
Optimizing Events Traffic in Event-based Systems by means of
Evolutionary Algorithms

Jiri Kubalik
Institute of Software Technology

and Interactive Systems
Technical University in Vienna

Favoritenstr. 9/188, A-1040 Vienna, Austria
kubalik@labe.felk.cvut.cz

Richard Mordinyi
Space-Based Computing Group
Institute of Computer Languages
Vienna University of Technology

Argentinierstr. 8, A-1040 Vienna, Austria
richard@complang.tuwien.ac.at

Abstract

This paper presents a new approach for solving network
flow optimization problems. In particular, the goal is to op-
timize the traffic in the network structured event-driven sys-
tems as well as to provide means for efficient adaptation of
the system to changes in the environment - i.e. when some
nodes and/or links fail. Many network flow optimization
problems belong to the class of NP hard problems, which
can only be solved by using some heuristic approach. In this
paper we describe an application of a recently introduced
iterative optimization algorithm with evolved improvement
steps. This algorithm is well suited for solving hard discrete
combinatorial problems as well as rescheduling-like prob-
lems; thus it fits the addressed adaptability issue very well.

1 Introduction

Event-based systems [8] are increasingly used in busi-
ness and industrial practice [10]. Many safety-critical
event-based systems are connected with point-to-point data
links that have good performance but poor flexibility. Net-
works that connect these event-based systems are much
more flexible, but introduce new challenges of routing, per-
formance for exchanging event messages (e.g., bottlenecks
may be created that unnecessarily limit the maximal load
the network can transport), fault tolerance, and the secu-
rity of such messages. In an event-based system interaction
between components is done by generating and receiving
event-notifications, where an event is any occurrence of a
happening of interest [10]. The event messages to be ex-
changed in the network in a given timeframe can be mod-

eled as a network flow optimization problem to investigate
the feasibility of routing a given set of messages; different
types of messages can model the different levels of priority
and security. In [10] there are several routing techniques
listed pointing out in how many different ways notifications
between publisher and subscriber can be routed. This paper
should be a contribution to those algorithms trying to find
an optimal route from publisher to subscriber.

Many network flow optimization problems belong to the
class of NP hard problems for which no effective algorithms
that would find optimum solution exists. Thus, heuristic ap-
proaches, which can deliver acceptably good solutions in
reasonable computational time, have been widely studied
and developed for those problems. Typical representative of
those approaches are approximation techniques, tabu search
techniques, ant colony based optimization techniques and
evolutionary algorithms. In [11], Pioro and Gajowniczek
implemented a stochastic approach called Simulated Allo-
cation algorithm for solving capacitated and uncapacitated
multicommodity integral flow allocation problems. Tabu
search-based approaches for solving the capacitated mul-
ticommodity network design problems have been proposed
in [14] and [4]. An example of an application of the ant
colony optimization algorithm to an integral multicommod-
ity flow assignment problem can be found in [13]. The
ant algorithm is used there to minimize the overall network
flow - the function defined as the sum of the link flows of
all the links in the network. Traditional Lagrangian relax-
ation and sub-gradient optimization methods were used for
solving route selection and capacity and flow assignment
problem in communication networks in [5] and [12]. For
the same problems an evolutionary algorithm called Net-
work Genetic Algorithm has been proposed in [7]. It uses
a special solution encoding and employs a parallel evolu-

1

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

tion approach using dynamically changing genetic parame-
ters. In [1], Arabas and Kozdrowski describe an application
of evolutionary computation to telecommunication network
design. It focuses on the network dimensioning problem
in which the network structure is given and the task is to
find values of link capacities that are optimal according to a
certain criterion.

