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Abstract. All significant C programs contain undefined behaviour. There
are conflicting positions about how to deal with that: One position is that
all these programs are broken and may be compiled to arbitrary code.
Another position is that tested and working programs should continue to
work as intended by the programmer with future versions of the same C
compiler. In that context the advocates of the first position often claim
that they do not know the intended meaning of a program with undefined
behaviour. This paper explores this topic in greater depth. The goal is
to preserve the behaviour of existing, tested programs. It is achieved by
letting the compiler define a consistent mapping of C operations to ma-
chine code; and the compiler then has to stick to this behaviour during
optimizations and in future releases.

1 Introduction

The C standard does not define the behaviour of most C programs; e.g., it does
not define the behaviour of any terminating C program, nor of any library func-
tion not defined in the C standard. Some of these behaviours that the C standard
does not define are called undefined behaviour. And while the C standard makes
no difference between these and other non-standard behaviours as far as program
conformance is concerned1, language lawyers and some compiler maintainers are
especially fond of undefined behaviour.

There are 203 undefined behaviours listed in appendix J of the C11 stan-
dard, and most C programs may perform some undefined behaviour under some
circumstances, some of them unintended (e.g., buffer overflow vulnerabilities),
some of them intended (e.g., a check protecting against a buffer overflow that
contains an address computation overflow intended to wrap around).
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1 Any working C program is a conformant C program, and no program with any kind
of behaviour not defined in the C standard (e.g., no terminating program) is a strictly
conformant C program.



A huge number of C programs2 performs undefined behaviours, even some3

maintained by the very people who advocate4 that no C program should perform
undefined behaviour.

In the good old days compilers generated code consistently. The behaviour
of the generated code for the undefined-behaviour cases was a straightforward
extension of the behaviour for the normal case (see Section 4).

Unfortunately, over the last two decades a significant number of compiler
maintainers have taken the attitude that their compilers can assume that the
programs they compile don’t perform undefined behaviour, and this leads to
undesirable consequences in combination with sophisticated optimization.5 In
the words of John Regehr6: “A sufficiently advanced compiler is indistinguishable
from an adversary.” In the rest of this paper, such compilers are called adversarial

compilers.

What to do about it? Some people suggest “fixing” all programs with un-
defined behaviour, and propose to find them using “sanitizers”, i.e., run-time
checkers that report some of the undefined behaviours that occur during a given
execution run.

An alternative approach is to actually compile these programs as intended.
Then programmers can spend their valuable time on hunting down and fixing the
remaining bugs, on increasing the performance effectively and/or on extending
the functionality of the program. One claim that the advocates of adversarial
compilers have made is that they don’t know the intended meaning of programs
with undefined behaviour, going as far as claiming that it would take psychic
powers7 to compile the code as intended by the programmers.

In this paper I take a closer look at what the intended meaning of C programs
is. Section 2 looks at previous work. Section 3 explains that the dream of a totally
defined C is not realistic because of architectural differences. Section 4 gives a
basic, tight model of the intended meaning. Section 5 discusses whether, how and
why that model can be loosened while still staying within the intended meaning
of existing, tested programs, and how that affects optimizations. Section 6 looks
at how this applies to C library functions, using memcpy() as example.

2 Dan Bernstein estimates 100%
https://groups.google.com/forum/message/raw?msg=boring-crypto/48qa1kWignU/b7WsAezEAwAJ.

3 http://blog.regehr.org/archives/761
4 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
5 E.g., OpenSSH had a memset() intended to erase the private key, i.e., to mitigate the
effects of some vulnerability elsewhere; the compiler “optimized” this memset() away,
because it would require undefined behaviour to read this private key; unfortunately,
OpenSSH contained such a vulnerability, the undefined behaviour happened, and
private keys were compromised. https://lwn.net/Articles/672465/

6 https://blog.regehr.org/archives/970
7 <news:hO2dnSk5W8n4p57OnZ2dnUVZ_qSdnZ2d@supernews.com>
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2 Previous work

Wang et al. [WCC+12] give a number of examples of the problems that adver-
sarial compilers cause to existing programs, and provide performance numbers
for the effect of optimizations based on adversarial assumptions.

Some people have reacted to adversarial compilers by trying to initiate a
tighter definition of C.

E.g., John Regehr et al. started on a Proposal for a Friendly Dialect of C8;
in their initial posting they proposed some reasonable behaviour for some un-
defined behaviours and wanted to continue based on finding a consensus among
C experts. They eventually gave up9, partly because finding a consensus is very
tough going, and partly because hardware differences make it impractical to
make C completely defined in some places. The present paper takes existing,
tested programs rather than experts as the yardstick for determining what a
piece of C means, and accepts that programs may be hardware-specific. The
two examples of disagreements mentioned by Regehr et al. are discussed in the
present paper: memcpy() in Section 6, and shifts in Section 3.

