
State-smartness: Applications, Pitfalls, Alternatives∗

M. Anton Ertl
Institut für Computersprachen
Technische Universität Wien

Argentinierstraße 8, A-1040 Wien
anton@mips.complang.tuwien.ac.at

http://www.complang.tuwien.ac.at/anton/
Tel.: (+43-1) 58801 4474
Fax.: (+43-1) 505 78 38

Abstract

State-smart words provide a number of unpleas-
ant surprises to their users. They are applied in
two contexts, and they fail in both: 1) for imple-
menting words like s" that provide an arbitrary
combination of interpretation and compilation se-
mantics (combined words); 2) for optimizing using
a special implementation of the (default) compila-
tion semantics. This paper discusses these issues
and shows programmers and system implementors
how to avoid state-smart words. It also reports our
experiences in converting the state-smart words in
Gforth into a clean solution: little work and few
problems.

1 Introduction

Global variables have a bad reputation — and they
deserve it. In Forth the nastiest global variables
are those containing some system state: E.g., every
Forth programmer can tell a horror story (or two)
that involves base.

Among the global system variables state is the
most insidious. Problems resulting from its use turn
up long after their cause, when you least expect
them.

State is mainly used in so-called state-smart
(immediate) words. These words perform as ex-
pected as long as you interpret or compile them di-
rectly with the text interpreter; but when you tick
or postpone them, the result is usually not what
you want, but you normally don’t notice this until
much later.

The problems of state-smart words have been
recognized a long time ago, resulting in their elimi-
nation in the Forth-83 standard. Shaw [Sha88] also
discusses this topic.

∗This paper is an updated and significantly revised ver-
sion of my EuroForth ’98 paper; I submitted this draft ver-
sion to JFAR in 2001, but it was not processed, so I am
finally putting it online.

This paper explains the problems caused by
state-smart words, and shows various alternatives
to state-smart words that allow system and appli-
cation programmers to avoid these problems. This
version differs from the earlier version [Ert98] by
an improved presentation and by taking two new
developments into account: the answer to an RFI
[X3J99], and the discovery of a way to imple-
ment combined words as ANS Forth programs (i.e.,
portably).

Section 2 and 4 present example applications of
state-smart words and their pitfalls, before cat-
egorizing the applications of state-smart words
(Section 5). Then we present alternatives to us-
ing state-smart words, both for ANS Forth pro-
grammers (Section 6), and for Forth system imple-
mentors (Section 7). Section 3 provides background
information on semantics and combined words.

A note on terminology: Unless otherwise
noted, in this paper the verb compile means append
some semantics to the current definition (or, in
traditional-implementation-oriented terms: to store
a CFA with ,).

Text interpreter is the ANS Forth term for the
outer interpreter. The compiler is the text inter-
preter in compile state; the interpreter is the text
interpreter in interpret state.

A request for interpretation (RFI) is a question
to the ANS Forth committee about points in the
standard that the questioner finds unclear. Some-
times RFI also means the answer to the question.

An execution token (XT) is an abstract data type
for a routine; the end users of XTs are execute amd
compile,.

A combined word has an unusual combination of
interpretation and compilation semantics, i.e., it is
neither an immediate word nor a normal word (see
Section 3 for an in-depth discussion).

2 Example: Optimization

Consider the definition

: 2dup (a b -- a b a b)

over over ;

This definition works, and we want any “improve-
ments” to have the same behaviour as this defini-
tion. Let us assume that this definition is too slow
in your opinion. When 2dup is compiled, you would
prefer the definition

: 2dup (a b -- a b a b)

postpone over postpone over ; immediate

Unfortunately this definition does not work cor-
rectly when the interpreter processes it. Some peo-
ple have tried to achieve the desired behaviour by
making 2dup a state-smart word:

: 2dup (a b -- a b a b)

state @ if

postpone over postpone over

else

over over

then ; immediate

This works in many cases, but in some cases it is
incorrect; as Greg Bailey puts it [X3J96]:

• It compiles1 correctly.

