
Rehearsal: A Con�guration Veri�cation Tool for Puppet

Michael Janka
a Technical University of Vienna, Austria

Abstract Although configuration management tools like Puppet make configuring a lot of systems easier,
they don’t protect from misconfiguration. In some cases bugs are not caught in the testing environment
because the configuration leads to an indeterministic state.

Puppet manifests are configuration files which represent the desired state of a system. Among other things,
it contains information about which users to create, files and their desired content and packages that should
be installed. Manifests can sometimes seem trivial and correct, but still violate the properties of determinism
and idempotence.

Shambaugh et al. [10] tackle this problem with Rehearsal, a configuration verification tool for Puppet. The
tool applies static verification to check whether Puppet manifests are deterministic and idempotent. For this
purpose they create a semantics for Puppet and a domain specific language, namely FS, into which they
transform the configuration files. A summary of their approach is presented in this paper.

Keywords con�guration management, static veri�cation, Puppet, determinism

The Art, Science, and Engineering of Programming

Perspective The Engineering of Programming

Area of Submission Con�guration Management, Veri�cation

© Michael Jank
This work is licensed under a “CC BY 4.0” license.
Submitted to The Art, Science, and Engineering of Programming.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Rehearsal: A Con�guration Veri�cation Tool for Puppet

1 Introduction

System administrators, that have to take care of more than only a handful of servers,
often resort to some kind of tooling to help with the management of them. A few years
ago this often resulted in them hacking together some scripts that would take care of
that. Given decent programming abilities that could lead to successful management of
big infrastructures. Still, without a framework to work in, every script would look and
work a little bit different, depending on the background of the person that created it.
In recent years the growing need for management of big cloud infrastructures

brought forward new tools and with them new domain specific languages (DSL) that
help with exactly that. Puppet [7] and Ansible [4] are two examples for configuration
languages that are widely used in the industry today. These tools, albeit being a great
improvement, still don’t protect from misconfiguration. It repeatedly happens that
such errors are the cause for major service outages [6, 9, 12, 15]. In a study about
bugs occurring in cloud systems by Gunawi et al. [2], configuration issues were the
4th biggest category they found.

One reason why this keeps happening is because bugs of the configuration are often
times not caught in the development or testing environment. In other words: the
configuration causes different behavior there, than in the production environment.
To find this class of bugs in Puppet configurations, Shambaugh et al. [10] presents
Rehearsal, a tool to verify configurations. The findings of that work are summarized
in this paper. For this purpose at first Puppet is introduced, followed by sections about
the semantics and analyses presented by Rehearsal. Lastly relevant related work and
a conclusion is presented.

2 Puppet

Puppet is an open source project that provides tools to automate the management of
infrastructure.

2.1 Architecture [8]

Puppet follows a master/agent architecture where the master node is in control of
the configuration for several agent nodes. Along with that architecture the following
communication pattern is used:

1. An agent node sends facts to the master and requests a catalog.
2. The master node responds with a catalog for the requesting node to specify how it

should be configured, compiled using the facts from the agent node.
3. The agent node makes sure that the resources described in the catalog are in their

desired state. To achieve this it applies the necessary changes.
4. The agent node then responds to the master with a report about those changes.

2



Michael Jank

2.2 Manifests

A catalog consists, among other things, of so calledmanifests. A manifest is a collection
of resources, their desired state and their dependencies.
In Listing 1 an example of a puppet manifest is given. The resource types in this

case are package, file and user, which configure the respective instances vim, /home-
/carol/.vimrc and carol. It shall be ensured that the package vim is installed, a file
/home/carol/.vimrc with the content syntax on exists and a user carol is present.

Listing 1 Puppet manifest [10]
1 package{'vim':
2 ensure => present
3 }
4 �le{'/home/carol/.vimrc':
5 content => 'syntax on'
6 }
7 user{'carol':
8 ensure => present,
9 managehome => true
10 }

You may already have observed, that those three steps require to be executed in a
certain order. Specifically the user account has to exist before a file can be created
in it. For this purpose the property require => User['carol'] has to be added for the file
resource.

