
Translating Forth to E�cient C

M. Anton Ertl Martin Maierhofer

Institut f�ur Computersprachen

Technische Universit�at Wien

Argentinierstra�e 8, A-1040 Wien, Austria

anton@mips.complang.tuwien.ac.at, m.maierhofer@ieee.org

Tel.: (+43-1) 58801 4474

Fax.: (+43-1) 505 78 38

Abstract. An automatic translator can translate

Forth into C code which the current generation of

optimizing C compilers compiles to e�cient ma-

chine code. I.e., the resulting code keeps stack items

in registers and rarely updates the stack pointer.

This paper presents a simple translation method

that produces e�cient C code, describes an im-

plementation of the method and presents results

achieved with this implementation: The translated

code is 4.5{7.5 times faster than Gforth (the fastest

measured interpretive system), 1.3{3 times faster

than BigForth 386 (a native code compiler), and

smaller than Gforth's threaded code.

1 Introduction

Due to C's popularity, there are many sophisticated

optimizing compilers for C. Many language imple-

mentations (e.g., Ei�el) have taken advantage of

this fact and use C as intermediate language in their

compilation process, i.e., they use C as \portable

assembler".

In the same way, C can be used as intermediate

language for Forth native code compilation. While

this approach requires sacri�cing some of Forth's

features (mainly interactivity), and is therefore un-

likely to become the dominant Forth implementa-

tion method, it is useful in the following contexts:

{ The customer may require C.

{ It can serve as a replacement for the practice of

recoding time-critical words in assembly lan-

guage. The advantages of this approach are

that the translation is automatic and the result

is machine-independent. However, it requires

the ability to call C functions from Forth.

{ It can be used for evaluating native code com-

pilers, by comparing their code with the code

produced by going through C.

{ It can be used for evaluating the usefulness of

certain optimization methods with respect to

existing Forth source code, by comparing the

speed of the code resulting from compiles with

and without the optimization.

In the context of the RAFTS project for native

code compilation [Ert92], we are interested primar-

ily in the last two applications.

2 Previous Work

Several interpretive Forth implementations have

been written in C (Cforth, TILE, PFE, ThisForth)

and its relatives (Gforth in GNU C [Ert93], UN-

TIL in C++ [Smi92]). There are also many native

code implementations, and several papers about

them [Ros86, Alm86, Pay91]. However, the com-

bination of these ideas, i.e., using C as interme-

diate language in native code generation has not

seen many implementations; the only one we know

of (apart from ours) comes with Rob Chapman's

Timbre/botForth system

1

.

Timbres Forth-to-C translator creates code simi-

lar in spirit to the output of a subroutine threaded

Forth system that inlines selected primitives, ex-

cept that it creates C source code, not machine

code. It also employs a kind of peephole optimiza-

tion, but not on the output, but on the Forth input:

Like ThisForth, it has a mechanism for recognizing

certain Forth sequences, and it has special C code

generation rules for these sequences.

: max (n1 n2 -- n)

2dup < if

swap drop

else

drop

endif ;

Fig. 1. max in Forth

Figure 1 shows a de�nition of max in Forth. Fig-

ure 2 shows the C code that the Forth-to-C trans-

lator of Timbre V.4 produces for this de�nition.

Unfortunately, current C compilers produce pretty

1

Available at http://taygeta.oc.nps.navy.mil/pub/

Forth/Reviewed/timbre.zip

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
EuroForth ’95 Conference Proceedings

void MAX() /* N1 N2 -- N */

{

--sp,sp[0]=sp[2]; /* OVER */

--sp,sp[0]=sp[2]; /* OVER */

if((Integer)sp[1]<(Integer)sp[0])

*++sp=-1; else *++sp=0; /* < */

if(*sp++) /* IF */

{

sp[1]=sp[0],sp++; /* SWAP DROP */

}

else /* ELSE */

{

sp++; /* DROP */

}

}

Fig. 2. max translated to C by Timbre

slow assembly code from this C code; e.g., Fig. 3

contains the code produced with gcc-2.6.3 -O3

-fomit-frame-pointer for the Intel architecture

2

.

Several features of the C code cause the slow ma-

chine code; they all have to do with the inability

of C compilers to disambiguate memory references

(even if they try, they have little success).

