
Using Space-Based Computing for More Efficient Group Coordination and
Monitoring in an Event-Based Work Management System

Marcus Mor, Richard Mordinyi and Johannes Riemer
Institute of Computer Languages, Vienna University of Technology

[mor|richard|jr]@complang.tuwien.ac.at

Abstract

Group communication is a very difficult task to be

implemented in distributed applications. Particularly,
work management systems are important in many
industries to support the coordination of distributed
groups of mobile workers with different levels of
availability. Traditional event-based systems using
point-to-point communication such as e-mail are not
well suited to coordinate a work group as the state of a
work item is not always clear and this mode of
communication creates many mistakes and massive
communication overhead because those tasks are
solved via a central server. In this paper, we analyze a
work process in a major insurance company, develop a
prototype providing solutions for the problems by
exploring the coordination features deployed in space-
based computing and compare the current system with
the prototype.

1. Introduction

Collaborative applications such as in computer
supported cooperative work (CSCW), groupware, or
social software essentially require a basis for well-
founded coordination means. As for stationary
information systems these are well established. Recent
developments show that the market of mobile devices
and services is rising ([23],[24]) and thus becomes
more and more relevant for collaborative applications.
Information systems are steadily transforming
themselves into mobile information systems because of
increased availability and capability of mobile and
wireless technologies and portable devices at reduced
cost. Due to more challenging requirements of mobile
environments, more appropriate coordination
mechanisms are necessary [3]. Such environments are
characterized by a high degree of error proneness,
steady disconnections, frequently changing topologies
and conditions, lower transmission rates and resource-
restricted devices. Hence, system designers of

architectures for mobile applications have to provide
flexibility to a great extent in order to abstract from
these unfavorable conditions.

We claim that the inherent properties of the peer-to-
peer (P2P) paradigm seem to be highly applicable to
mobile environments on the one hand and to address
the increased claim for coordination in this context on
the other. The essential properties are ([1],[2]): the
decentralized nature (no single point of failure), fault-
tolerance and robustness through redundancy and
replication, scalability and adaptability (changes in the
environment are masked by the overlay network),
loose couplings through time and location
transparency, autonomy of the nodes, and dynamic
assignment of roles, which accumulates to the required
flexibility property.

In this paper, we introduce a business case (chapter
2) that will be the basis for the case study. Its current
situation is described and coordination related
requirements for an improved solution are identified.
We investigate four different technology approaches
in chapter 3 to find out to which extend they help to
realize those requirements. In chapter 4, we reason
about the selected coordination technology for the
prototype of an improved solution and detail the
implemented prototype. We give a comparison
between the technology used by the business case and
the new prototype in chapter 5 and end the paper with
the conclusion about gained experiences in chapter 6.

2. Case description

The business case we are using for the case study
was taken from a major insurance company, where
many agents are set in field services. The decentralized
workers, equipped with mobile devices, are working on
their own visiting costumers (e.g. a car driver after an
accident controlling the claim). Therefore, they use a
“Prisma Client” [25] – like a mail client – to collect
their data (e.g. costumer data, reports on claims, …) in
local databases (see Figure 1). The data (e.g. new

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

tasks) they receive from the “Prisma Server”, a mail
server that provides an inbox and outbox for each user,
are also put there.

Figure 1. Workflow with the Prisma system

An example for the application of this system:

Insurance policies are sold via a software application.
Every new policy is stored in the local database of the
client first. After the stored data is complete, they are
moved into the outgoing mailbox. The network
connection has to be built up, and the transfer process
has to be started manually. The data are then
transferred via FTP to the host (providing the Prisma
Server). After the transmission to the server, new data
in the inbox for the user will be sent back. After the
transfer of data is complete, client and server will start
some automatic or semi-automatic (user interaction
being necessary) tasks that will process the data
locally.

Each client (and user) transmits its work tasks
independently to the central server. The supervisors are
not notified about those happenings (e.g. they are not
informed that a new contract was finished).

