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Abstract
Currently, even large-scale and complex software systems are still configured

mostly by hand, which is a time-consuming and error-prone task. The automatic
generation of software configurations from declarative specifications appears to be
a promising solution for this problem. Constraint programming, where constraint
solvers generate concrete configurations as solutions to constraint problems, has
been proposed as an interesting method in recent research.

This paper gives an overview on the basics of constraint programming, and then
presents various approaches and implementations to the automatic generation of
valid software configurations using constraint solvers.

1 Introduction
Modern computing environments as diverse as distributed computing systems, multi-
component embedded systems, and cloud computing applications (Software/Platform
as a Service etc.), pose highly complicated configuration problems. A large variety
of requirements, connections and resulting dependencies, which are often implicit and
hidden, need to be considered.

For example, multiple services may be running on a variable number of physical
machines, and might be dynamically migrated among them, this requiring adaptive
assignments. Cost is an important factor, especially with usage-based billing, so it
is advantageous to (automatically) optimize resource utilization. Additionally, fault
tolerance (including automated repairs) needs to be considered.

Furthermore, deployment and redeployment take place frequently. Unlike when
systems were usually installed just once and then left running for months or years with
essentially the same setup, virtualized cloud systems often scale dynamically, i.e. servers
are started and stopped according to demand.

Currently, configuration of such systems is generally done by human experts. How-
ever, it is very hard to always consider all applicable constraints and interdependencies,
especially for long dependency chains, and the process is correspondingly tedious, time-
consuming and error-prone.

A solution to this dilemma, which will be discussed in this paper, is to specify
constraints explicitly instead, using a constraint language. Then, a constraint solver
is used to find concrete values which satisfy all applicable constraints, and to thereby
generate a valid configuration ready for deployment.

A system configured this way would be more reliable, since explicitly specified con-
straints are guaranteed not to be violated – provided, of course, that the constraints
themselves are correct.
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This approach is relatively new, and applications in hardware configuration actually
predate those in software configuration. For example, Stumptner et al. published their
COCOS system [18] in 1994, and Fleischanderl et al. [7] pursued a similar direction in
1998.

In the software domain, applications have been proposed ranging from configuration
in Service Oriented Architectures [14] and cloud orchestration [13] to automotive em-
bedded systems [16]. Previously, automatic configuration generation has appeared in
expert systems used for configuration of combined hardware-software assemblies, such
as Digital’s XCON [1].

Like the selection of papers presented here, current research is mostly focused on
large-scale component combination and assignment of components to (physical or vir-
tual) machines, as well as on describing interfaces and interactions between components.
There is comparatively little focus on conventional ”small-scale” parameter specification.

The remainder of this paper is structured as follows: Section 2 gives an overview of
constraint programming and constraint satisfaction problems (CSPs), and how can it
be used for configuration tasks. Section 3 contains a survey of existing approaches and
implementations, and Section 4 provides a conclusion and an outlook for the concept.

2 Overview
In constraint programming, rather than actual values or methods to calculate them, only
constraints over variables are specified – it is declarative, not imperative. Constraints
specify which values are valid for a variable, which may also depend on other variables.

A constraint solver then attempts to find one or more assignments to the variables
which satisfy all constraints. Since the solver can freely choose values as long as all
constraints are satisfied, the assignments can be optimally chosen with regards to some
objective function, i.e. chosen to maximize or minimize this function.

An example of a constraint program could be x < 5, x ̸= y, x + y = 6, x, y ≥ 0. A
valid assignment would be x = 1, y = 5. On the other hand, x = 3, y = 3 would be an
invalid assignment, since it violates the constraint x ̸= y. For optimization, with the
objective to maximize x, a solver would (ideally) choose x = 4, y = 2.

Of course, real-world applications are typically far more complicated and may involve
thousands of constraints. In general, solving constraint satisfaction problems is NP-hard.
For real-world problems however, it is usually possible to find an adequate solution
within reasonable time. In fact, it frequently turns out that memory, not time, is the
limiting factor [9, 10, 11]. General-purpose solvers such as Gecode [8], where much effort
has been spent on optimization, will generally outperform custom-written solutions, in
addition to saving significant effort.