The biggest problem in the code above is that the

stack pointer is a global variable. In the absence of

analysis of the whole program, the compiler has to

assume that the address of this variable has been

taken and that every store to memory through a

pointer can be a store into the stack pointer, and

every read from memory through a pointer could

be a read from the stack pointer. So it has to keep

the stack pointer in memory up-to-date nearly at

all times, and it has to load it from memory af-

ter every store through a pointer. A simple way of

helping the C compiler would be to use a local stack

pointer variable that is initialized from the global

stack pointer at the start of the function and after

calls and from which the global stack pointer is up-

dated upon leaving the function and function calls.

Then the C compiler could keep the stack pointer

in a register at least some of the time.

The next problem is that stack items are accessed

through pointers. Again, the C compiler often can-

not determine that the stack item stored to memory

has not been changed there in the meantime. so, in-

stead of keeping the item in a register, the compiler

loads it from memory again. Even if it can deter-

mine that the load is unnecessary, it can hardly ever

determine that the store of the stack item is unnec-

essary. So, accessing stack items through pointers

results in a lot of memory tra�c with current C

compilers.

2

Note that, in the AT&T syntax used here, the desti-

nation operand is on the right.

addl $-4,_sp

movl _sp,%edx

movl 8(%edx),%eax

movl %eax,(%edx)

addl $-4,_sp

movl _sp,%edx

movl 8(%edx),%eax

movl %eax,(%edx)

movl _sp,%edx

movl 4(%edx),%eax

cmpl %eax,(%edx)

jle L7

addl $4,_sp

movl _sp,%eax

movl $-1,(%eax)

jmp L8

L7:

addl $4,_sp

movl _sp,%eax

movl $0,(%eax)

L8:

movl _sp,%eax

addl $4,_sp

cmpl $0,(%eax)

je L11

movl _sp,%edx

movl (%edx),%eax

movl %eax,4(%edx)

L11:

addl $4,_sp

ret

Fig. 3. Timbre's C code for max compiled to Intel as-

sembly

Exacerbating these problems are the stack

pointer changes in the C code. First of all, with the

global stack pointer they result in expensive read-

modify-write sequences; secondly, some C compilers

can determine that two accesses through the same

pointer access (or do not access) the same item, but

they give up if the pointer is changed between the

accesses.

3 Translation

3.1 E�cient C

First of all, there is no such thing as e�cient C code

per se. How e�cient a piece of code is depends on

the compiler that is used. E.g., the code our transla-

tion method (described later) produces gives disas-

trous results with compilers like PCC

3

, lcc [FH91],

or the GNU C compiler with optimization turned

o�. On the other hand, maybe one day (but not

in the foreseeable future) there will be compilers

3

PCC was the C compiler distributed with most Unix

systems 15 years ago.

that compile the C code produced by Timbre into

perfect machine code.

So, what we mean with e�cient C code in this

paper is C code that is compiled to e�cient machine

code by a class of compilers commonly known as

globally optimizing compilers, e.g., gcc -O.

We make extensive use of two features of these

compilers: global register allocation [Cha82], i.e.,

the compiler tries to put as many local variables

into registers as possible

4

; and copy propagation

[ASU86], i.e., optimizing away simple assignments

between variables (copies) by assigning the vari-

ables to the same register. These optimizations al-

low us to introduce unnecessary copies and addi-

tional variables for free (but the number of simul-

taneously live variables is limited).

Another optimization, dead code elimination

[ASU86], removes all code whose results are not

used; this optimization is useful for Forth code con-

taining drop, in particular sequences like r> drop.

3.2 Principles

On register architectures, one should keep as many

values in registers as possible, and should avoid ac-

cessing stu� in memory. For Forth native code gen-

eration, this means that one should try to keep the

stack items in registers. The other part of the stack

manipulation overhead is the stack pointer updates;

they should be avoided, too.

For direct native code generation, we proposed

using sophisticated compilation techniques [Ert92].

In native code generation via C, the C compiler

does most of the work. We simply have to use lo-

cal variables for the stack items, and the C com-

piler will try to allocate them into registers. So, the

translator has to keep track of which tsack items

reside in which C variables.

3.3 Primitives

For the translation of primitives, we can make use

of the de�nitions of primitives in Gforth [Ert93],

e.g.,

+ n1 n2 -- n core plus

n = n1+n2;

The �rst line contains useful information, most

notably, the name of the primitive and its stack

e�ect, while the other lines (in the present case the

second line) contain the C code for the primitive.

Assuming that the top stack items reside in the C

variables x5, x6 and x7 (x7 on top), the translator

produces the following code for executing +:

4

In optimization terminology \local" means \within a

basic block", global means \within a procedure", and

everything beyond is called \interprocedural".