• It interprets correctly.

• (what it compiles1) executes correctly.

• Its tick2, when EXECUTEd is correct if in inter-
pret state at the time EXECUTE is invoked, but
is incorrect if in compile state at the time.

• A definition into which its tick is COMPILE,d
runs correctly if the definition runs in interpret
state but fails if it is run in compile state.

• [COMPILE] does not work correctly with it.

In addition, the following problem may arise:

• A definition that postpones it executes cor-
rectly in compile state, but incorrectly in in-
terpret state. While the problematic case is no
longer allowed in a standard-conforming pro-
gram [X3J99], it is still a good idea for a Forth
system to support such programs.

Here are some examples for the incorrect cases.
They may look contrived because they are short-
ened to the essentials; keep in mind that in real
applications there is lots of code between the parts,
so the bug reveals itself quite far from its cause, the
state-smart definition.

1Here compile means: being processed by the compiler.
2the XT produced by ’.

2.1 ’ ... execute

: [execute] execute ; immediate

1 2 ’ 2dup] [execute] [

With the original 2dup this results in having 1
2 1 2 on the stack. With the state-smart 2dup

this code tries to compile over over (which is non-
standard, because there is no current definition).

A typical real situation is having the execution
token of 2dup assigned to a defered word that is
used in an immediate word, e.g.:

defer foo

’ 2dup is foo

: [bar] ... foo ... ; immediate

: fnord ... [bar] ... ;

2.2 ’ ... compile,

: [compile,] compile, ; immediate

: [2dup] [’ 2dup] [compile,] ; immediate

1 2] [2dup] [

The results are the same as above: With the orig-
inal 2dup this results in having 1 2 1 2 on the stack.
With the state-smart 2dup this code tries to com-
pile over over.

A typical real situation would be a macro (or run-
time code generator), to which the execution token
of 2dup is passed as parameter, and that macro is
used in another macro; e.g.:

: [foo] (xt --)

>r

... postpone do

... r> compile, ...

postpone loop ... ; immediate

: [bar] ... [’ 2dup] [foo] ... ; immediate

: fnord ... [bar] ... ;

2.3 [compile]

: [2dup] [compile] 2dup ; immediate

1 2] [2dup] [

Again, the results are the same as above.

2.4 postpone

: compile-2dup postpone 2dup ;

: another-2dup [compile-2dup] ;

This program is no longer standard-conforming,
because it performs the compilation semantics of
2dup in interpret state [X3J99]. However, on most
systems this program will perform as follows:

With the original 2dup (and the state-dumb im-
mediate 2dup) the definition another-2dup does
that same thing as 2dup. With the state-smart
2dup, this code tries to perform over over during

2

the definition of another-2dup (which will produce
unpredictable results, because the only thing on the
stack at that time is a colon-sys, whose size differs
between systems).

A typical real situation would be a macro or run-
time code generator:

: compile-dpower (n --)

dup 1 ?do postpone 2dup loop

1 ?do postpone d* loop ;

: foo ... [3 compile-dpower] ... ;

2.5 Transformation using immediate

Here is one problem not mentioned in the list above:
Forth programmers like to assume that

: foo ... [bar] ... ;

and

: [bar] bar ; immediate

: foo ... [bar] ... ;

are equivalent. And indeed, this equivalence holds
most of the time, except when dealing with state-
smart words.

Some people have suggested avoiding the prob-
lem shown in Section 2.4 by making compile-2dup

(and compile-dpower) immediate, and surround
it’s use with]...[. They might also suggest avoid-
ing the problem shown in Section 2.2 by surround-
ing [2dup] with [...]. However, as discussed above,
these changes may have more effects than just work-
ing around the problem:

Consider the cases where both cases show up in
the same word, e.g.:

: [foo] (xt --)

>r ... r> compile, ... ; immediate

: [bar]

... [’ 2dup] [foo] ...

postpone 2dup ... ; immediate

: fnord1 ... [bar] ... ;

: fnord2 ... [[bar]] ... ;

In this case neither fnord1 nor fnord2 will be-
have correctly with the state-smart 2dup. Fnord1

suffers from the ’ ... compile, problem, fnord2
suffers from the postpone problem. There are
workarounds, but they are complex, and you have to
notice the problem first; the first attempt at fixing
one problem will probably directly lead to exposing
the other problem.

