
Reasoning Algebraically About P-Solvable Loops

Laura Kovács ?

EPFL, Switzerland
laura.kovacs@epfl.ch

Abstract. We present a method for generating polynomial invariants for a sub-
family of imperative loops operating on numbers, called the P-solvable loops. The
method uses algorithmic combinatorics and algebraic techniques. The approach
is shown to be complete for some special cases. By completeness we mean that
it generates a set of polynomial invariants from which, under additional assump-
tions, any polynomial invariant can be derived. These techniques are implemented
in a new software package Aligator written in Mathematica and successfully
tried on many programs implementing interesting algorithms working on num-
bers.

1 Introduction

This paper discusses an approach for automatically generating polynomial equations as
loop invariants by combining advanced techniques from algorithmic combinatorics and
polynomial algebra. Polynomial invariants found by an automatic analysis are useful
for program verification, as they provide non-trivial valid assertions about the program,
and thus significantly simplify the verification task. Finding valid polynomial identities
(i. e. invariants) has applications in many classical data flow analysis problems [21], e.
g., constant propagation, discovery of symbolic constants, discovery of loop induction
variables, etc.
Exploiting the symbolic manipulation capabilities of the computer algebra system Math-
ematica, the approach is implemented in a new software package called Aligator
[17]. By using several combinatorial packages developed at RISC, Aligator in-
cludes algorithms for solving special classes of recurrence relations (those that are
either Gosper-summable or C-finite) and generating polynomial dependencies among
algebraic exponential sequences. Using Aligator, a complete set of polynomial in-
variants is successfully generated for numerous imperative programs working on num-
bers [17]; some of these examples are presented in this paper.
The key steps of our method for invariant generation are as follows.

(i) Assignment statements from the loop body are extracted. They form a system of re-
currence equations describing the behavior of those loop variables that are chang-
ing at each loop iteration.

? The results presented here were obtained at the Research Institute for Symbolic Computation
(RISC), Linz, Austria. The work was supported by BMBWK (Austrian Ministry of Education,
Science, and Culture), BMWA (Austrian Ministry of Economy and Work) and MEC (Roma-
nian Ministry of Education and Research) in the frame of the e-Austria Timişoara project, and
by FWF (Austrian National Science Foundation) - SFB project F1302.

(ii) Methods of algorithmic combinatorics are used to solve exactly the recurrence
equations, yielding the closed form for each loop variable.

(iii) Algebraic dependencies among possible exponential sequences of algebraic num-
bers occurring in the closed forms of the loop variables are derived using algebraic
and combinatorial methods.
As a result of these steps, every program variable can be expressed as a polynomial
of the initial values of variables (those when the loop is entered), the loop counter,
and some new variables, where there are algebraic dependencies among the new
variables.

(iv) Loop counters are then eliminated by polynomial methods to derive a finite set
of polynomial identities among the program variables as invariants. From this fi-
nite set, under additional assumptions when the loop body contains conditionals
branches, any polynomial identity that is a loop invariant can be derived.

In our approach to invariant generation, a family of imperative loops, called P-solvable
(to stand for polynomial-solvable), is identified, for which test conditions in the loop
and conditional branches are ignored and the value of each program variable is ex-
pressed as a polynomial of the initial values of variables, loop counter, and some new
variables where there are algebraic dependencies among the new variables. We show
that for such loops, polynomial invariants can be automatically generated. Many non-
trivial algorithms working on numbers can be naturally implemented using P-solvable
loops.
Further, if the bodies of these loops consist only of assignments whose right hand sides
are polynomials of certain shape, then the approach generates a complete set of polyno-
mial invariants of the loop from which any other polynomial invariant can be obtained.
Moreover, if the P-solvable loop bodies contain conditional branches as well, under ad-
ditional assumptions the approach is proved to be also complete in generating a set of
polynomial invariants of the loop from which any further polynomial invariant can be
derived. We could not find any example of a P-solvable loop with conditional branches
and assignments for which our approach fails to be complete. We thus conjecture that
the imposed constraints cover a large class of imperative programs, and the complete-
ness proof of our approach without the additional assumptions is a challenging task for
further research.
The automatically obtained invariant assertions, together with the user-asserted non-
polynomial invariant properties, can be subsequently used for proving the partial cor-
rectness of programs by generating appropriate verification conditions as first-order
logical formulas. This verification process is supported in an imperative verification en-
vironment implemented in the Theorema system [2].
This paper extends our earlier experimental papers [18, 19] by the completeness and
correctness results of the invariant generation algorithm, and by a complete treatment
of the affine loops. We omit proofs, they can be found in [17].
The rest of the paper is organized as follows. Section 2 gives a brief overview on re-
lated work for invariant generation, followed by Section 3 containing the presentation
of some theoretical notions that are used further in the paper. In Section 4 we present
our method for polynomial invariant generation and illustrate the algorithm on concrete
examples. Section 5 concludes with some ideas for the future work.