{

Cell n1=x6;

Cell n2=x7;

Cell n;

n = n1+n2;

x8 = n;

}

/* stack now: ... x5 x8 */

First, the names in the stack e�ect are declared

as C variables; the input variables are initialized

with the top stack items. Next comes a verbatim

copy of the C code for the primitive. Finally, the

result is assigned to a new variable, x8. We could

reuse an old variable, but this can restrict register

allocation and copy propagation on some compilers.

This sequence looks quite bulky, but a good opti-

mizing C compiler compiles it to one instruction,

and sometimes it can even compile the C sequence

for several primitives (e.g., 20 + @ on most proces-

sors) into one instruction.

A sequence of primitives can be translated simply

into a sequence of translations. E.g., if we want to

compile another +, we simply append the following

code to the code above:

{

Cell n1=x5;

Cell n2=x8;

Cell n;

n = n1+n2;

x9 = n;

}

/* stack now: ... x9 */

3.4 De�nitions

A Forth colon de�nition is translated into a C func-

tion. In this section we consider only colon de�ni-

tions with �xed stack e�ects. First, the stack e�ect

of the de�nition is computed. The C function takes

as many parameters as the de�nition accesses stack

items. If there are several result values, they are

bundled into a C struct (small structs are returned

in registers by some C compilers). E.g., the C func-

tion for the word foo (x1 x2 x3 -- n4 n5) is:

Two_cells foo(Cell x3, Cell x2, Cell x1)

{

Two_cells result;

Cell x4, x5,;

/* stack now: ... x1 x2 x3 */

... /* C code for the definition */

/* stack now: ... x15 x16 */

result.cell1=x16;

result.cell2=x15;

return result;

}

A call of foo would look like this:

/* stack now: ... x11 x12 x13 */

{

Two_cells d=foo(x13,x12,x11);

x15=d.cell1;

x14=d.cell2;

}

/* stack now: ... x14 x15 */

The parameter order is more or less arbitrary.

Having the top-of-stack �rst ensures that in cases

like

: foo

bar

... ;

the parameters need not be moved to new regis-

ters before calling bar. However, one can also con-

struct cases, where having the top-of-stack last is

better. It has to be determined empirically which

is better for real-world Forth code.

Turning de�nitions into C functions is simple,

but makes tricks like r> drop exit almost impos-

sible to translate (but they are not ANS Forth any-

way). It also has a performance impact, because

most C compilers are not as optimized for reducing

call overhead as much as you would like for a Forth

compiler. A C compiler with automatic inlining and

interprocedural register allocation should perform

well, however. Alternatively, we could build a cer-

tain amount of inlining into the Forth-to-C trans-

lator.

3.5 Control Structures

ANS Forth allows the creation of arbitrary control

structures using the words IF, AHEAD, THEN, BEGIN,

UNTIL, AGAIN, and CS-ROLL [Bad90]. Since translat-

ing arbitrary control structures into structured C is

hard and, in the context of sophisticated C compil-

ers, unrewarding, we translate the control structure

words into gotos and labels:

Forth C

THEN, BEGIN label:

AHEAD, AGAIN goto label;

IF, UNTIL if (x==0) goto label;

At control
ow joins (THEN, BEGIN), we have to

make sure that the respective stack items of both

control
ows reside in the same variables. This can

be done by introducing copy operations, e.g., for a

BEGIN..UNTIL-loop:

/* stack now: ... x1 x2 x3 */

label1: /* BEGIN */

...

/* stack now: ... x8 x9 x10 x11 */

x1=x8;

x2=x9;

x3=x10;

if (x11==0) goto label1; /* UNTIL */

This assumes, of course, that both branches to

be merged have the same stack depth.

3.6 Return Stack

The return stack is handled like the data stack: Its

items are kept in C variables, and the translator

keeps track of which items are in which variable.

E.g., the translation of >r looks like this:

/* stack: ... x5, return-stack: ... */

{

Cell n=x5;

x6=n;

}

/* stack: ..., return-stack: ... x6 */

The same method works for the
oating-point

stack.

3.7 Names

Forth has a di�erent, more complex and power-

ful name space structure than C. Forth also allows

names that are not legal C identi�ers. Therefore, we

cannot use the Forth names directly in the C code.

A simple way out is to derive the C name from

the name �eld address of the Forth word (e.g., by

printing it in base 36).