3 Semantics

Until now we have mostly avoided the concepts of
semantics that were introduced in ANS Forth, be-
cause they are not reflected directly in most imple-

mentations, and people therefore find them confus-
ing. This section explains them, and how state-
smart words fit in.

The semantics of a word is its meaning. In
ANS Forth the semantics of a Forth word is the
action or behaviour that happens when the word is
executed in a specific context.

Named Forth words have two semantics: in-
terpretation semantics and compilation semantics.
The standard also talks about execution, run-time
and initiation semantics, but these are just used to
define interpretation and/or compilation semantics.

3.1 Defining the semantics of words

Interpretation and compilation semantics are not
necessarily connected, and the standard defines a
few words of the standard by giving separate se-
mantics in the glossary entries. However, in the
typical case the standard defines just the execution
semantics, and uses a default-mechanism to define
interpretation and compilation semantics: the de-
fault interpretation semantics of a word are its ex-
ecution semantics [ANS94, Section 3.4.3.2]; the de-
fault compilation semantics of a word are to compile
the execution semantics.

For user-defined words the standard provides
only two ways to define words:

Normal words have default interpretation and
compilation semantics.

Immediate words have default interpretation se-
mantics, and compilation semantics that are
equal to the execution semantics.

Sometimes programmers want to create words
with a non-default, non-immediate combination of
interpretation and compilation semantics (combined
words); or, for optimization, words with a non-
default implementation of the default compilation
semantics. State-smart words are a (not necessar-
ily conscious) attempt to create combined words in
one of the standard ways. But they are just imme-
diate words with state-dependent interpretation
and compilation semantics, and this difference from
combined words results in behavioural differences in
certain usage cases.

3.2 Using the semantics of words

The two semantics are used in different contexts:

text interpreter, interpret state: perform in-
terpretation semantics

text interpreter, compile state: perform com-
pilation semantics

3

’, [’]: XT represents interpretation semantics3

POSTPONE: compile compilation semantics.

[COMPILE]: compile non-default or perform default
compilation semantics.

FIND, SEARCH-WORDLIST: unclear, RFI 8 pending.

So, there is no relationship across all contexts be-
tween state and which semantics are used; when
using just the text interpreter, there is a relation-
ship. That is why state-smart words work cor-
rectly when processed by the text interpreter, and
why they can fail in the other contexts. The other
contexts occur relatively rarely, therefore it is easy
to miss the problems of state-smart words during
testing.

The decisive difference between the ANS Forth
usage model and, say, an alternative model ori-
ented towards state-smart implementations is this:
The ANS Forth model decides which semantics to
use (binds) when looking up the name, i.e., the
programmer knows which semantics is used for a
word from the static program text without requir-
ing a lot of context; therefore this model is easier
to work with (once the programmer understands
it), and less error-prone. On the other hand, in
a model catering to state-smart implementations
(i.e., where semantics are directly associated with
state), the binding would occur only at run-time,
which is much harder to analyse and to work with,
and more bug-prone.

The ANS Forth committee has relaxed (from a
system view; restricted from a program view) its
model lately to allow state-smart implementations
of certain words [X3J99] (but not all [X3J96]), so
programmers trying to comply with the standard
lose some of the advantages of the original model.
However, for system implementors it is a good idea
to try to comply with the original model, to avoid
bugs in their user’s programs, and to hopefully es-
tablish more practice in the original model, such
that it will become standard again some day.

4 Example: Combined Words

The example in this section involves not an opti-
mization, but a combined word.

A word like (file wordset) s" is actually defined
as the combination of two words: Its interpretation
semantics is something like

: s"-int ("ccc<">" -- c-addr u)

[char] " parse copy-to-buffer ;

Its compilation semantics is something like

3This follows from the last sentence of [ANS94, Sec-
tion 6.1.0070].