2 Related Work

Research into methods for automatically generating loop invariants goes a long way,
starting with the works [8, 12]. However, success was somewhat limited for cases where
only few arithmetic operations (mainly additions) among program variables were in-
volved. Recently, due to the increased computing power of hardware, as well as ad-
vances in methods for symbolic manipulation and automated theorem proving, the
problem of automated invariant generation is once again getting considerable attention.
Particularly, using the abstract interpretation framework [4], many researchers [22, 25,
26, 11] have proposed methods for automatically computing polynomial invariant iden-
tities using polynomial ideal theoretic algorithms.
In [22, 26], the invariant generation problem is translated to a constraint solving prob-
lem. In [26], non-linear (algebraic) invariants are proposed as templates with parame-
ters; constraints on parameters are generated (by forward propagation) and solved using
the theory of ideals over polynomial rings. In [22], backward propagation is performed
for non-linear programs (programs with non-linear assignments) without branch condi-
tions, by computing a polynomial ideal that represents the weakest precondition for the
validity of a generic polynomial relation at the target program point. Both approaches
need to fix a priori the degree of a generic polynomial template being considered as an
invariant. This is also the case in [11] where a method for invariant generation using
quantifier-elimination [3] is proposed. A parameterized invariant formula at any given
control point is hypothesized and constraints on parameters are generated by consider-
ing all paths through that control point. Solutions of these constraints on parameters are
then used to substitute for parameters in a parameterized invariant formula to generate
invariants.
A related approach for polynomial invariant generation without any a priori bound on
the degree of polynomials is presented in [25]. It is observed that polynomial invariants
constitute an ideal. Thus, the problem of finding all polynomial invariants reduces to
computing a finite basis of the associated polynomial invariant ideal. This ideal is ap-
proximated using a fix-point procedure by computing iteratively the Gröbner bases of a
certain polynomial ideal. The fixed point procedure is shown to terminate when the list
of (conditional) assignments present in the loop constitutes a solvable mapping.
In our work we do not need to fix a priori the degree of a polynomial assertion, and
do not use the abstract interpretation framework either. Instead, recurrence relations ex-
pressing the value of each program variable at the end of any iteration are formulated
and solved exactly. Structural conditions are imposed on recurrence relations so that
their closed form solutions can be obtained by advanced symbolic summation tech-
niques. Since these closed form expressions can involve exponentials of algebraic num-
bers, algebraic dependencies among these exponentials need to be identified, which
can be done automatically, unlike [25], where polynomial dependencies could be de-
rived only for a special case of algebraic exponentials, namely, for rationals. Finally, for
eliminating the loop counter and the variables standing for the exponential sequences in
the loop counter from these closed form solutions expressed as polynomials, a Gröbner
basis computation is performed; however, we do not need to perform Gröbner basis
computations iteratively. Contrarily to [25] where completeness is always guaranteed,
the completeness of our method for loops with conditional branches and assignments

is proved only under additional assumptions over ideals of polynomial invariants. It is
worth to be mentioned though that these additional constraints cover a wide class of
loops, and we could not find any example for which the completeness of our approach
is violated.

3 Theoretical Preliminaries

This section contains some definitions and facts about linear recurrences, ideals and
algebraic dependencies. For additional details see [5, 7].
In what follows, N, Z, Q, R denote respectively the set of natural, integer, rational and
real numbers. Throughout this paper we assume that K is a field of characteristic zero
(e.g. Q, R, etc.) and denote by K̄ its algebraic closure. All rings are commutative.

DEFINITION 3.1 Sequences and Recurrences.

– A univariate sequence in K is a function f : N → K. By f(n) we denote both the
value of f at the point n and the whole sequence f itself.

– A recurrence for a sequence f(n) is

f(n + r) = R(f(n), f(n + 1), . . . , f(n + r − 1), n) (n ∈ N),

for some function R : Kr+1 → K, where r is a natural number, called the order of
the recurrence.

The recurrence equation of f(n) allows the computation of f(n) for any n ∈ N: first
the previous values f(1), . . . , f(n − 1) are determined, and then f(n) is obtained. A
solution to the recurrence would be thus more suitable for getting the value of f(n) for
any n as a function of the recurrence index n. That is a closed form solution of f(n).
Since finding closed form expressions of recurrences in the general case is undecidable,
it is necessary to distinguish among the type of recurrence equations. In what follows,
several classes of recurrences will be briefly presented together with the algorithmic
methods for solving them.

DEFINITION 3.2 Gosper-summable and C-finite Recurrences [9, 28].

1. A Gosper-summable recurrence f(n) in K is a recurrence

f(n + 1) = f(n) + h(n + 1) (n ∈ N), (1)

where h(n) is a hypergeometric sequence in K. Namely, h(n) can be a product
of factorials, binomials, rational-function terms and exponential expressions in the
summation variable n (all these factors can be raised to an integer power).

2. A C-finite recurrence f(n) in K is a (homogeneous) linear recurrence with constant
coefficients

f(n + r) = a0f(n) + a1f(n + 1) + . . . + ar−1f(n + r − 1) (n ∈ N), (2)

where r ∈ N is the order of the recurrence, and a0, . . . , ar−1 are constants from
K with a0 6= 0. By writing xi for each f(n + i), i = 0, . . . , r, the corresponding
characteristic polynomial c(x) of f(n) is

c(x) = xr − a0 − a1x− · · · − ar−1x
r−1.

Computation of Closed Forms.
(i) The closed-form solution of a Gosper-summable recurrence can be exactly computed
[9]; for doing so, we use the recurrence solving package zb [23], implemented in Math-
ematica by the RISC Combinatorics group. For example, given the Gosper-summable
recurrence f(n + 1) = f(n) + 1

2n+1 , n ≥ 0, with the initial value f(0), we obtain its
closed form f(n) = f(0) + 2− 2 ∗ 2−n.
(ii) A crucial and elementary fact about a C-finite recurrence f(n) in K is that it always
admits a closed form solution [7]. Its closed form is

f(n) = p1(n)θn
1 + · · ·+ ps(n)θn

s , (3)

where θ1, . . . , θs ∈ K̄ are the distinct roots of the characteristic polynomial of f(n),
and pi(n) is a polynomial in n whose degree is less than the multiplicity of the root
θi, i = 1, . . . , s. The closed form (3) of f(n) is called a C-finite expression.
An additional nice property of C-finite recurrences is that an inhomogeneous linear
recurrence with constant coefficients

f(n + r) = a0f(n) + a1f(n + 1) + · · ·+ ar−1f(n + r − 1) + g(n) (n ∈ N),

where a0, . . . , ar−1 ∈ K and g(n) 6= 0 is a C-finite expression in n, can always be trans-
formed into an equivalent (homogenous) C-finite recurrence. Hence, its closed form can
always be computed.
For obtaining the closed form solutions of (C-finite) linear recurrences we use the
SumCracker package [13], a Mathematica implementation by the RISC Combina-
torics group. For example, given the linear recurrence f(n+1) = 1

2 ∗f(n)+1, n ≥ 0,
with initial value f(0), we obtain its closed form f(n) = 1

2n ∗ f(0)− 2
2n + 2.

