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Abstract. Earlier work on integer division by multiplying with the re-
ciprocal has focused on multiplying with a single-width reciprocal, com-
bined with a correction and followed by a shift. The present work explores
using a double-width reciprocal to allow getting rid of the correction and
shift.

1 Introduction

Integer division is expensive on many processors; e.g. on the Skylake microar-
chitecture1 an unsigned division o a 64-bit number by a 64-bit number takes
35 cycles, and signed division 42 cycles. By contrast, on the same architecture a
64-bit-by-64-bit division with a 128-bit result takes 3 cycles, and one multipli-
cation can be started per cycle [Fog19]. So replacing division by constants with
multiplication by the reciprocal improves performance.

Therefore a number of compilers perform this optimization. However, in gen-
eral this approach requires a w + 1-bit reciprocal and a shift-right for dividing
a w-bit number; instead, the compilers use a w-bit reciprocal and some divisor-
dependent fixup code. In contrast, this paper explores using a 2w-bit reciprocal
without shift, and, for unsigned division, without fixup. This approach is actually
fastest in some circumstances. It is also amenable to optimizing loop-invariant
divisors, because the code for computing the parameters of the code in the loop
body is relatively simple, especially for unsigned division. By contrast, neither
gcc-8 nor clang-6.0 optimize loop-invariant divisors.

Still, in many cases it is probably better to implement other published work
(see Section 5), and the main contribution of this paper is to show that using a
2w-bit reciprocal can be beneficial in some cases, and to give an idea of where
it works well.

Section 2 provides background on division by multiplication with the recipro-
cal. Section 3 discusses using a 2w-bit reciprocal in unsigned division, while Sec-
tion 4 discusses signed division (both using unsigned multiplication and signed
multiplication).

? anton@mips.complang.tuwien.ac.at
1 The microarchitecture of the mainstream client, server and mobile CPUs sold by
Intel since late 2015, e.g., Core ix-6xxx...9xxx.



1.1 Symbols

In formulas in the rest of the paper we use the same letters for the same concepts:
n dividend (numerator)
d divisor (denominator)
q quotient
r remainder
w word width in bits
C scaled approximate reciprocal
k 2k is the scale factor for C
Cl least significant word of C
Ch most significant word of C
D correction term (possibly scaled)

2 Background

We first look at unsigned division. The basic idea of integer division by multi-
plication with the reciprocal is to replace integer division with a cheaper com-
putation:

q = bn
d
c = bnC

2k
c

bx/2kc can be implemented with shifts, or, in our approach, by just selecting
the right word of a multi-word result. Multiplication is also much cheaper than
division on many CPUs. The question is how to determine C and k.

A simple way to select C is to compute

C = d2
k

d
e = 2k + e

d

where e (0 ≤ e < d) indicates the size of the error we get from rounding up. So
if we put that into our formula above, we get:

bn
d
c = bn2k + e

d2k
c = bn

d
+ ne

d2k
c

By increasing k, we can reduce the error, but this also increases C, requiring
longer multiplication. Earlier work tried to go for the smallest C and the smallest
k that produces the correct result. It turns out that, in general, for dealing with
w-bit numbers, a w + 1-bit C is needed. In about 70% of the cases [Fis11], a
w-bit C is good enough (e.g., see Fig. 1, first column). For the other 30%, earlier
work has devised various ways to make do with a w-bit by w-bit multiplication,
by applying some form of correction or an alternative formula. E.g., one of these
cases is n/7. Fig. 1 shows the code produced by gcc (second column) and by
Robison [Rob05] and Fish [Fis11] (third column). The latter variant corresponds
to the following formula (which works in those cases where the formula above
for C would require more than w bits for C):



gcc n/10
6 cycles latency

movabs $C,%rdx
mov %rdi,%rax
mul %rdx
mov %rdx,%rax
shr $0x3,%rax

gcc n/7
8 cycles latency

movabs $C,%rdx
mov %rdi,%rax
mul %rdx
sub %rdx,%rdi
shr %rdi
lea (%rdx,%rdi),%rax
shr $0x2,%rax

Fish n/7
6.25 cycles latency

movabs $C,%rax
mov %rax,%rcx
mul %rdi
add %rcx,%rax
adc $0x0,%rdx
shr $0x2,%rdx
mov %rdx,%rax

this paper n/7
6 cycles latency

movabs $Cl,%rax
mul %rdi
mov %rdx,%rcx
movabs $Ch,%rax
mul %rdi
add %rcx,%rax
adc $0x0,%rdx
mov %rdx,%rax