: s"-comp ("ccc<">" --)

(run-time: -- c-addr u)

[char] " parse

postpone sliteral ;

If the interpreter processes s", it should execute
s"-int; if the compiler processes s", it should ex-
ecute s"-comp. I call these words combined words,
because they combine the interpretation semantics
of one word with the compilation semantics of a dif-
ferent word. Shaw calls such words state-unsmart
[Sha88].

If ’ or postpone ([compile] etc.) encounter s",
the programmer usually either wants the semantics
represented by s"-int or the semantics represented
by s"-comp, not something else. The standard de-
fines that ’ s" should give a result equivalent to
’ s"-int, and postpone s" should give a result
equivalent to postpone s"-comp.

Many Forth implementations try to implement
s" with a state-smart word:

: s" (state false: "ccc<">" -- c-addr u)

(state true: "ccc<">" --)

(run-time: -- c-addr u)

state @ if

s"-comp

else

s"-int

then ; immediate

This definition behaves correctly as long as it is
only processed by the text interpreter, but it fails
with ’, postpone etc., as discussed in Section 2.

However, the ANS Forth committee apparently
intends such an implementation to be legal, and
will probably declare all the problematic uses non-
standard. They have already done so for the prob-
lematic uses of postpone and [compile] [X3J99],
and will probably deal with ’, [’], FIND, and
SEARCH-WORDLIST similarly, if asked.

So, a Forth implementor can probably use the
state-smart definition of s" in a standard system.
That does not make it a good idea, and we will look
at alternatives in later sections.

5 Applications

Given the problems of state-smart words, why do
programmers and system-implementors want to use
them?

There seem to be two main uses:

Optimization (see Section 2) They want to im-
plement the default compilation semantics of
normal words in unusual ways.

Convenience They want to be able to use as much
source code as possible both interactively and

4

in a colon definition, without requiring changes
in the code (such as, changing uses of ’ to [’]

and vice versa).

In both cases state-smart words are used as an
approximation to combined words; the effects on
usage contexts other than text interpretation are
usually not taken into consideration or are seen as
undesirable, but unavoidable side effects (as we will
see, they are avoidable).

The convenience issue leads to the following ques-
tion: Most words can be just defined as normal
words, and then be used without problems and
without requiring changes between interactive use
and use in a colon definition. Why does this not
hold for all words? There are two classes of words,
where it does not hold:

Parsing words These words read from the input
stream4 (e.g., s"). If a normal word reads from
the input stream, the data has to follow right
after the word during interactive use, but not
when the word is used in a colon definition.
Usually the input stream data such a word
reads should follow directly after the word in
both uses. To support this convenience, s" and
to are defined as combined words in the stan-
dard. Other words have been defined in pairs
(e.g., ’, and [’]), making a change necessary
when moving code between interactive use and
a colon definition.

In parsing words we have to differentiate be-
tween parse-time actions (e.g., for .", parsing)
and run-time actions (e.g., for .", printing).

Control structure words These words have only
compilation semantics defined, because it is
probably impossible to define the interpreta-
tion semantics in the desired way. Neverthe-
less, there are Forth systems that try to con-
venience their users by providing an interpre-
tation semantics that approximates the desired
effect.

6 Programs

This section discusses your options if you want to
write a standard program.

6.1 Combined words

Although ANS Forth provides no direct way to im-
plement words with an arbitrary combination of in-
terpretation and compilation semantics, it is possi-
ble to get them to work on an ANS Forth system.

4The input stream is another case of system state, with
the additional handicap, that you have only limited influence
on it.

The basic idea is to use a state-smart word for use
in the text interpreter, and modify ’, postpone etc.
to use the correct part instead of the state-smart
word.5

We use s" as example. The definitions of s",
s"-int, and s"-comp are the same as in Section 4.
We have to add definitions for ’ and [’]:

: ’ ("name" -- xt)

’ dup [’] s" = if

drop [’] s"-int

then ;

This just uses the old ’, and replaces the XT of
the state-smart word with the XT for the interpre-
tation semantics.

