kleppe, J. Warmer, and W. Bast, MDA Explained.
The Practice and Promise of the Model Driven Architecture.
Addison-Wesley, 2003.
[16] D.S. Frankel, Model Driven Architecture. Applying

MDA to Enterprise Computing. Indianapolis, Indiana. Wiley.
2003.
[17] [Online document] May 2007, Available at
http://www.complang.tuwien.ac.at/richard/SWIS

Fifth International Workshop on Software Quality (WoSQ'07)
0-7695-2959-3/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:29 from IEEE Xplore. Restrictions apply.