Fig. 1. One way to divide by 10 and three ways to divide by 7; n is in %rdi,
result in %rax; latency numbers refer to latency from %rdi becoming ready until
%rax is ready; they are measured on a Skylake (Core i5-6600K).

bn
d
c = bb2

k

d
cn + 1

2k
c

3 Using wider multiplication for unsigned division

The reason for trying to use a multiplier C < 2w is the presumption that mul-
tiplication with bigger C is expensive. While w-bit by 2w-bit multiplication is
more expensive than w-bit by w-bit multiplication, it is not that much more ex-
pensive, and using it can actually be cheaper than the workarounds for making
do with w-bit by w-bit multiplication. E.g., the AMD64 code for unsigned 64-bit
division by 7 is shown in the right column of Fig. 1; on Skylake2 it has the same
latency as the n/10 code produced by gcc, but it also works for the n/7 case.

This code works with C = d22w/de. As a result, we need w-bit by 2w-bit
multiplication, but we do not need a shift, because the result is in the most
significant word of the multiplication result. We split C into two words C =
Cl + 2wCh, so the computation is

q = bnCl + 2wnCh

22w
c = bnCl

22w
+ nCh

2w
c

The least significant word of the first multiplication is eliminated by the
flooring, and can be ignored; we add the most significant word of the first mul-
tiplication to the result of the second multiplication; the most significant word
of this sum is our quotient.

The nice thing about this computation is that the two multiplications can
theoretically be performed in parallel. In practice, current CPUs have only one
2 Skylake is the microarchitecture of mainstream Intel CPUs since the 6th generation
of Core i processors in 2015 and is also used in Intel CPUs of the 7th, 8th, and 9th
generation, and some CPUs of the upcoming 10th generation.



multiplier, but this multiplier is pipelined, so the second multiplication can be
started one cycle after the first. By using k = 2w, we eliminate the final shift-
right used by the other variants, and its impact on latency (2 cycles on Skylake).

3.1 Computing C

Computing C = d22w/de requires division of a 2w + 1-bit number by a w-bit
number, giving a 2w-bit result. For just-in-time compilation and for dealing with
loop-invariant divisors, we do not want to call a (slow) general multi-precision
library. Fortunately, if we have a 2w/w → w division (as present in AMD64),
this computation can be performed relatively cheaply:

C = d2
2w

d
e = b2

2w + d− 1
d

c

Ch = b2
w

d
c, rh = 2w mod d

Cl = b2
wrh + d− 1

d
c

In AMD64 assembly language:

#in: d = %rdi
mov $1,%rdx
mov $0,%rax
div %rdi
mov %rax,%rsi
lea -1(%rdi),%rax
div %rdi
mov %rsi,%rdx
#out: ch=%rdx cl=%rax

3.2 Special cases

Our approach works for d > 1.
For d = 1, C = 2w, which does not fit in the two words that we reserve for

reciprocals. If d is known at compile-time, treating this as a special case is easy.
If we use this approach for loop-invariant divisors, we can fork between d = 1
and d > 1 before the loop, and have a copy of the loop optimized for d = 1 (or
maybe for powers of 2).

The other special case is d = 0. If d is known at compile-time, the compiler
can just produce the same code as in the unoptimized case, resulting in the
same behaviour. For loop-invariant divisors, we want to minimize the number
of special cases. What the compiler should do depends on the programming
language, and, for some programming languages, on the compiler.

If the programming language specifies a specific behaviour for division-by-
zero, we have to implement that. If the programming language does not define



the behaviour, some compiler writers think that they can do anything, and if
you want to follow that path, you can simply ignore that case.

But I argue [Ert17] that even for these cases, the optimized code should
exhibit the same behaviour as the unoptimized case. One way to deal with this
is to define a specific behaviour (e.g., an exception) at the compiler level; then
you have to implement that. Another way is to just use the hardware divide
instruction in the unoptimized case and also for the “optimized” case; then a
way to reduce special cases is to combine this case with d = 1 and use a loop
that uses the divide instruction (i.e., without optimizing the division) for d < 2.

Most architectures define the behaviour on divide-by-zero, and in these cases
we may be able to do better:

E.g., the AMD64 architecture specifies that division-by-zero produces an ex-
ception. For the loop-invariant case, this exception will occur when computing
C, and we do not need to worry about d = 0 in the rest of the loop. However,
this means that for d 6= 1 we have to peel the first iteration of the loop, and
compute C at the place of that first-iteration division (in order to preserve the
order of exceptions).