However, in practice we prefer a name that is

as close to the original as possible. This can be

achieved by converting special characters in names

into letter sequences and by appending some digits

if that is necessary to avoid con
icts.

3.8 Locals

Locals can be translated simply into C locals. If

sophisticated scoping behaviour as in, e.g., [Ert94]

is desired, it is probably easiest to de�ne the locals

on the C level for the whole function and to to avoid

name clashes by renaming.

3.9 Other Word Types

Variables and CREATEd words are translated into

global (or static) C variables of appropriate size.

E.g., 5 variable flip translates into:

Cell flip[]={5};

When used in a de�nition, they are translated

like primitives with similar stack e�ect, e.g., an oc-

curence of flip is translated into

{

Cell n;

n= (Cell)flip;

x9=n;

}

/* stack now: ... x9 */

DOES>-parts are translated into C functions like

colon de�ntions|their top-of-stack parameter is

the address of the word. Accordingly, using a word

de�ned with a CREATE..DOES>-word translated into

a call of the C function for the DOES>-part, with the

address of the C variable produced by the CREATE

as top-of-stack parameter.

3.10 Variable Stack E�ects

Until now we have had no need to implement a

stack in memory or update a stack pointer. All

stack items reside in C variables and the translator

keeps track of the stacks.

Unfortunately, there are de�nitions that are not

as well-behaved as assumed above. They have con-

trol
ow joins with unequal stack depths, resulting

in a variable stack e�ect for the whole word. These

de�nitions are rare, but many applications contain

one or two of them. If the application requires the

translation of all de�nitions, the translator must

handle variable stack e�ects, too.

While some patterns of variable stack e�ects

can be handled automatically without introducing

memory stacks and stack pointers, this is not pos-

sible in general. Therefore, we �nally have to intro-

duce run-time stacks. Before an unbalanced control

structure or a de�nition with a variable stack e�ect,

all stack items in variables are stored on the stack,

inside they are accessed on the stack and the stack

pointer is updated, and afterwards the needed stack

items are loaded into variables again.

A de�nition with variable stack e�ect poisons all

its direct and indirect callers. Therefore, the trans-

lator should at least recognize common cases (e.g.,

?DUP IF...THEN, where the combined stack e�ect

is �xed) and translate them without introducing-

memory stacks.

3.11 Recursive De�nitions, EXECUTE etc.

Computing the stack e�ect of a recursive word is a

little di�erent from other words: With the normal

method we would need the stack e�ect of the word

for computing it. However, if we assume that the re-

cursive word has a �xed stack e�ect, the stack e�ect

is the same as the stack e�ect of the non-recursing

path(s) through the word. Using this stack e�ect,

the translator can check the validity of the assump-

tion in another pass through the de�nition. If the

de�nition turns out to have a variable stack e�ect,

it can be translated like any other such de�nition.

EXECUTE and deferred words pose a similar, but

harder problem: While all words executed by a spe-

ci�c EXECUTE usually have the same stack e�ect, the

translator does not know that stack e�ect. One so-

lution for this problem is to treat EXECUTE and de-

ferred words like words with variable stack e�ect,

the other solution is to use annotations provided by

the programmer to specify a stack e�ect.

Execution tokens are represented by C function

pointers, and EXECUTE just performs a call to the

pointed-to function. This representation of execu-

tion tokens implies that the translator has to create

a C function for each CREATEd word, variable, or

constant that is ticked.

3.12 Exception words

THROW and CATCH can be implemented using

longjmp() and setjmp() without too many prob-

lems.

3.13 Cross-compilation problems

One of the more remarkable features of Forth is

the removal of the strict division between compile-

time and run-time. While typical Forth-to-C trans-

lators will have similar restrictions in this respect as

some Forth cross-compilers, with some e�ort these

restrictions can be circumvented: Modern operat-

ing systems o�er dynamic linking of object code.

A Forth system based on a Forth-to-C translator

could produce C code, and at the end of the de�ni-

tion, invoke the C compiler, and dynamically link

the resulting object module. This approach would

require an unhealthy amount of patience from the

users, but otherwise it would be a full Forth system.

Many implementors of Forth-to-C translators

will not want to go to such lengths and will im-

plement the translator in the context of an existing

Forth system. In such a setting, compilation and ex-

ecution can be mixed during the translation stage

(i.e., while running on the normal Forth system),

while only execution is possible during the execu-

tion of the translated and compiled program.

