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Abstract. Design patterns have been developed to cope with the vast space of
possible different designs within object-oriented systems. One of those clas-
sic patterns is the Visitor Pattern that is used for representing an operation to
be performed on the elements of an object structure. We present a mapping
from the Visitor Pattern to a grammar that defines the set of visit sequences that
can be performed by a given Visitor. The language defined by the grammar is
the language of the Visitor Design Pattern. The declared purpose is the doc-
umentation of a Visitor. To allow the application of the presented approach to
data structures in general, the formalism handles complications that occur when
traversing arbitrary object structures, such as lack of a common base class, mul-
tiple inheritance, and inheritance from concrete classes.The mapping encodes
knowledge about the class hierarchy and the implementationof the accept meth-
ods of a Visitor Design Pattern.

1. Introduction

Design patterns have been developed to cope with the vast space of possible different
designs within object-oriented systems. Naming the patterns created a terminology that
is used for describing such systems. From our work on optimizing the use of high-level
abstractions in applications it has become apparent that ruminations on programming lan-
guages and libraries often lead to the well-known insight, to which a whole chapter is
devoted in [1] “Library design is Language Design” and “Language design is library de-
sign”.

When we are faced with a library, or in particular with an abstraction in a library - a
design pattern - rarely, if ever, we can specify a “language”that would materialize as an
indicator of a deepening understanding of the design of the abstraction. But if possible,
the language should represent theessential aspectof the pattern. If achieved, we can
claim that “pattern design is language design”. Consequently this means that whenever
we create and use a pattern we implicitly also create a language. This also contributes to
the discussion, whether it is worthwhile to invent new languages. If we understand pattern
design as language design, it becomes permissible to say that pattern designers are also
language designers. And then it is eligible to say that many such languages have been
developed in recent years; and have been accepted and did survive in the form of patterns.

To support that claim, we are presenting such a language for one of the classic design pat-
terns presented in [2]. The pattern of interest is the Visitor Design Pattern. Theessential
aspectof this pattern is that it defines a traversal on an object structure and “visits” each
node of that structure in some defined order. Such a structurecan be potentially infinite,
and the visited objects do not have to have a common parent class.

The declared purpose of our contribution is the documentation of a Visitor. Whereas it is
commonplace to generate visitor code from AST grammars, we formalize a way to extract



a grammar from code in which the Visitor Pattern can be identified. The proposed map-
ping from a Visitor to a Grammar is a contribution to the field of documenting Visitors,
and opens the possibility of applying the technique to othertypes of Design Patterns. To
allow the application of the presented approach to data structures in general, the formal-
ism handles complications that occur when traversing arbitrary object structures, such as
lack of a common base class, multiple inheritance, and inheritance from concrete classes.
The mapping encodes knowledge about the class hierarchy andthe implementation of the
accept methods of a Visitor.

We present how to map the invocation of the visit methods of a Visitor Pattern into a
context-free grammar that generates all the sequences of invocations, thus providing a
high-level view of all possible visiting sequences that canbe performed by the Visitor.
We shall call the language generated by that grammar the language of the Visitor Design
Pattern, or short Visitor Language. A word of the language corresponds to the sequence in
which the nodes of the object structure are visited, i.e. a terminal represents the invocation
of a visit method; and the set of all those words, the language, represents all possible
visit sequences that may be performed given any object structure for which the Visitor is
implemented to perform on.

The definition of the Visitor Language is an attempt to building a bridge between grammar-
oriented approaches and software design. There exists a broad range of contributions to
the field of grammar-based specification of object-structures and automatic generation of
Visitors [3–12]. A direct correspondence of grammars and the special case of object-
oriented abstract syntax trees has also been discussed in [13] by Appel. Whereas these
approaches are based on a grammar and generate the interfaces and implementation of the
object structure and a Visitor, we define the language for an existing Visitor Pattern, lit-
erally going into the opposite direction. This is motivatedby our work on abstract aware
analysis for automatic recognition of abstractions and generation of documentation and
annotations. Generating a grammar permits arguing that we also find “hidden” languages
in software. In particular, it is the recent attempt of goingtowards the discipline Gram-
marware [14] that fuels our endeavour of generating a grammar for existing patterns such
that patterns can be understood as languages. It also permits making the argument in the
other direction, that is, what could have been saved in development if grammars would
have been used to specify and generate the code. At least, it documents a Visitor Design
Pattern such that the traversal it can perform, is preciselydocumented for users.