Current event-based systems using point-to-point
communication such as an e-mail system are not well
suited to coordinate distributed work groups, as the
state of work items is not always clear. This
complicated and actually old type of peer-to-peer event
message passing communication system between the
different actors in that circle of processing asks for a
better solution. The following requirements have been
identified:

Monitoring: Supervisors cannot find out about the
work progress of their agents. They are informed after
the work has been done and do not know who received
which tasks at what time. To get rid of this process the

following change was introduced at some agencies. All
transmissions out of the agents have to go through the
supervisors’ mailbox. This creates an obvious
bottleneck at a supervisor. This solution gives the
supervisor the information needed but produces new
work as the supervisor has to transfer the data
manually. An improved system should enable flexible
monitoring without sacrificing efficiency.

Load balancing: The current system does not allow
the supervisors to have any influence on the
distribution of work packages. Packages may only be
assigned to a single agent, not to a group of agents
having the same skills. More flexible and dynamic load
balancing is required.

Mobile client support: Another task is to find
solutions to handle the mobile scenario, as the mobile
infrastructure (wlan, umts) are getting more common
nowadays creating the problems sketched in the
introduction. To support offline clients, replication of
relevant data is necessary. A problem known as
“synchronizing to hell” means that most of the data is
synchronized and copies are made between the clients
no matter whether they are really needed. Instead,
efficient, selective replication is necessary.

Performance and fault tolerance: The current
solution is built on the client/server network
architecture that allows many clients to connect to one
single server. This creates two problems that need to be
overcome: a bottleneck – all clients have to
communicate with this server and a single point of
failure – as there is no alternative. More powerful
technologies are needed to solve these drawbacks.

3. Coordination theory

Usually distributed system applications consist of a
number of components that might be either processes
or software components [10]. These components are
often distributed which means that the services they
offer run at different computers at different locations.
In order to fulfill the given task, the application has to
coordinate the various components using
communication facilities.

According to [7] and [13] coordination models
define abstract frameworks for modeling the
composition of interacting components and are mainly
defined by three elements: (1) the coordination entities
– either physical or logical – which have to be
coordinated. These can be data (structures), software
processes, services, agents, or even human beings
interacting with computer-based systems. (2) The
coordination medium representing the abstraction and
serving as connectors between the entities and enabling
the interaction among those, which is a mandatory

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

prerequisite for direct coordination ([26], [20]) and (3)
the coordination laws, specifying what kind of
coordination activities can be performed on the
medium by the entities.

Computer networks and their protocols do not
provide the necessary technology for coordination
facilities, therefore four major communication
paradigms are analyzed in the following sections.

3.1. Message passing

The message passing (MP) paradigm means that
components communicate through the explicit sending
and receiving of messages (point-to-point like in a mail
system). Messages are sent by the client part and
received by the server part of the interaction. Messages
contain specific information of the task to be carried
out by the message receiver.

The development of an application using message
passing seems to be easy since the communication
protocol is the only barrier that has to be agreed on.
The component has to know and explicitly name its
communication partner (spatial coupling), and for
successful communication both components have to be
up and running at the same time (temporal coupling).

An early approach to realize communication in a
distributed system based on message passing was to
establish direct communication paths with sockets,
RPC or RMI. With this kind of communication, each
component interacts exactly with those components
that can offer the requested services. In the worst case,
each component communicates with every other
component in the system resulting in a fully meshed
topology. Working with RPC or RMI may have
additional drawbacks concerning distributed
application programming [9]. Building simple
client/server applications is not too time consuming.
However, when it comes to highly distributed systems,
the MP approach has significant drawbacks. Due to its
inherent characteristics such as spatial and temporal
coupling, important topics in distributed systems
programming are difficult to address. Other issues
whose realization is complex with the MP systems are
minimal latency, concurrency, memory access, partial
failure, or scalability, and therefore design and
implementation efforts are usually relatively high [10].

Publish / subscribe communication decouples
message senders (publishers) from message receivers
(subscribers). The system routes messages based on
topics or message contents. In the first place, these
systems were meant for distribution of information
only. Bidirectional communication had to be emulated
leading to problems such as scalability.

3.2. Service-oriented architecture

Service-oriented architectures (SOA) deal with the
issue of designing and building systems by using
heterogeneous, network addressable software
components. Looking at the historical evolution, the
term “service” has been used in many different
architectures reaching from transaction monitors in the
early 1990s to today’s client/server architectures and
web service architectures. Following the evolution
process, service-oriented architectures have reached an
evolution stage where the basic concepts have been
widely accepted. Typically, a service-oriented
architecture consists of the following main concepts
[16]: service components (encapsulate a specified
functionality), contracts (describe the interfaces to the
service), containers (represent the software execution
environment), connectors (are responsible for the
message transport and thus for inter-operability), and
discovery (comprise mechanisms to announce, search,
find, and deploy services; typically implemented as
registries such as yellow pages).