In such cross-translation systems, there's also the

problem that addresses cannot be compiled as lit-

erals or stored into variables and data structures

at compile time, because the addresses are di�er-

ent at run-time. One solution to this problem is to

require using typed words (ALITERAL, A!, A, etc.)

for these operations, and using the type informa-

tion for the relocation. A more convenient, but less

portable (i.e., OS-dependent) solution is to load the

whole image of the translating Forth system to the

same address as during the translation. In such a

system, variables etc. are not represented as C vari-

ables, they behave just like literals.

3.14 Example

A Forth de�nition of max (n1 n2 -- n) (Fig. 1)

is translated into C (Fig. 4), then gcc-2.6.3 -O3

-fomit-frame-pointer compiles the C code into

Intel assembly (Fig. 5). Note that three of the six

instructions here are due to calling overhead and

can be eliminated with inlining.

Cell max(Cell x2, Cell x1)

{

Cell x3, x4, x5, x6, x7, x8, x9;

/* stack now: ... x1 x2 */

{ /* 2dup */

Cell n1=x1;

Cell n2=x2;

x3=n1;

x4=n2;

x5=n1;

x6=n2;

}

/* stack now: ... x3 x4 x5 x6 */

{ /* < */

Cell n1=x3;

Cell n2=x4;

Cell n;

n=FLAG(n1<n2); /* #define FLAG - */

x7=n;

}

/* stack now: ... x3 x4 x7 */

if (x7==0) goto label1; /* if */

/* stack now: ... x3 x4 */

{ /* swap */

Cell n1=x3;

Cell n2=x4;

x8=n2;

x9=n1;

}

/* stack now: ... x8 x9 */

{ /* drop */

Cell n=x9;

}

/* stack now: ... x8 */

goto label2;

label1:

/* stack now: ... x3 x4 */

{ /* drop */

Cell n=x4;

}

/* stack now: ... x3 */

x8=x3; /* reconciliation before THEN */

/* stack now: ... x8 */

label2:

/* stack now: ... x8 */

return x8;

}

Fig. 4. max translated to C

movl 4(%esp),%edx

movl 8(%esp),%eax

cmpl %edx,%eax

jge L5

movl %edx,%eax

L5:

ret

Fig. 5. max in Intel assembly

4 Implementation

The second author has implemented a proof-of-

concept Forth-to-C translator in about one man-

month, with no prior knowledge of Forth. The

translator is based on the Gforth system. The

source can be found at http://www.complang.

tuwien.ac.at/forth/forth2c.tar.gz (if you only have

ftp: ftp.complang.tuwien.ac.at/pub/forth/forth2c.

tar.gz).

Basically, the translator hooks itself into some

words central to compilation: COMPILE,, LITERAL,

the basic control structure words, :, ;, CREATE and

friends. It also hooks into words that compile in-line

data, like S".

A program is translated by loading it into Gforth.

If the translator is turned on, Gforth will not only

compile the program into threaded code, but, as a

side e�ect, it will also produce a �le containing the

C code. In this way, the whole power of Gforth can

be used during the translation process.

5

Since the Forth compiler makes only one pass

through a de�nition, everything must be done in

that pass. There is just one problem: The translator

must make a pass through the whole de�nition to

compute the stack e�ect, and it needs to know the

stack e�ect to create the C function header, so it

can only start outputting C code at the end of the

de�nition. The solution is to generate the text of

the body of the function into a bu�er in memory,

and write it to the output �le at the end of the

de�nition.

The translator must remember the stack e�ect

of a de�nition somewhere. The best place would

be in the header of the de�nition. Unfortunately,

this would require some surgery in the internals of

Gforth

6

. Therefore, the translator keeps these infor-

mations in a separate wordlist under the same name

as the de�nition. This means, of course, that every

5

Well, at least in theory; in practice, the translator has

a few restrictions described in the �le BUGS.F2C.

6

In particular, in parts that were very hard to under-

stand at the time of the implementation; fortunately,

this has improved in the meantime.

de�nition name must be used only once. But then

this is also enforced by the mapping from Forth

names to C names (which does not take wordlist

membership into account and C has a
at name

space).

In contrast to the suggestion in Section 3.3, our

translator reuses stack item variables. A variable

represents a stack item with a certain o�set from

the stack bottom during the whole function. E.g.,

the stack item on the top-of-stack upon function en-

try is called p0, the item below it p1 etc.; the stack

item above p0 is called x0, the next one x1 etc. The

advantage of this scheme is simplicity: the transla-

tor need not keep track of an unlimited number of

names, a few counters are su�cient, and most of

these counters are needed anyway, to keep track of

the stack depth.

