
Playing in the Grey Area of Proofs

Kryštof Hoder
University of Manchester

krystof.hoder@gmail.com

Laura Kovács
TU Vienna

lkovacs@complang.tuwien.ac.at

Andrei Voronkov
University of Manchester
andrei@voronkov.com

Abstract
Interpolation is an important technique in verification and static
analysis of programs. In particular, interpolants extracted from
proofs of various properties are used in invariant generation and
bounded model checking. A number of recent papers studies in-
terpolation in various theories and also extraction of smaller in-
terpolants from proofs. In particular, there are several algorithms
for extracting of interpolants from so-called local proofs. The main
contribution of this paper is a technique of minimising interpolants
based on transformations of what we call the “grey area” of local
proofs. Another contribution is a technique of transforming, under
certain common conditions, arbitrary proofs into local ones.

Unlike many other interpolation techniques, our technique is
very general and applies to arbitrary theories. Our approach is
implemented in the theorem prover Vampire and evaluated on a
large number of benchmarks coming from first-order theorem prov-
ing and bounded model checking using logic with equality, unin-
terpreted functions and linear integer arithmetic. Our experiments
demonstrate the power of the new techniques: for example, it is
not unusual that our proof transformation gives more than a tenfold
reduction in the size of interpolants.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Formal Methods; F.3.1 [Logic and Meanings of Programs]:
Assertions; I.2.3 [Artificial Intelligence]: Deduction, inference en-
gines, resolution

General Terms Theory, Verification, Experimentation

Keywords Program verification, theorem proving, interpolation

1. Introduction
Interpolants extracted from proofs have several applications in ver-
ification and static analysis, see e.g. [3, 6, 12, 15, 21]. Although
interpolants are guaranteed to exist in some theories (for example,
those having quantifier elimination), interpolants extracted from
proofs turn out to be smaller and more useful than those obtained
by general interpolation algorithms, see, e.g. [16]. For this reason,
recent papers [5, 9, 11, 14, 18, 19, 21] consider the problem of ob-
taining small interpolants for various theories.

In this paper we consider two related problems: extracting in-
terpolants from proofs and minimising such interpolants. Papers
[18, 20] define algorithms for extracting interpolants from so-called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

local proofs. Roughly, in local proofs some symbols are colored in
the red or blue colors and others are uncolored. Uncolored symbols
are said to be grey. A local proof cannot contain an inference that
uses both red and blue symbols. In other words, colors cannot be
mixed within the same inference.

However, building local proofs may require substantial changes
to a first-order theorem prover or an SMT solver. In addition,
local proofs do not necessarily exist. One of the contributions
of this paper is a technique for changing proofs into local ones
under some conditions. The ideas of this technique can be traced
to an observation made in [17, 18] that existential quantification
of constants results in an interpolant. We prove a simple result
showing that this technique is correct and can be applied to translate
non-local proofs with colored constants into local proofs.

When we already have a local proof, one can extract an inter-
polant from it. This interpolant is a boolean combination of (some)
formulas occurring in the proof, if one uses the algorithm of [18].
More exactly, the interpolant is obtained as a boolean combination
of conclusions of some symbol-eliminating inferences: an inference
having at least one colored premise and a grey conclusion. The in-
terpolation extraction theorem of [18] is not restricted to any par-
ticular theory. Essentially the only condition on proofs is inference
soundness, that is, the conclusion of any inference is a logical con-
sequence of its premises. This generality gives one a lot of freedom
since one does not have to follow rules of any specific calculus
(such as resolution and superposition) in building local proofs.

In this paper, we exploit the generality of [18] by considering
proof transformations that preserve both inference soundness and
locality. It is interesting that such transformations can drastically
change the shape and the size of the extracted interpolant. The
transformations we consider are always applied to grey formulas
in the proof, which inspired the title of this paper.

