
Miscon�guration Injection in Systems for Reaction Evaluation

Michael Zronek, MSca
a Institute for Information Systems Engineering, TU Wien, Vienna

Abstract Among the most costly mistakes in software engineering are those which come from system mis-
configuration. Compared to software bugs, misconfiguration is more vulnerable to user mistakes.

Therefore it is desirable to make diagnosing easier for users by testing the system’s reaction ability towards
misconfiguration with error injection methods in advance. Few studies achieved this goal of testing system’s
reaction ability. The reason behind this is that mainly error types are not used which categorize kind of errors.
Just a generic approach like simple alternations is used in other papers.

The extensively studied paper [3] of this course examined eight mature open source and commercial soft-
ware and classified the option types. Using the fine-grained classification, syntactic and semantic constraints
are extracted for each option type in order to generate misconfigurations. Misconfiguration injection is exe-
cuted and afterwards the system’s reaction is analyzed. The authors developed a tool called ConfTest which
automatically executes such injections.

The analysis is carried out upon 4 open-source software systems: Httpd, Yum, PostgreSQL and MySQL.
The evaluation shows that out of 1582 options, 96% were covered by the classification. Compared to the
well-known pioneer ConfErr tool [2], ConfTest detects nearly 3 times more bad reactions.

Keywords miscon�guration, con�guration, injection

The Art, Science, and Engineering of Programming

Perspective The Engineering of Programming

Area of Submission Con�guration Management

© Michael Zronek, MSc
This work is licensed under a “CC BY 4.0” license.
Submitted to The Art, Science, and Engineering of Programming.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Miscon�guration Injection in Systems for Reaction Evaluation

1 Introduction

Software systems are getting more and more important in the century of automation.
Most systems are highly configurable to fit in the respective environment or have
a desired behavior. Unfortunately, misconfiguration, is one of the major causes for
worsening software reliability and several studies have shown that. For example, Yin,
Ma, Zheng, Zhou, Bairavasundaram, and Pasupathy[8] report that 27% of customer
cases from a commercial storage system come from configuration errors. One method
to harden systems to misconfiguration is to purposefully try to misconfigure a system
and see its reaction. This method is called error injection and is done by several studies
before such as ConfErr [2].
ConfTest improves the error-injection method by extracting more fine-grained

option constraints compared to previous works. The main contributions of the paper
can be structured into 3 parts:
(1) The classification of configuration options were extracted from 8 mature open-

source and commercial software. 96% of 1582 options are covered from Httpd, Yum,
PostgreSQL and MySQL which is more fine-grained compared to other constraints
proposed.
(2) Misconfiguration injection and evaluation of the system reaction via the tool

ConfTest is contributed. ConfTest can reveal design problems and bad reactions.
(3) 6 types of system reactions to misconfigurations are proposed. Misconfiguration

of a path turned out to be the hardest misconfiguration to diagnose as it is difficult to
syntactically and semantically check.
The paper is structured into constraint generation (Section 2), misconfiguration

injection process (Section 3), evaluation (Section 4), related work (Section 5) and
conclusion (Section 6).

2 Constraints Generation

Configuration options must satisfy certain configuration constraints in order to be valid,
e.g. boolean options or file path options. [3] studied over 1500 configuration options
from Squid, Nginx, Redis, Nagios, Lighttpd (core), Puppet, SeaFile, Vsftpd which are
representative in their field. They manually investigated the official documentation as
well as the configuration files to extract detailed information about each configuration
option.
The reader is encouraged to look into the paper of [3, p. 3] for a detailed figure

of the option type classification. In contrast to other type taxonomies which were
studied, the fine-grained classification has its focus on generating option constraints
for misconfiguration injection.
Applying the classification tree to the studied software systems Httpd, Yum, Post-

greSQL and MySQL yields a coverage rate of 96,5% when excluding the types "Others".
The type "Others" includes hybrid configuration options such as the option "LogFile"
in MySQL which can either be a path or a network address. The classification can

2



Michael Zronek, MSc

Figure 1 Semantic constraints

easily be supplemented with new types if it is difficult to classify a particular type of
configuration option.