In the context of configuration, constraint solving and optimization relieves the user
from the often very complex task of finding specific values, and manually confirming
that they are valid and compatible with each other. Furthermore, it is possible to
automatically determine conflicts between constraints.

To declare constraints, most approaches (e.g. [9], [4] and [11]) use domain-specific
constraint programming languages. Usually, these languages are object-oriented, with
constraints on the object variables embedded within class definitions. These objects
then map directly to components such as servers and software packages. In [11], the
constraint system itself also replaces traditional type checking – instead, an object is an
instance of a type if it satisfies a given set of constraints.
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3 Implementations
The problem of specifying configurations, as well as distributing and applying them to
their respective target systems, is already well researched, and various products exist.
It might therefore be advantageous to combine constraints and constraint-solving with
existing configuration systems.

For example, Hewson and Anderson [9] interface with the Puppet [17] configuration
environment and language in order to leverage this already common tool.

Beside Puppet, there are several other configuration systems which offer declarative
interfaces and therefore could be used in this context. Examples are CFEngine [2] (which
has some more advanced features, such as automatically determining the steps required
in order to update a configuration) and Chef [3].

Di Cosmo et al. also follow the idea of reutilizing existing systems in [5], where they
target OpenStack. Software packages are selected from existing package repositories
and tools (such as APT on Debian), depending on the target system. In the article,
it is also pointed out how constraint solving (to generate configurations, select compo-
nents etc.) and existing tools (to assemble components, apply configurations and deploy
them) complement each other. Such a combination would ideally result in a completely
automated configuration and deployment process, which could dynamically provision
optimally configured resources based on a user’s specific requirements.

Generally, it can be observed that all approaches utilize existing open-source con-
straint solvers and optimizers, such as Gecode, and often cross-solver languages (e.g.
MiniZinc) to interact with them. For example, Gecode is very general constraint solving
and optimization framework, and could be used for a large variety of applications. How-
ever, there is a significant drawback to these properties - these languages and systems
provide rather limited expressiveness, and are not readily suited for specific domains.
Gecode provides only very low-level facilities, and even commonplace expressions such
as foreach constraints are not directly supported by the API.

Therefore, the languages are often extended, or used as intermediary formats gen-
erated from sources in a different language. Unfortunately, conversions from different
formats might necessitate complex and computationally intensive translations, as de-
scribed e.g. in [10]. Furthermore, it is necessary to define an origin format which is
well-suited for the domain.

In general, it can be concluded that the challenge of declarative configuration lies not
in the solving process itself (which has already been taken care of by various projects).
Instead, the challenge is to provide users with accessible and intuitive ways to specify
constraints, and to handle the solutions usefully (e.g. by automatic deployment).

3.1 ConfSolve
Hewson et al. [10] present ConfSolve, an ”object-oriented declarative configuration
language”, based on constraint programming. ConfSolve has a rigorously defined type
system, which supports sets, objects, and subtyping as a core concept.

ConfSolve is compiled to MiniZinc, which is further compiled to FlatZinc. This
format can be parsed and solved by Gecode, which generates a flat solution (i.e. key-
value pairs). The solution is parsed by the ConfSolve system to generate the final
configuration in the form of an object tree. Any variable chosen by the optimizer can
be set as an optimization goal (either minimization or maximization).

Additionally, validation of existing (e.g. manually edited) solutions is also supported.
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In this case, it is checked whether the given configuration satisfies all applicable con-
straints.

Performance was found to be satisfying, with a maximum runtime of about 1.5
minutes for the largest successful instance. This involved assignments to 750 virtual
machines, the maximum instance size which could be evaluated within the 4.5GB mem-
ory limit. This maximum size was found to be significantly higher than when using a
comparable theorem proving/SAT approach.

3.2 Cloud Applications & Distributed Systems
Since a solution for a declarative constraint model can be found automatically, this
approach is also quite interesting for automated application deployment and redeploy-
ment. Applications may be automatically configured and deployed to specific systems,
and later, the configurations can be adapted to changing conditions.

In [4], Dearle, Kirby and McCarthy propose a framework for configuring autonomic
distributed systems using a declarative constraint language, and finding configuration
values using a constraint solver. More unusually, their system is capable of dynamically
re-configuring itself (or ”self-healing”) when it detects that, e.g. due to a host going
offline, the original configuration no longer fulfills the constraints.