While the class transformations we consider (cutting off a grey
formula) obviously preserve inference soundness, they can violate
locality. To preserve locality, we create a SAT problem whose
solutions encode all local proofs obtained by a sequence of cut-
offs. Further, we create a linear expression over the variables of the
SAT problem that expresses some numeric characteristics of the
interpolant, for example, the number of different atoms in it. Thus,
we are interested in the solutions of the problem that minimise the
linear expression: any such solution can be used to build a proof
giving a smaller (in some sense) interpolant. These solutions can
be found using an SMT solver or a pseudo-boolean optimisation
tool.

The main contributions of our paper are summarised below.

. We present a new method of producing smaller interpolants
from local proofs. The methods is based on transformation of
the “grey area” of proofs. It uses the idea that proof locality can
be expressed by a set of propositional formulas whose mod-
els represent all local proofs obtained by such transformations
(Sections 5.1-5.2).

. We present a method for changing proofs into local ones. This
method is applicable to all proofs in which all colored symbols
are uninterpreted constants (Section 4).

. We define a transformation of interpolant minimisation prob-
lems into the problem of solving pseudo-boolean constraints
(Section 5.4). Minimality is defined with respect to various
measures of the size of interpolants.

. We implemented our minimisation algorithm in the Vampire
theorem prover [24]. It uses the Yices SMT solver [10] for sol-
ving pseudo-boolean constraints (Section 6.1). As Vampire can-
not yet efficiently handle the combination of various theories,
we generate proofs over SMT problems using Z3 [8].

. We show experimentally that our method improves [18] by
generating considerably better/smaller interpolants in the size,
the total weight and the number of quantifiers (Section 6).

The rest of this paper is structured as follows. Section 2
overviews relevant definitions and properties of first-order logic
and interpolation. In Section 3 the notion of colored and local
proofs are introduced. Our result on translating non-local proofs
into local ones is formulated in Section 4. Section 5 details our
approach to minimising interpolants. We present experimental re-
sults in Section 6 and overview related work in Section 7. Section 8
concludes the paper.

2. Interpolation
We consider the standard first-order predicate logic with equality.
We allow all standard boolean connectives and quantifiers in the
language. We assume that the language contains the logical con-
stants > for always true and ⊥ for always false formulas.

Throughout this paper, we denote formulas by A,B,C,D,G,R,
terms by r, s, t, variables by x, y, z, constants by a, b, c and func-
tion symbols by f, g, possibly with indices. Let A be a formula
with free variables x̄, then ∀A (respectively, ∃A) denotes the for-
mula (∀x̄)A (respectively, (∃x̄)A). A formula is called closed, or
a sentence, if it has no free variables. We call a symbol a predi-
cate symbol, a function symbol or a constant. Thus, variables are
not symbols. We consider equality = part of the language, that is,
equality is not a symbol. A formula or a term is called ground if
it has no occurrences of variables. A formula is called universal
(respectively, existential) if it has the form (∀x̄)A (respectively,
(∃x̄)A), where A is quantifier-free. We write C1, . . . , Cn ` C to
denote that the formula C1 ∧ . . . ∧ Cn → C is a tautology. Note
that C1, . . . , Cn, C may contain free variables.

A signature is any finite set of symbols. The signature of a
formula A is the set of all symbols occurring in this formula. For
example, the signature of b = g(z) is {g, b}. The language of a
formula A, denoted by LA, is the set of all formulas built from
the symbols occurring in A, that is formulas whose signatures are
subsets of the signature of A.

We recall the following theorem from [7].

THEOREM 2.1 (Craig’s Interpolation Theorem). Let A,B be closed
formulas and let A ` B. Then there exists a closed formula
I ∈ LA ∩ LB such that A ` I and I ` B.

In other words, every symbol occurring in I also occurs in both A
and B. Every formula I satisfying this theorem will be called an
interpolant of A and B.

We call a theory any set of closed formulas. If T is a theory, we
write C1, . . . , Cn `T C to denote that the formula C1∧. . .∧C1 →
C holds in all models of T . In fact, our notion of theory corresponds
to the notion of axiomatisable theory in logic. When we work with
a theory T , we call symbols occurring in T interpreted while all
other symbols uninterpreted.