Since the understanding and appreciation of a language is fundamentally connected to its
design and how “easy” it is for users to learn, apply, and use,we also consider the design
of our grammar as an important ingredient for its appeal. Thedesign of the grammar is
as critical as the design of the software pattern that we are mapping from. We are going
to define a grammar that is as appealing and easy to read as the original pattern. Actually,
we attempt to go beyond that. It should be easier to read, permitting to focus on the
essential aspectof the Visitor Pattern only, formalizing only the relevant information that
constitutes a Visitor Pattern. But we do not present a new formalism, or a new extended
form of a grammar. The grammar we use is a context free grammar, with only two specific
forms of productions such that each form of production represents distinct properties of
the Visitor Pattern.

In the following section we present our running example thatwill serve in explaining
several properties and details of the mapping in later sections as well. In the example we
also present the corresponding formal grammar as defined by our mapping. The details
on how this grammar is obtained in general is discussed in subsequent sections.



class Visitor {
public:

virtual void visitB(B*)=0;
virtual void visitC(C*)=0;
virtual void visitD(D*)=0;
virtual void visitE(E*)=0;

};

class MyVisitor : public Visitor {
public:

void visitB(B* obj) { cout << "b" << endl; }
void visitC(C* obj) { cout << "c" << endl; }
void visitD(D* obj) { cout << "d" << endl; }
void visitE(E* obj) { cout << "e" << endl; }

};

Figure 1: Abstract C++ class Visitor and inheriting class My Visitor

class A {
public:

virtual void accept(Visitor& v)=0;
};

class B : public A {
public:

B(A* next0,D* data0)
:next(next0),data(data0) {}

virtual void accept(Visitor& v);
private:

A* next;
D* data;

};

class C : public A {
public:

C(){}
void virtual accept(Visitor& v);

};

class D {
public:

D(){}
void virtual accept(Visitor& v);

};

class E : public D {
public:

E():D(){}
void virtual accept(Visitor& v);

};

Figure 2: C++ class interfaces of the traversed object struc ture

1.1. Example

The Visitor Pattern is used for representing an operation tobe performed on the elements
of an object structure. A Visitor essentially does a depth-first-walk of an object structure,
executing an “action” method, usually calledvisit, at each object. It is a frequently
used pattern in libraries that implement object structures.

The example code in Fig. 2 shows the interfaces of our exampleclasses. We use a minimal
artificial example that is designed to ease the demonstration of formal properties of the
mapping. Although small, the example includes two properties that require particular
attention. One property is that the class hierarchy that is used for the object structure,
does not have a common base class from which all other classesinherit. And the second
one being that we also have a class inheriting from a concreteclass. The latter second case
for example, is not present in the approach taken by Appel in [13] for a grammar based
definition of an abstract syntax tree (AST). For ASTs Appel’sdesign results in a good
design of the tree, where concrete classes only exist as leafnodes in the class hierarchy.
But since we present a mapping for the general case, and do notwant to suggest to change
the design in any way, we need to incorporate such cases as well.

We have one abstract base class,A, and two concrete classes,B andC inheriting from
classA. And we have another second class hierarchy, with classD as root class of the
hierarchy, and one classE inheriting fromD. Both classes,D andE, are concrete classes.