Postpone is a bit more complex, because we can-
not use ’ to check if it is the word we are looking
for, because there is no guarantee ’ will be able to
find the word at all (it might fail for words with un-
defined interpretation semantics). Find should be
safer6:

: postpone (compilation: "name" --)

>in @ bl word find [’] s" 1 d= if

drop postpone s"-comp

else

>in ! postpone postpone

then ; immediate

The definitions for [compile], find and
search-wordlist should be similar (with the ad-
ditional complication that it is not clear what find
and search-wordlist should do).

All uses of ’ etc. have to be redefined to use the
new versions; among the standard words this is:

: [’] (compilation: "name" --)

(run-time: -- xt)

’ postpone literal ; immediate

This approach can be generalized into deal-
ing with several combined words by maintain-
ing a table containing the xts for the state-
smart words and their constituents; instead of
comparing with [’] s", the generalized version
performs a table lookup. This generalization
has been implemented in a library that is avail-
able at http://www.complang.tuwien.ac.at/forth/
combined.zip.

The drawbacks of this approach are: 1) It is
relatively complex and requires more programming

5This technique was originally invented by Bernd Paysan,
and refined and ANSified by me based on a suggestion by
Jonah Thomas.

6Find is not defined completely in the standard, but at
least for user-defined immediate words (such as our state-
smart words) it should work and produce the same XT as
produced by ’.

5

than other approaches; however, the additional pro-
gramming effort can be eliminated by using the li-
brary. 2) Uses of ’ etc. in non-standard words are
not superseded (unless you do it explicitly); so if you
use one of these words on a supposedly-combined
word, you run into the usual problems with state-
smart words. This is only a problem if the pro-
gram uses these non-standard words; a typical sce-
nario where this problem arises is when the com-
bined word is provided as part of a library written
in ANS Forth, and then used on a particular system
in combination with system-specific words.

6.2 Separating words by context

A simpler solution is to provide two words: one for
the interpretation semantics and one for the compi-
lation semantics. Examples: ’ and [’], char and
[char], and s"-int and s"-comp. This solution
has the additional advantage of making it clearer
for the reader what the programmer means when
they ’ or postpone such a word. This solution was
used in the Forth-83 standard.

Even if you implement combined words (see Sec-
tion 6.1), it is still a good idea to provide the parts
of the combined word as separate words, such that
users who favour clearness over convenience can use
them.

6.3 Separating parsing words by fac-
toring

For combined parsing words, the difference between
the interpretation and the compilation semantics is
that the compilation semantics needs to store the
data between parsing time and the action, and it
has to compile the action into the run-time of the
current definition. This can be seen nicely by com-
paring the following definitions:

: .(\ "ccc<)>" --)

[char]) parse

type ;

: ." ("ccc<">" -- ; run-time: --)

[char] " parse

postpone sliteral

postpone type ; immediate

In these definitions, [char] " parse is
the parsing part, executed at parsing time;
postpone sliteral takes care of storing, and
type is the action.

In addition, there may be a conversion from the
parsed string into some other format/type (e.g.,
into an execution token); this typically happens at
parse time.

So, the two semantics have common factors, and
it is a good idea to factor these four components

(parsing, conversion, storage, and action) into sep-
arate words. This allows using the functionality of
the word in more situations: e.g., when the string
is not in the input stream, or when the action has
to be postponed by more than one level (as is done
in run-time code generators). Because of these ad-
vantages, most components of .(/." already are
separate words in ANS Forth.

Parsing words have another problem, apart from
seducing people to write state-smart words: By
taking an argument from the input stream, they
make it very hard or impossible to pass an arbi-
trary string as this argument. My advice is to write
no parsing words at all; instead, write words that
take string arguments (or suitably converted argu-
ments), i.e., words that would be factors of parsing
words, and use them in combination with words like
s" that do only parsing (and storage); in this way
you also avoid the temptation to write state-smart
words.

