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Abstract. Design patterns have been developed to cope with the vase spa
possible different designs within object-oriented syster®ne of those clas-
sic patterns is the Visitor Pattern that is used for reprdsenan operation to
be performed on the elements of an object structure. We mr@senapping
from the Visitor Pattern to a grammar that defines the setsif sequences that
can be performed by a given Visitor. The language defined dgthmmar is
the language of the Visitor Design Pattern. The declarecbpse is the doc-
umentation of a Visitor. To allow the application of the meted approach to
data structures in general, the formalism handles compheces that occur when
traversing arbitrary object structures, such as lack of azoon base class, mul-
tiple inheritance, and inheritance from concrete classEse mapping encodes
knowledge about the class hierarchy and the implementafitime accept meth-
ods of a Visitor Design Pattern.

1. Introduction

Design patterns have been developed to cope with the vase sggpossible different
designs within object-oriented systems. Naming the patereated a terminology that
is used for describing such systems. From our work on opimgithe use of high-level
abstractions in applications it has become apparent thahations on programming lan-
guages and libraries often lead to the well-known insightwhich a whole chapter is
devoted in [1] “Library design is Language Design” and “Laage design is library de-
sign”.

When we are faced with a library, or in particular with an abstion in a library - a
design pattern - rarely, if ever, we can specify a “languabat would materialize as an
indicator of a deepening understanding of the design of bis¢raction. But if possible,
the language should represent #gssential aspeadf the pattern. If achieved, we can
claim that “pattern design is language design”. Consedy#mns means that whenever
we create and use a pattern we implicitly also create a lageguBhis also contributes to
the discussion, whether it is worthwhile to invent new laages. If we understand pattern
design as language design, it becomes permissible to sagdtiarn designers are also
language designers. And then it is eligible to say that mam $anguages have been
developed in recent years; and have been accepted and diksarthe form of patterns.

To support that claim, we are presenting such a languagentobthe classic design pat-
terns presented in [2]. The pattern of interest is the Miditesign Pattern. Thessential
aspectof this pattern is that it defines a traversal on an objectsire and “visits” each
node of that structure in some defined order. Such a structurée potentially infinite,
and the visited objects do not have to have a common parestt. cla

The declared purpose of our contribution is the documenntaidf a Visitor. Whereas it is
commonplace to generate visitor code from AST grammarspwedlize a way to extract



a grammar from code in which the Visitor Pattern can be idiedti The proposed map-
ping from a Visitor to a Grammar is a contribution to the fiefddocumenting Visitors,
and opens the possibility of applying the technique to othyees of Design Patterns. To
allow the application of the presented approach to datatsires in general, the formal-
ism handles complications that occur when traversing ranyitobject structures, such as
lack of a common base class, multiple inheritance, and it@m&e from concrete classes.
The mapping encodes knowledge about the class hierarchyamtiplementation of the
accept methods of a Visitor.

We present how to map the invocation of the visit methods ofsitdr Pattern into a
context-free grammar that generates all the sequencevadations, thus providing a
high-level view of all possible visiting sequences that banperformed by the Visitor.
We shall call the language generated by that grammar theiémyegof the Visitor Design
Pattern, or short Visitor Language. A word of the languagessponds to the sequence in
which the nodes of the object structure are visited, i.etraiteal represents the invocation
of a visit method; and the set of all those words, the langueg@esents all possible
visit sequences that may be performed given any objecttateitor which the Visitor is
implemented to perform on.

The definition of the Visitor Language is an attempt to bungpa bridge between grammar-
oriented approaches and software design. There existsad baoge of contributions to
the field of grammar-based specification of object-strias@nd automatic generation of
Visitors [3—12]. A direct correspondence of grammars areddpecial case of object-
oriented abstract syntax trees has also been discussed]ibhyAppel. Whereas these
approaches are based on a grammar and generate the irdenfiadenplementation of the
object structure and a Visitor, we define the language forxstieg Visitor Pattern, lit-
erally going into the opposite direction. This is motivatgdour work on abstract aware
analysis for automatic recognition of abstractions andegation of documentation and
annotations. Generating a grammar permits arguing thatsediad “hidden” languages
in software. In particular, it is the recent attempt of goingiards the discipline Gram-
marware [14] that fuels our endeavour of generating a granfon&xisting patterns such
that patterns can be understood as languages. It also penaking the argument in the
other direction, that is, what could have been saved in deveént if grammars would
have been used to specify and generate the code. At leastutreents a Visitor Design
Pattern such that the traversal it can perform, is precidetyymented for users.