In this paper we consider the ring K[x1, . . . , xm] of polynomials in the loop variables
x1, . . . , xm with coefficients in K, and perform operations over ideals of K[x1, . . . , xm].
Thus, it is necessary for our approach to effectively compute with ideals. This is pos-
sible by using Buchberger’s algorithm for Gröbner basis computation [1]. A Gröbner
basis is a basis for an ideal with special properties making possible to answer algo-
rithmically questions about ideals, such as ideal membership of a polynomial, equality
and inclusion of ideals, etc. A detailed presentation of the Gröbner bases theory can be
found in [1].

DEFINITION 3.3 Algebraic Dependencies among Exponential Sequences [14].
Let θ1, . . . , θs ∈ K̄ be algebraic numbers, and their corresponding exponential se-
quences θn

1 , . . . , θn
s , n ∈ N.

An algebraic dependency (or algebraic relation) of these sequences over K̄ is a poly-
nomial p ∈ K̄[x1, . . . , xs] in s distinct variables x1, . . . , xs, i.e. in as many distinct
variables as exponential sequences, such that p vanishes when variables are substituted
by the exponential sequences, namely:

p(θn
1 , . . . , θn

s) = 0, ∀n ∈ N. (4)

Note that the multiplicative relations among θ1, . . . , θs imply corresponding relations
among θn

1 , . . . , θn
s . Further, by results of [14], the ideal I(θn

1 , . . . , θn
s) of algebraic de-

pendencies among the sequences θn
1 , . . . , θn

s is the same as the ideal I(n, θn
1 , . . . , θn

s).

For automatically determining the ideal I(n, θn
1 , . . . , θn

s) of algebraic dependencies
among θn

1 , . . . , θn
s we use the Dependencies package [14] implemented in Math-

ematica by the RISC combinatorics group. For example, θ2n
1 − θn

2 = 0 is an algebraic
dependency among the exponential sequences of θ1 = 2 and θ2 = 4 and there is no
algebraic dependency among the exponential sequences of θ1 = 2 and θ2 = 3.

4 Generation of Invariant Polynomial Identities

As observed already by [25], the set of polynomial invariants forms a polynomial ideal.
The challenging task is thus to determine the polynomial invariant ideal.
The algorithm for polynomial invariant generation presented in this paper combines
computer algebra and algorithmic combinatorics in such a way that at the end of the
invariant generation process valid polynomial assertions of a P-solvable loop are auto-
matically obtained. Moreover, under additional assumptions for loops with conditional
branches, our approach is proved to be complete: it returns a basis for the polynomial
invariant ideal.
In our approach for generating polynomial invariants, test conditions in the loops and
conditionals are ignored. This turns the considered loops into non-deterministic pro-
gram fragment.
For any conditional statement If[b Then S1 Else S2], where S1 and S2 are se-
quences of assignments, we will omit the boolean condition b and write it in the form
If[. . . Then S1 Else S2] to mean the non-deterministic program S1|S2. Likewise, we
omit the condition b from a loop While[b, S], where S is a sequence of assignments,
and will write it in the form

While[. . . , S] (5)

to mean the non-deterministic program S∗. A detailed presentation of the syntax and
semantics of considered non-deterministic programs can be found in [17].
Ignoring the tests in the conditional branches means that either branch is executed in
every possible way, whereas ignoring the test condition of the loop means the loop is
executed arbitrarily many nonzero times. We will refer to the loop obtained in this way
by dropping the loop condition and all test conditions also as a P-solvable loop. In the
rest of this paper we will focus on non-deterministic P-solvable loops with assignments
and conditional branches with ignored conditions, written as below.

While[. . . ,If[. . . Then S1]; . . . ;If[. . . Then Sk]]. (6)

The definition of P-solvable loops is available in our earlier conference papers [18, 19].
Informally, an imperative loop is P-solvable if the closed form solution of the loop
variables are polynomials of the initial values of variables, the loop counter, and some
new variables, where there are algebraic dependencies among the new variables. The
class of P-solvable loops includes the simple situations when the expressions in the
assignment statements are affine mappings, as stated below.

THEOREM 4.1 Affine loops are P-solvable.

Our experience shows that most practical examples operating on numbers exhibit the
P-solvable loop property. Thus, the class of P-solvable loops covers at least a significant
part of practical programming.

P-solvable Loops with Assignments Only. We denote by n ∈ N the loop counter,
by X = {x1, . . . , xm} (m > 1) the recursively changed loop variables whose initial
values (before entering the loop) are denoted by X0. Our method for automatically de-
riving a basis of the polynomial invariant ideal for P-solvable loops with assignments
only is presented in Algorithm 4.1.
Algorithm 4.1 “receives” as input a P-solvable loop with assignments only (k = 1
in (6)), and starts first with extracting and solving the recurrence equations of the loop
variables. The closed forms of the variables are thus determined (steps 1-3 of Algorithm
4.1). Next, it computes the set A of generators for the ideal of algebraic dependencies
among the exponential sequences from the closed form system (step 4 of Algorithm
4.1). Finally, from the ideal I generated by the polynomial system of closed forms and
A, the ideal G of all polynomial relations among the loop variables is computed by
elimination using Gröbner basis w.r.t. a suitable elimination order (steps 5-7 of Algo-
rithm 4.1).