2.3 Problems using Puppet

Problems that commonly occur in Puppet manifests, as listed by Shambaugh et al. [10],
are non-deterministic errors, over-constrained dependencies, silent failures and non-
idempotence.

2.3.1 Non-Deterministic Errors
A regular task for Puppet is to install a package and then configure it. For this purpose,
configuration files have to be created or overwritten after the package was installed.
In Listing 2 there is no dependency between the creation of the configuration file and
the installing of the package. Therefore it could happen, that the configuration file is
created and then overwritten by the installation of the package. Determinism requires
a Puppet manifest to always result in the same outcome.

Listing 2 Problematic Puppet manifest - non-deterministic error [10]
1 �le {"/etc/apache2/sites-available/000-default.conf": content => ...}
2 package{"apache2": ensure => present}

3



Rehearsal: A Con�guration Veri�cation Tool for Puppet

2.3.2 Over-Constrained Dependencies
For the sake of determinism it sometimes happens that a strict order is enforced by
introducing dependencies between packages that are actually independent from each
other. In Listing 3 both modules cpp and ocaml require the packages m4 and make
to be present. The problem here is, that cpp requires m4 to be installed before make
while ocaml has it defined the other way around. Now if both modules are included
in a manifest, Puppet will fail to apply the manifest and report a dependency cycle.

Listing 3 Problematic Puppet manifest - conflicting dependency declaration [10]
1 de�ne cpp() {
2 package{'m4': ensure => present }
3 package{'make': ensure => present }
4 package{'gcc': ensure => present }
5 Package['m4'] -> Package['make']
6 Package['make'] -> Package['gcc']
7 }
8 de�ne ocaml() {
9 package{'make': ensure => present }
10 package{'m4': ensure => present }
11 package{'ocaml': ensure => present }
12 Package['make'] -> Package['m4']
13 Package['m4'] -> Package['ocaml']
14 }

2.3.3 Silent Failure
In Listing 4 there’s nothing wrong on first sight, but with the background knowledge
that the go package in Ubuntu 14.04 depends on Perl this manifest can actually lead to
two different states. The first possible state is that Perl is removed before go is installed
(which causes the reinstallation of Perl) and the second possible state is go being
installed first followed by the removal of Perl. The removal of Pearl in turn causes the
removal of go. So either both packages are installed or both are being removed.

Listing 4 Problematic Puppet manifest - different success states [10]
1 package{'golang-go': ensure => present }
2 package{'perl': ensure => absent }

2.3.4 Non-Idempotence
Idempotence in the case of Puppet means, that it should be possible to apply a manifest
various times without it changing the final outcome. Listing 5 constructs a manifest
that is not idempotent, as the directory /src is deleted after one run. A second run
would therefore fail.

Listing 5 Problematic Puppet manifest - not idempotent [10]
1 �le{"/dst": source => "/src" }

4



Michael Jank

2 �le{"/src": ensure => absent }
3 File["/dst"] -> File["/src"]

3 Semantics of Puppet

For Shambaugh et al. to perform analyses on manifests they presented semantics for
Puppet. This was done in two stages:

1. Creation of a resource graph: Manifests are compiled to a directed acyclic graph
of primitive resources. Primitive resources are the most basic types of resources
available in Puppet. For example we have seen so far file, package and user. A
non-primitive resource e.g. would be cpp in Listing 3, which in turn will be resolved
to three package resources.

2. Modeling in FS: The primitive resources are then modeled as programs in FS, a
newly defined imperative language of file system operations. FS is designed such
that the semantics of resources can be expressed and at the same time static analysis
can be applied.

The resource graph is then compiled into a sequence of FS programs. Specifically
all possible permutations are generated that adhere to the order given by the edges of
the graph.

3.1 FS Programs

The FS language is a simple imperative language that manipulate the file system.
File systems are modeled as maps of paths to file contents. Each expression in FS
consumes a file system and produces either a new one or aborts with an error. The
language was deliberately kept simple to enable the static analyses explained in the
next section. The exact restrictions and their implications are explained in [10].