Since the understanding and appreciation of a languagedafuentally connected to its
design and how “easy” it is for users to learn, apply, and wsealso consider the design
of our grammar as an important ingredient for its appeal. désgn of the grammar is
as critical as the design of the software pattern that we ampmg from. We are going
to define a grammar that is as appealing and easy to read asgimalpattern. Actually,
we attempt to go beyond that. It should be easier to read, iggrgnto focus on the
essential aspedf the Visitor Pattern only, formalizing only the relevantormation that
constitutes a Visitor Pattern. But we do not present a nem&tism, or a new extended
form of a grammar. The grammar we use is a context free grapwitaronly two specific
forms of productions such that each form of production regnés distinct properties of
the Visitor Pattern.

In the following section we present our running example thidit serve in explaining
several properties and details of the mapping in later @estas well. In the example we
also present the corresponding formal grammar as definedibsnapping. The details
on how this grammar is obtained in general is discussed isesjuent sections.



class Visitor { class MyVisitor : public Visitor {

publi c: publi c:
virtual void visitB(B*)=0; void visitB(B* obj) { cout << "b" << endl; }
virtual void visitC(Cr)=0; void visitC(C* obj) { cout << "c" << endl; }
virtual void visitD(D*)=0; void visitD(D* obj) { cout << "d" << endl; }
virtual void visitE(E*)=0; void visitE(E* obj) { cout << "e" << endl; }

} }

Figure 1: Abstract C++ class Visitor and inheriting class My Visitor

class A { class D {
publi c: publi c:
virtual void accept(Visitor& v)=0; D(){}
}s void virtual accept(Visitor& v);

H
class B : public A {

publi c: class E: public D {
B(A* next 0, D* dat a0) publi c:
s next (next0), dat a(dat a0) {} E():D(){}
virtual void accept(Visitor& v); void virtual accept(Visitor& v);
private: }s
A* next;

D* dat a;
b

class C: public A {
publi c:
O {}

void virtual accept(Visitor& v);

b

Figure 2: C++ class interfaces of the traversed object struc ture

1.1. Example

The Visitor Pattern is used for representing an operatidretperformed on the elements
of an object structure. A Visitor essentially does a deptt-fivalk of an object structure,
executing an “action” method, usually called si t , at each object. It is a frequently
used pattern in libraries that implement object structures

The example code in Fig. 2 shows the interfaces of our exachgdses. We use a minimal
artificial example that is designed to ease the demonstrafiGormal properties of the
mapping. Although small, the example includes two propsrthat require particular
attention. One property is that the class hierarchy thas&ldfor the object structure,
does not have a common base class from which all other clagserit. And the second
one being that we also have a class inheriting from a conclass. The latter second case
for example, is not present in the approach taken by Appel3j for a grammar based
definition of an abstract syntax tree (AST). For ASTs AppdEsign results in a good
design of the tree, where concrete classes only exist asdets in the class hierarchy.
But since we present a mapping for the general case, and daandto suggest to change
the design in any way, we need to incorporate such cases hs wel

We have one abstract base claAsand two concrete classe8,and C inheriting from
classA. And we have another second class hierarchy, with dlaas root class of the
hierarchy, and one clagsinheriting fromD. Both classed) andE, are concrete classes.