7 Systems

This section discusses the options available to Forth
system implementors. It partially also applies to
writing programs that can make use of system in-
ternals.

Of course, a system implementor can use all the
options available to ANS Forth programmers but
the system implementor has additional options.

7.1 Combined Words

This section discusses a number of proposed or re-
alized implementation schemes for combined words,
but is not exhaustive.

Gforth’s current implementation

Gforth’s current implementation of combined words
is mostly along the lines discussed in Section 6.1.
We made use of our freedom as system implemen-
tors in the following ways:

We applied the change to ’ etc. to the original
definitions of the words, such that every word in
the system using ’ uses the version that produces
the XT for the interpretation semantics.

Gforth does not use a separate table containing
the various xts of combined words; instead, it de-
fines combined words with a specific does>-based
defining word, recognizes combined words by look-
ing at the code field of the word, and accesses the
interpretation and compilation xts in specific fields
in the body of combined words.

The does>-based defining word does not pro-
duce a state-smart word, but a word that aborts
when executed; consequently, this word cannot be
used directly in the text interpreter, and therefore

6

the text interpreter has to access the interpreta-
tion and compilation semantics explicitly. This is
slightly more complex and slower than the other
way, but it has the following advantages: 1) It is
easier to notice if the code field address of one of
these words ever leaves the confinement of the few
system-specific words that know how to deal with
it. 2) It makes the implemented concepts clearer to
readers of Gforth’s code.

Dual-XT words

The most straightforward implementation of com-
bined words is to have two xts per named word, one
for interpretation semantics and one for compilation
semantics.

A variation on this theme would be to have an XT
for the interpretation semantics, and a Gforth-style
compilation token representing the compilation se-
mantics: For words with default compilation se-
mantics the compilation token consists of the inter-
pretation semantics XT, and the XT of compile,,
so using the compilation token instead of a com-
pilation XT would eliminate the need to define a
compilation semantics definition for all words with
default compilation semantics.

Such an approach would possibly be a good
choice for a new implementation that can afford to
waste a little memory in pursuit of elegance and
simplicity. DynOOF [Zsó96] uses a dual-XT ap-
proach, but it is not clear if it implements combined
words.

Compilation Wordlist

cmForth has a separate compilation wordlist con-
taining the compilation semantics of some words,
mostly for optimization purposes (but it also makes
compile-only words really compile-only). The com-
piler searches this wordlist first, the interpreter does
not search it at all.

This mechanism can be used to implement com-
bined words, but it has a few pitfalls for ANS Forth
implementors:

• ANS Forth requires that user-defined words
with the same name as standard words shadow
the standard word completely. This can be
solved by having a separate wordlist for user-
defined words that is always searched first.

• If the system implements the search or-
der wordset, transparently dealing with these
internal wordlists requires some additional
magic.

Overall, the compilation wordlist approach ap-
pears relatively unattractive for implementing in an
ANS Forth system.

Partial shadowing

Mark W. Humphries proposed an implementation
of combined words by setting a compile-only flag
of a word, such that a search for the compilation
semantics would find the word, but a search for in-
terpretation semantics would not find it, but pos-
sibly an earlier-defined word with the same name
and without the flag. This would allow to define
combined words like this:

: s" s"-int ; (interpret-only)

: s" s"-comp ; immediate compile-only

Gforth’s first implementation

In addition to the immediate bit, Gforth also has
a compile-only bit in the header. If the interpreter
encounters a compile-only word, it reports an error
(-14 throw).

The first implementation simply extended this
mechanism: Instead of immediately reporting an
error for a word with this bit set, the interpreter
first looks in a table for the interpretation seman-
tics of the word. If there is an entry, the interpreter
performs this interpretation semantics; if there is
no entry, the interpreter reports an error, as before.

The key for the table lookup is the name field
address (NFA) of the word; thus we need only one
table for all words, irrespective of wordlists.