The Jini technology [12] is a representative of SOA.
The main components are a service provider, a service
consumer and a lookup service (i.e. service locator and
registry) constituting the coordination entity of the
coordination model. Although the Jini specification is
fairly independent with respect to the communication
protocol, the coordination medium is usually
conducted via Remote Method Invocation (RMI) based
on TCP/IP in reference implementations. Thus, very
weak time decoupling mechanisms are an unfavorable
consequence. Coordination laws are addressed via a
central coordination entity - the lookup service, which
is responsible for the service mediation. The
deployment of the service is conducted in a P2P
manner between the service provider and consumer.
Hence, the only pattern occurring in a Jini P2P system
is the matchmaker variant of the broker pattern [30].

3.3. Multi-agent systems

An agent is a problem solving entity focused on a
specific task and embedded in an environment – the
agency – which provides all the necessary functionality
for the agent to exist and to co-operate with other
agents in order to fulfill their design objectives [21].
These agents are autonomous (control of their actions
and behavior to a certain extent), proactive (capability
to act in a goal directed manner, not just react to
external stimuli), and possess social abilities
(communication and negotiation with other agents in
order to achieve their overall goal). An enhancement to
this agent concept is the BDI approach [14] where

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

agents are modeled comprising their individual
believes, desires and intentions (BDI) which trigger
their actions.

Java Agent Development Framework (JADE)
complies with the BDI idea and the FIPA (Foundation
for Intelligent Physical Agents) specification [27] for
interoperable, intelligent multi-agent systems (MAS).
Apparently, the agents represent the coordination
entities. Even the agency - the so-called agent
management service - is designed as a decentralized
management entity consisting of a magnitude of agents
distributed to each participant [28]. Communication
between agents is based on message passing leading to
an abolishment of any temporal constraints (temporal
decoupling). Moreover, JADE also provides the
possibility of intra-platform agent mobility (code
location transparency [11]). Furthermore, no
coordination pattern is inherently predefined in MAS.
Most of the patterns, however, seem to be realizable
with minor efforts due to the support of ontology
definitions. By nature, the negotiation pattern is highly
applicable to multi-agent systems.

3.4. Space-based computing

In space-based computing (SBC) components of the

distributed application use a space for communication.
The focus is on the data itself that may be transferred
between the components. The notion of a message is
not important any more [29]. So called shared data
objects are used for the communication that might also
be known under the term “blackboard-based
communication model” [4].

This leads to some advantages compared to the
message passing paradigm, which results in a very
flexible system design. First of all the participants do
not know anything about each other. This makes it
possible to exchange data connectionless and
anonymously since the blackboard is used to store and
retrieve messages. The components do not need to
share the same process or machine, but most important
the participants are temporally decoupled.
Additionally, blackboard models also provide more
security because any execution environment can fully
monitor and log all the interactions that occur through
its local blackboard.

One of the most popular representatives for space-
based computing is the “Linda-like tuple space”. It
extends the blackboard model by organizing data in
tuples and accessing them in an associative way via
pattern matching. By retrieving information in an
associative way, Linda-like tuple spaces support
spatial decoupling as well. Existing tuple-based
coordination infrastructures like JavaSpaces ([5], [31])
or TSpaces [22] extend the capabilities of the Linda

model towards the event model [19] by providing a
notification mechanism. In component-based systems,
notifications are generally used to observe component
changes. The notification mechanism allows
coordination entities to claim their interest in receiving
information about specific events occurred in the
coordination medium.