If we create a data structure with the objects of type A to E,car use a Visitor to
traverse that data structure and specify a visit methoddohn eoncrete object, see Fig. 1.
The other part of the Visitor Pattern 1 is the accept methbdse in Fig. 2 and Fig. 3.
We shall show that we can create a formal grammar that detieeset of all sequences
of visit methods that can be invoked by a Visitor. The forma@rgmar for the example
Visitor in Fig. 2 and Fig. 3is



void B::accept(Visitor& v) { void D::accept(Visitor& v) {

v.visitB(this); v.visitD(this);
next - >accept (Vv); }
dat a- >accept (V) ;
} void E :accept(Visitor& v) {
v.VvisitE(this);
void C :accept(Visitor& v) { }

v.visitC(this);
}

Figure 3: Implementation of the accept methods for class Vis itor.

Gl = (N17T17P17A) Wlth Nl = {AuB7C7D7E}7T1 = {UB7UC7UD7UE}7
P={A—- B A—C,B—vgAD,C - ve,D —vp,D — E,E — vg}

where N; is the set of nonterminals, representing the abstract ancrete classes used
for defining the object structure. The set of terminal&;isvhere we use the notation that
vy represents a call of the visit method for class

GrammarG, generates the language
L(Gl) = {xnyzn | r=vp,Yy="70c, =z S {UD,UE},’I’L Z 1}1

a deterministic context free language. This is the set &fesjuences of visit methods that
can be called, if the example Visitor is used by invoking theegpt method of an object
referred by a variable with declared type A. In the above gdanthe visit methods are
implemented, see Fig. 1, such that MyVisitor prints a lowap<letter of the class to
which the visit method corresponds to. Hence, the visit wettor class Byi si t B,
prints 'b’ to stdout. We use that to illustrate our patternpmiag by example. The se-
quence of invoked visit methods is reflected in the outputheféxample code as well,
and the output (language) of our Visitor{is"yz" | z = b,y = ¢,z € {d,e},n > 1}.

Please note that > 1. For our language definition we assume that traversing tiexbb
structure does not cause errors such as dereferencingl faiters or exceptions. Here
this means that at least a concrete object of §pene object of typ® or E, and one of
typeCmust exist. In general, we assume that the Visitor succeadsrsing a given object
structure. Otherwise we would need to consider the set pirefixes of all words which
would render the language rather useless. We shall disbhassas$pect, sub languages,
and variations of the classic pattern in Section 2.5.

Now let us also determine the Visitor Language with an a#teve implementation of
one of the accept methods of this Visitor. We use this vanmato demonstrate that the
Visitor Language is different, dependent on the implem@maf accept methods. Let us
reverse the two invocations of the accept methods in clasa®&ept method as shown in
Fig. 4. Mapping this alternative Visitor to a grammar givesanew grammarty,, where
only the set of productions is different €¢.

G2 = (Nl,Tl,PQ,A), with P,=P — {B — UBAD} + {B — UBDA}
The difference, representing the fact that the accept ndedh® is implemented differ-

void B::accept(Visitor& v) { v.visitB(this); data->accept(v); next->accept(v); }

Figure 4: Alternative example implementation of the accept method of class B.



ently, is that we have now the productiéh— vz DA instead ofB — vgAD. Conse-
quently, the language is also different,

L(Gy) = {(zy)"z | x = vB,y € {vp,vE}, 2 = vo,n > 1},

a regular language. We can write it as regular expresgigtvp | vg))*ve, where %+’
denotes that there exists at least one occurrence of thiaregyression in brackets, and

' that we have either or vg as terminal at this position. Thus, the language classes
of our Visitor Language can be different, ranging from reguanguages to context free
languages.

In Section 2 we present a formal definition for the mappingnfra Visitor Pattern to a
grammar. In Section 3 we discuss various applications ofapyroach, followed by a
comparison with the related work in Section 4. Eventuallyomaclude in Section 5 that
our mapping permits understanding design pattern desitangsage design.

2. Mapping the Visitor Pattern to a Formal Grammar

In this section we shall define a mapping between the Visitsigh Pattern to a formal
grammar such that the grammar generates the set of all @giences that the visitor can
successfully perform. With “successfully” we mean thatVngtor does not fail because
of errors in the object structure.