Algorithm 4.1 P-solvable Loops with Assignments Only
Input: Imperative P-solvable loop (5) with only assignment statements S, having its
recursively changed variables X = {x1, . . . , xm} with initial values X0

Output: The ideal G E K[X] of polynomial invariants among X
Assumption: The recurrence equations of X are of order at least 1, n ∈ N

1 Extract the recurrence equations of the loop variables

I. Recurrence Solving.

2 Identify the type of recurrences and solve them by the methods from page 5
3 Using the P-solvable loop property, the closed form system is

x1[n] = q1(n, θn
1 , . . . , θn

s)
...
xm[n] = qm(n, θn

1 , . . . , θn
s)

, where
θj ∈ K̄, qi ∈ K̄[n, θn

1 , . . . , θn
s],

qi are parameterized by X0,
j = 1, . . . , s, i = 1, . . . ,m

4 Compute a basis A for the ideal of algebraic dependencies among n, θn
1 , . . . , θn

s .

Conform page 5, 〈A〉 = I(n, θn
1 , . . . , θn

s)

5 Denote z0 = n, z1 = θn
1 , . . . , zs = θn

s . Thus 〈A〉E K̄[z0, . . . , zs] and
x1 = q1(z0, z1, . . . , zs)
...
xm = qm(z0, z1, . . . , zs)

, where
qi ∈ K̄[z0, z1, . . . , zs], i = 1, . . . ,m,
qi are parameterized by X0.

II. Polynomial Invariant Generation.

6 Consider I = 〈x1 − q1(z0, . . . , zs), . . . , xm − qm(z0, . . . , zs)〉+ 〈A〉.

Thus I ⊂ K̄[z0, z1, . . . , zs, x1, . . . , xm]

7 return G = I ∩K[x1, . . . , xm].

THEOREM 4.2 Algorithm 4.1 is correct. Its output G satisfies

1. G E K[x1, . . . , xm];
2. every polynomial relation from G is a polynomial invariant among the P-solvable

loop variables x1, . . . , xm over K[X];
3. any polynomial invariant among the P-solvable loop variables x1, . . . , xm over

K[X] can be derived from (the generators of) G.

The restrictions at the various steps of Algorithm 4.1 are crucial. If the recurrences
cannot be solved exactly, or their closed forms do not fulfill the P-solvable form, our
algorithm fails in generating valid polynomial relations among the loop variables. Thus,
Algorithm 4.1 can be applied only to P-solvable loops whose assignment statements
describe either Gosper-summable or C-finite recurrences.

EXAMPLE 4.3 Given the loop

While[. . . , a := a + b; y := y + d/2; b := b/2; d := d/2],

its polynomial invariants, by applying Algorithm 4.1 and using Aligator, are ob-
tained as follows.

Step 1:
a[n + 1] = a[n] + b[n]
y[n + 1] = y[n] + d[n]/2
b[n + 1] = b[n]/2
d[n + 1] = d[n]/2

Steps 2,3:
a[n] =

Gosper
a[0] + 2 ∗ b[0]− 2 ∗ b[0] ∗ 2−n

b[n] =
C−finite

b[0] ∗ 2−n

d[n] =
C−finite

d[0] ∗ 2−n

y[n] =
Gosper

y[0] + d[0]− d[0] ∗ 2−n

where a[0], b[0], d[0], y[0] denote the initial values of a, b, d, y before the loop.
Steps 4, 5: z1 = 2−n, z2 = 2−n, z3 = 2−n, z4 = 2−n

a = a[0] + 2 ∗ b[0]− 2 ∗ b[0] ∗ z1

b = b[0] ∗ z2

d = d[0] ∗ z3

y = y[0] + d[0]− d[0] ∗ z4

with

algebraic dependencies: z1 − z4 = 0
z2 − z4 = 0
z3 − z4 = 0

Steps 6, 7: The Gröbner basis computation with z1 � z2 � z3 � z4 � a � b � d � y
yields:
G = 〈d + y − d[0]− y[0], y b[0] + b d[0]− b[0]d[0]− b[0]y[0], a + 2b− a[0]− 2b[0]〉.
Based on Theorems 4.1 and 4.2, we finally state the theorem below.

THEOREM 4.4 The ideal of polynomial invariants for an affine loop is algorithmically
computable by Algorithm 4.1.

P-solvable Loops with Conditionals and Assignments. We consider a generalization
of Algorithm 4.1. for P-solvable loops with conditional branches and assignments.
The starting point of our approach is to do first program transformations (see Theo-
rem 4.5). Namely, transform the P-solvable loop with conditional branches, i.e. outer
loop, into nested P-solvable loops with assignments only, i.e. inner loops. Further, we
apply steps of Algorithm 4.1 to reason about the inner loops such that at the end we
derive polynomial invariants of the outer loop. Moreover, under the additional assump-
tions introduced in Theorem 4.12, we prove that our approach is complete. Namely, it
returns a basis for the polynomial invariant ideal for some special cases of P-solvable
loops with conditional branches and assignments. It is worth to be mentioned that the
imposed assumptions cover a wide class of imperative programs (see [17] for concrete
examples). Moreover, we could not yet find any example of a P-solvable loop for which
the completeness of our approach is violated.