If we create a data structure with the objects of type A to E, wecan use a Visitor to
traverse that data structure and specify a visit method for each concrete object, see Fig. 1.
The other part of the Visitor Pattern 1 is the accept methods shown in Fig. 2 and Fig. 3.
We shall show that we can create a formal grammar that defines the set of all sequences
of visit methods that can be invoked by a Visitor. The formal grammar for the example
Visitor in Fig. 2 and Fig. 3 is



void B::accept(Visitor& v) {
v.visitB(this);
next->accept(v);
data->accept(v);

}

void C::accept(Visitor& v) {
v.visitC(this);

}

void D::accept(Visitor& v) {
v.visitD(this);

}

void E::accept(Visitor& v) {
v.visitE(this);

}

Figure 3: Implementation of the accept methods for class Vis itor.

G1 = (N1, T1, P1, A) with N1 = {A, B, C, D, E}, T1 = {vB, vC , vD, vE},
P1 = {A → B, A → C, B → vBAD, C → vC , D → vD, D → E, E → vE}

whereN1 is the set of nonterminals, representing the abstract and concrete classes used
for defining the object structure. The set of terminals isT1 where we use the notation that
vX represents a call of the visit method for classX.

GrammarG1 generates the language

L(G1) = {xnyzn | x = vB, y = vC , z ∈ {vD, vE}, n ≥ 1},

a deterministic context free language. This is the set of allsequences of visit methods that
can be called, if the example Visitor is used by invoking the accept method of an object
referred by a variable with declared type A. In the above example, the visit methods are
implemented, see Fig. 1, such that MyVisitor prints a lower caps letter of the class to
which the visit method corresponds to. Hence, the visit method for class B,visitB,
prints ’b’ to stdout. We use that to illustrate our pattern mapping by example. The se-
quence of invoked visit methods is reflected in the output of the example code as well,
and the output (language) of our Visitor is{xnyzn | x = b, y = c, z ∈ {d, e}, n ≥ 1}.

Please note thatn ≥ 1. For our language definition we assume that traversing the object
structure does not cause errors such as dereferencing of null pointers or exceptions. Here
this means that at least a concrete object of typeB, one object of typeD or E, and one of
typeCmust exist. In general, we assume that the Visitor succeeds traversing a given object
structure. Otherwise we would need to consider the set of allprefixes of all words which
would render the language rather useless. We shall discuss that aspect, sub languages,
and variations of the classic pattern in Section 2.5.

Now let us also determine the Visitor Language with an alternative implementation of
one of the accept methods of this Visitor. We use this variation to demonstrate that the
Visitor Language is different, dependent on the implementation of accept methods. Let us
reverse the two invocations of the accept methods in class B’s accept method as shown in
Fig. 4. Mapping this alternative Visitor to a grammar gives us a new grammar,G2, where
only the set of productions is different toG1.

G2 = (N1, T1, P2, A), with P2 = P1 − {B → vBAD} + {B → vBDA}

The difference, representing the fact that the accept method of B is implemented differ-

void B::accept(Visitor& v) { v.visitB(this); data->accept(v); next->accept(v); }

Figure 4: Alternative example implementation of the accept method of class B.



ently, is that we have now the productionB → vBDA instead ofB → vBAD. Conse-
quently, the language is also different,

L(G2) = {(xy)nz | x = vB, y ∈ {vD, vE}, z = vC , n ≥ 1},

a regular language. We can write it as regular expression(vB(vD | vE))+vC , where ’+’
denotes that there exists at least one occurrence of the regular expression in brackets, and
’ |’ that we have eithervD or vE as terminal at this position. Thus, the language classes
of our Visitor Language can be different, ranging from regular languages to context free
languages.

In Section 2 we present a formal definition for the mapping from a Visitor Pattern to a
grammar. In Section 3 we discuss various applications of ourapproach, followed by a
comparison with the related work in Section 4. Eventually weconclude in Section 5 that
our mapping permits understanding design pattern design aslanguage design.

2. Mapping the Visitor Pattern to a Formal Grammar

In this section we shall define a mapping between the Visitor Design Pattern to a formal
grammar such that the grammar generates the set of all visit sequences that the visitor can
successfully perform. With “successfully” we mean that theVisitor does not fail because
of errors in the object structure.

