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Abstract—Nowadays, most of the programs use configuration
files to customize their behavior. Unfortunately this can be error-
prone, e.g. because of typos made by developers. To address
this issue, we are going to use a solution consisting of 3 parts.
Firstly, context-oriented programming which became more and
more important due to the rise of ubiquitous computing as
well as mobile computing. Secondly, contextual values which
change their stored value depending on the current context. This
combined with the LibElektra library which is responsible for
storing the contextual values should improve our development
experience.

I. INTRODUCTION

By using context-oriented programming we can incoporate
additional information about the program’s currenct location,
settings etc. in order to adapt its behavior accordingly. This
became more and more important in the last few years
because mobile devices have become a fundamental part of
our everyday lifes. Hence applications have to run under
different environments. Therefore developers have to design
their programs in such a way that they can react to their
environments intuitively. Particularly when it comes to con-
figuring their programs. Therefore we are going to explain a
possible solution where layers, a very common solution where
additional program behavior is activated around the main
instructions, combined with contextual values, which change
their values depending on their current context (represented as
layers), can be of use to developers if they want to integrate
configuration values into their programs.

First we are going to explain how layers work. Layers are
used in most of the available context-oriented programming
languages nowadays [1]. There are different solutions which
are written in Lisp[2] or even Smalltalk[3] but since the author
has only little experience in these languages, we will use
newer languages like Java in our examples. Additionally we
are going to indicate some of the key aspects in which context-
oriented programming languages differ from each other and
how we can discern them. There are several differences, but
we are only going to pick af few in order to keep this
paper to a compact size. Secondly, we are going to take a
look at contextual values. These are similar to thread locals,
because they can change their contained value depending on
the current context. In the last section we are going to take a
look at Raab’s solution [8] which tries to combine the concept
of layers from the realm of context-oriented programming
with contextual values. This combination added with the
capabilities of LibElektra [7], also a solution provided by

Raab, will hopefully give us the right tools to configure the
programs of tomorrow.

II. CONTEXT-ORIENTED PROGRAMMING WITH LAYERS
A. Overview

Most of the context-oriented languages provide layers,
which help developers to modularize their programs. Layers
are a modularization technique in order to define behavioral
variations which can be distributed across several classes.
They achieve this by surrounding the core behavior with
their respective variations, for instance additional code can
be executed before and after a certain method.

There are 2 techniques for programs which use layers: either
a layer-in-class modularization or a class-in-layer modular-
ization. Layer-in-class means that layer specific behavior for
a specific class is definied within the definition of a certain
class. As a result the entire program still remains modularized
by means of classes. As a side effect developers can access
private information from the enclosing class because layers
are defined inside of classes. On the contrary class-in-layer
context-oriented programming languages can group layer spe-
cific behavior inside a separate module. Hence, developers do
not have to alter the code of existing classes if they want to
add new layers to a program.

In order to activate layers we can use either block syntax
or globally activate certain layers. Using a block syntax the
layers are only active within the scope of the given block
of code. In contrast, global activation of layers affects all
threads and does not require to define a block. Furthermore
it should be noted that a layer is active for all direct and
indirect calls which are enclosed by the same with-block. This
called the dynamic scope where several function calls could
happen between different function calls. Also it is possible
to have a "stack" of different layers where the innermost
with/without defines the activation or deactivation of a layer
(a without-block is used to deactivate a possibly, previously
activated layer). Between the different with and without
calls, it is possible that function calls To visualize this, take
Listing 1. Each consecutive line indicates an activation or
deactivation of a layer.

1| with(Security) {

2 with (Logging) {

3 with (BatteryLow) {

4 without (Logging) {



with (BatteryLow) {
/#+ do something here */
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Listing 1. Stack of layers

On the sixth line of Listing 1 BatteryLow and Security
are the only layers which are still active. Logging has been
disabled by the call on the fourth line using without.

To better distinguish between methods which are defined
inside of layers and classic methods which are also defined
inside of classes, Appeltauer et. al. [1] coined the definitions
for plain method definition and layered method definition.
Plain methods are methods which are not influenced by the
behavior of layers, meaning at the time they are executed, no
layer is active. In contrast layered method definitions consist of
2 parts. The first part is called base method definition which
will be executed if no layer defines a corresponding partial
method. The second part consists of at least one partial method
definition, additional ones are possible.

B. Example using Context]

From the example in Listing 2 using Context] we can
deduct that is has to be a layer-in-class context-oriented
programming language. Inside of the classes we have 2 layers:
Printldentification and PrintUniversity. Both add additional
behavior to the existing foString() methods of each class.
Inside of Listing 3 we can see the result of activating both
layers. Both, the original output and the additional output are
included in the end. To achieve this effect we have to use the
method proceed() which calls the enclosing layer’s behavior of
the currently executing method. If we are calling proceed() in
the outermost layer, the behavior of the class will be executed.