THEOREM 4.5 Let us consider the following two loops:

While[b, s0;If[b1 Then s1 Else . . . If[bk−1 Then sk−1 Else sk]. . .]; sk+1] (7)

and
While[b,
While[b ∧ b′1, s0; s1; sk+1];
. . .
While[b ∧ ¬b′1 ∧ · · · ∧ ¬b′k−1, s0; sk; sk+1]],

(8)

where s0, s1, . . . , sk, sk+1 are sequences of assignments, and b′i = wp(s0, bi) is the
weakest precondition of s0 with postcondition bi, i = 1, . . . , k − 1.
Then any formula I is an invariant of the first loop if and only if it is an invariant of the
second loop and all of its inner loops.

Since in our approach for invariant generation tests are ignored in the loop and con-
ditional branches, the loop (7) can be equivalently written as (6), by denoting Si =
s0; si; sk+1. Further, using our notation for basic non-deterministic programs men-
tioned on page 6, the outer loop (8) can be written as (S1|S2| . . . |Sk)∗. Based on
Theorem 4.5, an imperative loop having k ≥ 1 conditional branches and assignment
statements only is called P-solvable if the inner loops obtained after performing the
transformation rule from Theorem 4.5 are P-solvable.

EXAMPLE 4.6 Consider the loop implementing Wensley’s algorithm for real division
[27].

While[(d ≥ Tol),
If[(P < a + b)
Then b := b/2; d := d/2
Else a := a + b; y := y + d/2; b := b/2; d := d/2]].

(9)

After applying Theorem 4.5 and omitting all test conditions, the obtained nested loop
system is as follows.

While[. . . ,
S1 : While[. . . , b := b/2; d := d/2];
S2 : While[. . . , a := a + b; y := y + d/2; b := b/2; d := d/2]].

What remains is to determine the relation between the polynomial invariants of the P-
solvable loop (7) and the polynomial identities of the inner loops from (8). For doing
so, the main steps of our algorithm are as follows.

(i) Firstly, we determine the ideal of polynomial relations for an arbitrary iteration of
the outer loop (8) (see Theorem 4.8).

(ii) Finally, from the ideal of polynomial relations after the first iteration of the outer
loop (8), we keep only the polynomial invariants for the P-solvable loop (7) (see
Theorem 4.10).
Moreover, under the additional assumptions of Theorem 4.12, the polynomial in-
variants thus obtained form a basis for the polynomial invariant ideal of the P-
solvable loop (7).

In more detail, we proceed as follows.
(i) In the general case of a P-solvable loop (7) with a nested conditional statement
having k ≥ 1 conditional branches, by applying Theorem 4.5, we obtain an outer loop
(8) with k P-solvable inner loops S1, . . . , Sk. Thus an arbitrary iteration of the outer
loop is described by an arbitrary sequence of the k P-solvable loops. Since the tests
are ignored, for any iteration of the outer loop we have k! possible sequences of inner
P-solvable loops.
Let us denote the set of permutations of length k over {1, . . . , k} by Sk. Consider a
permutation W = (w1, . . . , wk) ∈ Sk and a sequence of numbers J = {j1, . . . , jk} ∈
Nk. Then we write SJ

W = Sj1
w1

;Sj2
w2

; . . . ;Sjk
wk

to denote an arbitrary iteration of the
outer loop, i.e. an arbitrary sequence of the k inner loops. By Sj

i we mean the sequence
of assignments Si; . . . ;Si︸ ︷︷ ︸

j times

.

Using steps 1-4 of Algorithm 4.1, for each P-solvable inner loop Sji
wi

from SJ
W we

obtain their system of closed forms together with their ideal of algebraic dependencies
among the exponential sequences (steps 1-4 of Algorithm 4.2). Further, the system of
closed forms of loop variables after SJ

W is obtained by merging the closed forms of its
inner loops. Merging is based on the fact that the initial values of the loop variables
corresponding to the inner loop S

ji+1
wi+1 are given by the final values of the loop variables

after Sji
wi

(step 5 of Algorithm 4.2). In [17] we showed that merging of closed forms of
P-solvable inner loops yields a polynomial closed form system as well.
We can now compute the ideal of valid polynomial relations among the loop variables
X with initial values X0 corresponding to the sequence of assignments Sw1 ; . . . ;Sw1︸ ︷︷ ︸

j1 times

;

Sw2 ; . . . ;Sw2︸ ︷︷ ︸
j2 times

; ;Swk
; . . . ;Swk︸ ︷︷ ︸
jk times

. Using notation introduced on page 6, we thus

compute the ideal of valid polynomial relations after S∗
w1

; . . . ;S∗
wk

. This is presented
in Algorithm 4.2.

Algorithm 4.2 Polynomial Relations of a P-solvable Loop Sequence
Input: k P-solvable inner loops Sw1 , . . . , Swk

Output: The ideal G E K[X] of polynomial relations among X with initial values
X0 after S∗

w1
; . . . ;S∗

wk

Assumption: Swi
are sequences of assignments, wi ∈ {1, . . . , k}, ji ∈ N, k ≥ 1

1 for each Sji
wi

, i = 1, . . . , k do
2 Apply steps 1-3 of Algorithm 4.1 for determining the closed form of Sji

wi

3 Compute the ideal Awi
of algebraic dependencies for Sji

wi

4 endfor
5 Compute the merged closed form of Sj1

w1
; . . . ;Sjk

wk
:

x1[j1, . . . , jk] = f1(j1, θ
j1
w11

, . . . , θj1
w1s, , jk, θjk

wk1, . . . , θ
jk
wks)