The mapping consists of two parts. First, we need to determine the relevant information of
the implementations of all accept methods of a Visitor Pattern. Second, we shall determine
the relevant information of the class hierarchy.

2.1. Accept Methods

The relevant information of the implementation of an acceptmethod of a class,A, is

i The name of the class,A,
ii The name of the visit method that is invoked for classA, denotedvA,
iii The order in which other accept methods are invoked by theaccept method of

classA. We shall map the declared types of the variables on which theaccept
methods are invoked to a sequence of grammar symbols, denoted A1 . . . An.

Let the set of classes with accept methods of the (same) classic Visitor Pattern beC. We
define the set of productions,Pa, mapped from the accept methods as

Pa = {A0 → vAA1 . . . An | Ai ∈ C, is concrete(A0), n ≥ 0, 0 ≤ i ≤ n}

On the left-hand-side of a production we have a nonterminal representing the name of the
class,A0. ForPa we only consider concrete classes for the left-hand-side. The right-hand-
side has as first grammar symbol a terminal,vA, which represents the invoked visit method
for class A; the visit method is usually calledvisit followed by a class name. This
terminal is followed by a possibly empty list of nonterminalsA1 . . . An, each representing
the declared type of the variable on which the accept method is invoked. Ifn is not fixed,
we denote this using the notation from regular right part grammars, asA∗

i
. This is the

case for containers of objects which can be of arbitrary size. It is used for the Composite
Pattern.

For example, let us apply this mapping to the accept method ofclassB in Fig. 3. As
relevant information we obtainB (i), vB (ii), and the listA,D (iii). Hence, we define



the productionB → vBAD. For the other three classesC, D, E we obtainC → vC ,
D → vD, E → vE. Thus, the left-hand-side corresponds to the name of the class with
the accept method in question. The right-hand-side corresponds to the implementation
of the accept method, i.e., in which order the visit method and the accept methods of
other classes are invoked. The order of the other classes is represented by the order of
the grammar symbols that correspond to the declared types ofthe variables on which the
accept methods are invoked.

We can now define a grammar,Ga, that represents the language generated by the above
mapping of accept methods. LetNa be the set of all nonterminals existing inPa either on
the left-hand-side or right-hand-side and letTa be the set of all terminalsv on the right-
hand-side in any production inPa. Let the start symbol of our grammar be a nonterminal
corresponding to a class with an accept method,Sa.

Ga = (Na, Ta, Pa, Sa)

An interesting property of grammarGa is that it is in Greibach Normal Form [15]; this
form is often used as basis for formal proofs on grammars. Here it defines the set of
all visit-sequences that can be generated by calling the accept method of an object in an
object structure. In the next section we extend this grammarwith productions representing
the case that the Visitor is invoked on a variable with declared type of some abstract base
class.

2.2. Class Hierarchy

The classes of an object structure do not necessarily have tohave a common base class.
This is included in our running example in Fig. 2 with classD which is not part of the
class hierarchy of classesA, B, andC.

It remains to define the productions mapped from the class hierarchy, to complete the
grammar of the Visitor Language. Let the predicateis base class(A, B) hold, if class
A is a (direct) base class of classB and classA has an accept method declared. We define
the set of chain productions,Pc, for classes with an accept method of the (same) Visitor
as

Pc = {A → B | is base class(A, B), A ∈ C, B ∈ C}

For example, for our program in Fig. 2 we obtain as set of chainproductions for our
Visitor the set{A → B, A → C, D → E}. These productions correspond to the inheri-
tance in the class hierarchy where the accept method of the Visitor Pattern in question is
inherited.