In his proposal for boringcc,10 Dan Bernstein partly takes a very similar
position to the one I take in the present paper (compile existing programs to
behave the same way as old compilers do), and partly defines things beyond that
for security reasons, e.g., initializing everything to zero, and tightly defining the
behaviour of out-of-bounds accesses (the latter will have a huge performance
impact). You can see the present paper as a more elaborate version of the first
aspect of boringcc.

Wang et al. [WZKSL13] have written a static program analyzer that tries to
find code that an adversarial compiler might optimize away against the intent of
the programmer. They identify a C dialect C* that assigns well-defined semantics
to code fragments that have undefined behaviour in C; they give some examples
of these semantics, but do not discuss them in any depth.

In earlier work [Ert15] I focused on debunking the performance claims of the
advocates of adversarial compilation, but I also shortly discussed the intended
meaning of programs. Some readers were not satisfied with that discussion, so
here I present a more elaborate version of these ideas.

In the Linux kernel/user space interface, the Linux maintainers take exactly
the position that I take here for the source-code/compiler interface: Existing
programs that worked on an earlier version have to continue working on a new
version, even if it can be argued that the programs are buggy.11

A debate related to the one that lead to this paper is the one about VAX-
ocentrism12. One significant difference is that the VAXocentrism debate was
about portability of programs to other platforms, while the present discussion

8 https://blog.regehr.org/archives/1180
9 https://blog.regehr.org/archives/1287

10 https://groups.google.com/forum/#!msg/boring-crypto/48qa1kWignU/o8GGp2K1DAAJ
11 https://felipec.wordpress.com/2013/10/07/the-linux-way/
12 http://catb.org/jargon/html/V/vaxocentrism.html
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is about whether optimization or newer versions of a compiler on the same plat-
form should compile existing, tested programs to preserve the behaviour of the
old versions of these compilers.

Looking at the individual VAXocentric assumptions, it is interesting that
some assumptions are now universally valid on general-purpose hardware (flat
address space, byte addressing and thus a single pointer format), while advocates
of adversarial compilers point to ancient or hypothetical hardware to justify
adversarial compilation on modern hardware; other assumptions seem to be on
the way to winning (general-purpose machines with big-endian byte order or that
trap on unaligned accesses for normal loads/stores are becoming rare); on the
other hand, some VAXocentric assumptions (e.g., dereferencing null pointers)
are now almost universally invalid on general-purpose platforms.

3 Totally defined C is impractical

Different computer architectures differ in instruction set, but in general have a
lot of hardware characteristics in common; however, there are also differences.
These (present or former) differences are the source of some prominent undefined
behaviours. E.g., the different signed-number representations of earlier times,
and resulting differences in signed overflow behaviour led to signed overflow not
being defined in C.

While hardware now has consolidated on the 2s-complement representation
of signed numbers and all current hardware can perform wraparound arithmetic
efficiently, there still are other operations where different hardware produces
different behaviour: e.g., shifting by the data width, unaligned accesses, byte
order, data sizes, or the behaviour on integer division by zero or overflow.

This is one reason why a total definition of C across all platforms is im-
practical. E.g., if the totally-defined C specified that shifting by the data width
produces 0, the compiler would have to implement shifts more expensively on
some machines; and if it specified that it produces the unshifted value, it would
have to implement shifts more expensively on other machines. Allowing either
result turns this into a portability problem, which is not nice, but far preferable
to undefined behaviour. E.g., the rotation idiom (x<<n)|(x>>(32-n)) produces
the intended x for n=0 on either kind of machine, while an adversarial compiler
(Clang) compiles this to 0 if it knows that n=0.

For shifts the cost of emulating the other behaviour is not that big, but in
other cases it can be significant, e.g., the behaviour on unaligned accesses: Sim-
ulating unaligned accesses on hardware requiring aligned accesses has significant
costs (e.g., 11 instructions instead of 1 for a store on Alpha); conversely, simulat-
ing alignment traps on hardware that handles unaligned accesses transparently
is not cheap, either, simply because loads and stores are frequent.