...
xm[j1, . . . , jk] = fm(j1, θ

j1
w11

, . . . , θj1
w1s, , jk, θjk

wk1, . . . , θ
jk
wks)

, where

fl ∈ K̄[z10, . . . , z1s, , zk0, . . . , zks],

the variables zi0, . . . , zis are standing for the C-finite sequences ji, θ
ji
wi1

, . . . , θji
wis,

the coefficients of fl are given by the initial values before Sj1
w1 ; . . . ; S

jk
wk

6 A∗ =
k∑

i=1

Awi

7 I = 〈x1 − f1, . . . , xm − fm〉+ A∗ ⊂ K̄[z10, , zks, x1, . . . , xm]
8 return G = I ∩K[x1, . . . , xm].

Elimination of z10, . . . , zks at step 8 is performed by Gröbner basis computation of I
w.r.t. an elimination order � such that z10 � · · · · · · � zks � x1 · · · � xm.

EXAMPLE 4.7 For Example 4.6, the steps of Algorithm 4.2 are presented below.
Steps 1-4. Similarly to Example 4.3, the closed form systems of the inner loops S1 and
S2 are as follows.

Inner loop S1: Inner loop S2:
j1 ∈ N j2 ∈ N
z11 = 2−j1 , z12 = 2−j1 z21 = 2−j2 , z22 = 2−j2 , z23 = 2−j2 , z24 = 2−j2

a[j1] = a[01]
b[j1] =

C−finite
b[01] ∗ z11

d[j1] =
C−finite

d[01] ∗ z12

y[j1] = y[01]

a[j2] =

Gosper
a[02] + 2 ∗ b[02]− 2 ∗ b[02] ∗ z21

b[j2] =
C−finite

b[02] ∗ z22

d[j2] =
C−finite

d[02] ∗ z23

y[j2] =
Gosper

y[02] + d[02]− d[02] ∗ z24,

with the computed algebraic dependencies

{
z11 − z12 = 0 and

 z21 − z24 = 0
z22 − z24 = 0
z23 − z24 = 0,

where X01 = {a[01], b[01], d[01], y[01]} and X02 = {a[02], b[02], d[02], y[02]} are re-
spectively the initial values of a, b, d, y before entering the inner loops S1 and S2.
Steps 5-6. For the inner loop sequence Sj1

1 ;Sj
2 the initial values X02 are given by the

values a[j1], b[j1], d[j1], y[j1] after Sj1
1 . Hence, the merged closed form of Sj1

1 ;Sj2
2

is given below. For simplicity, let us rename the initial values X01 to respectively

X0 = {a[0], b[0], d[0], y[0]}.
a[j1, j2] = a[0] + 2 ∗ b[0] ∗ z11 − 2b[0] ∗ z21 ∗ z11

b[j1, j2] = b[0] ∗ z22 ∗ z11

d[j1, j2] = d[0] ∗ z12 ∗ z23

y[j1, j2] = y[0] + d[0] ∗ z12 − d[0] ∗ z24 ∗ z12,

(10)

with the already computed algebraic dependencies

A∗ = 〈z11 − z12, z21 − z24, z22 − z24, z23 − z24〉. (11)

Steps 7, 8. From (10) and (11), by eliminating z11, z12, z21, z22, z23, z24, we obtain the
ideal of polynomial relations for Sj1

1 ;Sj2
2 , as below.

G = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

In order to get all polynomial relations among the loop variables X with initial val-
ues X0 corresponding to an arbitrary iteration of the outer loop (8), we need to apply
Algorithm 4.2 on each possible sequence of k inner loops that are in a number of k!.
This way, for each sequence of k inner loops we get the ideal of their polynomial re-
lations among the loop variables X with initial values X0 (step 3 of Algorithm 4.3).
Using ideal theoretic results, by taking the intersection of all these ideals, we derive
the ideal of polynomial relations among the loop variables X with initial values X0

that are valid after any sequence of k P-solvable inner loops (step 4 of Algorithm 4.3).
The intersection ideal thus obtained is the ideal of polynomial relations among the loop
variables X with initial values X0 after an arbitrary iteration of the outer loop (8). This
can be algorithmically computed as follows.

Algorithm 4.3 Polynomial Relations for an Iteration of (8)
Input: P-solvable loop (8) with P-solvable inner loops S1, . . . , Sk

Output: The ideal PI ⊂ K[X] of the polynomial relations among X with initial
values X0 corresponding to an arbitrary iteration of (8)
Assumption: X0 are the initial values of X before the arbitrary iteration of (8)

1 PI = Algorithm 4.2
(
S1, . . . , Sk

)
2 for each W ∈ Sk \ {(1, . . . , k)} do
3 G = Algorithm 4.2

(
Sw1 , . . . , Swk

)
4 PI = PI ∩ G
5 endfor
6 return PI.

THEOREM 4.8 Algorithm 4.3 is correct. It returns the generators for the ideal PI of
polynomial relations among the loop variables X with initial values X0 after a possible
iteration of the outer loop (8).

EXAMPLE 4.9 Similarly to Example 4.7, we compute the ideal of polynomial relations
for Sj2

2 ;Sj1
1 for Example 4.6. Further, we take the intersection of the ideals of polyno-

mial relations for Sj1
1 ;Sj2

2 and Sj2
2 ;Sj1

1 . We thus obtain

PI = 〈 −b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]〉.

(ii) What remains is to identify the relationship between the polynomial invariants
among the loop variables X of the outer loop and the computed polynomial relations
using Algorithm 4.3 for an arbitrary iteration of the outer loop. For doing so, we pro-
ceed as follows.