1 | elass University {

2 private String id;

3 private String name;

4

5 University (String id, String name) {

6 this.id = id;

7 this.name = name;

8 }

9

10 String toString() {

11 return "University: " + name;

12 }

13

14 layer PrintIdentification {

15 String toString() {

16 return proceed() + " - ID: " + id;

17 }

18 }

19 | }

20

21 | elass Student {

22

23 private University university;

24 private String name;

25 private String id;

26

27 Student (University university, String name,
String id) {

28 this.university = university;
29 this.name = name;
30 this.id= id;
31 }
32
33 String toString () {
34 return "Student: " + name;
35 }
36
37 layer PrintUniversity {
38 String toString () {
39 return proceed() + " - " + university;
40 }
41 }
42
43 layer PrintIdentification ({
44 String toString () {
45 return proceed() + " - ID: " + id;
46 }
47 }
48 | }
Listing 2. Modified version from [4]
1| University u = new University ("1", "TU Wien");
2 | Student s = new Student (u, "Martin",
31 "1126579");
4
5| with (PrintIdentification) {
6 with (PrintUniversity) {
7 System.out.println(s);
8 }
911
10
11 | Outputs: Student: Martin - ID: 1126579 -
University: TU Wien - ID: 1
Listing 3. modified version [4]
1| Student.PrintUniversity.toString()
2 Student .PrintIdentification.toString()
3 Student.toString ()
4 University.PrintIdentification.toString()
5 University.toString()

Listing 4. Execution order of Listing 3

C. Comparision of context-oriented programming languages

Other context-oriented programming languages also use
layers as a modularization technique. As already mentioned
before, there are 2 different types for layer modularization:
layer-in-class and class-in-layer. These are one of the main
distinguishing aspects among context-oriented programming
languages. [1]

As we can see from Table I, most of the languages
either opt for the layer-in-class method or they implement
both possibilities. Only ContextS and PyContext use class-in-
layer exclusively. Most of the context-oriented programming
languages in Table I use libraries to provide context-aware
features. There, layers are defined by using classes because
most of the implementations are situated in an object oriented
language. Though some of them, for instance ContextJ, pro-
vide an extended syntax in the respective language by using a
seperate compiler. The advantage is of course a more concise
and readable program code but the compatibility with newer
compilers reduces greatly. For instance in Context], we can



COMPARISON OF CONTEXT-ORIENTED PROGRAMMING LANGUAGES

TABLE I

ADAPTED FROM [1]

Language

class-in-layer

layer-in-class

ContextL

X

X

ContextS

X

Context] X
ContextLogicAJ
PyContext X
ContextPy
ContextR

ContextJS X
ContextG
cj X

>

PP A X

imagine that an update to a newer Java version can only be
done if Context]’s compiler has been updated as well.
Another key point which differentiates most of the context-
oriented programming languages is the manner in which a
certain layer becomes activated or deactivated. Most of the
solutions in Table I adopt the strategy of dynamic-extent
activation [1]. Here we have to declare a block. During
the dynamic-extent of the given block, the context-oriented
language will either activate or deactivate a given layer. This
technique may also be called dynamically scoped layer activa-
tion. Other context-oriented languages either opt for a global
activation of layers or a thread based activation. It should be
noted though, that these strategies are not an exclusive solution
by any means. For example, Context] supports dynamic-extent
based, thread based as well as global activation strategies [1].

III. CONTEXTUAL VALUES

Eric Tanter introduced the notion of contextual values in
2008 [9]. There he uses Common Lisp to introduce the concept
of contextual values. These contextual values will be stored by
a library written in Common Lisp and later tries to achieve
language support for contexual values in Lisp. In this paper we
are only going to cover the concepts which build the fundation
of contextual values. First it should be noted, that contextual
values change their stored value depending on the context they
are in. In order to understand contextual values we first have
to take a look at thread local values. These are avaible in most
programming languages.

1 | ThreadLocal<Integer> local = new ThreadLocal<
Integer>() = {

2 new ThreadLocal<Integer> () {

3 @Override protected Integer initialValue ()

{

4 return 0;

5 }

6 }

711}

8 | int c0 = counter.get();

Listing 5. Thread local variables

In Listing 5 each thread instance executing the code will
have its own instance of ThreadLocal. On the eighth line the
value of cO will be 0 for all thread instances. Furthermore
passing a reference of a ThreadLocal to another thread is

not possible. The value which is stored inside an instance of
ThreadLocal is only accessible to the instantiating thread (=
context) [5].