In addition to the interpreter, ’ should be
changed to give the execution token for the inter-
pretation semantics of combined words.

After two months, Bernd Paysan replaced the
first implementation with the current one (mainly
for aesthetic reasons).

[COMPILE]

[Compile] poses a special problem: [compile]

2dup should be equivalent to 2dup (because
2dup has default compilation semantics), whereas
[compile] s" should be equivalent to postpone

s" (because s" has non-default compilation seman-
tics). If both 2dup and s" are implemented as
combined words, how should [compile] know that.
The following solutions are available:

• Add a flag to each combined word that indi-
cates whether the compilation semantics are
default. The user would have to supply the
value for that flag, and [compile] would use
this flag to decide what to do.

• Do not implement [compile] in the system;
[compile] belongs to the core ext wordset, and
words in this wordset are optional.

• Let [compile] assume non-default compila-
tion semantics, don’t use combined words for
optimization, and advise the users not to use

7

combined words for optimization. Section 7.2
discusses an alternative mechanism. Gforth
takes this approach.

Experiences

I coded the first implementation in an afternoon
(except for the changes to ’, because it was not
clear to me at that time exactly what ’ should
do); I changed the state-smart words into combined
words in another afternoon. The changes affected
less than 50 lines in the kernel and added less than
50 lines of code specifically for supporting combined
words. This implementation was used by the Gforth
development team for about two months. As far as
I remember, we encountered no problems.

The current implementation has been imple-
mented in Gforth since July 1996 and was released
to the general public7 in December 1996.

The only problem we encountered and have heard
about is this were the errors reported for ticking
compile-only words. This feature is not directly re-
lated to the introduction of combined words, but
I implemented it when I rethought ticking in this
context; an alternative behaviour would be to pro-
duce an execution token for the compilation seman-
tics. Reporting an error is more cautious, but in
hindsight the alternative would have been prefer-
able (and I recommend it to implementors with a
large base of legacy code), because the reported er-
rors uncovered no real problem. Anyway, these er-
ror reports were easy to fix.

If you are still sceptical about changing from
state-smart implementations of s" etc. to a parse-
time state-checking implementation, in particular
its impact on legacy code running on your sys-
tem: In general, state-smartness proponents have
reacted to my examples that show problems with
state-smartness by telling me that I should not pro-
gram like this (and that they hope that such pro-
grams are non-standard). In other words, their
programs work the same whether the system uses
state-smart words or combined words. So, their
programs won’t break when the system changes in
this respect.

7.2 Optimizations

The example in Section 2 can be implemented with
any technique for implementing combined words,
but there is an alternative: What we actually
want to do is to provide an unusual implementa-
tion for the default compilation semantics. The
natural place for performing such optimizations is
compile,, because that is the latest time for do-
ing this optimization, it avoids the problem with

7I estimate that Gforth has more than 1000 users, based
on the number of bug reports, other email communication
and downloads.

[compile,] and it offers slightly more optimiza-
tion opportunities: [’] 2dup compile, will not
be optimized if the optimization works through a
combined-word 2dup, but it will be optimized if
compile, performs the optimization.

A simple variant of this intelligent compile, just
special-cases the xts we want to optimize:

: compile, (xt --)

dup [’] 2dup = if

drop postpone over postpone over

else

compile, \ the dumb compile,

then ;

We use this kind of special-casing in the compile,
of the current Gforth development version to com-
pile non-primitives into using primitives (e.g., vari-
ables are compiled as literals), as preparation for
combining a sequence of primitives into a super-
primitive. BigForth also uses this technique.

If there are many different optimization or code
generation cases (e.g., in a native-code compiler),
special-casing in this way is impractical and un-
modular. Then it is better to keep the primitive-
specific optimization code near the other code for
that primitive, and use a data structure to arrange
a data-driven compile,.

E.g., RAFTS [EP96, Section 4.2] uses the follow-
ing scheme: The XT is implemented as a pointer
to a record with two fields: the address of the
execute routine for the word; and the address of
the compile, routine for the word. The generic
execute and compile, just jump through these
fields.