Up to now not many approaches to network design and
network flow optimization problems based on evolution-
ary algorithms (EA) can be found in the literature. This is
because the network flow optimization problems impose a
strong constraint on the flow balance at each node of the net-
work, i.e. the total node’s output must be equal to the total
node’s input. And it is very hard to either design an EA such
that it would generate only feasible solutions (with balanced
flows at all nodes) or to support the EA with such a repair
algorithm that could efficiently transform each illegal solu-
tion to the legal one. None of the above options is usually
the case so a penalty must be used then to guide the EA to-
wards the feasible solutions. However, the penalty approach
greatly decreases the quality of the evolved solutions and it
slows down the convergence towards the final solutions as
well. In [9], Munakata and Hashier applied an EA to the
maximum flow problem. They introduce an energy level
assigned to each node, which is zero if the node is balanced
and has its flow at the maximum capacity. Such a node is
considered stable. Otherwise, the node’s energy increases
accordingly as the level of its flow unbalance increases and
its flow decreases and is unstable. Genetic operators used in
this approach prefer more stable nodes so that the evolution
process is biased towards solutions with stable nodes. They
showed their genetic algorithm can find optimal or near op-
timal solutions for simple networks. However, the balanc-
ing objective still remains an issue as it makes the algorithm
to converge slowly to the desired solution.

In [3], Bramlette proposes an indirect representation and
a two-phase optimization method to overcome the difficul-
ties with satisfying the constraint of balanced flows when
solving the maximum flow problem. Here, the chromosome
is a list of n integer variables, where n is the number of
flow allocations. The trick is that the variables do not rep-
resent the direct flow allocations. Instead, they represent
only desired relative sizes. When the fitness of a chromo-
some is to be assessed the actual flows on output links of
every node are calculated first so that they respect i) the
capacity constraints and ii) a relaxed inequality constraint
I1 that no node’s total output exceeds its total input. It is
important that any set of n integer values (i.e. any chromo-
some) determines a valid set of actual flow allocations. In
the first step of the optimization algorithm, the genetic algo-
rithm evolves solutions according to the maximal network
output criterion. Then, the best solution achieved is further
refined to have all nodes’ flows balanced. This is achieved

by a deterministic algorithm that removes the excess input
at each node, returning the flow upstream to the network’s
source node. It was shown that the proposed approach is
very efficient as it guarantees that only legal solutions are
generated during the genetic algorithm’s run, so no penalty
functions have to be used. On the other hand, a very lim-
iting restriction of this approach is that it can be used only
for acyclic networks.

In this paper we present a new efficient evolutionary-
based approach for solving network flow optimization prob-
lems. We introduce a direct representation with a repair al-
gorithm, which ensures that only legal solutions are gener-
ated by genetic operators during the course of the optimiza-
tion process. The repair algorithm takes the inspiration from
the indirect representation proposed for acyclic graphs by
Bramlette in [3] and extends it for the networks with cycles
as well. Further, we use an Iterative Prototype Optimisation
with Evolved IMprovement Steps (POEMS) [6] as the op-
timization framework. The POEMS algorithm has already
proved to perform well on hard binary string optimization
problems, traveling salesman problem, and the real-valued
parameter optimization problems. This paper reveals some
interesting aspects of using the algorithm and shows that the
POEMS algorithm can be used for effectively solving hard
network flow optimization problems as well. The proposed
approach is experimentally evaluated on cyclic and acyclic
networks and its performance is compared with other ap-
proaches found in the literature as well as with the standard
genetic algorithm.

Here, we focus on the maximum flow problem with ca-
pacities and flows being integer. For an experimental eval-
uation of our approach we use the original networks in-
troduced in [9] as well as two extended networks. This
problem was chosen to show capabilities of our proposed
approach to solve network flow optimization problems, in
which the balanced flow objective plays a crucial role.

The paper is structured as follows. Next two sections
describe the proposed approach and the implementation is-
sues. Sections 4 and 5 describe the test problems and
the experimental setup used in the experiments. Section 6
presents the achieved results. The last section concludes the
paper with a list of topics for our further research.

2 Proposed Approach

The problem that we deal with in this work is defined on
a directed graph with a set V of m nodes and a set E of n
directed edges connecting the nodes. Each edge is assigned
its integer capacity. The goal is to maximize the total flow
from the source to the sink node while satisfying two condi-
tions - 1) the flow at each edge must be an integer between
zero and its flow capacity and 2) at each node, the incoming
flow and outgoing flow must be in balance.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Our approach takes the inspiration from [3]. Here, a re-
pair algorithm is also used that guarantees that any candi-
date solution generated by the genetic operators of the ge-
netic algorithm can be transformed to the one, which com-
plies with the constraint that no node’s total output flow ex-
ceeds its total input flow. Moreover, it extends for networks
with cycles as well, which significantly extends a scope of
possible applications.

