Early Detection of Configuration Errors by Learning Configuration
Rules

Martin Schweighofer?
a TU Wien, Austria

Abstract Configuration errors are a major cause of system failures and therefore may also lead to financial
loss. Thus, it is desirable that configuration errors get detected before runtime of a software system. One
approach to achieve this is to automatically derive rules from the configurations of other deployed systems
and to use these rules to verify the configuration of a system before it gets used. We performed a literature
study and identified two frameworks proposed in recent research, EnCore and ConfigV, which follow the
approach. EnCore focuses on integrating information of the system environment and deriving correlation
rules concerning the configuration parameters and the environment information. ConfigV on the other hand
uses a probabilistic type system to determine configuration parameter types and derives rules based on the
correlation between the configuration entries and between their values. ConfigV afterwards orders the rules
by importance based on rule graph analysis. Evaluating the frameworks shows that both approaches detect
real-world configuration errors. The false positive rate is also acceptable for use in practice. Therefore, the
discussed rule-learning frameworks show great promise for helping to prevent misconfigurations.

ACM CCS 2012
= General and reference - Surveys and overviews;
= Computing methodologies - Rule learning;

= Software and its engineering - Software configuration management and version control systems; System
administration;

Keywords misconfiguration, configuration errors, machine learning, configuration verification

Seminar aus Programmiersprachen

Perspective The Empirical Science of Programming

Area of Submission Data mining and machine learning for programming

® © Martin Schweighofer
@ This work is licensed under a “CC BY 4.0” license.
Submitted to Seminar aus Programmiersprachen.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Early Detection of Configuration Errors by Learning Configuration Rules

EJ Introduction

Modern software systems usually have a large number of configuration settings
[9]. These configuration parameters are used in order to guarantee the reusability
and customizability of a software system. They may provide information about the
environment of a running software system, which is needed for it to function properly
(e.g. the location of a used service). Other configuration parameters influence non-
functional properties of a software system like performance, security, reliability, and
availability [11].

Thus, configuration errors may lead to failure of software systems. For example, in
2015, Facebook and Instagram became inaccessible because of a configuration change
[6]. Such service downtimes may lead to high financial loss [11].

According to Xu et al., configuration settings are often not validated before runtime
or even before they are used [10]. Without further measures, configuration errors
then only get detected when the running system does not perform as expected. To
prevent system failures, it is thus desirable that configuration errors get detected
before runtime of the software system. One promising approach to achieve this is to
infer rules from a set of (mostly) valid configuration files of other deployed system:s,
called training set. The inferred rules can then be used to detect anomalies in the
configuration of a target system. By doing a literature study, we found two frameworks
proposed in recent research work that follow this approach: EnCore by Zhang et al.
[13] and ConfigV by Santolucito et al. [7]. The aim of this paper is to give the reader an
overview of these approaches and how they work, as well as to discuss the differences,
advantages and shortcomings of these solutions. Therefore, in Sections 2 and 3, we
will describe the proposed frameworks individually. In Section 4, we compare and
evaluate both solutions. In Section 5, we discuss related work in misconfiguration
detection. In Section 6, we summarize the content of this paper and discuss possible
further research.

EJ EnCore

As stated in Section 1, configuration parameters often refer to resources or other
information of the environment. For example, a software component may use a
configuration setting which specifies the directory used for storing logs. If a regular
file is set as value of the setting instead of a directory, this should be detected as an
error. Furthermore, multiple configuration settings might also be dependent on each
other. For example, a software system may use one configuration setting to specify the
location of a used resource (e.g. file) and another setting to specify its owner. In case
of a mismatch between the actual owner and the owner according to the configuration,
this may result in a permission error. To detect such problems it is necessary to consider
correlations between configuration parameters and the environment information.
Zhang et al. thus proposed EnCore [13], a misconfiguration detection framework
based on rule-learning, which considers environment information and correlations
between configuration parameters. In order to learn configuration rules and detect

Martin Schweighofer

anomalies in target systems based on these rules, EnCore generally performs four
steps, which are described in more detail in the following.