They declaratively describe ”configuration goals”, which include required resources
(both software and physical), and connections between them (e.g. latency and band-
width). Validity of the constraints is continuously monitored, and a self-healing process
is initiated if any of them are found to be violated. To heal itself, the system picks new
values such that the changed constraints are satisfied again.

The flexibility gained by specifying constraints can also be harnessed at larger scales.
In Di Cosmo et al.’s approach [5], the user specifies abstract services, whose concrete
implementations are interchangeable and only fixed when assigned to machines.

Also, a major difference to other approaches, such as ConfSolve, is the use of ports
(which are represented as constraints) for modeling dependencies at the interfaces be-
tween components. Incoming ports specify capabilities or interfaces provided by a com-
ponent, e.g. to indicate that an SQL server provides a database connection. Optionally,
a maximum number of components which may connect to the port can be specified (e.g.
an SQL server supports at most 3 application instances). Outgoing ports declare either
requirements (which indicate that at least n instances of some component are required,
e.g. at least 2 database shards for an application) or conflicts (if the current component
is present, some other one must not be, e.g. two components which perform the same
task).

Furthermore, this implementation finds not only some solution satisfying the con-
straints, but attempts to find an optimal one. Two different optimization goals are
supported: minimizing either the number of machines used, or the differences to an
initial configuration.

Future extension possibilities proposed by the authors are the adjustment of existing
configurations, life cycles/states and dynamically changing constraints or dependencies.

3.3 Service Composition
In Mayer et al. [14], constraint solving is used for configuration tasks in Service Oriented
Architectures. Their approach supports dynamic service composition, thus it is not
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necessary to specify exact numbers of components in advance. Instead, the solver can
generate them as needed.

Similar to Di Cosmo et al. [5], this system uses the ports concept. Here, however, the
ports are not a special feature, but consist simply of arbitrary constraints on accepted
or provided messages. These specifications are far more powerful than the simple type
specifications which are traditionally used, while maintaining the clarity of ports as
specifications of interdependencies.

However, one drawback compared to more specialized languages is that message di-
rectionality cannot be readily expressed and is only known by convention. Furthermore,
while a core use case is the specification of workflows or message flows, the semantics
are not very intuitive for this purpose.

Somewhat unusually, the authors opted to design their own solver, which uses an
iterative limited-depth strategy to ensure termination.

3.4 Aspect-Based Modeling
Nechypurenko et al. [16] present an application of aspect-oriented programming to au-
tomotive distributed embedded systems. These systems typically have many complex
constraints, such as severely limited resources of embedded devices, as well as physical
constraints not present in other environments (e.g the distance between units). Further-
more, the systems are highly distributed, consisting of many interconnected devices, each
running specialized software. Code must be specially written for each component and
adapted for each deployment, obviously at high costs.

In order to reduce component costs, manufacturers increasingly utilize COTS (com-
mercial off-the-shelf) components, but these require even more complex integration since
they are more generic.

To alleviate these problems, the authors propose a move to model-driven develop-
ment. Hardware configuration and software components are modeled as separate con-
cerns, with the weaved model mapping software components to hardware units (ECUs).

The resulting constraints and interdependencies would be far too numerous and
complex to manually construct a model, which would make this modelling method too
complex to handle. Instead, domain-specific constraints are declared, which the final
weaved model respects.

However, the users (i.e. domain experts) still struggled to use the various constraint
solvers directly, through their C or Java interfaces. Instead, a domain-specific knowledge
base was implemented in Prolog, which provided a more intuitive interface to the experts.
Furthermore, this relieves the domain experts from having to handle technical specifics
such as solving strategies.

Despite the use of a more expressive language, it was still not (easily) possible to
include certain constraints, such political considerations or technical legacies. The au-
thors therefore decided to enable fixing parts of a model, that is, manually specifying
values for certain parameters.

Once all constraints have been specified, finding a valid configuration is a two-step
process: first, global constraints are solved to prune the search space, then a result is
calculated and optimized for some criterion (e.g. the number of ECUs used). Despite
the optimization step, the solving process was found to still be quite slow. By adding
domain-specific heuristics to ”guide” the solver by prioritizing assignments, performance
was significantly improved.
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The complexity of the constraint set can make it very hard to find errors which
prevent all or only some solutions (which may not even be noticed). Even once found,
correcting such errors still requires care, since potential side effects of corrections have to
be considered. In order to simplify this task, developers can specify a set of modifications
which the solver can apply automatically in order to repair a model. For example,
additional RAM could be added if solving fails due to a component not having sufficient
memory available.