The space-based paradigm implemented in Corso
[9] goes a different way in extending the blackboard
model. It can address objects located in the space
directly via its object IDs. This improves scalability
and assists at garbage collection. The difference
between Corso and most other space-based computing
implementations is that Corso is based on peer-to-peer
concepts. From the programmer’s view, the application
component communicates via the space, which can
virtually be accessed in a centralized way. The data
itself, however, is physically distributed and replicated
among the participating peers. This implies that the
coordination medium is not restricted to a single
server; it is rather distributed to and shared by all
participating clients. The use of redundant components
by maintaining several copies of data on different
computers allows to continue work if relevant nodes in
the system fail. Replication improves (1) performance
by letting users access several nearby replicas avoiding
unnecessary remote data calls, (2) availability through
granting access to the data even when some of the
replicas are unavailable ([8], [15]), and (3) high fault
tolerance via redundancy [6] of the replicas.

One main problem of SBC and the reason why
industry still does not widely adopt this technology
seems to be lack of standards needed to make
applications and SBC middleware of different vendors
interoperable.

4. Solution approach and case study

In the solution approach, we present a prototype we
developed for an insurance company as an answer to
their requirements described in chapter 2.

4.1. Selection of coordination model

“A good distributed system should easily connect

users to resources; it should hide the fact that resources
are distributed across the network; it should be open; it
should be scalable.” ([18], page 4) From the
coordination models described in section 3, we
selected Corso for the imlementation of the prototype
because it sufficiently covers these points and supports
most valuable features for simple realization of the
requirements described in chapter 2.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Monitoring: Exploiting the characteristics of
blocking read operations and of the notification
mechanisms the specified shared data objects can be
observed automatically in the background. The gained
information can be analyzed by an independent
monitoring component and its results stored in another
shared data object. This object is accessible from
anywhere in the network allowing managers to
supervise their agents at any time.

Load balancing: Descriptions of peer groups are
stored in shared data objects in the space helping to
identify and to create peer groups. Those descriptions
or profiles can be embedded into the notification
mechanisms identifying the group of agents a stored
task is meant for. Furthermore, it is possible to reassign
a peer to a work item at any time by updating the work
item in the Corso space. This allows starting execution
of a task by a peer but finishing by another, optionally
of a different peer group.

Mobile client support: The SBC technology
supports members of mobile environments who
permanently change their offline and online status. In
fact, most of the current systems cannot handle the
situation in which the requester is not available after it
has sent the request. The Corso technology could
transparently store the answer and make it available
when the peer is available again even if the same
network is accessed through new peers (e.g. with a new
IP address) from different geographical positions. In
Corso, distributed data structures can be designed and
various replication protocols can be applied enabling
selective and efficient replication.

Performance and fault tolerance: The P2P support
of Corso enables application design without a central,
coordinating server component. The absence of a
server as single point of failure and bottleneck
improves throughput, work item latency and fault
tolerance.

4.2. Coordination of agents

An application that is predetermined for distribution

of all kind of objects should be easy and simple to
handle. It should be as transparent as possible meaning
that the users of the system should only have to know
who to supply the system respectively how to grab a
work package. Users on the one hand are the ones who
want to distribute packages and on the other hand the
ones who fetch them.

This leads to the “principle of the two ears” (see
Figure 2). On the left “ear” of the circle the master user
provides new objects into the space meant for
distribution. On the right “ear” independent users
spread all over the network have to choose the desired
package and start the application associated with it.

In the following the three main points of the circle
are picked out and described in more detail to get a
first idea how the Shared Virtual Space Distribution
Manager (SVSDM) prototype works. These would be
importing, distributing and collecting the packages.

Figure 2. Functions of the SVSDM

4.2.1. Importing a package. In order to be able to
distribute anything, the system needs data. This
information is provided by the user of the system. This
could be done either through a GUI or via files. The
SVSDM prototype works with files. The user has to
specify which files to distribute. This offers on the one
hand independence from other systems, and on the
other hand processes can work automatically with
SVSDM through its offered interfaces.

The given data is zipped first and put into a
communication object. Another communication object,
the package, is created and tagged with additional
information necessary to specify the characteristics of
the package itself.

The task of the distribution manager is to put this
package into the virtual space. It should be done in a
way so that any other user connected to the space is
informed about any updates as soon as possible.

4.2.2. Distribution of a package. Once the user
decides to open a package for distribution, the system
copies the package into a special list existing in the
space. This list offered by Corso is the notification
service. Every time the user puts a package into that
list, Corso informs every other host about the new
package automatically and replicates it to those sites.