4 Veri�cations

4.1 Determinism

The main contribution of Rehearsal is the introduction of an approach to check whether
a resource graph is deterministic. The presented approach has the following steps:

1. Reduce the number of paths: As even small manifests can create a large number
of paths (in the sense of file system paths), it is sought that the number of paths is
reduced for the further analysis. This is done by removing FS operations from the
analysis that operate on paths that are not accessed by any other operation. This
reduction does not affect the result of the determinism-check.

2. Reduce the number of permutations of the resource graph: A permutation of
the graph is eliminated, if the resources that changed places in two permutations

5



Rehearsal: A Con�guration Veri�cation Tool for Puppet

pass a commutativity check, i.e. the programs end up in the same state independent
of whether the change of the resources happened or not. It is to note that such a
check may include more than two resources, depending on the constellation.

3. Encoding the semantics as a decidable formula: The manifest is encoded as a
decidable formula suitable for an SMT1 solver. It is satisfiable if and only if the
underlying program is non-deterministic.

4.2 Idempotence

The idempotence check can be done easily, after it is established that a resource
graph is deterministic. It is now not necessary anymore to check each permutation,
but a resource graph can then simply be treated as an expression e. This is because
the property of determinism implies that each permutation leads to the same result.
Idempotence can now simply be checked by verifying the equivalence between e and
e; e (i.e. the result of executing the expression one time is the same as executing it
twice).

5 Related Work

5.1 Convergence in Con�guration Management

In [3] Hanappi et al. introduce a framework for asserting reliable convergence in con-
figuration management. They use state transition graphs to test if a system converges
to the state desired by a script. To guarantee convergence they concluded that the
idempotence of a script is key. The two approaches therefore tackle more or less the
same problem. The main difference in the approaches is, that Rehearsal use static
verification whereas Hanappi et al. focus on testing. They acknowledge that static
verification in general is superior to testing but at the same time argue that static
verification is more constrained, as every resource needs clearly defined semantics.
Their implementation is also based on Puppet.

5.2 µPuppet

µPuppet [1] complements Rehearsal, as the authors say, on the understanding of the
compilation stage of catalogs. They also formalize a subset of Puppet and its semantics.
By doing so they implemented a reference implementation of µPuppet. This surfaced
particularities in how Puppet is handling classes and scope.

1 Satisfiability modulo theories

6



Michael Jank

5.3 System Con�guration Repair

Another recurring task of system administrators is to fix bugs on live systems and
then reincorporate the changes into the Puppet manifest. Tortoise [14] presents an
attempt to help with that. In their approach the original manifest is used along with a
set of shell commands that were used to fix the bugs in order to generate a selection
of patches. For this purpose soft constraints are derived from the manifest fails and
hard constraints from the shell commands. The generated patch then proposes fixes
that are consistent with the fix made through the shell.

5.4 Con�guration languages

Conf Valley [5] is a generic framework to validate that a given configuration obeys a
given configuration specification. To achieve the same checks about determinism and
idempotence as Rehearsal, one would have to write a configuration specification that
validates the generated resource graph.
The actual application area of Conf Valley is rather in the validation of application’s

configurations, checking whether a concrete specification conforms with the software
vendor’s intended way.

5.5 Assessing the quality of Puppet con�gurations

In [11] Sharma et al. analyzed more than a 100,000 Puppet files for known code
smells. They intend to assess the quality of the code and make it easier to adopt best
practices. Similarly Van der Bent et al. [13] defined a notion of code quality for puppet,
developed a measurement model and implemented a software analysis tool. They
verified the results of the tool with Puppet experts.

6 Conclusion

Puppet is a popular configuration framework, that is making it easy to configure a
high number of systems at once. This also increases the potential to misconfigure a
high number of systems at once. It is therefore highly desirable to have tools that point
out possible configuration mistakes as early as possible. The violation of determinism
and idempotence can lead to high frustration, as the consequences might only surface
occasionally or under certain circumstances. So as long as these two properties are
intact, it is more likely to already iron out bugs in the testing environment.
The realization of Rehearsal shows great potential. For the selected subset of Puppet

it was possible to create a semantics that can check determinism and idempotence.
To be useful in practice there is still a lot of work to do. Missing primitive resources
would have to be modeled in FS. Another aspect that is not covered yet is software
that is not installed fully by the operating system’s package manager but additionally
creates files through install scripts. Rehearsal needs to know about each single file
that is created, modified or deleted by an entry in a manifest. Albeit it has to be

7



Rehearsal: A Con�guration Veri�cation Tool for Puppet

acknowledged that Rehearsal can even be used in such scenarios. It just wouldn’t be a
complete check.
Apart from that, the detection of any misconfiguration of applications or similar

are not in the scope of Rehearsal. Promising work in that direction has been pointed
out in Section 5.