As proved in [18], Craig’s interpolation also holds for theories
in the following sense:

THEOREM 2.2. Let A,B be formulas and let A `T B. Then there
exists a formula I such that

1. A `T I and I ` B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A ` I and I `T B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.

The proof of this theorem in [18] uses compactness, which is
guaranteed when T is axiomatisable.

In the sequel we will sometimes be interested in the interpo-
lation property with respect to a given theory T . We will use `T
instead of ` and relativise all definitions to T . To be precise, we
call an interpolant of A and B any formula I such that A `T I ,
I `T B, and every uninterpreted symbol of I occurs both in A and
B.

If E is a set of expressions (for example, formulas) and con-
stants c1, . . . , cn do not occur in E, then we say that c1, . . . , cn are
fresh for E. We will less formally simply say fresh constants when
E is the set of all expressions considered in the current context.

We call a reverse interpolant of A and B any formula I such
that A `T I , I, B `T ⊥, and every uninterpreted symbol of I
occurs both in A and B.

Reverse interpolants for A and B are exactly interpolants of
A and ¬B. Moreover, when B is closed, reverse interpolants are
exactly interpolants in the sense of [20, 21]. Reverse interpolants
are convenient when we use a refutation-based inference system,
such as resolution, for finding a proof of A → B that can give us
an interpolant: in this case one can search for a refutation from the
set of formulas A,¬B instead.

3. Local Proofs
In this section we recall some terminology related to inference
systems. Inference systems are commonly used in the theory of
resolution and superposition [1, 22]; however we do not restrict
ourselves to the superposition calculus. The material of this section
is based on [18], adapting the terminology of [18] to our setting.

We also introduce the notion of local proofs and recall results
on extracting interpolants from local proofs as proved in [18].

DEFINITION 3.1. An inference rule is an n-ary relation on formu-
las, where n ≥ 0. The elements of such a relation are called infer-
ences and usually written as

A1 . . . An

A
.

The formulas A1, . . . , An are called the premises of this inference,
whereas the formula A is the conclusion of the inference.

An inference system I is a set of inference rules. An axiom of an
inference system is any conclusion of an inference with 0 premises.
Any inferences with 0 premises and a conclusion A will be written
without the bar line, simply as A.

A derivation in an inference system I is a tree built from
inferences in I. If the root of this derivation is A, then we say it
is a derivation of A. A derivation of A is called a proof of A if it
is finite and all leaves in the derivation are axioms. A formula A is
called provable in I if it has a proof. We say that a derivation of A is
from assumptions A1, . . . , Am if the derivation is finite and every

leaf in it is either an axiom or one of the formulas A1, . . . , Am. A
formula A is said to be derivable from assumptions A1, . . . , Am if
there exists a derivation of A from A1, . . . , Am. A refutation is a
derivation of ⊥. 2

Note that a proof is a derivation from the empty set of assumptions.
Any derivation from a set of assumptions S can be considered as a
derivation from any larger set of assumptions S′ ⊇ S.

Let us now fix two sentences R (red) and B (blue). In the
sequel we assume R and B to be fixed and give all definitions
relative to R and B. Denote by L the intersection of the languages
of R and B, that is the set LR ∩ LB . We call signature symbols
occurring both in R and B grey, symbols occurring only in R red
and symbols occurring only in B blue. A symbol that is either
red or blue is also called colored. For a formula C, we say that
C is grey if C ∈ L, otherwise we say that C is colored. In
other words, grey formulas contain only grey symbols and every
colored formula contains at least one red or blue symbol. A colored
formula that only contains red and grey symbols, is called a red
formula. Similarly, a blue formula is a colored formula containing
only blue and grey symbols. In the rest of this paper, red formulas
will be denoted by R, blue formulas by B, and grey formulas by
G, possibly with indices.

DEFINITION 3.2 (RB-derivation). Let us call an RB-derivation
any derivation Π satisfying the following conditions.

(RB1) For every leaf C of Π one of the following conditions holds:
1. R `T ∀C and C ∈ LR or
2. B `T ∀C and C ∈ LB .