The solutions to the maximum flow problem are again
represented by a linear chromosome as a list n integer vari-
ables, where n is the number of flow allocations. Unlike the
Bramlette’s approach, the variables represent desired flow
allocation (not the relative sizes) so that the value of each
variable ranges from 0 to the flow capacity of the respective
edge. The genetic algorithm searchs for an optimal solution
with maximal flow from the source to the sink node while
considering only the relaxed node’s balance flow constraint.

The repair algorithm that is invoked to adjust the flow
allocations to the valid ones that already satisfy the relaxed
flow balance constraint is shown in Fig. 1. A set S of nodes
to be processed is maintained. At the begining it sets S to
contain all nodes in the graph S = V . Then, it iterates in the
main loop, processing nodes from S one by one, until the S
is empty. In each iteration it takes the first node from S, re-
calculates its output flow allocations so that the total node’s
input flow is distributed to its outgoing edges proportionally
to the desired flow allocation sizes, while satisfying the ca-
pacity constraints imposed on the outgoing edges. Thus, not
more than the total input flow can be assigned to the output
flows. If any of the node’s output edges is assigned smaller
flow than was the original one, then all nodes to which the
edge leads are inserted to the set S. This is because as the
total input flow of the corresponding nodes decreases the
flow allocations at their outgoing edges might have to be
re-adjusted. This procedure provides a means for finding
valid flow allocations with respect to the relaxed balance
constraint in a finite number of iterations. Let us assume
that the graph contains a group of nodes that affect mutu-
ally each other (they constitute a cycle) so that reduction of
the output flow of one node causes that some other nodes of
the group have to be recalculated. Then the recalculation of
those nodes will likely take more iterations, where some of
the nodes will be recalculated multiple times. However, this
process will end up either when all the nodes get to the state
with the balanced flow or when the edges belonging to the
cycle are assigned zero flow (due to the fact that the output
flow of the processed node can only decrease), so that no
further node’s recalculations can be invoked along such an
edge any more.

The optimal solution found in the first phase is then final-
ized by a deterministic procedure that adjusts flows in order
to achieve the precise balance of the input-output flow at
each node. A outline of this procedure is shown in Fig. 2.

input: Original flows stored in the chromosome
output: Adjusted flows that satisfy the condition that in each

inner node of the network the sum of its output flows
is less or equal to the sum of its input flows.

1.1 Assign original flows to network edges
1.2 Initialize the list of nodes to be processed S = V

2 do
3 Take the first node v of the list S

4.1 Recalculate output flows of node v

4.2 Add all nodes that have been affected
by this action to list S

5 while(S 6= {})

Figure 1. Repair algorithm for direct repre-
sentation.

For any node that has the total input flow bigger than its
total output flow it finds a path from the given node to the
source node, and then decreases the flow along that path as
much as possible. This might be repeated several times for
one node, until the excess input flow has been completely
removed.

In the first phase of the optimization process any evolu-
tionary algorithm can be used to find the maximum flow
solution. Note, that this is an integer-valued parameter
optimization problem of n parameters, which might be a
hard task for standard genetic algorithms for larger prob-
lem sizes. In this work, we propose an implementation of a
new evolutionary-based approach called Iterative Prototype
Optimisation with Evolved IMprovement Steps (POEMS)
proposed in [6].

2.1 POEMS

Typically, an evolutionary algorithm (EA) evolves a pop-
ulation of individuals, where each individual encodes a
complete solution to the problem at hand (a complete set
of problem control parameters, a complete schedule in JSP,
a complete tour for TSP, etc.). For large problem instances
such EA often fails to find the optimal or any well-fit solu-
tion at all.