This scheme also makes it trivial to reconcile

the stack state at control
ow joins: The respec-

tive stack items are already in the same variables,

so there is nothing that needs reconciling. As a re-

sult, the control
ow stack contains relatively sim-

ple items: In addition to the normal control
ow

information, it stores the label number and the

stack depths at the point where the control
ow

item was generated.

7

Our translator stores this ex-

tended control
ow information on a separate, user-

de�ned stack (Gforth stores its information on the

data stack).

While it would have been nice to generate

the translation of primitives automatically from

Gforth's primitive speci�cations, as suggested in

Section 3.3, the translator does not employ this ap-

proach, but uses hand-written primitives transla-

tion.

The most important limitations of this prototype

translator are that it cannot translate words de�ned

with DOES>, initialized created words, EXECUTE,

many recursive de�nitions, de�nitions with variable

stack e�ects or de�nitions that use the
oating-

point stack or locals. Some of these restrictions

would be easy to remove, some of them would take

more e�ort.

If you wonder how the translator handles the max

example above, the generated C code looks some-

what di�erent, mainly due to the reuse of variables,

but it is compiled to the same assembly code (see

Fig. 5).

5 Empirical Results

Due to the restrictions of our translator we could

not use it on realistically sized benchmarks, only on

small ones. On the other hand, this restriction to

7

Our translator is somewhat buggy in this area, it does

not handle THEN correctly.

small benchmarks means that it is easier to com-

pare with other Forth systems.

The benchmarks we used were the ubiquitous

Sieve (counting the primes < 16384 a thousand

times); bubble-sorting (6000 integers) and matrix

multiplication (200� 200 matrices) come from the

Stanford integer benchmarks (originally in Pas-

cal, but available in C

8

) and have been translated

into Forth by Martin Fraeman and included in

the TILE Forth package. These three benchmarks

share one disadvantage: They have an unusually

low amount of calls (in typical Forth code, every

third or fourth executed word is a call or return).

To benchmark calling performance, we computed

the 34

th

�bonacci number using a recursive algo-

rithm with exponential run-time complexity.

Most measurements were made under Linux;

bigForth and iForth were benchmarked under

DOS/GO32; Win32Forth, NT Forth and its NCC

under Windows NT. The Windows NT systems

were run on one machine, iForth on a di�erent

machine, and the rest on another machine; all

three machines had a 486DX2/66 with 256K sec-

ondary cache and are similar in performance. We

used the median of three measurements of the

user time (the system time was negligible any-

way). Of course, we measured the output of our

prototype translator (compiled with gcc-2.6.3

-O3 -fomit-frame-pointer) and the output of

the Forth-to-C translator included in the Tim-

bre V.4 distribution (compiled with gcc-2.6.3

-O3 -fomit-frame-pointer). To illustrate our

point that there is no such thing as e�cient code

per se, we compiled the output of our transla-

tor also with GCC without optimizations. And

to see how well our translator does compared

to a human, we also compare with hand-coded

C programs (the original C versions in case of

the Stanford benchmarks). Traditional Forth na-

tive code generation techniques are represented

by bigForth 386 (v1.20�) [Pay91], by iForth 1.06

and by LMI's NT Forth NCC. Finally, we mea-

sured some interpretive systems: Gforth (indi-

rect threaded code, compiled with GCC 2.6.3, de-

fault
ags and -DFORCE_REG),Win32Forth 1.2093,

NT Forth (beta, May 1994), PFE-0.9.11 (com-

piled with GCC 2.6.3 with the default con�g-

uration), and ThisForth Beta (compiled with

gcc-2.6.3 -O3 -fomit-frame-pointer). We use

Gforth (a fast system based on an engine written

in GNU C [Ert93]) as a reference point in the fol-

lowing discussion.