(RB2) For every inference

C1 . . . Cn

C

of Π we have ∀C1, . . . , ∀Cn `T ∀C.

We will refer to property (RB2) as soundness. 2

We will be interested in finding reverse interpolants of R and B.
The case LR ⊆ LB is obvious, since in this case R is a reverse
interpolant of R and B. Likewise, if LB ⊆ LR, then ¬B is a
reverse interpolant of R and B. For this reason, in the sequel we
assume that LR 6⊆ LB and LB 6⊆ LR, that is, both R and B
contain at least one colored symbol.

We are mostly interested in a special kind of derivation intro-
duced in [14] and called local (or sometimes called split-proofs).
The definition of a local derivation is relative to formulas R and B.

DEFINITION 3.3 (Local RB-derivation). An inference

C1 . . . Cn

C

in an RB-derivation is called local if the following two conditions
hold.

(L1) Either {C1, . . . , Cn, C} ⊆ LR or {C1, . . . , Cn, C} ⊆ LB .
(L2) If all of the formulas C1, . . . , Cn are grey, then C is grey, too.

A derivation is called local if so is every inference of this derivation.
2

In other words, (L1) says that inferences cannot mix colors: no
inference contains both red and blue symbols. Condition (L2) is
natural (inferences should not introduce irrelevant symbols) but it
is absent in other works. Condition (L2) is however essential for us
since without it the proof of Theorem 3.4 does not go through [18].
Note that standard derivations produced by theorem provers often
contain inferences violating (L2), especially, in instantiation rules:

(∀x)A(x)

A(r)
,

where r is a red term. However, such inferences can be removed
from derivations without violating (L1).

We will now formulate one of the main theorems of [18] on
the extraction of interpolants from local proofs and explain the
structure of interpolants obtained by the algorithm of [18].

Consider any RB-derivation Π. Note that by the soundness
condition (RB2) we can replace every formula C occurring in this
derivation by its universal closure ∀C and obtain an RB-derivation
Π′ where inferences are only performed on closed formulas. We
will call such derivations Π′ closed and assume, for simplicity, that
we are dealing only with closed derivations.

We call a symbol-eliminating inference any inference that is

1. either a grey leaf G of Π such that R `T G.

2. or has the form

A1 · · · An

G
,

such that G is grey and and at least one of the formulas
A1, . . . , An is colored.

Any such inference “eliminates” at least one colored symbol. One
could also call such inferences color-eliminating. The following
theorem is proved in [18]:

THEOREM 3.4. Let Π be a closed local RB-refutation. Then one
can extract from Π a reverse interpolant I of R and B. This reverse
interpolant is a boolean combination of conclusions of symbol-
eliminating inferences of Π. 2

The proof of Theorem 3.4 in [18] gives an algorithm for extracting
an interpolant from a refutation.

By a close inspection of the algorithm of [18], we noted that not
all conclusions of symbol-eliminating inferences occur in the ex-
tracted interpolant. To characterise the set of all formulas occurring
in the interpolant, in this paper we introduce a new notion, called
the digest of a refutation, as given below.

DEFINITION 3.5 (Digest). Consider any conclusion G of a symbol-
eliminating inference.

If the inference eliminates a red symbol, then it has the form:

· · · R0 · · ·
G

Consider the path from G to the bottom formula of the refutation:
· · · R0 · · ·

G....
⊥

We say that G belongs to the digest of the refutation if either all
formulas on the path are grey or the first (closest to G) colored
formula on the path is blue.

Likewise, for a blue symbol eliminating inference:
· · · B0 · · ·

G....
⊥

G belongs to the digest of the refutation if at least one formula on
the path is colored and the first (closest to G) colored formula on
the path is red. 2

Note the slight asymmetry in Definition 3.5 between red and
blue symbol eliminating inferences, which is due to the interpolant
generation algorithm of [18]. Using the notion of digest, we can
now refine Theorem 3.4 as follows:

THEOREM 3.6. Let Π be a closed local RB-refutation. Then one
can extract from Π a reverse interpolant I of R and B. This reverse
interpolant is a boolean combination of the formulas in the digest
of Π. 2

In what follows we will refer to the interpolant obtained from a
refutation as described in Theorem 3.6 as the interpolant extracted
from Π.