The mapping consists of two parts. First, we need to deterthiarelevant information of
the implementations of all accept methods of a Visitor Patt8econd, we shall determine
the relevant information of the class hierarchy.

2.1. Accept Methods
The relevant information of the implementation of an aceepthod of a class4, is

I The name of the classl,
ii The name of the visit method that is invoked for clagsdenoted 4,
iii The order in which other accept methods are invoked byabeept method of
classA. We shall map the declared types of the variables on whiclaticept
methods are invoked to a sequence of grammar symbols, deAote. A,,.

Let the set of classes with accept methods of the (same)cMsgor Pattern be. We
define the set of productions,, mapped from the accept methods as

P,={Ay — vaA;... A, | A; € C,is_concrete(Ay),n > 0,0 <i < n}

On the left-hand-side of a production we have a nontermeyaasenting the name of the
class,Aq. For P, we only consider concrete classes for the left-hand-sitle.right-hand-
side has as first grammar symbol a termingl,which represents the invoked visit method
for class A; the visit method is usually called si t followed by a class name. This
terminal is followed by a possibly empty list of nontermimdl, . . . A,,, each representing
the declared type of the variable on which the accept methowoked. Ifn is not fixed,
we denote this using the notation from regular right partgrears, asA?. This is the
case for containers of objects which can be of arbitrary. dtze used for the Composite
Pattern.

For example, let us apply this mapping to the accept methadaskB in Fig. 3. As
relevant information we obtaiB (i), vg (ii), and the listA,D (iii). Hence, we define



the productionB — wvgAD. For the other three class€s D, E we obtainC' — v,
D — vp, E — vg. Thus, the left-hand-side corresponds to the name of ttes eléh
the accept method in question. The right-hand-side cooreggpto the implementation
of the accept method, i.e., in which order the visit method dre accept methods of
other classes are invoked. The order of the other classepiissented by the order of
the grammar symbols that correspond to the declared typibe efariables on which the
accept methods are invoked.

We can now define a grammd¥,, that represents the language generated by the above
mapping of accept methods. L&Y, be the set of all nonterminals existing) either on

the left-hand-side or right-hand-side and1gtbe the set of all terminals on the right-
hand-side in any production iR,. Let the start symbol of our grammar be a nonterminal
corresponding to a class with an accept mettitd,

Ga = (Naa Taa Paa Sa)

An interesting property of gramma¥, is that it is in Greibach Normal Form [15]; this
form is often used as basis for formal proofs on grammars.e htedefines the set of
all visit-sequences that can be generated by calling thepacoethod of an object in an
object structure. In the next section we extend this grammtarproductions representing
the case that the Visitor is invoked on a variable with dedaype of some abstract base
class.

2.2. ClassHierarchy

The classes of an object structure do not necessarily havavi®a common base class.
This is included in our running example in Fig. 2 with cld3svhich is not part of the
class hierarchy of classés B, andC.

It remains to define the productions mapped from the clagsucigy, to complete the
grammar of the Visitor Language. Let the predicadebase_class(A, B) hold, if class
Ais a (direct) base class of claBsand classA has an accept method declared. We define
the set of chain productiong,, for classes with an accept method of the (same) Visitor
as

P.={A — B |is_base_class(A,B),AcC,B €}

For example, for our program in Fig. 2 we obtain as set of clpagductions for our
Visitor the set{ A — B, A — C, D — E}. These productions correspond to the inheri-
tance in the class hierarchy where the accept method of #ikPattern in question is
inherited.

2.3. Complete Grammar

The complete Grammat;, is composed from the defined mapping of the accept methods
and the classes with an accept method in the class hieratatyN, be the set of all
nonterminals on any side of the productiongin Note thatP. has no productions with
terminals. Then we define the complete grammar as

G=(N,UN,,T,,P,UP,S.)