21 Collecting data

The data collector retrieves all the relevant configuration and environment information
of the systems of the training set. The output of this step is the raw data, which is
analyzed in the next step.

2.2 Assembling data

First, the data assembler parses the configuration files of the training set and saves
the configuration parameters in an intermediate representation. The parser is based
on the configuration parser Augeas [3]. Furthermore, general information about the
operating system environment (e.g. OS version) of each system is also stored.

EnCore then infers a type for every found configuration parameter. This is done in
two steps: First, the potential types are determined by syntactic pattern matching.
After that, for each type candidate, EnCore verifies semantically whether the type is
fitting by checking the external resources. An overview of types is given in Section A.

After the types are determined, the data assembler augments every configuration
parameter which references known environment resources with further information
from the environment. These augmented attributes are then added to the intermediate
representation.

For example, a configuration parameter whose value begins with a letter and
afterwards contains an arbitrary amount of letters or numbers is recognized as being
potentially a user name. This is semantically verified by examining the /etc/passwd
file of the system, which contains its users. If it is indeed a user name, EnCore adds
further attributes, e.g. one which names the group of the user, and stores them like
other configuration parameters. Assuming the name of the configuration parameter
is account, the name of the stored attribute could be e.g. account.group.

2.3 Inferring rules

To infer rules, EnCore uses a template-based approach, which enables the considera-
tion of correlation. The approach is based on the previously assigned types. A template
specifies a relation between two previously stored entries and their types. A template
could for example specify that, given a parameter of type UserName and a parameter
of type FilePath, the user owns the file. An overview of the available templates is
given in Section A. For each template, EnCore tries every possible initialization of the
template based on the entries and checks whether it is valid (e.g. whether the user in
fact owns the file). In this case, the instance is treated as a candidate for a concrete
rule. The rule candidates whose involved entries do not appear often enough in the
training set or are not valid often enough (determined by a given threshold), are
filtered out. Also filtered out are rule candidates which contain configuration entries
with values that appear very often across the training set, as the resulting correlation

Early Detection of Configuration Errors by Learning Configuration Rules

does not contain a lot of information. The remaining rules are used in the next step
to detect misconfiguration in the system to be examined.

2.4, Detecting anomalies

The data of the target system gets collected and assembled as described previously.
Afterwards, the anomaly detector emits warnings for each configuration parameter
with a name which has not been in the training set, for each violation of the learned
correlation rules and also for each configuration value which has another type than
the type which has been inferred for the training set. Furthermore, EnCore reports
values of configuration entries which have not been seen before. In case this affects
multiple entries, entries with less diverse values in the training set are ranked as more
likely to produce system failures.

) Configv

While EnCore is generally able to detect type violations, correlation violations, un-
known configuration parameters and suspicious values, it is not able to detect other
types of errors, particularly missing configuration parameters and ordering errors (i.e.,
when configuration parameters are denoted in a configuration file in the wrong order).
It is also not able to determine more complex relations between integer configuration
values, e.g. that one value must be larger than the result of the multiplication of two
other values. The violation of such rules can, in practice, lead to e.g. performance
issues (see e.g. [4]). In order to be able to detect such error types as well, Santolucito
et al. propose the framework ConfigV [7], which is based on ConfigC by the same
authors [8]. The learning process, which can be divided into three major steps (as-
sembling data, inferring rules, analyzing the rule graph), outputs the rules which
have to hold in a valid configuration. To verify the configuration of the target system,
ConfigV then checks whether all the derived rules hold for that configuration. In the
following, the three learning steps are explained in more detail.

341 Assembling data

The input of the learning process are the configuration files of the training set. In the
first step, each configuration file gets parsed and the key-value pair of each configura-
tion parameter gets stored in an intermediate representation. Furthermore, the type
of each configuration parameter gets determined. Since one value of a parameter may
not allow to infer its type (e.g. booleans may be encoded in a configuration language
by o and 1, i.e. numbers, and/or ’true’ or ’false’, i.e. strings), ConfigV determines, for
every configuration parameter and type, how many instances of the values of the
parameter in the training set are potentially (syntax-wise) of the given type. This
results in probabilistic type information for each parameter. Based on this information,
ConfigV tries to infer a type, e.g. via a threshold on the number of occurrences of a
potential type or the percentage it occurs.