1. Note that the initial values X0 of the loop variables X at the entry point of the outer
loop are also the initial values of the loop variables X before the first iteration of the
outer loop (8). We thus firstly compute by Algorithm 4.3 the ideal of all polynomial
relations among the loop variables X with initial values X0 corresponding to the
first iteration of the outer loop (8). We denote this ideal by PI1.

2. Next, from (the generators of) PI1 we keep only the set GI of polynomial relations
that are invariants among the loop variables X with initial values X0: they are
preserved by any iteration of the outer loop (8) starting in a state in which the
initial values of the loop variables X are X0. By correctness of Theorem 4.5, the
polynomials from GI thus obtained are invariants among the loop variables X with
initial values X0 of the P-solvable loop (7) (see Theorem 4.10).

Finally, we can now formulate our algorithm for polynomial invariant generation for
P-solvable loops with conditional branches and assignments.

Algorithm 4.4 P-solvable Loops with Non-deterministic Conditionals
Input: P-solvable loop (7) with k ≥ 1 conditional branches and assignments
Output: Polynomial invariants of (7) among X with initial values X0

1 Apply Theorem 4.5, yielding a nested loop (8) with k P-solvable inner loops
S1, . . . , Sk

2 Apply Algorithm 4.3 for computing the ideal PI1 of polynomial relations
among X after the first iteration of the outer loop (8)

3 From PI1 keep the set GI of those polynomials whose conjunction is pre-
served by each S1, . . . , Sk:

GI = {p ∈ PI1 | wp(Si, p(X) = 0) ∈ 〈GI〉, i = 1, . . . , k} ⊂ PI1, where
wp(Si, p(X) = 0) is the weakest precondition of Si with postcondition p(X) = 0

4 return GI .

THEOREM 4.10 Algorithm 4.4 is correct. It returns polynomial invariants among the
loop variables X with initial values X0 of the P-solvable loop (7).

EXAMPLE 4.11 From Example 4.9 we already have the set PI1 for Example 4.6. By
applying step 3 of Algorithm 4.4, the set of polynomial invariants for Example 4.6 is

GI = {b[0] ∗ d + b ∗ d[0], a ∗ d[0]− a[0] ∗ d[0]− 2 ∗ b[0] ∗ y + 2 ∗ b[0] ∗ y[0],
a ∗ d− a[0] ∗ d− 2 ∗ b ∗ y + 2 ∗ b ∗ y[0]}.

In what follows, we state under which additional assumptions Algorithm 4.4 returns a
basis of the polynomial invariant ideal. We fix some further notation.
– J∗ the polynomial invariant ideal among X with initial values X0 of the P-solvable

loop (7).
– JW denotes the ideal of polynomial relations among X with initial values X0 after
SJ

W .
– For all i = 1, . . . , k and j ∈ N, we denote by JW,i the ideal of polynomial relations
among X with initial values X0 after SJ

W ;Sj
i .

For proving completeness of our method, we impose structural conditions on the ideal
of polynomial relations among X with initial values X0 corresponding to sequences of
k and k + 1 inner loops, as presented below.

THEOREM 4.12 Let ak =
⋂

W∈Sk

JW , ak+1 =
⋂

W∈Sk
i=1,...,k

JW,i. Let GI be as in Algo-

rithm 4.4.

1. If ak = ak+1 then J∗ = ak.
2. If 〈GI〉 = ak ∩ ak+1 then J∗ = ak ∩ ak+1.
3. If 〈GI〉 = ak then J∗ = ak.

EXAMPLE 4.13 From Examples 4.9 and 4.11 we obtain GI = PI1. By Theorem 4.12
we thus derive GI = J∗, yielding the completeness of Algorithm 4.4 for Example 4.6.

Further Examples. We have successfully tested our method on a number of interesting
number theoretic examples [17], some of them being listed in the table below. The first
column of the table contains the name of the example, the second and third columns
specify the applied combinatorial methods and the number of generated polynomial
invariants for the corresponding example, whereas the fourth column shows the timing
(in seconds) needed by the implementation on a Pentium 4, 1.6GHz processor with 512
Mb RAM. The fifth columns shows whether our method was complete.

5 Conclusion

A framework for generating loop invariants for a family of imperative programs operat-
ing on numbers. We give several methods for invariant generation and prove a number
of new results showing soundness, and also sometimes completeness of these methods.
These results use non-trivial mathematics based on combining combinatorics, algebraic
relations and logic. Moreover, the framework is implemented as a Mathematica pack-
age, called Aligator, and used further for imperative program verification in the
Theorema system. A collection of examples successfully worked out using the frame-
work is presented in [17].
So far, the focus has been on generating polynomial equations as loop invariants. We
believe that it should be possible to identify and generate polynomial inequalities in
addition to polynomial equations, as invariants as well. We have been investigating the
manipulation of pre- and postconditions, and other annotations of programs, if avail-
able, along with conditions in loops and conditional statements, as well as the simple
fact that no loop is executed less than 0 times. Quantifier elimination methods on theo-
ries, including the theory of real closed fields, should be helpful. We are also interested
in generalizing the framework to programs on nonnumeric data structures.