2.1 Type Constraints

To study the system reaction ability, for each configuration type, fine-grained con-
straints were developed. This is done by inherent constraints or from domain knowl-
edge. Inferring constraints from program analysis, ie. by studying source code would
be too difficult, if not impossible. Semantic as well as syntactic aspects are considered.
As an example, type PORT should not use the same number as a used port and should
be syntactically an integer between 0 and 65535.
Li, Li, Liao, Xu, Zhou, and Jia use syntactic constraints in the form of string patterns

as standardization which was also done by EnCore [9]. As a short example take an
Email Address option which should fulfill the pattern (\w)+(\.\w+)*@(\w)+((\.\w+)+) in
order to be valid. The proposed syntactic constraints are consistent with over 90% of
the options of Httpd, MySQL, PostgreSQL and Yum. For more detailed information
about these string patterns, the user is encouraged to look into the paper of Li, Li, Liao,
Xu, Zhou, and Jia[3, p. 5]. Semantic constraints are listed and explained in Figure 1.
These constraints reflect complex relationships between software end environment.
Please note that every Figure from this paper is taken from the original ConfTest [3]
paper and will be omitted in the captures.

3 Miscon�guration Injection

After clarifying constraints for each option type, [3] show how to use these and how
to test a systems’ reaction with misconfiguration. The tool ConfTest is proposed to
conduct misconfiguration injection.

3



Miscon�guration Injection in Systems for Reaction Evaluation

Figure 2 Misconfiguration generation rules

ConfTest parses configuration files into structured data and then modifies the
original data to generate misconfigurations. The newly modified configuration is then
used for the target system. Figure 2 depicts the rules which were used to classify the
injections: constraints-related and formats-related.
Constraint-related rules are used to violate constraints in the configuration. The

’Listen’ configuration option in Httpd is identified as PORT with the typical syntactic
constraints a port should have: (1) it should be an integer, (2) higher than 0 and (3)
lower than 65535. Semantic misconfiguration is injected by actually using an occupied
port.
Format-related rules are those which require a specific format and ConfTest injects

typical user mistakes such as omission, misspelling, etc. when editing a complex
configuration file. A similar approach is also done in ConfErr [2].

3.1 Testing

ConfTest uses test cases and test oracles which come from the software’s own in-
frastructure (for example [5]) to mitigate the fact that the same misconfiguration
can cause different systems reaction due to different states of program. ConfTest
executes sequential steps to simulate administrators’ behavior such as launching
system, functional tests, etc. The faulty configuration replaces the old one and the
target system is started up. If the system is running, functional test cases are executed
until the system either fails or all test cases are executed. In the process all logs and
outputs are gathered and analyzed by ConfTest to evaluate system reaction towards
misconfiguration.

4



Michael Zronek, MSc

4 Evaluation

This section evaluates the reaction ability based on ConfTest’s result. Figure 3 shows
all generated 1069 misconfigurations. Only a sample of all possible misconfigurations
is taken as otherwise it would lead to explosive exponential growth.
Another classification is proposed in order to structure the systems reaction of

misconfiguration. Figure 4 shows all 6 error types.
For every misconfiguration, it is checked if it passes all system tests. After this phase,

log messages from the test suites are manually checked for exception information
related to the misconfiguration. If an exception can be found, it is checked if it can
lead to the misconfiguration. As an example, in Type 1 all tests passed without any
failure but an exception in the logs occurred which explicitly locates the injected
misconfiguration. In Figure 5 the overall results can be seen.

Figure 3 Systems in evaluation
Figure 4 System reactions classification

The root causes are analyzed per reaction type and yield interesting insights. For
example, only Type 1 (1.03%) and Type 2 (0.37%) occurred in Yum and MySQL. In
these applications invalid assignments are overruled which lead to Type 1 reactions.
In MySQL for example, the configuration option "table_open_cache" would fallback to
a normal number if misconfigured with an invalid number. Type 2 reactions throw
exceptions, pass all tests but do not locate the concrete misconfigured location. This
happens in Yum for example which prints out logs that a particular file or directory
could not opened, but not which actual configuration setting caused the exception.
Type 3 reactions are surprisingly common (42.28%) which has the root cause in two oc-
casions. The "good" one comes from system design that is resilient to misconfiguration
and legalizes it such as in PostgreSQL which allows both "key value" and "key = value"
formats to counteract formatting errors. The "bad" case would be latent configuration
errors which are not covered by the test cases. Type 4 reactions (41.25%) happen
mostly during startup and can locate the exact line or name of the misconfiguration.
Type 5 reactions (6.64%) failed to locate the misconfiguration which was triggered
by an exception. This happens if an option is not checked or if the condition which
checks the option does not capture the error. This case can be very difficult to debug
in practice as reactions may obscure or even mislead users diagnosis. One example is
Httpd: if you add "Listen 80" twice in the same configuration, the logs show "Address
already in use" and "Could not bind to address" which will most likely mislead users.
Type 6 reactions (8.42%) are caused by improper exception handling of configuration
checking which results in reactions such as crashes, hangs or silent failures.