The set of nonterminalsy = N, U N., consists of the union of nonterminals of the
productions generated from the relevant information inabeept methods and classes



Relevant information of running example \ Mapped Productions

B::accept(...){ visitB(...)

dat a- >accept (...); : dat a of type A

i nfo->accept(...);...}:infooftypeD B — vgAD
C:accept(...){ visitC(...) C — ve
D:.:accept(...){ visitD(...) D — vp
E::accept(...){ visitE(...) E — g
class A { accept(Visitor&),; ...}
class B: public A{ accept(Visitor&); ...} | A— B
class C: public A{ accept(Visitorg&); ...} |A—-C
class D { accept(Visitor&}; ...}
class E: public D{ accept(Visitor&}; ..} |D—FE

Figure 5: Table showing how the presented mapping is applied to the running

example. Only that information of the source code is shown th at is

relevant for mapping the Visitor to grammar G;. The first block of rows
in column two shows the productions for P, of P;, the second block of
rows the productions for P, of P;.

with accept methods of the class hierarchy. The termirfglsare those defined in the
mapping of the accept methods only. The productions arelasias the nonterminals,
the union of P, and P.. The start symbol can be any nonterminal corresponding to a
class with an accept method to generate the set of visit segaeof the accept method

of that class. The set of productions as defined above, atlowdsrive any possible visit
sequence by choosing the appropriate start symbol.

The grammar therefore only has two kinds of productions effthm

1. Ny — N; (corresponds to inheritance)
2. Ny — vyNy...N, withn > 0. (corresponds to accept methods)

which permits defining the language of a Visitor Design Ratte

Eventually we show in Fig. 5 for our running example from Fiyand Fig. 3 how we

obtain the grammar presented in the introduction with th@vatdefinition. In the first

column only that portion of the source code is shown thatleveat for the mapping. It

is the accept methods, and the inheritance hierarchy faetlbtasses. Note that clads

Is a base class but also a concrete class in the object sewtd therefore both kinds of
productions exist wittD on the left-hand-side.

2.4. Readability and Direct Correspondence

The readability and direct correspondence to the impleatiemt of the Visitor Pattern is
important such that the grammar can be used for documentirexiating Visitor. The
automatic grammar generation for an existing Visitor wedlghscuss in the next section.
Here we shall highlight the expressiveness of our defineddbgrammar.

The grammar has only two kinds of productions, chain pradustand productions start-
ing with a terminal. Each kind represents exactly one piyparthe Visitor Pattern.

2.4.1. Chain Productions.

A chain production is of the forrd — B where A is a base class aB. It represents
inheritance (with the arrow going into the opposite direcatas in the UML notation for
class hierarchies). This production exists in the gramneaabse there exists an accept



void B::accept(Visitor&v) { v.preVisitB(this);
next - >accept (v); data->accept(Vv);
v.postVisitB(this); }

Figure 6: Alternative implementation of a variation of the V isitor Pattern with the
accept method of class B with preVisit and postVisit methods

method in classA and it is inherited byB. If multiple classes inherit fromd we have
multiple chain productions.

In particular,all is-a relationships that are relevant to the Visitor Pateemrepresented
by such chain rules. Note that this permits representingipielinheritance as well.

2.4.2. Productionswith a Terminal.

The second kind of productions is of the forin— v A, ... A,,. The number of this kind
of productions is exactly the number of concrete classesattearelevant to the Visitor
Pattern. Such a production never represents inheritancanibe understood as a has-a
relationship if we wish to have the object structure desigmind and the accept methods
always directly reflect that clas§ has members of typ4; ... A,..

From such a production we know that there exists a concrass 4| that the visit method

v4 IS invoked in the accept method of cla$sand that the traversal proceeds by traversing
objects of typeAd; to A, in the specified order. The order in which the visit and atcep
methods are called is directly reflected in the order of tlaegnar symbols on the right-
hand-side of the production.

2.4.3. Language and Start Symbol of the Grammar.

Because the terminaly directly corresponds to an invocation of a visit method,|#me
guage generated by the grammar is the set of all traversals, ather words, the set
of all sequences of invocations of the visit methods. A wokdhe language directly
corresponds to a traversal.

The start symbol of the grammar corresponds to the declgpesl df the variable that
holds the reference to the first object being traversed. Amgerminal of the grammar
can be chosen as start symbol because every nonterminaé deftthand-side directly
corresponds to a class of that name with an accept method.