Figure 6 shows the time that the output of our

translator needs for the benchmarks, and the time

8

The C version and Martin Fraeman's original transla-

tions to Forth can be found at ftp.complang.tuwien.

ac.at/pub/forth/stanford-benchmarks.tar.gz

relative f2c f2c hand- big- NT F. Win32- NT This- abs. time

time opt. Timbre no opt. coded C Forth iForth NCC Gforth Forth Forth PFE Forth f2c opt.

sieve 1.00 7.03 0.86 1.87 2.14 1.27 6.15 7.99 6.56 10.26 18.32 5.19s

bubble 1.00 8.28 0.87 2.34 2.91 7.12 7.43 9.69 10.41 12.37 4.79s

matmul 1.00 9.35 1.10 3.02 2.35 4.14 7.04 9.87 9.09 15.80 4.02s

�b 1.00 3.14 4.92 1.00 1.37 1.32 1.47 4.61 6.62 5.81 8.40 12.99 7.96s

Fig. 6. Time needed by various systems for several benchmarks, relative to the output of our prototype Forth-to-C

translator (f2c opt.); lower means faster.

other systems take relative to this baseline (or, in

other words, the speedup factor that our transla-

tor (and GCC) achieves over the other systems.

Empty entries indicate that we did not succeed in

running the benchmark on the system. The combi-

nation of our translator and an optimizing GCC is

4.5{7.5 times faster than Gforth. We achieved sim-

ilar results on a DecStation 5000/150 (50/100MHz

R4000), where the �rst three benchmarks were 6{8

times faster than Gforth. As expected, the speedup

for the Fibonacci benchmark is not as large as for

the other benchmarks, but, contrary to a myth pop-

ular in the Forth community, calls in C are not slow:

The Fibonacci benchmark translated to C is almost

�ve times faster than in Gforth, and it even beats

Forth native code compilers.

The result of Timbres Forth-to-C translator is

slow, as expected (since Timbre does not have

DO..LOOP and friends, we could only measure �b,

but we think this result is representative). Com-

bining our translator with a non-optimizing GCC

results in code that is even slower than the interpre-

tive Gforth system, con�rming the points we make

about e�cient code in Section 3.1. Hand-coded C is

between 14% faster and 10% slower than the output

of the Forth translator. We were a little surprised

by the matrix multiplication result, where the code

translated to Forth and back was faster than the

original. Closer inspection showed that, in trans-

lating from C to Forth, an optimization had been

performed, which the C compiler did not perform

(it is an interprocedural optimization that requires

interprocedural alias analysis) and which reduced

the amount of memory accesses; this is probably

responsible for the speedup, maybe combined with

vagaries such as instruction cache alignment.

BigForth and iForth achieve a speedup of about

3 over Gforth, but there is still a lot of room for im-

provement (at least a factor of 1.3{3). The results of

NT Forth NCC are a bit worse on average and have

a big variance (a speedup of 1{5 over Gforth, 1.2{

7.2 times slower than f2c opt.). These results show

that researching better native code generation tech-

niques is not just a waste of time and that there is

still a lot to be gained in this area. These results

also show that the following statement has not be-

come outdated yet: \The resulting machine code is

a factor of two or three slower than the equivalent

code written in machine language, due mainly to

the use of the stack rather than registers." [Ros86]

Win32Forth is 6.5{10 times slower than the

translated and optimized code, NT Forth 5.5{10.5

times, PFE 8{16 times, and ThisForth 13{18 times

(on the benchmarks that worked). The slowdown of

PFE and ThisForth with respect to Gforth can be

explained with the self-imposed restriction to stan-

dard C (although the measured con�guration of

PFE uses a GNU C extension: global register vari-

ables), which makes e�cient threading impossible.

Moreover, current C compilers have a hard time op-

timizing other aspects of the ThisForth source. The

performance of Win32Forth and NT Forth relative

to Gforth may surprise you (at least it surprised

us); after all, these systems are written in assem-

bly language and therefore enjoy some bene�ts|in

particular, they can make better use of the regis-

ters. One important reason for the disappointing

performance of these systems is probably that they

are not written optimally for the 486 (e.g., they use

lods).

9

In addition, Win32Forth uses a comfort-

able, but costly method for relocating the Forth im-

age: it computes the actual addresses at run time,

resulting in two address computations per NEXT.

interp. .o size compile source C

size size ratio time lines lines

sieve 418 272 1.54 1.10s 25 482

bubble 1020 748 1.36 1.60s 72 1100

matmul 784 412 1.90 1.40s 55 793

�b 140 140 1.00 0.90s 10 169

Fig. 7. Code size and compile time

We not only measured run-time, but also code

size and compile time (see Fig. 7). For threaded

code (interp. size), we measured the space alloted

in the Gforth system during compilation of the pro-

9

For comparison: A system fragment written in as-

sembly language and hand-tuned for the 486 is about

20% faster on the Sieve than the measured con�gu-

ration of Gforth [Beu95].