4. Proof Localisation
Extracting interpolants from proof requires a special interpolating
prover, or a prover producing local proofs. While, as reported in
[13], the theorem prover Vampire can search for local proofs only
and hence the algorithm of [18] can be used in first-order resolution
proofs, most provers and SMT solvers do not necessarily generate
local proofs.

One of the main motivations of this paper was to check how
our minimisation technique works on real-life examples taken from
static analysis of software. Although such benchmarks exist, they
can only be solved using an SMT solver, which in general produces
non-local proofs.

In is interesting that in real-life examples, especially those taken
from bounded model checking, all the colored symbols are nor-
mally uninterpreted constants representing state variables from in-
termediate states. In this section we show that for such examples
one can transform arbitrary proofs into local ones, at the cost of
quantifying some formulas in the proof. This idea has already ap-
peared in [17, 18], see Lemma 4.1 below.

The downside of this approach is that a ground refutation can
become a non-ground one, thus, the extracted interpolant may con-
tain quantifiers. Once we have a local proof, the number of such
quantifiers can be reduced using the technique of Section 5 (line 18
of Algorithm 1).

LEMMA 4.1. [17, 18] Consider two formulas A1(a) and A2 such
that A1(a) `T A2 and a is an uninterpreted constant not occurring
in A2. Then, A1(a) ` (∃x)A1(x) and (∃x)A1(x) ` A2.

This lemma can be used to localise non-local derivations by quan-
tifying away colored constants that result in mixing colors.

THEOREM 4.2. Given two formulas R and B such that R → B
and all the colored symbols of R and B are uninterpreted constant
symbols. Then any proof Π of R → B can be translated into a
local proof Πl.

PROOF. Let us take a non-local refutation Π of R → B. This
means, that Π contains at least one inference that violates condi-
tions (L1)-(L2) of Definition 3.3. The proof is by induction on Π.
We will eliminate all color conflicts one by one, starting from the
bottom of the proof. Thus, for every conflicting inference, we can
assume that the derivation below it is already local. In particular,
the conclusion of the violating inference cannot mix colors. Con-
sider the case when the conclusion is blue (other cases are similar).
Then the violating inference has the form

R1 · · · Rn A1 · · · Am

A
,

where A,A1, . . . , Am are either grey or blue and R1, . . . , Rn

are red. Let r1, . . . , rk be all the red constants occurring in this
inference and formulas R′

i are obtained from Ri by replacing

r1, . . . , rk by fresh variables x1, . . . , xk. Note that all of the R′
i

are either grey or blue. The above non-local inference can then be
replaced by:

(∃x1 . . . xk)(R′
1 ∧ . . . ∧R′

n) A1 · · · Am

A
,

This inference does not contain the red color, and we are done. Note
that the premises of the formula (∃x1 . . . xk)(R′

1 ∧ . . . ∧ R′
n) are

given by the union of the premises of R1, . . . , Rn. The correctness
of the transformation is guaranteed by Lemma 4.1.

The above transformation can also be applied on inferences
where a premise contains both a red and a blue symbol. The non-
local inference is replaced by a local inference at the cost of using
existential quantifiers over the premise with colored symbols.

2

This theorem gives us an algorithm for changing any non-local
refutation to a local one, provided that the condition on colored
symbols is satisfied.

Figure 1 illustrates how the non-local proof given in Figure 1(a)
is translated into the local proof listed in Figure 1(b).

5. Playing in the Grey Area
This section presents the main idea of this paper. It is based on the
following observation. One can change, sometimes considerably,
the grey areas (that is, areas consisting of grey formulas) of the
proof without violating locality. In addition, such proof transfor-
mations can change the extracted interpolant.