Martin Schweighofer

3.2 Inferring rules

To infer rules, ConfigV first derives predicates from the set of parameters. These
predicates have arity 2 and both supplied terms are sets of configuration parameters,
the first being called source set, and the second being called target set. Generally, the
predicate rules specify that given the elements of the source set occur in a configuration
file, some relation between the source set and the target set has to hold. Predefined
predicate types in ConfigV are the type predicates, the equality predicate, the order
predicate, the missing predicate and the comparison predicates. An overview of the
predicates is also given in Section B.

The type predicates state that a configuration parameter, if defined, has to be of a
certain type and are inferred when the corresponding type for the parameter could
get determined in the previous step. The equality predicate is inferred for every pair of
configuration parameters of the same type and states that the two parameters have the
same values. The order predicate is derived for each pair of configuration parameters
in one configuration file and states that the first parameter in the pair is denoted
before the second. The missing predicate is derived for every pair of configuration
parameters and states that if the first parameter exists in one configuration file, the
second also has to exist in the same file. For each integer comparison operator (<, >,
=) and each pair of configuration parameters of type integer, a predicate is inferred
which states that if the first parameter is defined, the comparison operation of the
two parameter values has to yield true. Similarly, comparison predicates with three
configuration parameters of type integer are derived, which state that if the first two
parameters are defined, comparing the third value with the result of the multiplication
of the first two values yields true.

Afterwards, for each predicate, its confidence, which is the percentage of how often
its specified relation holds in the training set, is determined. The predicates whose
confidence do not reach a certain threshold are filtered out, as well as predicates
whose involved configuration parameters do not occur often enough. The remaining
predicates determine the rules which have to hold in the target system.

3.3 Analyzing the rule graph

To further improve the output of the misconfiguration checking, the rules are analyzed
using concepts from graph theory. A rule graph is a directed hypergraph, which
is a graph that not only allows edges between vertices, but also between sets of
vertices. The vertices of the rule graph are the configuration parameters. Edges are
constructed for each predicate rule, directing from the source parameter set to the
target parameter set, and are labeled with the predicate name and weighted with the
confidence percentage.

Rule graphs are used in ConfigV to rank the determined rules regarding their
likelyhood to actually specify constraints whose violation results in errors. In order to
achieve this, the notion of a degree of a vertex is introduced. The degree of a vertex is
the sum of all weights of the edges where the vertex is in the source set plus the sum
of all weights of the edges where the vertex is in the target set. An example for the

Early Detection of Configuration Errors by Learning Configuration Rules

calculation of a degree of a vertex in a rule graph is given in Section C. The authors
of ConfigV assume that rules involving configuration parameters with low degree are
more likely depicting technical necessities than conventions in the industry. Therefore,
their violation more likely results in errors and thus, ConfigV uses this metric to order
the rules by importance.

Comparison and Evaluation

EnCore and ConfigV share some similarities. In particular, they infer types to avoid
unnecessary computations as well as false positives, and derive rules in order to
express correlations between configuration values. There are however some significant
differences. For instance, the type inference mechanism differs greatly. The respective
mechanism in EnCore has more focus on detecting resource types like files, users, etc.
and semantically verifies whether the resources exist by checking the environment
information, adding, in case of success, further information from the environment.
ConfigV does not use any environment information at all and instead focuses on
syntactically recognizing types like booleans and integers by using a probabilistic
approach to infer the type based on all the values in the training set.