POEMS is an iterative optimization framework, where
the evolutionary algorithm (EA) does not handle the com-
plete candidate solution to the problem at hand. The main
idea behind POEMS (see Figure 3) is that some initial pro-
totype solution is further improved in an iterative process,
where the most suitable modification of the current proto-
type is evolved by means of the EA in each iteration. The
modifications are represented as a sequence of primitive
actions/operations, defined specifically for the problem at
hand. The evaluation of action sequences is based on how

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

input: Flows that already satisfy the condition that in each
inner node the sum of its output flows is at most as
big as the sum of its input flows.

output: Balanced flows for which the balance condition holds
that every inner node has its total output flow equal
to its total input flow.

1 while(exists node v with unbalanced in-out flows)
2 flow diff = v.in− v.out

3 do
4.1 Find an acyclic path P from v to the source

node s such that all edges in the path are
assigned a positive flow.

4.2 Set reducible to the flow of the edge with
the minimal flow along the path P

4.3 reducible = min(reducible, flow diff)

5 Decrease flows of all edges of path P

by value of reducible
6 flow diff = flow diff − reducible

7 while(flow diff > 0)

Figure 2. Algorithm for finding balanced
flows in every inner node of the network.

good/bad they modify the current prototype, which repre-
sents an input parameter of the EA. Sequences that do not
change the prototype at all are penalized in order to elim-
inate generating trivial solutions. After the EA finishes, it
is checked whether the best evolved sequence improves the
current prototype or not. If an improvement is found, then
the sequence is applied to the current prototype and the re-
sulting solution becomes the new prototype. Otherwise the
current prototype remains unchanged for the next iteration.

Representation. The EA evolves linear chromosomes
of length MaxGenes, where each gene represents an in-
stance of certain action chosen from the set of elementary
actions defined for the given problem. Each action is rep-
resented by a record, with an attribute action type followed
by parameters of the action. Besides actions that truly mod-
ify the prototype there is also a special type of action called
nop (no operation). Actions with action type=nop are in-
terpreted as void actions with no effect on the prototype,
regardless of the values of their parameters. A chromosome
can contain one or more instances of the nop operation. In
this way the variable effective length of chromosomes is
implemented. An important aspect of this implementation
is that any temporarily inactivated action can be activated
again later on (with its formerly evolved parameters) just
by switching its action type on.

Operators. The representation allows to use a variety
of possible recombination and mutation operators such as
standard 1-point or 2-point crossover and a simple mutation.

1 generate(Prototype)
2 repeat

3 BestSequence ← run EA(Prototype)
4 Candidate ← apply to(BestSequence,Prototype)
5 if(Candidate is better than Prototype)
6 Prototype ← Candidate
7 until(POEMS termination condition)

8 return Prototype

Figure 3. An outline of POEMS algorithm.

Evolutionary model. The design and configuration of
the EA can differ for each particular optimization prob-
lem. In general, the EA is expected to be executed many
times during the whole run of the POEMS. Thus, it must
be configured to converge fast in order to get the optimized
action sequence in short time. As the EA is evolving se-
quences of actions to improve the solution prototype, not
the complete solution, the maximal length of chromosomes
MaxGenes is typically shorter than the actual size of the
problem. The relaxed requirement on the expected EA out-
put and the small size of evolved chromosomes enables to
setup the EA so that it converges within a few generations.

It is important to note, that POEMS is not optimizing the
prototype via improvement steps that are purely local with
respect to the current prototype. In fact, long phenotypical
as well as genotypical distances between the prototype and
its modification can be observed if the system possesses a
sufficient explorative ability, see [6]. The space of possible
modifications of the current prototype is determined by the
set of elementary actions and the maximum allowed length
of evolved action sequences. The less explorative actions
are and the shorter sequences are allowed the more the sys-
tem searches in a prototype neighborhood only and the more
it is prone to get stuck in a local optimum, and vice versa.

3 Implementation Issues

POEMS is a general optimization framework. The prob-
lem specific part is the implementation of the engaged EA.
One has to design the representation of the evolved action
sequences, genetic operators operating on the sequences,
and the evolutionary model. Perhaps, the most important
is a proper choice of the set of action types. They should
be chosen so that the space of possible candidate action se-
quences is rich enough to ensure a sufficient exploration ca-
pabilities of the whole system.