In the end, C is a language that is close to the machine, so it is appropriate if
differences between machines are reflected in the behaviour of the resulting code
in certain cases. Of course, if someone wants to implement a set of compilers for
different machines that exhibits common behaviour rather than machine-specific



behaviour for some operations, that is also ok. Such a compiler would not be
able to run some programs written for a closer-to-the-machine compiler; that’s
acceptable, because it’s a different compiler, not a newer release of the same
compiler.

So the intended behaviour may be hardware-dependent and therefore non-
portable. While portability would be nice, this is and always has been an issue
that the programmer had to solve, and is outside the scope of the present paper: If
a programmer has written a program that only works on, say, AMD64 machines,
it should continue to work on AMD64 machines with the next version of the
compiler; if it has not worked on ARM before, it is unlikely to work on ARM in
the future without changes.

Even portable programs often contain hardware-specific code, often protected
by an appropriate #ifdef.

4 Basic model of the intended meaning

In the basic model the C compiler maps each C operation consistently to a
machine instruction or a sequence of machine instructions of its choice that
satisfies the requirements of the C standard. E.g., on AMD64, *p (where p points
to a 64-bit value) might be translated to mov (%rax), %rax.

This basic mapping is the specification for the behaviour, including non-
standard cases. The compiler writer can use the considerable freedom that the
C standard provides to choose a behaviour amenable for his goals (performance,
safety, compatibility with other compilers, etc.), but once the behaviour has been
set, the compiler maintainer must preserve it. The compiler is free to produce
more efficient code in optimization modes, and/or in later releases, but has to
preserve the behaviour of the basic mapping.

As an example, the AMD64 mov instruction above loads the 64-bit value
starting at p even if p is not 8-byte aligned, so on optimization that behaviour has
to be preserved. Auto-vectorization is a valid optimization, but has to preserve
this behaviour; one way to achieve this is to use the movdqu/vmovdqu instruction
(which does not pose alignment requirements) when autovectorizing a mov rather
than movdqa/vmovdqa (which traps when the accessed address is not 16/32-byte
aligned).

Even if using movdqa/vmovdqawas faster (it isn’t13), using it would be wrong,
because it does not preserve behaviour. That does not mean that there should
be no way to make use of movdqa/vmovdqa, only that that must not be achieved
by optimizing instructions that do not pose alignment requirements.

5 Loosening the basic model

As explained below, the basic model is a little too tight for a language like C. This
means that we have to leave the heights of absolute equivalence, and have to find

13 http://pzemtsov.github.io/2016/11/06/bug-story-alignment-on-x86.html
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out whether existing, tested programs rely on certain properties. Fortunately, we
have a large corpus of programs for testing that. In some cases, we can also find
by reasoning that programs are unlikely to rely on certain properties.

5.1 Out-of-bounds memory accesses

If we want to be absolutely equivalent in the case of out-of-bounds memory
accesses, no change is possible (no optimization, and no other change to the
executable code). That’s because we can use out-of-bounds memory accesses to
read the executable machine code, and any change to the executable code can,
in theory, change the behaviour.

While there are some programs that access the executable machine code
[RS96,PV08], no program relies on the exact contents of specific memory loca-
tions. The reason is that such a program would be unmaintainable even without
compiler changes: Any change to the source code of such a program, even insert-
ing a piece of code that is not executed, would have a good chance to change its
behaviour. Because programs do not rely on that, the compiler can change the
machine code, e.g., for optimization.

For data memory, I have seen code that accesses neighbour parameters of
a function using address arithmetic.14 So there are cases where code makes as-
sumptions about the layout of data in memory. These assumptions are probably
for data that tend to have the same layout across different compiler versions any-
way as long as the definitions of these data and any definitions between them are
not changed (e.g., automatic variables in memory or global variables). So a com-
piler does not have to be extra careful in order not to break these assumptions,
the usual amount of care is sufficient.

In addition to programs that rely on a particular result from an out-of-bounds
access, there are also programs that perform such an access, but where the ac-
tual result is not relied on, because it is not used, the out-of-bounds part is
masked away, or because it cancels itself out. Moreover, there are cases where
an out-of-bounds address (beyond the one-past-the-end exception) is computed,
but not accessed. In such cases an adversarial compiler maintainer feels enti-
tled to compile the program into anything, and such cases have happened (e.g.,
“optimizing” a finite loop into an infinite loop, or “optimizing” a bounds check
away), and of course, a benign compiler will compile the program as intended.