2.5. Variations of the Classic Pattern

Variations of the Visitor Pattern can be represented as Wwed post-order traversaly is
the last grammar element on the right-hand-side. For amsixte of the Visitor Pattern,
such as performingpar eVi si t Xand apost Vi si t X, we have two (distinct) terminals
on the right-hand-side,y andv’.

The corresponding production to the alternative implemigon as shown in Fig. 6 is

B — vg ADv'y

We shall discuss a concrete example of this variation fromoaun work in Section 3.1.
This variation of the Visitor Pattern is also utilized in [B]r computation of inherited
attributes (pre-visit) and synthesized attributes (wst).



Another variation of the classic Visitor Pattern is the u$enadll pointers and having
accept methods check whether a pointer is null. This factbearepresented by making
the corresponding grammar symbol optional on the righdkgide of a production.

If conditions are used to decide the order of the traverkalldnguage might actually be
context sensitive. For that case we suggest the use ofuaésilbo specify the additional
constraints but this requires further investigation irufetwork.

3. Applications

In this section we show in which fields the presented approasing a mapping from a
Visitor to a grammar, has already been applied in our own wivk also wish to make
clear that the mapping can be fully automated by using exjssource-infrastructures
such as ROSE [16].

3.1. Grammar as Documentation of the Visitor Pattern

In ROSE we provide beside the classic Visitor also some tiana of the Visitor Pattern
that have proven suitable for some advanced computatiotiseoAST. We give a short
example of the textual representation of the grammar thatseen ROSE for document-
ing the Pre-Post AST Visitor, a Visitor that visits a noded®iin a pre order traversal
and a post order traversal (this variation of the classitepais also called before/after
Visitor). The grammar is generated following the mappingsented in Section 2 and
has been added to the ROSE reference manual. The entirehaaaschy of the ROSE
C++ AST consists of 246 classes. The above mentioned Visitdesigned to visit only
a subset of these, 171 in total. The information stored invisited nodes of the AST is
available via access functions, which can be considereccassing pre-defined attributes
(such as type information, modifiers, etc.). Therefore ap@mensive and precise doc-
umentation of the Visitor is necessary — and the presentachmgiar has proven useful
for that purpose. The ROSE AST has one common base class esthagritance from
concrete classes.

In Fig. 7 we show a grammar fragment, generated as docurientat the ROSE Pre-
Post AST Visitor. The terminals of the grammar are the nanig¢iseovisit methods, for
each node there are two visit methods, the preVisit and psistviethod. The prefix
“Sg” of class names is used for historical reasons, becdies&DSE AST is based on
the Sage++ AST and “Sg” is an abbreviation for Sage. Note Weuse the Kleene
star *’ for specifying an arbitrary number of SgStatement nodé@s&fter pre-visiting
a SgBlock node. Here the Kleene star actually representeéntern@al) iteration on a
C++STL container.

For example, if a user wants to know what sequence of visihott the Visitor can
perform when called on an AST object of tyBgScopeSt at enent , he can see that
SgScopeSt at enent is a virtual (abstract) class with a declared pure virtuaept
method. Other classeSgBIl ock, Sgl f St at enent , etc. inherit because chain produc-
tions exist with nontermingdgScopeSt at enent on the left-hand-side. AgBl ock
node is a concrete node because we have terminals represendiVisit and postVisit
on the right-hand-side of the production wiBgBl ock on the left-hand-side. In case of
inheritance from concrete classes, both kinds of prodnstexist with the same nonter-
minal on the left-hand-side.

3.2. Grammar-Based I nteroper ability of Tools

We briefly describe an application going towards the Gramvaeg discipline as de-
scribed in [14], based on our presented Visitor grammar.Program Analysis Generator



SgSt at enent . SgScopeSt at enent
| SgDecl arati onSt at enment

SgScopeSt at enent ;. SgBl ock
| Sgl fStatenment
| SgFor St at enent

SgBl ock . preVisitSgBl ock
SgSt at enent *
post Vi si t SgBl ock

Sgl f St at enent . preVisitSglfStatenent
SgSt at ement  SgBl ock SgBl ock
post Vi si t Sgl f St at enent

Figure 7: Grammar fragment example from the generated Visit or documentation
in ROSE for the Pre-Post Visitor (also called before/after V  isitor in the
literature).