Representation. In this work, besides the nop
action we have used just one effective action type
add(edge, flow change). It adds the value flow change
to the flow assigned to the respective edge. When initial-
izing or mutating this action, the value of flow change

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Figure 4. Graph-ext with cycles and two
source and two sink nodes

is chosen randomly so that when the action is applied
to the edge the resulting flow must be in the interval
(0, edge.capacity).

The chromosome (i.e. the candidate action sequence) is
represented as a list of MaxAction actions (active or in-
active), each of them operating on one edge of the current
solution prototype. At least one of the actions in each se-
quence must be active with non-zero argument in order to
eliminate trivial solutions (i.e. action sequences that do not
modify the prototype at all).

Operators. A generalized uniform crossover proposed
in [6] was used here, that forms a valid offspring as an arbi-
trary combination of parental genes. Both parents have the
same probability of contributing its genes to the generated
child, and each gene can be used only once. Mutation oper-
ator changes either the action type (activates or inactivates
the action) or the parameter flow change.

Evolutionary model. A simple steady-state EA that iter-
atively modifies a single population of individuals was used.
In each iteration a couple of individuals is selected that un-
dergoes the crossover operation. The generated offspring is
then modified by the mutation operation and assigned the
fitness. Then one of the worst individuals in the current
population is chosen as the replacement. Finally, the off-
spring is placed on the position of the replacement in the
population if it is better than the replacement. A tourna-
ment selection was used for selecting the parents.

4 Test Problems

The following graphs were used for the experimental
evaluation of the proposed approach:

• Original Munakata’s acyclic directed graph with one
source-sink pair, referred to as Graph 1 in [9]. It has

25 nodes and 49 edges. The maximum flow is 90.

• Original Munakata’s graph with one source-sink pair
and cycles, referred to as Graph 2 in [9]. This graph
has 25 nodes and 56 edges. The maximum flow is 91.

• Extended Munakata’s Graph 2 with cycles and two
source and two sink nodes and bigger capacities de-
noted as Graph-ext, see Fig. 4. This graph has 27
nodes and 71 edges. In order to increase the search
space the capacities of edges are ten times bigger then
those in the original Munakata’s graph.

• Extended Munakata’s Graph 2 with bidirectional in-
ner links denoted as Graph-bidirect. This graph is the
same graph as the Graph-ext but the inner edges i.e.
the edges that do not lead neither to source nor to sink
nodes are bidirectional. In fact, each of the inner edge
is doubled with the same capacity - one edge for each
direction. This adds 56 edges to the graph so it has 27
nodes and 127 edges in total.

5 Experimental Setup

Results achieved with POEMS were compared with re-
sults published in [9] and [3] and the standard genetic algo-
rithm (SGA) using 2-point crossover, simple mutation, and
tournament selection. For each experiment, 20 independent
runs of POEMS and SGA have been executed and the fol-
lowing statistics have been recorded:

• Best - the best-of-run solution fitness.

• Mean, StDev - the mean and standard deviation of the
20 best-of-run values.

The following configuration of the EA engaged in PO-
EMS was used in the experiments:

• Population size: 50,

• Number of fitness function evaluations: 500 (original
Munakata’s networks), 750 (extended networks),

• MaxGenes: 20 (Munakata’s networks), 50 (extended
networks),

• Pcrossover = 0.9, Pmutation = 0.1.

The following configuration of the SGA was used:

• Population size: 50,

• Pcrossover = 0.9, Pmutation = 0.015.

The total number of fitness function evaluations of both
the SGA and the POEMS was set to 10000 (original Mu-
nakata’s networks), and 20000 (extended networks).