References

[1] Weili Fu, Roly Perera, Paul Anderson, and James Cheney. “µPuppet: A Declara-
tive Subset of the Puppet Configuration Language”. In: 31st European Conference
on Object-Oriented Programming. 2017.

[2] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey
F Lukman, Vincentius Martin, et al. “What bugs live in the cloud? a study of
3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM. 2014, pages 1–14.

[3] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. “Asserting reliable
convergence for configuration management scripts”. In: ACM SIGPLAN Notices
51.10 (2016), pages 328–343.

[4] Red Hat. Ansible. url: https://docs.ansible.com/.

[5] Peng Huang, William J Bolosky, Abhishek Singh, and Yuanyuan Zhou. “Conf-
Valley: a systematic configuration validation framework for cloud services”. In:
Proceedings of the Tenth European Conference on Computer Systems. ACM. 2015,
page 19.

[6] David Oppenheimer, Archana Ganapathi, and David A Patterson. “Why do
Internet services fail, and what can be done about it?” In: USENIX symposium
on internet technologies and systems. Volume 67. Seattle, WA. 2003.

[7] Puppet. url: https://puppet.com/docs/puppet/.

[8] Puppet Documentation: Architecture Overview. url: https://puppet.com/docs/
puppet/6.0/architecture.html.

[9] Ariel Rabkin and Randy Howard Katz. “How hadoop clusters break”. In: IEEE
software 30.4 (2013), pages 88–94.

[10] Rian Shambaugh, Aaron Weiss, and Arjun Guha. “Rehearsal: a configuration
verification tool for puppet”. In: ACM SIGPLAN Notices. Volume 51. 6. ACM.
2016, pages 416–430.

[11] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. “Does your config-
uration code smell?” In: Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on. IEEE. 2016, pages 189–200.

8

https://docs.ansible.com/
https://puppet.com/docs/puppet/
https://puppet.com/docs/puppet/6.0/architecture.html
https://puppet.com/docs/puppet/6.0/architecture.html


Michael Jank

[12] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. “Holistic config-
uration management at Facebook”. In: Proceedings of the 25th Symposium on
Operating Systems Principles. ACM. 2015, pages 328–343.

[13] Eduard Van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. “How
good is your puppet? an empirically defined and validated quality model for
puppet”. In: 2018 IEEE 25th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER). IEEE. 2018, pages 164–174.

[14] Aaron Weiss, Arjun Guha, and Yuriy Brun. “Tortoise: interactive system configu-
ration repair”. In: Automated Software Engineering (ASE), 2017 32nd IEEE/ACM
International Conference on. IEEE. 2017, pages 625–636.

[15] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasun-
daram, and Shankar Pasupathy. “An empirical study on configuration errors in
commercial and open source systems”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. ACM. 2011, pages 159–172.

9



Rehearsal: A Con�guration Veri�cation Tool for Puppet

About the author

Michael Jank is the author of this paper.
Contact him at michael.jank@student.tuwien.ac.at.

10

mailto:michael.jank@student.tuwien.ac.at

	1 Introduction
	2 Puppet
	2.1 Architecture puppetarch
	2.2 Manifests
	2.3 Problems using Puppet
	2.3.1 Non-Deterministic Errors
	2.3.2 Over-Constrained Dependencies
	2.3.3 Silent Failure
	2.3.4 Non-Idempotence


	3 Semantics of Puppet
	3.1 FS Programs

	4 Verifications
	4.1 Determinism
	4.2 Idempotence

	5 Related Work
	5.1 Convergence in Configuration Management
	5.2 µPuppet
	5.3 System Configuration Repair
	5.4 Configuration languages
	5.5 Assessing the quality of Puppet configurations

	6 Conclusion
	About the author