3.5 Model-Driven Engineering
An approach to model-driven engineering in similar applications was proposed by White
et al. [19], as an extension of their earlier work in [20], for configuring distributed real-
time embedded systems such as those found in cars and airplanes. Here, the idea was
to combine components to build applications only at deployment time (late binding).

The cooperation of different roles (e.g. component developers or deployers) with
conflicting interests is required to integrate the final product. The compatibility of the
individual component configurations is extremely important – high precision is required,
since subtle mistakes can cause hard-to-diagnose failures. Again, this implies a large
variety of constraints between components which must be fulfilled in order to guarantee
correct functioning of the assembled system.

The authors developed a tool named ”Fresh”, which transforms feature models into
constraint satisfaction problems, and derives an optimal solution according to a config-
urable cost function. The feature models can include constraints between features (e.g.
”ARM binaries require an ARM processor”). Such requirements may have cardinalities
to indicate that more than a certain number of some component are required, or that
at most a certain number may be present. It is also possible to declare a component
as optional. XOR, or ”one of”, constraints, are supported as well. It is possible to
control multiple configuration steps and activities, application packaging, etc. The fea-
ture models are reduced to CSPs, then solved, and the resulting configuration settings
(e.g. component assignments and the matching machine architectures for compiling) are
automatically exported to XML.

An avionics application based on CORBA components is presented as a working
example. Using the presented system, the size of configurations could be significantly
reduced (> 90% in the given example), and reconfiguration was dramatically simplified.
However, the example mentioned in the article is relatively small, and no information
on performance or run-time is given.

3.6 Related Work
Among other works related to this field are Hinrichs et al.’s approach [11], in which a
first-order theorem prover is used to solve object-oriented CSPs (which are converted to
first-order logical clauses). Theorem provers have the advantage of being very general,
as well as highly optimized, but on the other hand, transformation of constraints into
clausal form is required.

Fischer et al.’s Engage system [6] for deployment management also generates con-
figurations using a constraint solver. In addition, it includes a run-time part to deploy
configurations, start configured services, and perform upgrades.

Liu et al.’s COPE [13] is intended to automate cloud orchestration using declarative
policies. It takes a set of policies and a description of the current system state as inputs,
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then attempts to generate a new, optimized state in accordance with the policy.
As mentioned above, the correctness of the generated configurations hinges on the

correctness of the constraints. To improve the latter, Nadi et al. [15] propose to extract
constraints directly from software. A different approach followed by Kiciman and Wang
[12] is the extraction of constraints from existing, tested configurations.

4 Conclusion
Overall, the use of constraint programming in configuration applications appears as a
promising concept, which is especially relevant in today’s increasingly complex cloud
infrastructures.

However, adoption for use in production seems to be rather slow. Of the papers
surveyed, few cited concrete industrial applications (e.g. [5]). Furthermore, there seems
to be surprisingly little activity in the ”core” software domains, with many applications
of constraint solving to configuration coming from the embedded and hardware sectors
(e.g. automotive).

While several declarative configuration systems (such as Puppet, CFEngine or Chef)
exist, they still largely require manual configuration – there is no product with compa-
rable impact implementing the concepts presented here.

As seen in the approaches described, many existing components (such as constraint
languages and solvers, configuration tools, package management systems, deployment
mechanisms) can be readily used, which significantly accelerates development and may
significantly reduce migration costs.

However, many of the limitations which were discovered in the development and
use of expert systems more than 20 years ago still persist – most notably, the difficulty
of capturing complex domain constraints and translating them to declarative models,
especially when done by domain (not software) experts (see e.g. [16]).

Common problems of constraint programming, such as hard-to-diagnose errors [16],
and, for optimization, having to define a cost function considering various trade-offs,
apply as well.

Overall, however, the idea of automatically generating configurations from con-
straints offers several unique opportunities, such as significant reductions in complexity
and workload, and automatic optimization of configurations. Additionally, it may be
seen as a logical continuation of existing declarative configuration languages.
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