Example Comb. Methods Nr.Poly. (sec) Compl.
P-solvable loops with assignments only

Division [6] Gosper 1 0.08 yes
Integer square root [15] Gosper 2 0.09 yes
Integer square root [16] Gosper 2 0.09 yes
Integer cubic root [16] Gosper 2 0.15 yes
Fibonacci [17] Generating functions, Alg.Dependencies 1 0.73 yes
Sum of powers n5 [24] Gosper 1 0.07 yes

P-solvable loops with conditional branches and assignments
Wensley’s Algorithm [27] Gosper, C-finite, Alg.Dependencies 2 0.48 yes
LCM-GCD computation [6] Gosper 1 0.33 yes
Extended GCD [16] Gosper 5 2.65 yes
Fermat’s factorization [16] Gosper 1 0.32 yes
Square root [29] Gosper, C-finite, Alg.Dependencies 1 1.28 yes
Binary Product [16] Gosper, C-finite, Alg.Dependencies 1 0.47 yes
Binary Product [25] Gosper, C-finite, Alg.Dependencies 1 9.6 yes
Binary Division [10]
1st Loop C-finite, Alg. Dependencies 2 0.10 yes
2nd Loop C-finite, Gosper, Alg.Dependencies 1 0.72 yes
Square root [6]
1st Loop C-finite, Alg. Dependencies 2 0.15 yes
2nd Loop Gosper, C-finite, Alg. Dependencies 1 8.7 yes
Hardware Integer Division [20]
1st Loop C-finite, Alg. Dependencies 3 0.19 yes
2nd Loop Gosper, C-finite, Alg.Dependencies 3 0.64 yes
Hardware Integer Division [26]
1st Loop C-finite, Alg. Dependencies 3 0.17 yes
2nd Loop Gosper, C-finite, Alg.Dependencies 3 0.81 yes
Factoring Large Numbers [16] C-finite, Gosper 1 14.4 yes

Acknowledgements. The author wishes to thank Tudor Jebelean, Andrei Voronkov,
Deepak Kapur and Manuel Kauers for their help and comments.

References

1. B. Buchberger. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In
Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimen-
sional Systems, pages 184–232, 1985.

2. B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi,
N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards Computer-
Aided Mathematical Theory Exploration. Journal of Applied Logic, 4(4):470–504, 2006.

3. G. E. Collins. Quantifier Elimination for the Elementary Theory of Real Closed Fields by
Cylindrical Algebraic Decomposition. LNCS, 33:134–183, 1975.

4. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables of a
Program. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 84–97, 1978.

5. D. Cox, J. Little, and D. O’Shea. Ideal, Varieties, and Algorithms. An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra. Springer, 2nd edition, 1998.

6. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
7. G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Sequences, volume

104 of Mathematical Surveys and Monographs. American Mathematical Society, 2003.
8. S. M. German and B. Wegbreit. A Synthesizer of Inductive Assertions. In IEEE Transactions

on Software Engineering, volume 1, pages 68–75, 1975.
9. R. W. Gosper. Decision Procedures for Indefinite Hypergeometric Summation. Journal of

Symbolic Computation, 75:40–42, 1978.

10. A. Kaldewaij. Programming. The Derivation of Algorithms. Prentince-Hall, 1990.
11. D. Kapur. A Quantifier Elimination based Heuristic for Automatically Generating Inductive

Assertions for Programs. Journal of Systems Science and Complexity, 19(3):307–330, 2006.
12. M. Karr. Affine Relationships Among Variables of Programs. Acta Informatica, 6:133–151,

1976.
13. M. Kauers. SumCracker: A Package for Manipulating Symbolic Sums and Related Objects.

Journal of Symbolic Computation, 41:1039–1057, 2006.
14. M. Kauers and B. Zimmermann. Computing the Algebraic Relations of C-finite Sequences

and Multisequences. Technical Report 2006-24, SFB F013, 2006.
15. M. Kirchner. Program Verification with the Mathematical Software System Theorema. Tech-

nical Report 99-16, RISC-Linz, Austria, 1999. Diplomaarbeit.
16. D. E. Knuth. The Art of Computer Programming, volume 2. Seminumerical Algorithms.

Addison-Wesley, 3rd edition, 1998.
17. L. Kovács. Automated Invariant Generation by Algebraic Techniques for Imperative Pro-

gram Verification in Theorema. PhD thesis, RISC, Johannes Kepler University Linz, 2007.
18. L. Kovács and T. Jebelean. Finding Polynomial Invariants for Imperative Loops in the The-

orema System. In Proc. of Verify’06, FLoC’06, pages 52–67, 2006.
19. L. Kovács, N. Popov, and T. Jebelean. Combining Logic and Algebraic Techniques for

Program Verification in Theorema. In Proc. of ISOLA 2006, 2006.
20. Z. Manna. Mathematical Theory of Computation. McGraw-Hill Inc., 1974.
21. M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally Analyzing Polynomial Identities.

In Proc. of STACS 2006, 2006.
22. M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In Proc. of SAS 2002,

volume 2477 of LNCS, 2002. pp. 4-19.
23. P. Paule and M. Schorn. A Mathematica Version of Zeilberger’s Algorithm for Proving

Binomial Coefficient Identities. Journal of Symbolic Computation, 20(5-6):673–698, 1995.
24. M. Petter. Berechnung von polynomiellen Invarianten. Master’s thesis, Technical University

Münich, Germany, 2004.
25. E. Rodriguez-Carbonell and D. Kapur. Generating All Polynomial Invariants in Simple

Loops. J. of Symbolic Computation, 42(4):443–476, 2007.
26. S. Sankaranaryanan, H. B. Sipma, and Z. Manna. Non-Linear Loop Invariant Generation

using Gröbner Bases. In Proc. of POPL 2004, 2004.
27. B. Wegbreit. The Synthesis of Loop Predicates. Communication of the ACM, 2(17):102–112,

1974.
28. D. Zeilberger. A Holonomic System Approach to Special Functions. Journal of Computa-

tional and Applied Mathematics, 32:321–368, 1990.
29. K. Zuse. The Computer - My Life. Springer, 1993.