According to Tanter, contextual values consist of two parts:
a context function and a value mapping. In order to retrieve
the value for the current context we have to apply the context
function to get the key for the value mapping. In this case the
context of the thread local is defined by the thread’s id. Now,
contextual values generalize the idea of thread locals. They
allow any computational value to be a context to themselves.
Hence Tanter defines contextual values as a tuple of a context
function ctx and a place for storing values vals.

cv = <ctx, vals>

To retrieve the value for the current context we have to
apply ctx. This yields a key for the context czx. Using this key
we can find the corresponding value for czx in vals. Also, as
context any value can be used as long as it is computationally-
accessible. If we want to update or create a new entry in vals,
we also have to retrieve the key by applying ctx first and then
query vals by using the just retrieved key [9]. In comparison
to thread locals which will not be accessible after the thread
finished his work, contextual values can be stored beyond their
context. This means if a context happens to be active once,
stores a value in vals and later becomes active again, the value
will still be accessible because the context is the same.

Other implementations of contextual values are similar to
those of Tanter. For instance in PyContext, Lowis et. al. [10]
introduced the concept of context variables where combined
with with-statements these variables become newly initialized
by the time they enter the scope of a new with-block (=
new context) and reverted as soon as they leave the scope.
In comparison Tanter’s approach uses any computationally-
accessible value as context, not just the dynamic-extent or
in other approaches the thread id. Tanter even goes a step
further, he allows contextual values to serve as a context to
other contextual values. Unfortunately explaining this concept
would go beyond the purpose of this paper and is therefore
left to the interested reader for self-study.

IV. CONTEXTUAL VALUES COMBINED WITH LAYERS

Using contextual values combined with layers we have the
appropiate tools to incorporate configuration data into our
programs. Raab et. al. [8] connect the notion of contextual
values as a container for configuration data and layers from the
field of context-oriented programming, which act as context to
the contextual values. Combined with Raab’s Elektra Library
[7] which serves as a middle man between the program’s
execution environment and the contextual values, as indicated
in Figure 1, we have the tools we need to incoporate con-
figuration data into our programs. In Figure 1 we an see
that the Elektra library serves as a middle man. It loads and
stores values from the execution environment. Furthermore
we can see a code generator which translates configuration
specification files into executable code. This executable code
then accesses the key set where our data is stored.



code generator Elektra library

b4

generate ,
,”depends on

7z
,

context-aware
class

contextual
value spec.

context-aware

Fig. 1. Architecture [8]

First of all, in order to get started we have to declare a
config file that acts as specification for our contextual values
as in the following:

1| [/device/battery/%language%/low]

2 | type=string

3 | default=""

4| [/%user%/logins]

5 | type=Integer

6 | default=0

Listing 6. Configuration specification

Here we define a contextual value named low below 2 other
contextual values named device and battery. The value is sup-
posed to tell the user in the device’s language that the battery
is almost empty. The keyword type is used by GenElektra to
generate appropriate classes for the specification. The default
value is mandatory in the current implementation of LibElektra
and is used if the provided configuration does not specify a
value.

In Listing 6 for the first entry [/device/bat-
tery/%language%/low] 3 classes are generated - one for
Device, one for Battery and one for Low. For the second
entry, GenElektra[7] generates a class Logins. We can see the
simplified output for Logins in Listing 7 which GenElektra
generated for us.

1| elass Logins : public Integer

2] Ao

3 | public:

4 Logins: (KeySet &ks, Context &context)

5 Integer (ks, context, Key("", KEY_VALUE, "/%
user%/login", KEY_META, "default", "0",
KEY_END)) { }

6 using Integer::operator=;

711

Listing 7. Generated Logins class [8]

Having a tool like GenElektra should save a lot of boiler
plate code which the developers would have to write and
avoids type mismatches between the configuration and the
code. This is due to the fact that the specification of our
contextual values is more than enough to produce simple
classes for our contextual values. To further illustrate how
this configuration specification works, we will switch to the
class Device. Here we have a member variable of type Battery
and for each language which will be added. For the second
entry in Listing 6 on the fourth line a class Logins should be
generated. Because a default value is defined for Logins, new

instances of this class are initialized to 0. Furthermore we
have to provide actual values for different contexts inside of
a configuration file:

1| /device/battery/%/low=10% of battery remaining

2 | /device/battery/German/low=Nur mehr 10% der
Batterie sind verfuegbar

3| /device/battery/English/low=10% of battery
remaining

In the first line the % character defines an empty name [8]
which basically tells the system to use this value as the default
one. In the next two lines we define the alert message for the
German as well as the English language.