At that time all available packages are visible at the
worker’s site. Actually, that should not be the case.
The problem is that in the current version of SVSDM
the usage of profiles is not fully implemented. As
mentioned above, a package contains additional
information. A part of this information should be used
to specify the profile of a package. The user should be
able to determine what kind of groups or single users
are allowed to see that package in the global space.
This means that some of the users do not even see a
newly added package. This method does not only

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

distribute packages within the system, it also
distributes them to authorized users as well.

4.2.3. Invoke a package. At this point most of the
workers should be informed about the newly added
package. Depending on the network, distribution
should not take more than a few seconds. The
presented information of the available packages shown
on an information board should help the user to select
the most accurate piece of work. If the user has found
the desired package of choice, she/he has to ask the
SVSDM to “move” it to the user’s local space. This is
necessary since offline working modus should be
supported as well. Once SVSDM replicated the
package and all of its content to the user’s site, the
global space is updated. This means that on the one
hand the package becomes invisible for any other user,
and on the other hand the user who created the package
is informed about the user who selected it.

4.2.4. Execution of the content of a package. After
the work has been replicated to the user’s site, she/he
should have the opportunity to go offline as well. From
now on, it is up to the application what happens to the
content of the package.

4.2.5. Collecting a package. In some cases it is not
enough to just distribute a package. A number of
situations require that the output the application
produces is sent back to the global space. This means
that there should be the possibility to perform this task
both manually and automatically via given interfaces.

Once a package has been uploaded, it cannot be
selected once again. It is declared as done and removed
from the global space. The answer is then stored in the
local space of the initiator.

4.2.6. Exporting a package. The initiator can
choose between two possibilities. She/He either deletes
the package from the local space or saves the response.
In the first case, any answer coming from the worker
process is ignored. In case of an export, the received
zipped data is saved to a user specified directory. After
the data has been stored, the user still has the
possibility to remove the package. Once a package has
been removed from the space, it is lost forever.

4.2.7. Exception Handling. There are two kinds of
ways why an exception can occur. Either the problem
is related to the network or an error message appears
because of a user error. Basically, Corso is able to
mask network problems. If Corso for instance tries to
get a primary copy of a communication object, it has to
exchange messages with other peers. If the network
connection breaks during the communication and has

been re-established within a predefined amount of
time, then the application is not notified about anything
and can keep on working with the primary copy.
However, if the time interval has elapsed, the SVSDM
informs the application by throwing a timeout
exception due to unreliable network connection. The
second difficulty is concerned with the question when
packages are allowed to be fetched and executed by the
users. The following points represent rules a user of the
SVSDM prototype has to know about:
1. A package cannot be fetched twice at the same

time. If two or more users try to get a single
package, all of them, except the first, will receive
an error message. The first-come-first-served
principle is used.

2. Over a longer period it is possible to select a
package twice or even more often. In this case, the
answer of the one who fetched the package last is
valid. Any other responses are ignored.

3. A user is not authorized to receive packages. In that
case she/he will receive a message requesting to
ask for authorization first.

4. If the user responses to the content of a package
that is not available any more, she/he will receive
an error message.

As mentioned in the beginning of this chapter, the

SVSDM is implemented and works in a way that
requires only a minimum of effort on behalf of the
user.

Figure 2 presents the SVSDM prototype in a way
how it should be seen at a global point of view. The
application gateways on the left and the right site
represent the “ears” and provide access to the core
SVSDM via its interfaces. Distribution of packages is
done via the Distribution Manager placed between
them. Behind all these Corso is situated in order to
make sure that each action is performed transactional
and without bothering any independent process in case
of failures.

4.3. Grouping of agents

In the case description it was shown that the
distribution from one client to another is not
necessarily the best option. To solve this problem some
additional assignment features (profile management)
will be discussed. In the case of the prototype, the
insurance company only wanted to test the strength of
the distribution algorithm, and so complex assignment
features were skipped on purpose.

4.3.1. Simple profile. The simplest way to achieve
an assignment is to name the receiver. This way was
implemented in the prototype. Each packet is destined

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

for one specific agent that will be named by a personal
ID in the packet.

4,3.2. Hierarchical profile. Company
organizational structures are analogous to hierarchical
file systems, so the representation of the workers’
hierarchy may be set up in a similar manner and be
built into the distribution system. This would start like
a file system with a root node. Work packets may then
be posted to one specific worker telling the path in the
company’s hierarchy. In the case of sending a package
to a logical node representing a higher position within
the company, the packet might be forwarded to all
agents available below the given node name.