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Table 1. Experimental results on original Mu-
nakata’s Graph 1

Algorithm Best Mean StDev
Munakata 90.0 (3400) 90.0 0.0
Bramlette 90.0 (1450) 90 0.0
SGA-direct 80.2 79.4 0.49
POEMS-direct 80.8 80.07 0.45
POEMS-repair 90.0 (3100) 90 0.0

Table 2. Experimental results on original Mu-
nakata’s Graph 2

Algorithm Best Mean StDev
Munakata 89.0 85.90 2.20
SGA-direct 88.7 87.93 0.40
SGA-repair 91.0 90.63 0.67
POEMS-direct 88.9 88.29 0.39
POEMS-repair 91.0 90.65 0.81

6 Experimental Results

Tables 1 and 2 show results achieved on the original Mu-
nakata’s Graph 1 and Graph 2. The tables compare results
presented in [9] and [3] with our results achieved with SGA
and POEMS using a direct representation with a penalty fit-
ness function, and POEMS using the repair procedure pro-
posed in this paper. It shows that except the SGA-direct
and POEMS-direct, all other approaches were more or less
successful on those test graphs. SGA-direct and POEMS-
direct were not able to find a solution with the balanced flow
in the given time in any out of the 20 runs. It also shows that
our proposed repair procedure in combination with both the
SGA and POEMS clearly outperforms the Munakata’s re-
sults on the Graph 2.

Tables 3 and 4 compare the SGA using the repair proce-
dure with two versions of POEMS using the repair proce-
dure - POEMS-repair (random) generates the starting pro-
totype by randomly sampling the flow allocations, POEMS-
repair (empty) starts with empty solutions (all flows are
zero). The Bramlette’s approach can not be used because
both Graph-ext and Graph-bidirect are graphs with cycles.

Table 3. Experimental results on Graph-ext
Algorithm Best Mean StDev
SGA-repair 1187.0 1177.90 5.28
POEMS-repair (random) 1190.0 1189.45 0.60
POEMS-repair (empty) 1190.0 1189.45 0.99

Table 4. Experimental results on Graph-
bidirect
Algorithm Best Mean StDev
SGA-repair 1206.0 1186.95 8.65
POEMS-repair (random) 1230.0 1210.75 19.21
POEMS-repair (empty) 1230.0 1211.85 22.93

The Munakata’s approach were not implemented but it can
be expected that it would not perform very well anyway as
it already had some problems when solving maximum flow
problem on much simpler Graph 2. The results show that
POEMS-repair already outperforms the SGA-repair algo-
rithm. This is in agreement with our expectations that as
the size of the problem increases (both the number of edges
and their capacities increased from the original Graph 1 and
2) the performance of the standard evolutionary approach
decreases. Also an interesting observation is that POEMS
starting from the empty solution prototype achieves as good
solutions as when it starts from a randomly generated start-
ing prototype of non-zero fitness. This means that this ap-
proach is capable of evolving a good solution to the problem
from scratch. This is particularly useful when no effective
heuristic can be used to generate the starting feasible solu-
tion. Then, the POEMS can start at least from the empty
solution, which is usually a feasible one.

7 Discussion and Conclusions

This paper presents a new evolutionary-based approach
for solving network flow optimization problems. An ef-
ficient repair procedure was proposed that guarantees that
only valid solutions are processed during the optimization
process. Further, an application of the iterative optimiza-
tion framework called POEMS was proposed for the maxi-
mum flow optimization problem. First experiments are very
promising. They show that this approach outperforms other
evolutionary-based approaches developed for the maximum
flow problem and outperforms also a standard genetic algo-
rithm using the same repair procedure.

Our primary interest is in the optimization of events traf-
fic in event-based systems. Below is a list of variations
of the original maximum flow problem that we believe are
in principle solvable by the proposed iterative-evolutionary
approach utilizing the repair procedure.

Simple Network Problem. Find an optimal solution to
route a set of events transports through a network with lim-
ited capacity (e.g., in a given timeframe). Links between
nodes can be directed or undirected (in the latter case each
undirected link would just be represented by two links of the
same capacity, each for one direction), and can have other

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

attributes like cost (fixed/variable) etc. Further, a list of de-
sired transports (each transport has its pair of source-sink
nodes, and the number of units to be transported) is given.
The following goals can be defined:

• To find a feasible solution.

• To find a minimal cost feasible solution.

• If no feasible solution found then give a list of limiting
bottleneck links.