2.3. Complete Grammar

The complete Grammar,G, is composed from the defined mapping of the accept methods
and the classes with an accept method in the class hierarchy.Let Nc be the set of all
nonterminals on any side of the productions inPc. Note thatPc has no productions with
terminals. Then we define the complete grammar as

G = (Na ∪ Nc, Ta, Pa ∪ Pc, Sc)

The set of nonterminals,N = Na ∪ Nc, consists of the union of nonterminals of the
productions generated from the relevant information in theaccept methods and classes



Relevant information of running example Mapped Productions

B::accept(...){ visitB(...)
data->accept(...); :data of typeA

info->accept(...);...} :info of typeD B → vBAD

C::accept(...){ visitC(...) C → vC

D::accept(...){ visitD(...) D → vD

E::accept(...){ visitE(...) E → vE

class A { accept(Visitor&); ...}
class B : public A { accept(Visitor&); ...} A → B

class C : public A { accept(Visitor&); ...} A → C

class D { accept(Visitor&)}; ...}
class E : public D { accept(Visitor&)}; ..} D → E

Figure 5: Table showing how the presented mapping is applied to the running
example. Only that information of the source code is shown th at is
relevant for mapping the Visitor to grammar G1. The first block of rows
in column two shows the productions for Pa of P1, the second block of
rows the productions for Pc of P1.

with accept methods of the class hierarchy. The terminals,Ta, are those defined in the
mapping of the accept methods only. The productions are, similar as the nonterminals,
the union ofPa andPc. The start symbol can be any nonterminal corresponding to a
class with an accept method to generate the set of visit sequences of the accept method
of that class. The set of productions as defined above, allowsto derive any possible visit
sequence by choosing the appropriate start symbol.

The grammar therefore only has two kinds of productions of the form

1. N0 → N1 (corresponds to inheritance)
2. N0 → vNN1 . . . Nn with n ≥ 0. (corresponds to accept methods)

which permits defining the language of a Visitor Design Pattern.

Eventually we show in Fig. 5 for our running example from Fig.2 and Fig. 3 how we
obtain the grammar presented in the introduction with the above definition. In the first
column only that portion of the source code is shown that is relevant for the mapping. It
is the accept methods, and the inheritance hierarchy for those classes. Note that classD
is a base class but also a concrete class in the object structure and therefore both kinds of
productions exist withD on the left-hand-side.

2.4. Readability and Direct Correspondence

The readability and direct correspondence to the implementation of the Visitor Pattern is
important such that the grammar can be used for documenting an existing Visitor. The
automatic grammar generation for an existing Visitor we shall discuss in the next section.
Here we shall highlight the expressiveness of our defined formal grammar.

The grammar has only two kinds of productions, chain productions and productions start-
ing with a terminal. Each kind represents exactly one property of the Visitor Pattern.

2.4.1. Chain Productions.

A chain production is of the formA → B whereA is a base class ofB. It represents
inheritance (with the arrow going into the opposite direction as in the UML notation for
class hierarchies). This production exists in the grammar because there exists an accept



void B::accept(Visitor& v) { v.preVisitB(this);
next->accept(v); data->accept(v);
v.postVisitB(this); }

Figure 6: Alternative implementation of a variation of the V isitor Pattern with the
accept method of class B with preVisit and postVisit methods .

method in classA and it is inherited byB. If multiple classes inherit fromA we have
multiple chain productions.

In particular,all is-a relationships that are relevant to the Visitor Patternare represented
by such chain rules. Note that this permits representing multiple inheritance as well.

2.4.2. Productions with a Terminal.

The second kind of productions is of the formA → vAA1 . . . An. The number of this kind
of productions is exactly the number of concrete classes that are relevant to the Visitor
Pattern. Such a production never represents inheritance; it can be understood as a has-a
relationship if we wish to have the object structure design in mind and the accept methods
always directly reflect that classA has members of typeA1 . . . An.

From such a production we know that there exists a concrete classA, that the visit method
vA is invoked in the accept method of classA, and that the traversal proceeds by traversing
objects of typeA1 to An, in the specified order. The order in which the visit and accept
methods are called is directly reflected in the order of the grammar symbols on the right-
hand-side of the production.

2.4.3. Language and Start Symbol of the Grammar.

Because the terminalvX directly corresponds to an invocation of a visit method, thelan-
guage generated by the grammar is the set of all traversals, or in other words, the set
of all sequences of invocations of the visit methods. A word of the language directly
corresponds to a traversal.