Similarly, the template-based approach of EnCore allows to recognize correlations
between the resources of the system referenced to by configuration parameters. On
the other hand, the focus of ConfigV is to recognize patterns derivable from the
configuration files itself. It can detect missing entries, ordering errors and more
complex integer relations, all of which EnCore is not able to detect. Thus, while
EnCore is more suitable to detect problems with regards to the referenced environment
resources, ConfigV is more likely to detect performance problems of the software
system due to misconfiguration, since these are often caused by multiple integer
configuration paramaters whose values violate recommended constraints [7].

Furthermore, ConfigV uses the notion of rule graph analysis to refine the output of
the framework. In particular, the analysis is used to order the reported rule violations
by the likelyhood they actually represent an error. EnCore does not use rule graphs.

The authors of both EnCore and ConfigV evaluate their proposed systems by using
MySQL configuration files from several internet sources as a test set [7, 13]. The
systems learn the rules beforehand from a larger training set of industry configuration
files (187 in case of EnCore, 256 in case of ConfigV). Their evaluations show that
both systems are generally able to accurately detect configuration errors in real-world
configuration files. The authors of EnCore thereby show that some of the reported
errors could not have been recognized without its incorporation of environment
information, while the authors of ConfigV show that their probabilistic type system
was able to filter out a significant amount of false-positives and that the rule graph
analysis marks rules whose violation results in errors known by the authors as more
important. They further show that ConfigV is able to detect errors concerning more
complex integer parameter relations, which are not possible to detect in EnCore.

Bessey et al. note that the false positive rate of static analysis tools should not be
higher than 30 percent, as otherwise users do not rely on the output of such tools [1].

Martin Schweighofer

The authors of EnCore report a false positive rate of 13 percent in their evaluation
using MySQL configuration files, while the authors of ConfigV estimate the false
positive rate to be 11-18 percent. Thus, both tools, while not yielding perfect results,
seem promising to be useful in practice.

We, however, have to keep in mind that automatic misconfiguration detection
approaches like EnCore and ConfigV cannot detect every type of misconfiguration. Yin
et al. note that around 50 percent of configuration errors are legal misconfigurations,
where the configuration parameters generally have valid values, but in reality do
not represent the actual intention of the user [12]. To prevent such errors, Yin et al.
suggest more user training or an improved configuration design.

B Related Work

Some of the other work regarding misconfiguration detection focuses on languages to
specify constraints on configuration parameters. For example, Huang et al. propose
ConfValley [2], which provides a language to declaratively specify configuration
constraints in cloud systems. As a more general solution, SpecElektra [5] is a modular
configuration specification language, which allows the user to specify constraints on
the configuration parameters and its values. The user can include custom checks via
plugins. While the validation of the configuration is possible before runtime of the
system, these solutions require a user to manually specify the constraints.

Another framework proposed to automatically detect misconfigurations before
runtime is PCheck by Xu et al. [10]. It is based on analysis of the source code, while
this paper focused on approaches to detect misconfiguration based on configurations
of other systems. Other work focuses on diagnosing misconfiguration during or after
a system is running. Xu et al. surveyed different strategies [11].

K3 cConclusion

We discussed EnCore and ConfigV, two frameworks proposed in recent research work
with the aim to automatically detect configuration errors based on learning rules from
configuration of other systems. While the focus of EnCore mainly lies on incorporating
information from the system environment and deriving correlation rules incorporating
configuration parameters and environment resources, the aim of ConfigV is to detect
more complex relationships between the configuration parameters and their values
themselves. For both approaches, it has been shown that they are able to detect
real-world configuration errors while having an acceptable false positive rate.

Due to the different focuses of the both frameworks, some types of configuration
errors can only be recognized by one of the two frameworks. Further work could
thus focus on integrating environment information into the approach followed by
ConfigV. Another interesting topic for future work would be the automatic generation
of configuration specifications for SpecElektra based on the output of the discussed
frameworks.

Early Detection of Configuration Errors by Learning Configuration Rules

References

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. “A Few Billion
Lines of Code Later: Using Static Analysis to Find Bugs in the Real World”. In:
Commun. ACM 53.2 (Feb. 2010), pages 66—75. 1SSN: 0001-0782. DOI: 10.1145/
1646353.1646374.

Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou. “Conf-
Valley: A Systematic Configuration Validation Framework for Cloud Services”.
In: Proceedings of the Tenth European Conference on Computer Systems. EuroSys
'15. Bordeaux, France: ACM, 2015, 19:1-19:16. ISBN: 978-I-4503-3238-5. DOI:
10.1145/2741948.2741963.

David Lutterkort. “Augeas—A configuration API”. In: Proceedings of Linux Sym-
posium. 2008, pages 47-56.

my.cnf configuration in mysql 5.6.X. https://serverfault.com/questions/628414/
my-cnf-configuration-in-mysql-5-6-x. [Online; accessed 7-November-2018].
2014.

Markus Raab. “Improving System Integration Using a Modular Configuration
Specification Language”. In: Companion Proceedings of the 15th International
Conference on Modularity. MODULARITY Companion 2016. New York, NY, USA:
ACM, 2016, pages 152-157. ISBN: 978-1-4503-4033-5. DOI: 10.1145 [2892664.
2892691.

Jenni Ryall. Facebook, Tinder, Instagram suffer widespread issues. https://mas
hable.com/2015/01/27/facebook-tinder-instagram-issues/. [Online; accessed
7-November-2018]. 2015.

Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica
Piskac. “Synthesizing Configuration File Specifications with Association Rule
Learning”. In: Proc. ACM Program. Lang. 1.O00PSLA (Oct. 2017), 64:1-64:20.
ISSN: 2475-1421. DOI: 10.1145/3133888.

Mark Santolucito, Ennan Zhai, and Ruzica Piskac. “Probabilistic Automated
Language Learning for Configuration Files”. In: Computer Aided Verification.
Edited by Swarat Chaudhuri and Azadeh Farzan. Cham: Springer International
Publishing, 2016, pages 80—87. ISBN: 978-3-319-41540-6.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. “Hey, you have given me too many knobs!: understanding
and dealing with over-designed configuration in system software”. In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM.
2015, pages 307—319.

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. “Early Detection of Configuration Errors to Reduce Failure
Damage”. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. OSDI't6. Savannah, GA, USA: USENIX Association,

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/2741948.2741963
https://serverfault.com/questions/628414/my-cnf-configuration-in-mysql-5-6-x
https://serverfault.com/questions/628414/my-cnf-configuration-in-mysql-5-6-x
https://doi.org/10.1145/2892664.2892691
https://doi.org/10.1145/2892664.2892691
https://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
https://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
https://doi.org/10.1145/3133888

[11]

[12]

[13]

Martin Schweighofer

2016, pages 619—634. ISBN: 978-1-931971-33-I. URL: http://dl.acm.org/citation.
c¢fm?id=3026877.3026925.

Tianyin Xu and Yuanyuan Zhou. “Systems approaches to tackling configuration
errors: A survey”. In: ACM Computing Surveys (CSUR) 47.4 (2015), 70:1-70:41.

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. “An Empirical Study on Configuration Errors in
Commercial and Open Source Systems”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM,
2011, pages 159-172. ISBN: 978-1-4503-0977-6. DOI: 10.1145/2043556.2043572.

Jiagi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge,
Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. “EnCore: Exploiting System
Environment and Correlation Information for Misconfiguration Detection”. In:
SIGARCH Comput. Archit. News 42.1 (Feb. 2014), pages 687-700. ISSN: 0163-
5964. DOI: 10.1145/2654822.2541983.

Types and Templates of EnCore

M Table1 An overview of the types in EnCore. Also included are the respective (simplified)

patterns for the synctactic matching as well as the resources used for semantic
verification. Taken from [13].