Aarch64 specifies that division-by-zero produces 0. Then we can just use
C = 0, and using that in bnC/22wc gives 0, just like the original div instruc-
tion. However, at least Cortex-A53, -A72 and -A73 have very fast dividers, so
a compiler probably should forego replacing division by multiplication with the
reciprocal for these CPUs. Still, if there are CPUs with slow division instructions
where division-by-zero produces 0, you can apply these considerations.

3.3 Possible usage

As a compiler writer, the simplest way to make use of this paper’s approach is
to use it for all d > 1. If you want to invest more development resources into
this topic, you can detect the 70% of divisors where a C < 2w is sufficient, and
use a multiply followed by a shift-right for that. You can also optimize dividing
by powers-of-two into shift-right.

Finally, if you have enough development resources, you can also detect and
optimize loop-invariant divisors. For this use, every special case needs a separate
copy of the loop. The benefit of this paper’s approach is that it reduces the
number of cases that need separate loops; in particular, you can handle d > 1
with one loop.

One usage case for loop-invariant divisors is the conversion of integers to
strings with arbitrary base (e.g., Java’s Integer.toString(int i, int radix)).
This usage has relatively low trip counts, but also few different radixes (and of-
ten the radix is the same as in the last invocation). Given the relatively high cost
to compute C, the low trip counts would be a problem. This can be mitigated
by memoizing the computation of C.



3.4 Remainder

The remainder of the division can be computed from the quotient in the obvious
way.

r = n mod d = n− qd

This is used with every way to compute q (except that on some architectures
(e.g., AMD64), the division instruction produces both q and r), including the
various ways to performed signed division, so there is no need to discuss it in
the rest of this paper.

4 Signed division

4.1 2s-complement numbers

In this section we work with the 2s-complement representation of negative inte-
gers. This representation is used in all significant architectures introduced since
1970. In 2s-complement representation, a negative number x is represented by
x′ = x + 2w. As a result signed multiplication of a < 0 with b becomes

ab = (a′ − 2w)b = a′b− 2wb

and likewise for b < 0. Widening signed multiplication3 instructions perform
these corrections internally. If we use unsigned multiplication instructions, we
have to generate code to perform them.

4.2 Signed integer division

In symmetric (aka truncated) division n/d, the quotient is rounded towards 0
(truncated), and consequently a non-zero remainder is negative iff the signs of
n and d differ.

In floored division, the quotient is rounded towards −∞ (floored), and con-
sequently, a non-zero remainder has the same sign as d.

There is also Euclidean division, where 0 ≤ r < |d| [Bou92].
Different programming languages specify different forms of division and, in

particular, remainder operations; some of them support several (using different
operators, e.g., mod and rem in Ada).4

3 2wb ≡ 0 (mod 2w), so in non-widening multiplication the difference between signed
and unsigned multiplication vanishes.

4 https://en.wikipedia.org/wiki/Modulo_operation

https://en.wikipedia.org/wiki/Modulo_operation


4.3 Signed division by unsigned reciprocal multiplication

We first look at using unsigned multiplication.
For d > 1, we can use the same C as in the unsigned-division case. However,

if n < 0, we have to compute

nC = (n′ − 2w)C = n′C − 2wC

But there is more: C is a little bigger than the ideal multiplier 22w/d. For
n < 0, this means that the result is a little smaller than n/d, and rounding
it towards −∞ produces a result that is one less than the result of symmetric
division.

So, for symmetric division, if n < 0, the total correction term is

Ds = 22w − 2wC

This is used in

q = bnCl + 2wnCh + D

22w
c if n < 0

For floored and Euclidean division (they are the same for d > 0), rounding
towards −∞ is the right thing in principle, but we have to correct for that fact
that C is a little too big, which, combined with rounding towards −∞, produces
a division result that is 1 too low when n is divisible by d. One way to correct
for that is to add no more than 1/d to the end result before flooring. In terms of
the scaled correction term this turns out to be C − 1 (C itself is a bit too large
in general). So we could use the following total correction term:

Df ′ = C − 1− 2wC

This would require a 3w-bit addition. In practice we can make do with a
2w-bit addition by using

Df = 2w(bC − 1
2w
c − C)

If you also want to optimize negative divisors (they are very rare), one way
to deal with them for symmetric and floored division is to perform division by
−d, with appropriate corrections elsewhere:

For symmetric division, you negate either the quotient q (cheaper), or the
dividend n.