Next we have to define classes for each and every entry.
These classes will serve as layers in our program later. In
the following Listing 8 we can see a class definition for the
English alert message:

class DeviceBatteryEnglishLow :
{
public :
string id() const {
return "language";

}

public Layer

string operator () ()
return "English";

}

const {

— OOV AW~
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Listing 8. Layer for DeviceBatteryEnglishLow

Here the method id() is used to associate the given layer
with the layer specification in Listing 6, in our case the place-
holder %language%. It should be noted, that this identifier
has to be globally unique otherwise it is not possible to
deterministically reference the associated placeholder. In order
to reduce the amount of classes we have to write, we could
also define a DeviceBatteryLanguageLow class which serves
as a foundation for all languages:

1 | elass DeviceBatteryLanguagelow: public Layer

2] o

3 public:

4 DeviceBatterylLanguagelLow (string language)
language (language) { }

5 string id() const {

6 return "language"

7 }

8

9 string operator () () {

10 return language;

11 }

12 private:

13 string language;

14|}

Listing 9. Layer class for any language

After defining our layer specification, our values for each
layer and a layer class for all languages, we are ready to access
our configuration data:

1 | void batteryAlertLow (Low &1) {

2 1.context () .with<DeviceBatteryLanguageLow> ("
German") ([&] {

3 count << "Alert: " << 1;

4 b



5]

Due to the fact, that we use a universal layer class for every
language, it would be easy to switch to a different language
by just replacing the string within the parenthesis. There is no
need to define separate classes for every language. As a side
note, it is also possible to access command line arguments
using LibElektra by using a configuration specification as in
Listing 10.

1| [/server/%$port%/number]

2 | type=Integer

3 | opt=p

4 | opt/long=port

5 | range=0-65535

6 | default=0

7 | readonly

Listing 10. Command line configuration specification

Here we state that for the layer port only values between
0 and 65535 are valid and that we can provide the number
by either using the short version -p or the long version --port
for the command line argument. Addtionally we declare this
contexual value as readonly so that the application itself can
not alter the port from within the code [7].

From the listings above we can see that there exist 2
important classes:

o Context

o Layer

In the following we will try to explain each of them. Due
to the fact that Raab’s solution is not an extension to the
C++ language but rather a library which can be imported into
any project, there exists a key class called Context within
LibElektra [7]. This class is responsible for activating or
deactivating layers on a global basis as well as defining
with and without-blocks where layers should be activated or
deactivated. From an object oriented standpoint the Context
class and its related classes are organized with the observer
pattern. Since Context is the subject in this case, it will notify
any contextual values about any updates [8].

string evaluate(string const & spec) const;
Context & operator () (function const & f);

/S

1 | class Context : public Subject {

2 public:

3 template <typename L> void activate(...);

4 template <typename 1> void deactivate(...);

5 template <typename L> Context & with(...);

6 template <typename L> Context & without(...);
7

8

9

0

—_

bi
Listing 11. Context interface [8]

Every layer has to implement the Layer interface in Listing
12 in order to work. The function id() is responsible for
returning the placeholder in our configuration specification
language which are enclosed by two percent signs. For in-
stance, a placeholder which is called %port% would mean that
a responsible layer has to return the given string port as result
for the id() method. For distinguising between differently
configured layers we have to use the operator() method. Here

we return different instances, for example 8080 or 443. From
the low battery example above, this would mean we would
either return English or German.

1 | class Layer {

2 public:

3 virtual string id() const = 0;

4 virtual string operator () () const = 0;
504

Listing 12. Layer interface [8]

Furthermore developers sometimes want to react to context
changes immediately. For instance, having a mobile device
and the system has suddenly reached a critically low battery
level, developers want to notify users the situation as well as
reduce computationally intensive tasks in order to prolong the
battery’s remaining capacity. To achieve this, we can pass a
lambda to LibElektra which will be executed by the time a
certain layer has been activated [6].

1 | Coordinator c;

2 | c.onLayerActivation<DeviceBatteryLanguageLow
>([1 O A

3 turnOffGPSTracking () ;

4 }

500

Listing 13. Reacting to layer activations [6]

This layer activation and deactivation is not only bound
to the current thread but rather to all threads. In order to
synchronize the current status of all layers across all possible
threads we have to either activate or deactivate another layer
or call the syncLayers() method on our context object.

V. CONCLUSION

In this paper we tried to give an overview of the con-
cept of context-oriented programming by one of the leading
techniques of structuring ones program, namely layers. They
are a very handy way to incoporate contextual information
into a program and are easy to use. Nowadays there exist
several context-oriented programming languages using layers
as a main modularization technique. Therefore we tried to
indicate some of the key differences among them. Additionally
we took a look at contextual values which change their value
depending on the current context. They are a very straight
forward concept similar to thread locals but can also store
their information once a context changes. Last but not least
we saw a combination of the 2 solutions combined with
the LibElektra library to configure programs. Using a simple
configuration specification in order to define configuration data
seems pretty easy. Furthermore the idea of generating classes
for our configuration stores looks promising and could be a
real time saver for developers.
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