The start symbol of the grammar corresponds to the declared type of the variable that
holds the reference to the first object being traversed. Any nonterminal of the grammar
can be chosen as start symbol because every nonterminal on the left-hand-side directly
corresponds to a class of that name with an accept method.

2.5. Variations of the Classic Pattern

Variations of the Visitor Pattern can be represented as well. In a post-order traversal,vX is
the last grammar element on the right-hand-side. For an extension of the Visitor Pattern,
such as performing apreVisitX and apostVisitX, we have two (distinct) terminals
on the right-hand-side,vX andv′

X
.

The corresponding production to the alternative implementation as shown in Fig. 6 is

B → vBADv′

B

We shall discuss a concrete example of this variation from our own work in Section 3.1.
This variation of the Visitor Pattern is also utilized in [8]for computation of inherited
attributes (pre-visit) and synthesized attributes (post-visit).



Another variation of the classic Visitor Pattern is the use of null pointers and having
accept methods check whether a pointer is null. This fact canbe represented by making
the corresponding grammar symbol optional on the right-hand-side of a production.

If conditions are used to decide the order of the traversal, the language might actually be
context sensitive. For that case we suggest the use of attributes to specify the additional
constraints but this requires further investigation in future work.

3. Applications

In this section we show in which fields the presented approach, using a mapping from a
Visitor to a grammar, has already been applied in our own work. We also wish to make
clear that the mapping can be fully automated by using existing source-infrastructures
such as ROSE [16].

3.1. Grammar as Documentation of the Visitor Pattern

In ROSE we provide beside the classic Visitor also some variations of the Visitor Pattern
that have proven suitable for some advanced computations onthe AST. We give a short
example of the textual representation of the grammar that weuse in ROSE for document-
ing the Pre-Post AST Visitor, a Visitor that visits a node twice, in a pre order traversal
and a post order traversal (this variation of the classic pattern is also called before/after
Visitor). The grammar is generated following the mapping presented in Section 2 and
has been added to the ROSE reference manual. The entire classhierarchy of the ROSE
C++ AST consists of 246 classes. The above mentioned Visitoris designed to visit only
a subset of these, 171 in total. The information stored in non-visited nodes of the AST is
available via access functions, which can be considered as accessing pre-defined attributes
(such as type information, modifiers, etc.). Therefore a comprehensive and precise doc-
umentation of the Visitor is necessary – and the presented grammar has proven useful
for that purpose. The ROSE AST has one common base class and uses inheritance from
concrete classes.

In Fig. 7 we show a grammar fragment, generated as documentation for the ROSE Pre-
Post AST Visitor. The terminals of the grammar are the names of the visit methods, for
each node there are two visit methods, the preVisit and postVisit method. The prefix
“Sg” of class names is used for historical reasons, because the ROSE AST is based on
the Sage++ AST and “Sg” is an abbreviation for Sage. Note thatwe use the Kleene
star ’*’ for specifying an arbitrary number of SgStatement node visits after pre-visiting
a SgBlock node. Here the Kleene star actually represents an (internal) iteration on a
C++STL container.

For example, if a user wants to know what sequence of visit methods the Visitor can
perform when called on an AST object of typeSgScopeStatement, he can see that
SgScopeStatement is a virtual (abstract) class with a declared pure virtual accept
method. Other classes,SgBlock,SgIfStatement, etc. inherit because chain produc-
tions exist with nonterminalSgScopeStatement on the left-hand-side. ASgBlock
node is a concrete node because we have terminals representing preVisit and postVisit
on the right-hand-side of the production withSgBlock on the left-hand-side. In case of
inheritance from concrete classes, both kinds of productions exist with the same nonter-
minal on the left-hand-side.

3.2. Grammar-Based Interoperability of Tools

We briefly describe an application going towards the Grammarware discipline as de-
scribed in [14], based on our presented Visitor grammar. TheProgram Analysis Generator



SgStatement : SgScopeStatement
| SgDeclarationStatement
...
;

SgScopeStatement : SgBlock
| SgIfStatement
| SgForStatement
...
;

SgBlock : preVisitSgBlock
SgStatement*
postVisitSgBlock

;
SgIfStatement : preVisitSgIfStatement

SgStatement SgBlock SgBlock
postVisitSgIfStatement

;
...