5.2 Uninitialized data

Access to uninitialized data is another issue where absolute equivalence with the
basic model would make important optimizations impossible. Consider a variable
v at the end of its life (e.g., at the end of a function). Unless the compiler can
prove that the location of the variable is not read later as a result of reading
uninitialized data (say, reading the uninitialized variable w living in the same

14 And, to my surprise, this code worked even on RISCs of the day (1990s), despite
register-based calling conventions.



location in a different function), v would have to stay in the same location in
future compiler versions or other optimization levels; or at least the final value
of v would have to be stored in this location, and the initial value of w would
have to be fetched from this location.

Fortunately, existing tested programs avoid relying on this equivalence, be-
cause it tends to break on maintenance even while keeping the compiler version
the same: if the maintenance programmer inserts or deletes a variable or field,
the location of v, w, or both can easily change and thus break the program.
In practice, compilers have long performed register allocation, copy propagation
and other optimizations that can change the value of uninitialized variables, in-
cluding in compilers that are generally considered benign compilers and have
been named as models for boringcc, such as early versions of gcc.

Another way to deal with this issue is to actually initialize data to, say, 0, in
the basic model; then rearranging the variables does not change the behaviour
of accessing uninitialized variables. This is relatively cheap for automatic scalar
variables, because the initialization by the program would turn most of these
auto-initializations into dead code, which would be optimized away and there-
fore cost nothing. For bigger compound data the balance is different: possibly
higher initialization cost,15 and lower register allocation return, so one might
consider performing the initialization only for scalars; however, introducing such
a difference complicates the programming model and is not programmer-friendly.

5.3 Optimizations

A benign compiler like, say, early gcc, can be viewed as following this looser
model. In addition to the optimizations performed by early gcc, many other op-
timizations are possible in this model that are not covered by early gcc; e.g., auto-
vectorization, the pride of recent gcc releases, is compatible with this model.16

In other words, the compiler does not need to be adversarial in order to perform
optimizations.

I have not discussed multi-threading here. It complicates matters, but can
probably be resolved with similar reasoning, especially because things like race
conditions are so unpredictable that programmers cannot rely on much any-
way. However, I do not have enough knowledge in that area to present such a
reasoning.

6 Library functions

Many programs do not rely on the implementation internals of library functions,
but some do, so it’s a good idea to check any potential change in library functions
against the corpus of existing programs.

15 This needs further investigation; loading a cache line from main memory can be
much more expensive than zeroing it.

16 However, I think that it is better to let the programmer express vector operations
directly rather than letting the programmer write scalar code, and hoping that he
writes it in a way that the compiler can auto-vectorize.



A prominent example is memcpy(). If the source and destination ranges do
not overlap, the order in which the bytes are loaded and stored does not make
a difference, but if they overlap, it does. So an optimization that is in line with
the basic model is to check for overlap: If there is overlap, perform something
absolutely equivalent to the original implementation; if not, and use the most
efficient order.

Looking at the discussion surrounding a change in the memcpy() implemen-
tation in glibc17, we can determine something more about what existing, tested
programs relied on at the time. Some programs were affected by the difference
between the versions, so they called memcpy() with overlapping source and desti-
nation. Old versions of glibc behave like memmove()when the destination address
is lower than the source address, and exhibit varying behaviour (that did not lead
to such bug reports) when the destination address is higher than the source ad-
dress; using memmove() instead of memcpy() did not break the programs, either.
But the change that led to the discussion made the programs behave differently
than intended, so the programs obviously had overlapping source and destination
ranges.

The programs obviously relied on being able to copy from higher to lower
addresses even if the ranges overlapped, but did not use memcpy() for copying
overlapping ranges from lower to higher addresses. So in theory there was the
option to make use of this to have a more efficient memcpy() than memmove()

while preserving the intended behaviour. In practice, the performance difference
is close to zero, and the use of memmove() in glibc 2.24 is a good solution.

7 Conclusion

While the position for adversarial compilers is relatively simple and clear, the
intended meaning of programs with undefined behaviour has been called into
question. This paper defines a benign position based on preserving the behaviour
of existing, tested programs on the platforms that they were tested on. This
position does not solve portability problems, but these were problems that C
programmers had to solve by themselves already in the good old days of benign
compilers.

In the basic model the compiler just maps each C operation to a machine
instruction or sequence of machine instructions, consistently, and then preserves
that behaviour in optimization or future versions. This basic model is too tight
for any optimization, but fortunately, we can loosen this model a little without
breaking existing, tested programs. So the results of out-of-bounds accesses and
of reading uninitialized data may vary to some extent between compilations,
which enables all optimizations available in early (benign) gcc, and also other
optimizations, e.g., auto-vectorization.

17 https://bugzilla.redhat.com/show_bug.cgi?id=638477

https://sourceware.org/bugzilla/show_bug.cgi?id=12518
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