Advanced Network Problems (Networks with Tags).
Messages, links, and nodes can have (combinations of) tags
attached, e.g., to denote transport priorities, reliability of
lines, right of a transport to use a given link. A message
with a tag may travel only nodes and links that also have this
tag. The goals would be the same as in the simple network
problem above.

Networks with Node/Link failures. During network
operation, nodes or links may be unavailable due to a node
or link failure. Solve the simple network problem, if any
one of the nodes or links becomes unavailable. If possible,
use the solution of the problem without failure to derive the
solution for the corresponding network with a single failure
faster than calculating the solution anew in every new com-
bination. This problem scenario seems to be particularly
suitable for the POEMS framework because in POEMS a
sequence of simple actions is sought such that it improves
some current prototype solution to the problem. So, taking
the solution to the problem without failure as the initial pro-
totype, POEMS could be used to find such a sequence of
actions that would make the solution valid in the new con-
text with the node/link failure.

The investigation of the possible applications of the pre-
sented approach to the problems listed above is a subject of
our further research.

Acknowledgments

This research work has been supported by a Marie Curie
Transfer of Knowledge Fellowship of the European Com-
munity’s 6th Framework Programme under the contract
MTKD-CT-2005-029755.

References

[1] Arabas J. Kozdrowski S., “Applying an Evolutionary
Algorithm to Telecommunication Network Design”,
IEEE Transactions on Evolutionary Computation, Vol.
5, No. 4, 2001.

[2] Birman, K. P., “Reliable Distributed Systems”,
Springer New York, 2005.

[3] Bramlette M. F., “Finding Maximum Flow with Ran-
dom and Genetic Search”, Proc. First IEEE Conference
on Evolutionary Computation, Orlando, Florida, pp.
296-299, 1994.

[4] Crainic T.G., Gendreau M., Farvolden J., “A Simplex-
Based Tabu Search Method for Capacitated Network
Design”, INFORMS Journal on Computing, Vol. 12,
No. 3, pp. 223-236, 2000.

[5] Gavish B., “A system for routing and capacity as-
signment in computer communication networks”, IEEE
Transactions on Communications, Vol. 34, No. 4, pp.
360-366, 1989.

[6] Kubalik J. and Faigl J., “Iterative Prototype Optimisa-
tion with Evolved Improvement Steps”, P. Collet, M.
Tomassini, M. Ebner, A. Ekart and S. Gustafson (Eds.),
Proc. Genetic Programming. Proceedings of the 9th Eu-
ropean Conference, EuroGP 2006, To be published.

[7] Lin X., Kwok Y. Lau V., “A genetic algorithm based
approach to route selection and capacity flow assign-
ment”, Computer Communications, Vol. 26, pp. 961-
974, 2003.

[8] Luckham, D., “The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed Enter-
prise Systems”, Addison-Wesley Professional, 1st edi-
tion, 2002.

[9] Munakata T., Hashier D., “A genetic algorithm ap-
plied to the maximum flow problem”, Proc. Fifth In-
ternational Conference on Genetic Algorithms, Morgan
Kaufmann, Urbana-Champaign, IL, pp. 488-493, 1993.

[10] Muhl, G., Fiege, L., Pietzuch, P., “Distributed Event-
based Systems”, Springer, Berlin, 2006.

[11] Pioro M. and Gajowniczek P., “Solving multicom-
modity interal flow problems by simulated allocation”,
Telecommunication Systems, Vol. 7, pp. 17-28, 1997.

[12] Pirkul H., “Routing and capacity assignment in back-
bone communication networks”, Computer Operations
Research, Vol. 24, No. 3, pp. 275-287, 1997.

[13] Walkowiak K., “Ant Algorithm for Flow Assignment
in Connection-Oriented Networks”, Int. J. Appl. Math.
Comput. Sci., Vol. 15, No. 2, pp. 205-220, 2005.

[14] Zaleta N. and Socarras A., “Tabu Search-based algo-
rithm for Capacitated Multicommodity Network De-
sign Problem”, Proc. 14th IEEE International Confer-
ence on Electronics, Communications and Computers,
2004.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