5



Miscon�guration Injection in Systems for Reaction Evaluation

Figure 5 Results of system reactions

Figure 6 Misconfiguration diagnosis rate of different systems with 3 kinds of misconfigu-
ration

Figure 6 illustrates the Type 4 misconfiguration diagnosis rate for the most widely
used options boolean, path and count. MySQL and Yum completely failed to locate
path related problems. MySQL overall reaches a worse diagnosis rate since exceptions
mostly do not give the location of the misconfiguration. The diagnosis rate of count
related errors are high with PostgreSQL even reaching 100%. Boolean misconfigured
options also reach a high diagnosis rate with PostgreSQL again leading the board.
Path related misconfigurations are the hardest to diagnose, even for experienced

developers. However, checks for simple constraints such as boolean, counts, modes,
etc. are easy to implement and therefore have a high diagnosis rate. Li, Li, Liao, Xu,
Zhou, and Jia thus highly recommend to use simple constraint options to reduce
potential misconfiguration. Furthermore, the authors point out that more reasons are
required in messages and the message should point to the root cause rather than only
printing out a console log message on what is going on in the system.

5 Related work

A lot of papers deal with misconfiguration detection and troubleshooting or try to find
a classification of options or configuration constraints. In a very recent paper of Liao,
Zhou, Li, Jia, Liu, and He[4] for example, the authors find configuration constraints

6



Michael Zronek, MSc

via a comprehensive manual study of five widely used open source software. The aim
of their paper was to improve automatic configuration constraints extraction out of
software.
Some papers have a different approach to finding misconfiguration such as ConfSug-

gester [10]. This tool developed by Zhang and Ernst uses dynamic profiling, execution
trace comparison and static analysis to link an undesired behavior to its root cause
in case of a misconfiguration. The paper complements ConfTest as ConfSuggester
would reduce type 2 errors for example. Another Log-based Configuration Testing for
misconfiguration diagnosing comes from MisconfDoctor[7]. It extracts log features for
every misconfiguration and builds a database. When a misconfiguration then occurs,
MisconfDoctor does a similarity calculation of the new log compared to the database
and suggests a potential misconfiguration.
Another detection method comes from Uchiumi, Kikuchi, and Matsumoto[6] which

use decision tree analysis for misconfiguration detection in cloud datacenters. This
method identifies the relations among the majority of the parameters via a statistical
decision tree analysis. This method is further enhanced by pattern modification and
achieves a high accuracy (78,6%) in misconfiguration detection. Another approach
to reduce configuration errors comes from Conf Valley [1]. Its authors introduce a
declarative language to express configuration specification. The language is then used
for configuration validation and detected a number of configuration errors in the
latest configuration deployed in Microsoft Azure.
Interestingly, the same authors of ConfTest, recently published a paper Conf VD

which does exactly the same as ConfTest but is a reworked and polished up version
with slightly different out comings. While MySQL still has the worst diagnosis rate,
Httpd and Yum were drastically better (0% -> 50% Path diagnosis rate for Yum
for example). Unfortunately this paper was not yet available once we wrote about
ConfTest in this paper. If we would have seen Conf VD, we would obviously have taken
the paper as it is much more recent and overworked.

6 Conclusion

In the paper of Li, Li, Liao, Xu, Zhou, and Jia we have seen how the system reaction
ability of Httpd, Yum, PostgreSQL and MySQL. The authors proposed a fine-grained
configuration option taxonomy which covered 96,5% of all configuration options and
applied constrained-based injections into the four software systems. Those injections
where either constraints-related or formats-related. The studied softwares were mis-
configured and afterwards extensively tested with an appropriate test suite. 1069
misconfigurations were generated and the system reaction ability was classified in 6
types. The reactions of every system differ in the quality and user feedback but what
is a common anchor, is that path related errors are the most difficult to diagnose and
handle in the system itself. Avoiding complex configuration options and sticking to
simple ones such as boolean, count and modes yields the best outcome concerning
diagnosing and detecting as implementing checks for these option types are much
easier.