(PAG) [17] requires an abstract grammar as input, so calladies. The abstract gram-
mar specifies the Abstract Syntax Trees on which the gerkpabgram analyzer operates
on. When we integrated PAG into the C++ source-to-sourcasifucture ROSE [16], we
first generated the documentation for the AST Visitor. Hagedlassic Visitor was of in-
terest. It travarsed the same subset of AST nodes as the atam®ned Pre-Post Visitor.
This grammar was also input to another tool, called GRATQransform the grammar,
by also pruning all control-flow related symbols, into arestgrammar, representing the
abstract grammar (without control-flow relevant informadias required by PAG. Hence,
the documentation of the Visitor also served as input forfnagenerating an adapted
grammar, as required by another tool, PAG.

PAG is used to specify program analyses based on abstragprietation, which we use
with ROSE for analyzing source code and detecting more ashehwvariations of Visitors

in existing source code. Therefore, we can automate thetiteof the Visitor Pattern

and generate a grammar as presented, defining the Visitguiagie. The details of the
abstraction aware analysis are beyond the scope of this.pape

4. Related Work

The visitor pattern has been intensively studied, mostisnfthe perspective of specifying
atraversal on an object structure and generating the ingi&ation of the object structure
and a Visitor for performing the traversal. All those apmio@s incorporate the use of a
grammar at some point. The documentation generation fogB&&atterns has also been
addressed in [11, 18]

Recently, the most general approach has been defined byeKantin [14]. They propose
to incorporate the use of grammars at all levels in develojirard comprise grammar
and all grammar-dependent software in the so called diseigbrammarware. In this
discipline our presented grammar could be understood aseallvee grammar within the
grammar life-cycle. This is, also from our perspective itieal case, to start with a gram-



mar, and by transforming and extending that grammar we caergte other components
of the software system. If the software already exists, amcapproach is motivated by
that setting, we need to create a grammar from existing sczode. The same authors
have also contributed in the field of semi-automatic grammeeovery [19] but focus on
existing parsers and generating a concrete grammar.

A very general approach to the specification of traversafgesented by Lieberherr et
al. in [5]. This approach supports structure-shy speciboadf traversals. Only those
aspects are specified as constraints that are considees@mtlo the traversal and the
generator ensures that those constraints are met. Thieagipsupports changes to the
object structure, which is a general problem of the Visitatt€&n. Our approach does not
attempt to contribute to the problem of changes to the olgjgatture, our contribution
is in the field of generating documentation for Visitors andsgnting a grammar that
can be automatically obtained from an existing Visitor iempentation with our C++
infrastructure ROSE [16]. An approach for specifying reowe traversals is presented in
[6]. Itis based on traversal specifications that allow dyet traversals that can revisit
the same node and also to dynamically control the behavidbedraversal. In particular,
it also permits calling other traversals within a traver3dlis permits combining different
traversals and abstractions of those. Visser has alsoilootetd in this field by proposing
Visitor combination for similar reasons in [4]. This workshbeen developed into a full
framework, the JJTraveler [7], together with Arie van DeursIn our approach we can
express that by combining different grammars into one gramfor example, instead of
considering only one Visitor we can consider a set of Visitond all their accept methods.
This gives us a single language for a set of combined Visitors