4.3.3. Complex profile (semantic web). Packets
could be automatically assigned to workers based on
worker profiles that express workers’ skills. Profiles
could be created by workers, supervisors or
automatically by the system by observation of worker
behavior. Each packet would carry predefined
attributes that were set up at the packet’s creation time.
Both property files and user’s skills will have to be
compared and those users best fulfilling the demands
should be able to download a certain packet. Solutions
for similar problems are sought in many semantic web
[17] projects.

5. Discussion over comparison

The main purpose of the prototype was to identify
new technologies and use one of them to implement a
prototype that realizes the requirements described in
chapter 2. Compared to the existing solution the new
prototype realizes the following improvements:

Efficient monitoring: Usage of notification
mechanism supports forwarding of monitoring entries
automatically. Therefore, by means of the new
coordination approach, statistics for the supervisor are
created automatically, and managers or supervisors can
easily find out about the reliability and sedulity of their
agents.

Load balancing: Work groups become more
efficient, i.e. can work on more work items per time
unit due to more efficient load balancing achieved
through a better task distribution. This implies that no
worker becomes idle, because new work tasks are in
the work pool of the group and not assigned strictly to
a worker.

Mobile client support: The SVSDM provides clients
with replicas of work items they need for working
offline. Replicas are synchronized automatically and
efficiently in the background whenever network
connectivity is given. In contrast, in the former

solution mobile users had to connect to the server and
initiate synchronization manually. The new solution
thus provides mobile users with more up-to-date data
with less user effort.

Performance and fault tolerance: The delay
between the incoming work item and the time to start
work becomes smaller as the new coordination
approach removes the manager as bottleneck of the
system. The delay between starting work and finishing
it becomes smaller in average as agents rejecting work
tasks due to heavy overload do not need to be
reassigned via the server but by the group instead. The
first agent that is available may take over. Fault-
tolerance is supported in this sense as well since an
agent may reject a work item any time. By declaring
the task as high priority one of the group members may
finish the task without to risk missing any deadlines
specified by the task.

6. Conclusion

Motivated by the fact that future mobile information
systems will face an increased demand for coordination
and monitoring mechanisms in order to keep
respectively to improve the service quality, we
proposed the usage of a new type of technology called
space-based computing. Hence, it was our objective to
discuss and evaluate representative technologies with
respect to a scenario coming from an insurance
company, in which coordination and monitoring
problems occurred. The scenario was described, and
four suitable technologies were evaluated. We have
shown that the space-based computing technique is a
powerful tool if it is used for group communication,
collaboration, and monitoring of it. The comparison of
the current system of the use case scenario with the
implemented prototype by means of requirements
concerning monitoring, load balancing, mobility
support, efficiency and fault tolerance (detailed in
chapter 2) showed that further improvement of the
prototype and the SBC technology is justified.

References

[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas,

M. Hauswirth, and S. Haridi: The essence of P2P: A
reference architecture for overlay networks, in
P2P2005, The 5th IEEE International Conference on
Peer-to-Peer Computing, 2005.

[2] S. Androutsellis-Theotokis and D. Spinellis: A survey
of peer-to-peer content distribution technologies, ACM
Comput. Surv., 36(4):335–371, 2004.

[3] M. Bortenschlager: HUG CorA - How to Use a Generic
Coordination Architecture in Pervasive System
Development, In Adjunct Proceedings of the 4th

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

International Conference on Pervasive Computing,
Dublin, 2006.

[4] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli:
MARS: a Programmable Coordination Architecture for
Mobile Agents, IEEE Internet Computing, volume 4,
number 4, pages 26-35, 2000.

[5] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces:
Principles, Patterns, and Practice, The Jini
Technology Series. Addison-Wesley, 1999.

[6] F. C. Gärtner: Fundamentals of Fault-Tolerant
Distributed Computing in Asynchronous Environments,
ACM Computing Surveys, Vol. 31, No. 1, March 1999.

[7] D. Gelernter and N. Carriero: Coordination languages
and their significance, Communications of the ACM,
35(2): 97–107, Feb. 1992.