7



Miscon�guration Injection in Systems for Reaction Evaluation

References

[1] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou. “Conf-
Valley: A Systematic Configuration Validation Framework for Cloud Services”.
In: Proceedings of the Tenth European Conference on Computer Systems. EuroSys
’15. Bordeaux, France: ACM, 2015, 19:1–19:16. isbn: 978-1-4503-3238-5. doi:
10.1145/2741948.2741963. url: http://doi.acm.org/10.1145/2741948.2741963.

[2] L. Keller, P. Upadhyaya, and G. Candea. “ConfErr: A tool for assessing re-
silience to human configuration errors”. In: 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN). June 2008,
pages 157–166. doi: 10.1109/DSN.2008.4630084.

[3] Wang Li, Shanshan Li, Xiangke Liao, Xiangyang Xu, Shulin Zhou, and Zhouyang
Jia. “ConfTest: Generating Comprehensive Misconfiguration for System Reac-
tion Ability Evaluation”. In: Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering. EASE’17. Karlskrona, Swe-
den: ACM, 2017, pages 88–97. isbn: 978-1-4503-4804-1. doi: 10.1145/3084226.
3084244. url: http://doi.acm.org/10.1145/3084226.3084244.

[4] X. Liao, S. Zhou, S. Li, Z. Jia, X. Liu, and H. He. “Do You Really Know How
to Configure Your Software? Configuration Constraints in Source Code May
Help”. In: IEEE Transactions on Reliability 67.3 (Sept. 2018), pages 832–846.
issn: 0018-9529. doi: 10.1109/TR.2018.2834419.

[5] The MySQL Test Framework. Oct. 2018. url: https://dev.mysql.com/doc/dev/
mysql-server/latest/PAGE_MYSQL_TEST_RUN.html (visited on 2018-11-17).

[6] T. Uchiumi, S. Kikuchi, and Y. Matsumoto. “Misconfiguration detection for cloud
datacenters using decision tree analysis”. In: 2012 14th Asia-Pacific Network
Operations and Management Symposium (APNOMS). Sept. 2012, pages 1–4. doi:
10.1109/APNOMS.2012.6356072.

[7] T. Wang, X. Liu, S. Li, X. Liao, W. Li, and Q. Liao. “MisconfDoctor: Diagnosing
Misconfiguration via Log-Based Configuration Testing”. In: 2018 IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS). July 2018,
pages 1–12. doi: 10.1109/QRS.2018.00014.

[8] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. “An Empirical Study on Configuration Errors in
Commercial and Open Source Systems”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM,
2011, pages 159–172. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.2043572.
url: http://doi.acm.org/10.1145/2043556.2043572.

[9] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge,
Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. “EnCore: Exploiting System
Environment and Correlation Information for Misconfiguration Detection”.
In: SIGPLAN Not. 49.4 (Feb. 2014), pages 687–700. issn: 0362-1340. doi:
10.1145/2644865.2541983. url: http://doi.acm.org/10.1145/2644865.2541983.

8

https://doi.org/10.1145/2741948.2741963
http://doi.acm.org/10.1145/2741948.2741963
https://doi.org/10.1109/DSN.2008.4630084
https://doi.org/10.1145/3084226.3084244
https://doi.org/10.1145/3084226.3084244
http://doi.acm.org/10.1145/3084226.3084244
https://doi.org/10.1109/TR.2018.2834419
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://doi.org/10.1109/APNOMS.2012.6356072
https://doi.org/10.1109/QRS.2018.00014
https://doi.org/10.1145/2043556.2043572
http://doi.acm.org/10.1145/2043556.2043572
https://doi.org/10.1145/2644865.2541983
http://doi.acm.org/10.1145/2644865.2541983


Michael Zronek, MSc

[10] Sai Zhang andMichael D. Ernst. “Which Configuration Option Should I Change?”
In: Proceedings of the 36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: ACM, 2014, pages 152–163. isbn: 978-1-4503-2756-
5. doi: 10.1145/2568225.2568251. url: http://doi.acm.org/10.1145/2568225.2568251.

9

https://doi.org/10.1145/2568225.2568251
http://doi.acm.org/10.1145/2568225.2568251


Miscon�guration Injection in Systems for Reaction Evaluation

About the author

Michael Zronek, MSc is the author of this LaTeX class. Contact
him at e0951864@student.tuwien.ac.at.

10

mailto:e0951864@student.tuwien.ac.at

	1 Introduction
	2 Constraints Generation
	2.1 Type Constraints

	3 Misconfiguration Injection
	3.1 Testing

	4 Evaluation
	5 Related work
	6 Conclusion
	About the author