gram and subtracted the alloted data; i.e., the in-

terpreted code size includes the space needed for

headers. Gforth uses one cell (32 bits in the mea-

sured system) per compiled word, two cells for the

code �eld and padding in the header such that the

body is maximally (i.e., 8-byte-) aligned. For the

size of the machine code produced by the trans-

lator/compiler combination (.o size), we used the

sum of the text and data sizes produced by the

Unix size command, as applied to the object (.o)

�le. This does not include the size of the symbol

table information included in the object �le (which

is easy to strip away after linking). The data size

in the object �le does not include the alloted space,

as that is allocated later at run-time.

The code size measurements dispell another pop-

ular myth, that of the inherent size advantage of

stack architecture code and of the bloat produced

by optimizing C compilers. While a comparison

of a header-stripping 16-bit Forth with a RISC

(�50% bigger code than CISCs) would give a some-

what di�erent result, the observed size di�erences

of more than an order of magnitude need a dif-

ferent explanation: di�erences in the functionality

of the software and di�erent software engineering

practices come to mind.

For the compile time measurements, Fig. 7 only

displays the user time needed by GCC to compile

and link the program. The system time was con-

stant at 0.6s. The compilation to Gforth's inter-

preted code needed a negligible amount of time; the

translation to C also vanished in the measurement

noise, although it was not written for speed and al-

though the present implementation should be much

slower than normal Forth compilation. The com-

pile time data indicate that, after a startup time

of about 1.4s (user+system), GCC compiles about

90 lines of Forth code (1500 lines of translator out-

put) per second. Interestingly, less than one byte of

machine code is generated per line of C code.

6 Conclusion

The secret of e�cient C code for current optimiz-

ing C compilers is to do as much as possible in local

variables. This paper presents a method for trans-

lating Forth into such C code. A signi�cant subset

of Forth can even be translated into C code where

all stack items are kept in local variables, and the

stack pointer and all operations on it are unneces-

sary. This method is so simple that someone new to

Forth could implement it in a person-month. This

translation method combined with an optimizing

C compiler achieves impressive speedups over in-

terpretive Forth implementations (4.5{18), over a

di�erent Forth-to-C translator (3.1), and even over

commercial native code compilers (1.2{7.2).

Acknowledgements

Martin Fraeman provided the C versions of the

Stanford benchmarks. Kenneth O'Heskin kindly

produced the benchmark results for Win32Forth,

NT Forth, and NT Forth NCC. Marcel Hendrix

provided the iForth results. The comments of Man-

fred Brockhaus helped improve the paper.

References

[Alm86] Thomas Almy. Compiling Forth for perfor-

mance. Journal of Forth Application and Re-

search, 4(3):379{388, 1986.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ull-

man. Compilers. Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[Bad90] Wil Baden. Virtual rheology. In FORML'90

Proceedings, 1990.

[Beu95] Bernd Beuster. Usenet posting in

de.comp.lang.forth, May 1995.

[Cha82] G. J. Chaitin. Register allocation & spilling

via graph coloring. In SIGPLAN '82 Sympo-

sium on Compiler Construction, pages 98{105,

1982.

[Ert92] M. Anton Ertl. A new approach to Forth na-

tive code generation. In EuroForth '92, pages

73{78, Southampton, England, 1992. Micro-

Processor Engineering.

[Ert93] M. Anton Ertl. A portable Forth engine.

In EuroFORTH '93 conference proceedings,

Mari�ansk�e L�azn�e (Marienbad), 1993.

[Ert94] M. Anton Ertl. Automatic scoping of local

variables. In EuroForth '94 Conference Pro-

ceedings, pages 31{37, Winchester, UK, 1994.

[FH91] Christopher W. Fraser and David R. Hanson.

A retargetable compiler for ANSI C. SIG-

PLAN Notices, 26(10):29{43, October 1991.

[Pay91] Bernd Paysan. Ein optimierender Forth-

Compiler. Vierte Dimension, 7(3):22{25,

September 1991.

[Ros86] Anthony Rose. Design of a fast 68000-based

subroutine-threaded Forth with inline code

& an optimizer. Journal of Forth Applica-

tion and Research, 4(2):285{288, 1986. 1986

Rochester Forth Conference.

[Smi92] Norman Smith. Write Your Own Program-

ming Language Using C++. Wordware Pub-

lishing, 1992. ISBN 1-55622-264-5.