This scheme is essentially just an extension of the
traditional code field scheme: in traditional systems
execute does something different for every execu-
tion token encountered by dispatching through the
code field, whereas compile, stupidly always does
the same thing: ,; the new scheme adds a compile,

code field to the (execute) code field.

7.3]] ... [[

Several people have proposed the syntax

]] foo bar boing [[

as a more readable alternative to

postpone foo postpone bar postpone boing

One problem in implementing this syntax is how
to deal with code that contains parsing words, like

]] ." hello, world" [[

If you want to provide the convenience of using
code including parsing words in the interpreter, in

8

colon definitions, and within]] ... [[, combined
words are not sufficient, because they do not work
as desired within]] ... [[; ." also should read the
string as soon as it is parsed in]] ... [[. I.e., the
code above should be equivalent to

[s" hello, world"]

sliteral postpone sliteral

postpone type

One approach would be to define all the parsing
words as consisting of three parts, as discussed in
Section 6.3: parse-time, storing, and run-time (ac-
tion). The text interpreter knows about this, and
executes, compiles, or postpones the parts depend-
ing on whether it is in interpret, compile, or post-
pone8 state.

Given the execution tokens parse, store and
run, the text interpreter would do the following in
the three states:

interpret state

parse execute

run execute

compile state

parse execute

store execute

run compile,

postpone state

parse execute

store execute

store compile,

run postpone literal postpone compile,

8 Conclusion

Combined words can be used for moving source
code with parsing or control flow words between
interactive use and colon definitions, and for imple-
menting optimizations.
State-smart words are often used as approxima-

tion of combined words, but there are differences in
behaviour when used with ’, [compile], postpone,
etc., and these differences result in insidious bugs.
The reason for these differences is that combined
words bind the action to be performed at parse
time, whereas state-smart words decide based on
the run-time state.

There are a number of alternatives available to
programmers and system implementors, starting
with various ways to implement combined words,

8Postpone state is the state of the text interpreter be-
tween]] and [[.

through avoiding parsing words (highly recom-
mended), and splitting parsing words into two vari-
ants (like ’ and [’]) or into factors. System im-
plementors also have the additional option of us-
ing a different mechaninsm than combined words
to achieve their goals, in particular implementing
optimizations through compile,, and implement-
ing parsing words by using a more complex text
interpreter and special parsing-word definitions.

We switched Gforth from state-smart words to
combined words with little effort and no significant
problems.

Acknowledgements

Jonah Thomas and the referees provided valuable
comments on earlier versions of this paper. This
paper has also benefited from email and Usenet dis-
cussions with Greg Bailey, Mitch Bradley, Loring
Craymer, Charles Esson, Mark Humphries, Bernd
Paysan, Philip Preston, Elizabeth Rather, Jonah
Thomas, and others.

References

[ANS94] American National Standards Institute.
American National Standard for Informa-
tion Systems: Programming Languages:
Forth, 1994. Document X3.215-1994.

[EP96] M. Anton Ertl and Christian Pirker.
RAFTS for basic blocks: A progress re-
port on Forth native code compilation. In
EuroForth ’96 Conference Proceedings, St.
Petersburg, Russia, 1996.

[Ert98] M. Anton Ertl. State-smartness — why
it is evil and how to exorcise it. In Euro-
Forth’98 Conference Proceedings, Schloß
Dagstuhl, 1998.

[Sha88] George W. Shaw. Forth shifts gears. Com-
puter Language, pages 67–75 (May), 61–
65 (June), 1988.

[X3J96] TC X3J14. Clarifying the distinc-
tion between “immediacy” and “special
compilation semantics”. RFI response
X3J14/Q0007R, ANSI TC X3J14, 1996.

[X3J99] TC X3J14. Regarding compilation while
in interpretation state. RFI response Q99-
027, ANSI TC X3J14, 1999.

[Zsó96] András Zsóter. Does late binding have to
be slow? Forth Dimensions, 18(1):31–35,
1996.

9