Types Syntactic Semantic
FilePath /4. H)* File System
UserName [a-zA-Z][a-zA-Zo-9_]* /etc/passwd
GroupName [a-zA-Z][a-zA-Zo-9_]* /etc/group
IPAdress N\dH{z5,3}([\dI{1,31){3} | N/A
PortNumber \d]1+ /ete/services
FileName D\w _-1+.[\w _-1+ File System
Number [0-9]+[.0-9]1* N/A
URL [a-z]+://.* N/A
PartialFilePath /2. 4+/0+H)* File System
MIME Types N\w/-. 1+ IANA
Charset [\w]+ IANA
Language [a-zA-Z]2 ISO 639-1
Size [\d]+[KMGT] N/A
Boolean Values Set N/A
String N/A N/A

http://dl.acm.org/citation.cfm?id=3026877.3026925
http://dl.acm.org/citation.cfm?id=3026877.3026925
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2654822.2541983

Early Detection of Configuration Errors by Learning Configuration Rules

B Table2 An overview of the templates in EnCore. Taken from [13].

[A<AnyTypeA>] = [B<AnyTypeA>]
[A<ExtBoolean>] -> [B<Boolean>]

[A<IPAddress>] < [B<IPAddress>]
[A<FilePath>]+ [B<FileName>]=> <FilePath>

[A<String>] < [B<String>]
[A<UserName>]<[B<GroupName>]
[A<FilePath>] != [B<UserName>]
[A<FilePath>] => [B<UserName>]

[A<Number>] < [B<Number>]

[A<Size>] < [B<Size>]

Template Description
[A<AnyTypeA>] == [B<AnyTypeA>] An entry should be equal to another entry of
same type

One instance of an entry should equal to at least
one instance of another entry of same type

An extended boolean indicates a boolean entry
whose extended attribute has boolean value

An entry of IPAddress is a subnet of another entry
Concatenation of a file path entry with a partial
file path entry forms a full file path

An entry is substring of another entry

The user name belongs to the group name

The file path is not accessible by the user speci-
fied in the entry

The entry of UserName is the owner of the file
path specified in the entry A

The number in one entry is less than that of the
other entry

The size in one entry is smaller than that of the
other entry

I} Predicates in Configv

M Figure1 An overview of the predicates in ConfigV. The judgements show under which
circumstances predicates are derived. Figure from [7].

ki = bool
BOOL
isbool([k1], [k1]) :: Rule

ki :int

isint([k,], [k1]) = Rale

kla kz :int

MISSING

missing([k1], [k2]) :: Rule

kl,kz,k3 int
FINE_GRAIN
compare([ky, k2], [ks]) :: Rule
kixt kot

COARSE_GRAIN

compare([ki], [k,]) :: Rule

ki, ks :: size ko :: int

k1,k2eC

FINE_GRAIN

compare([ki, k2], [ks]) : Rule

k1 +# k2

EQ
eq(ky, k2) :: Rule

10

ORDER

ord(k1,k2) :: Rule

Martin Schweighofer

Example Rule Graph

M Figure2 An example rule graph that was constructed from the predicates on the left (with
arbitrary confidence values). The figure also demonstrates how to calculate the
degree. Figure from [7].

typeiNT
conf.=.9
s Nt ' omissing _ __ _______._
typernt ({k1}, {k1}) o '\ conf = 8 ! :
missing ({k1}, {k2}) b k1 ; " k2 :
order ({k2},{k3}) VTt :/ oo —--
) ! 1 fine grains
fine grains ({k1,k3}, {k2}) ' ' conf. = .6
! | K3 : : order
DKk1)=09+09+08+0.6 ' 1 v conf. = .7

1"

Early Detection of Configuration Errors by Learning Configuration Rules

About the author

Martin Schweighofer is master student at TU Wien, studying
Software Engineering & Internet Computing. Contact him at
e1426365@student.tuwien.ac.at.

12

mailto:e1426365@student.tuwien.ac.at

	1 Introduction
	2 EnCore
	2.1 Collecting data
	2.2 Assembling data
	2.3 Inferring rules
	2.4 Detecting anomalies

	3 ConfigV
	3.1 Assembling data
	3.2 Inferring rules
	3.3 Analyzing the rule graph

	4 Comparison and Evaluation
	5 Related Work
	6 Conclusion
	A Types and Templates of EnCore
	B Predicates in ConfigV
	C Example Rule Graph
	About the author