[8] Hagen Höpfner and Kai-Uwe-Sattler: Semantic
Replication in Mobile Federated Information Systems,
in Proc. of the 5th Int. Workshop on Engineering
Federated Information Systems (EFIS 2003).

 [9] eva Kühn, How to Approach the Virtual Shared
Memory Paradigm, In: Journal of Parallel and
Distributed Computing Practices, Nova Science Books,
September 1998, Vol. 1, No. 3.

[10] W. Kurschl: Space-Based versus Message-Passing
Communication A Comparison, Technical Report
TR.2004.01, Upper Austria University of Applied
Sciences, 2004.

[11] A. L. Murphy, G. P. Picco, and G.-C. Roman: LIME: A
Middleware for Physical and Logical Mobility, in F.
Golshani, P. Dasgupta, and W. Zhao, editors,
Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), Phoenix,
AZ, USA), 2001.

[12] J. Newmarch: A Programmer’s Guide to Jini
Technology, Springer-Verlag, 2000.

[13] G. A. Papadopoulos and F. Arbab: Coordination
models and languages, Advances in Computers,
46(The Engineering of Large Systems):329–400,
August 1998.

[14] A. S. Rao and M. P. Georgeff: BDI-agents: from theory
to practice, in Proceedings of the First Intl. Conference
on Multiagent Systems, San Francisco, 1995.

[15] Ratner, D., Reiher, P., Popek, G.J., Kuenning:
Replication Requirements in Mobile Environments,
G.H, Mobile Network Applications 6, 2001.

[16] K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, and
R. Westenthaler: Towards a Service-Oriented
Architecture for Mobile Information Systems, in IFIP
TC8 Working Conference on Mobile Information
Systems (MOBIS), pages 37–50, 2004.

[17] Stuckenschmidt, Heiner; Frank van Harmelen:
Information Sharing the Semantic Web. Springer-
Verlag, Berlin Heidelberg, 2005.

[18] Tanenbaum, Andrew S., Steen, Maarten van,
Distributed Systems Principles and Paradigms,
Prentice Hall Inc, 2002.

[19] M. Viroli, A. Ricci: Tuple-Based Coordination Models
in Event-Based Scenarios, in Proceedings of the 22nd
International Conference on Distributed Computing
Systems, pages: 595-601, 2002.

[20] H. Weigand, F. van der Poll, and A. de Moor:
Coordination through Communication, in 8th
International Working Conference on the Language-
Action Perspective on Communication Modeling (LAP
2003), Tilburg, The Netherlands, 2003.

[21] M. Wooldridge: Agent-based Software Engineering, in
IEEE Proc. of Software Engineering, 144(1):26–37,
Feb 1997.

[22] P.Wyckoff, S.W. McLaughry, T. J. Lehman, and D. A.
Ford: T Spaces, IBM Journal of Research and
Development, 37 (3- Java Technology):454–474, 1998.

[23] e-Business W@tch: The European e-Business Report.
A portrait of e-business in 10 sectors of the EU
economy., 2005, retrieved on the 14th of April 2006
from http://www.ebusiness-watch.org.

[24] EITO: European Information Technology Observatory
2006, retrieved on the 20th of November 2006 from
http://www.eito.com.

[25] Prisma, retrieved on the 13th of April 2005 from
http://www.silverstroke.de/prisma/.

[26] S. Franklin: Coordination without Communication,
1996; retrieved on the 10th of January 2006 from
http://www.msci.memphis.edu/franklin/coord.html.

[27] FIPA: The Foundation for intelligent physical Agents,
2003; retrieved on the 14th of April 2006 from
http://www.fipa.org/.

[28] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa:
JADE - A White Paper, 2003; retrieved on the 14th of
April 2006 from http://jade.tilab.com.

[29] Bernhard Angerer: Space-Based Computing,
downloaded on the 21st of November 2004 from
http://www.onjava.com/pub/a/onjava/2003/
03/19/java_spaces.html.

[30] The Broker Pattern, retrieved on the 26th of November
2006 from http://vico.org/pages/PatronsDisseny/
Pattern%20Broker/.

[31] Eric Freeman: Make room for JavaSpaces,
retrieved on the 1st of September 2004 from
http://www.javaworld.com/javaworld/jw-11-
1999/jw-11-jiniology.html

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 17, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