For floored division, you negate the dividend n.
For Euclidean division, you negate the quotient q.
Special cases: In addition to d = 0 and d = 1, signed division also has the

special case d = −1; this special case has an additional problem compared to
d = 1: The result of −2w−1/−1 = 2w−1 is not representable as a w-bit 2s-
complement number. The simplest way to deal with d = −1 is not to optimize
it.



4.4 Using signed multiplication

It seems obvious to use signed multiplication for signed division, and approaches
that use single-width reciprocals often do so. However, even these approaches
perform corrections, either for n < 0 or independent of the sign, so at least for d >
0 these approaches do not offer an advantage over using unsigned multiplication
(and d < 0 is very rare). Still, this section reports on my explorations in this
direction.

Let’s consider d > 2 first. For n ≥ 0, this coincides with unsigned division.
For n < 0:

b nC

22w
c = bn

′C − 2wC

22w
c = bn

′Cl − 2wCl

22w
+ n′Ch − 2wCh

2w
c

So signed multiplication can be used for multiplying both parts of C. There
is one complication, though: The result of the low-order multiplication can be
negative and needs to be sign-extended to the full width before performing the
addition.

For symmetric division, we still need to perform the correction depending on
the sign of n.

For floored and Euclidean division, one can perform a correction that is
constant across the whole range of n, resulting in the computation

q = bn
′Cl − 2wCl

22w
+ n′Ch − 2wCh

2w
+ Dg

22w
c

and we use

Dg′ = 2w−1( C

22w
− 1

d
)

Dg = d22wDge

D′g is the maximum amount by which our approximation C/22n deviates
from the exact 1/d in the negative range of n. Dg is the next integer scaled by
22w (as used in the formula for q).

The advantage of this approach is that there is no need for a branch or other
kind of conditional code. However, in the frequent case that n ≥ 0 for almost all
invocations, it is probably better to use unsigned multiplication with conditional
correction for n < 0.

For d < −1, signed multiplication works nicely (with C = −d22w/ − de =
b22w/dc), and avoids the need for a separate negation step and is therefore proba-
bly better than the variant using unsigned multiplication above. The correction
term has to be adjusted appropriately; in particular, the correction factor for
Euclidean division is now different than for floored division.

Using signed multiplication turns d = 2 into a special case, because C =
22w−1 is not representable as signed 2w-bit number. It can be handled by treating
all d = 2i as separate case that uses arithmetic shift right; this would also cover
d = 1.



5 Related work

If you read only one paper about the topic, my recommendation is Robison’s
[Rob05]. The main benefit of that work is that division is replaced by the com-
putation

bn
d
c = ban + b

2k
c

where a and b are w-bit numbers and not much harder to compute than C in
the present paper (and b = 0 or b = a). So this approach can be used for loop-
invariant divisors. Depending on the circumstances, Robison’s computation can
be faster or slower than the present paper’s computation.

Fish [Fis11] arrives more or less at Robison’s computation through different
reasoning and suggests an alternative way of coding it.

Early work on division by constants by Artzy et al. [AHS76] did not frame
it as using an approximation to the reciprocal.

Alverson [Alv91] presents unsigned and signed division by multiplying with a
w + 1-bit reciprocal and shifting. Alverson performs signed division on absolute
values using unsigned multiplication, with a correction term (bias) for floored
division, and correcting the sign in the end.

Granlund and Montgomery [GM94] use signed multiplication (with correc-
tion) for the symmetric signed division case, and but use unsigned multiplica-
tion and sign manipulation for the signed division case. They also discuss using
floating-point multiplication, division of a double-word dividend, the case where
it is known that the remainder is 0, implementation in gcc, and results.

Möller and Grandlund [MG11] perform double-word by single-word division
using single-word multiplication plus corrections; in a way, the opposite of the
present paper, which uses a wider multiplier to eliminate corrections, and only
produces a single-word result.

Muller et al. [MTdDM05] discuss implementing 32-bit by 32-bit division using
16-bit by 16-bit multiplication, also in the opposite direction of the present work.

Other works on division by reciprocal multiplication are by Warren [War03,
Chapter 10], Cavignino andWerbrouck [CW08,CW11], and Drane et al. [DCC12].

6 Conclusion

In division by multiplying with the reciprocal, using a double-wide reciprocal
eliminates the final shift, which can reduce the latency of the whole operation.
The benefit is most pronounced for unsigned division, while for signed division
conditional or unconditional corrections are needed, which may make using a
double-wide reciprocal less attractive.
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