Figure 7: Grammar fragment example from the generated Visit or documentation
in ROSE for the Pre-Post Visitor (also called before/after V isitor in the
literature).

(PAG) [17] requires an abstract grammar as input, so called syn files. The abstract gram-
mar specifies the Abstract Syntax Trees on which the generated program analyzer operates
on. When we integrated PAG into the C++ source-to-source infrastructure ROSE [16], we
first generated the documentation for the AST Visitor. Here the classic Visitor was of in-
terest. It travarsed the same subset of AST nodes as the abovementioned Pre-Post Visitor.
This grammar was also input to another tool, called GRATO, totransform the grammar,
by also pruning all control-flow related symbols, into another grammar, representing the
abstract grammar (without control-flow relevant information) as required by PAG. Hence,
the documentation of the Visitor also served as input formatfor generating an adapted
grammar, as required by another tool, PAG.

PAG is used to specify program analyses based on abstract interpretation, which we use
with ROSE for analyzing source code and detecting more advanced variations of Visitors
in existing source code. Therefore, we can automate the detection of the Visitor Pattern
and generate a grammar as presented, defining the Visitor Language. The details of the
abstraction aware analysis are beyond the scope of this paper.

4. Related Work

The visitor pattern has been intensively studied, mostly from the perspective of specifying
a traversal on an object structure and generating the implementation of the object structure
and a Visitor for performing the traversal. All those approaches incorporate the use of a
grammar at some point. The documentation generation for Design Patterns has also been
addressed in [11, 18]

Recently, the most general approach has been defined by Klintet al. in [14]. They propose
to incorporate the use of grammars at all levels in development and comprise grammar
and all grammar-dependent software in the so called discipline Grammarware. In this
discipline our presented grammar could be understood as a base-line grammar within the
grammar life-cycle. This is, also from our perspective, theideal case, to start with a gram-



mar, and by transforming and extending that grammar we can generate other components
of the software system. If the software already exists, and our approach is motivated by
that setting, we need to create a grammar from existing source code. The same authors
have also contributed in the field of semi-automatic grammarrecovery [19] but focus on
existing parsers and generating a concrete grammar.

A very general approach to the specification of traversals ispresented by Lieberherr et
al. in [5]. This approach supports structure-shy specification of traversals. Only those
aspects are specified as constraints that are considered relevant to the traversal and the
generator ensures that those constraints are met. This approach supports changes to the
object structure, which is a general problem of the Visitor Pattern. Our approach does not
attempt to contribute to the problem of changes to the objectstructure, our contribution
is in the field of generating documentation for Visitors and presenting a grammar that
can be automatically obtained from an existing Visitor implementation with our C++
infrastructure ROSE [16]. An approach for specifying recursive traversals is presented in
[6]. It is based on traversal specifications that allow specifying traversals that can revisit
the same node and also to dynamically control the behaviour of the traversal. In particular,
it also permits calling other traversals within a traversal. This permits combining different
traversals and abstractions of those. Visser has also contributed in this field by proposing
Visitor combination for similar reasons in [4]. This work has been developed into a full
framework, the JJTraveler [7], together with Arie van Deursen. In our approach we can
express that by combining different grammars into one grammar. For example, instead of
considering only one Visitor we can consider a set of Visitors and all their accept methods.
This gives us a single language for a set of combined Visitors.