An object-oriented view on attribute grammars that is samtid our grammar was already
presented by Koskimies [20] in 1991. He used two notions oft@mninals, so called
superclass nonterminals and basic nonterminals. The pbotsuperclass nonterminals
and the use of chain productions to express the inheritaagan is the same as in our
approach. But we do not use the concept of basic nonterminagecify the syntactic
composition of basic language constructs. In contrastiigiammar only the invocation
of a visit method corresponds to a terminal. A basic nonteafon the left-hand-side of
a production and the so called slots in [20] correspond ingsammar to productions
corresponding to implementations of accept methods. Alaimapproach was also dis-
cussed by Grosch in [21], where he shows how with objectatet attribute grammars
common parts of a specification can be “factored out”. Sonoésttake the approach,
such as Alexey Demakov’s TreeDL and Etienne Gagnon’s S&hle€using Visitors for
actions but letting you specify a tree structure with a graamnhke specification. These
tools generate a class for each node in the tree in order toeenalid tree construction.
These approaches have in common that the grammar alwaysa®haing enriched with
additional information about the details of the generatediec Our contribution in this
paper is to provide a mapping to a grammar that is clean of ddiianal information but
still carries enough information such that the essentfakrmation of a mapped Visitor is
present. Our approach aims at using grammars as generatacheotation for Visitors,
but with properties, such that they might be interestingi@stigate Visitors also from a
language perspective.

An interesting combined approach that also shares sevgsatts with our mapping, is
the use of a JavaCC grammar in the Java Tree Builder (JTB)natly developed by Jens
Palsberg and Kevin Tao. A plain JavaCC grammar file servespag to JTB, and from
that grammar an object-oriented AST and its creation dyparging, following the design
in [13], is generated. It also includes the generation of different depth-first Visitors,
DepthFirstVisitor and GJDepthFirst. This provides a clodationship to our mapping,



but in the opposite direction and with a different grammasigie of the productions. It re-
quires that the class hierarchy has one single root clasd@ginot use inheritance from
concrete classes. In the context of ASTs this is commonlgidened a good design. Our
approach aims at being applicable to the documentationfovs that operate on arbi-
trary data structures. Therefore our grammar can alsoseptehe language of Visitors
that are traversing across different class hierarchies ailowing to traverse Composite
Patterns, and also inheritance from concrete classes capleEsented. In particular, in
our grammar the traversal order is explicitly defined.

5. Conclusions

We have presented a mapping from the Visitor Design Pattearférmal grammar. The
grammar is a context free grammar. The design of the gramsnauah that it directly

reflects the essential aspect of the Visitor Pattern. Itistm®f two kinds of produc-

tions. The chain productions correspond to the relevardritdance relationships of the
class hierarchy where accept methods of the Visitor Patrist. The second kind of
productions represents the information, at which type afena visit method exists (left-
hand-side) and in which order the remaining object strigctsitraversed from that node
type (right-hand-side).

The language generated by the grammar is the Visitor Largguig@ch visit method is
represented by one terminal in the grammar. A word of thedagg represents one
possible visit sequence. Thus, the set of all sequencesibiwethod invocations that a
Visitor Pattern can perform on an object structure, is tr®tdf Language. Thessential
aspectof the Visitor Pattern is the set of such sequences that ihelefior an object
structure. This essential aspect is represented by theMsanguage.

Although it is well known that grammars can be used for engjiimg software systems,
as is also discussed in the context of recent Grammarwark iwgt4], the application

of design patterns is usually not understood as an imphkeigliage definition. With
the presented mapping from the Visitor Design Pattern tor@dbgrammar we aim at
making this correspondence more obvious and easier to memggeven for those that
usually do not use grammars. The grammar can be used toglyedtxument an existing
Visitor Design Pattern. This understanding may drag peoph® are not used to using
grammars, towards Grammarware. Therefore, the readabflithe grammar is one of
our main concerns.

This work is a contribution to understanding pattern desigmanguage design, applied
to the classic Visitor Pattern which can be found in manyaliles today. We believe

that a similar method can also be used for other Design Raitar particular those that

incorporate the use of other patterns in some systematic way

For the claim “Library Design is Language Design”, and ouatéd version, “Pattern
Design is Language Design”, we have presented a mappingtfrervisitor Pattern to
a grammar that generates such a language. Our hope is thebmmibution adds to a
broader acceptance of using grammars by software devsldpsginning by using them
for documenting Visitors, and that it may permit to recogniznderstand, and investigate
further the many languages that are implicitly defined irvgafe systems.
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