An object-oriented view on attribute grammars that is similar to our grammar was already
presented by Koskimies [20] in 1991. He used two notions of nonterminals, so called
superclass nonterminals and basic nonterminals. The concept of superclass nonterminals
and the use of chain productions to express the inheritance relation is the same as in our
approach. But we do not use the concept of basic nonterminalsto specify the syntactic
composition of basic language constructs. In contrast, in our grammar only the invocation
of a visit method corresponds to a terminal. A basic nonterminal on the left-hand-side of
a production and the so called slots in [20] correspond in ourgrammar to productions
corresponding to implementations of accept methods. A similar approach was also dis-
cussed by Grosch in [21], where he shows how with object-oriented attribute grammars
common parts of a specification can be “factored out”. Some tools take the approach,
such as Alexey Demakov’s TreeDL and Etienne Gagnon’s SableCC, of using Visitors for
actions but letting you specify a tree structure with a grammar-like specification. These
tools generate a class for each node in the tree in order to ensure valid tree construction.
These approaches have in common that the grammar always requires being enriched with
additional information about the details of the generated code. Our contribution in this
paper is to provide a mapping to a grammar that is clean of any additional information but
still carries enough information such that the essential information of a mapped Visitor is
present. Our approach aims at using grammars as generated documentation for Visitors,
but with properties, such that they might be interesting to investigate Visitors also from a
language perspective.

An interesting combined approach that also shares several aspects with our mapping, is
the use of a JavaCC grammar in the Java Tree Builder (JTB), originally developed by Jens
Palsberg and Kevin Tao. A plain JavaCC grammar file serves as input to JTB, and from
that grammar an object-oriented AST and its creation duringparsing, following the design
in [13], is generated. It also includes the generation of twodifferent depth-first Visitors,
DepthFirstVisitor and GJDepthFirst. This provides a closerelationship to our mapping,



but in the opposite direction and with a different grammar design of the productions. It re-
quires that the class hierarchy has one single root class anddoes not use inheritance from
concrete classes. In the context of ASTs this is commonly considered a good design. Our
approach aims at being applicable to the documentation of Visitors that operate on arbi-
trary data structures. Therefore our grammar can also represent the language of Visitors
that are traversing across different class hierarchies, i.e. allowing to traverse Composite
Patterns, and also inheritance from concrete classes can berepresented. In particular, in
our grammar the traversal order is explicitly defined.

5. Conclusions

We have presented a mapping from the Visitor Design Pattern to a formal grammar. The
grammar is a context free grammar. The design of the grammar is such that it directly
reflects the essential aspect of the Visitor Pattern. It consists of two kinds of produc-
tions. The chain productions correspond to the relevant inheritance relationships of the
class hierarchy where accept methods of the Visitor Patternexist. The second kind of
productions represents the information, at which type of node a visit method exists (left-
hand-side) and in which order the remaining object structure is traversed from that node
type (right-hand-side).

The language generated by the grammar is the Visitor Language. Each visit method is
represented by one terminal in the grammar. A word of the language represents one
possible visit sequence. Thus, the set of all sequences of visit method invocations that a
Visitor Pattern can perform on an object structure, is the Visitor Language. Theessential
aspectof the Visitor Pattern is the set of such sequences that it defines for an object
structure. This essential aspect is represented by the Visitor Language.

Although it is well known that grammars can be used for engineering software systems,
as is also discussed in the context of recent Grammarware work in [14], the application
of design patterns is usually not understood as an implicit language definition. With
the presented mapping from the Visitor Design Pattern to a formal grammar we aim at
making this correspondence more obvious and easier to recognize, even for those that
usually do not use grammars. The grammar can be used to precisely document an existing
Visitor Design Pattern. This understanding may drag people, who are not used to using
grammars, towards Grammarware. Therefore, the readability of the grammar is one of
our main concerns.

This work is a contribution to understanding pattern designas language design, applied
to the classic Visitor Pattern which can be found in many libraries today. We believe
that a similar method can also be used for other Design Patterns, in particular those that
incorporate the use of other patterns in some systematic way.

For the claim “Library Design is Language Design”, and our adapted version, “Pattern
Design is Language Design”, we have presented a mapping fromthe Visitor Pattern to
a grammar that generates such a language. Our hope is that ourcontribution adds to a
broader acceptance of using grammars by software developers, beginning by using them
for documenting Visitors, and that it may permit to recognize, understand, and investigate
further the many languages that are implicitly defined in software systems.
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