We will only consider one kind of proof transformations, called
here grey slicing. Other proof transformations can be proposed as
well, but are beyond the scope of this paper.

DEFINITION 5.1 (Grey slicing). Consider any derivation Π con-
taining a subderivation ∆ of the form

A1 · · · An

An+1 · · · Am

A

A0

,
(1)

where n ≥ 0.
We say that a derivation Π′ is obtained from Π by slicing off A

in ∆ (or simply, slicing off A) if Π′ is obtained from Π by replacing
the subderivation ∆ by

A1 · · · An An+1 · · · Am

A0 (2)
When A is a grey formula, we will refer to this transformation as
grey slicing. 2

Apparently, grey slicing preserves properties (RB1)-(RB2) of
Definition 3.2, so it transforms an RB-derivation into an RB-
derivation. It is also easy to see that grey slicing can violate the
locality conditions (L1) of Definition 3.3. For example, slicing off
G1 in

B0

R0

G1

G0

yields a non-local derivation

B0 R0

G0

.

Consider now an example showing that grey slicing transforma-
tions can change the digest, and hence the extracted interpolant.

(∀x1)(p(x1) ∨ q(x1, r1)) ¬p(b1)
q(b1, r1)

(∀x2)(s(x2) ∨ ¬q(x2, r1)) ¬s(b1)
¬q(b1, r1)

⊥

(a)

(∀x1)(p(x1) ∨ q(x1, r1)) (∀x2)s(x2) ∨ ¬q(x2, r1)

(∃y)
(
(∀x1)(p(x1) ∨ q(x1, y)) ∧ (∀x2)(s(x2) ∨ ¬q(x2, y))

)
¬p(b1)

(∃y)
(
q(b1, y) ∧ (∀x2)(s(x2) ∨ ¬q(x2, y))

)
¬s(b1)

(∃y)
(
q(b1, y) ∧ ¬q(b1, y)

)
⊥
(b)

Figure 1. Proof localisation of proof (a) into proof (b).

EXAMPLE 5.2. Take the following refutation Π:

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥
The digest of this refutation is {G4, G7} and the extracted reverse
interpolant is G4 → G7. Slicing off G4 in Π results in the refuta-
tion Π1:

R3

R1 G1

G3 B1 G2

G5

G6

R4

G7

⊥
with the digest {G5, G7} and the extracted reverse interpolant
G5 → G7. Slicing off now G5 in Π1 results in Π2:

R3

R1 G1

G3 B1 G2

G6

R4

G7

⊥
with the digest {G6, G7} and the extracted reverse interpolant
G6 → G7. We can slice off G7 in Π2 and obtain the refutation:

R3

R1 G1

G3 B1 G2

G6

R4

⊥
with the digest {G6}, and the reverse interpolant ¬G6.

However, if we slice off G3 in the original derivation Π, we
obtain the refutation:

R3

R1 G1

B1 G2

G4

G5

G6

R4

G7

⊥
in which slicing off G4 would violate the locality of the resulting
refutation.

Example 5.2 gives us the following observations:

1. grey slicing can change the extracted interpolant, and some-
times considerably (compare G4 → G7 and ¬G6).

2. a grey slicing step can prevent other grey slicing steps, thus
preventing previously possible interpolants.

The main question we are going to answer in this section is how
to use grey slicing to obtain smaller, and even minimal, in some
sense, interpolants. To this end we will use the following ideas.
First, we will introduce a set VΠ of propositional variables express-
ing some properties of refutations obtained by grey slicing from a
given proof Π. Next, we will define propositional formulas PΠ of
the variables VΠ that express locality. Thus, every refutation ob-
tained from Π by grey slicing is local if and only if it satisfies PΠ.
This means we can use a SAT solver to “compute” all local refuta-
tions that can be obtained from Π by grey slicing. Finally, we in-
troduce propositional formulas expressing the digest of refutations.
This set of propositional formulas allows us to use an SMT solver
or a pseudo-boolean optimisation tool to find refutations minimis-
ing the digest in various ways.

Let us now formalise this idea. In the rest of this section, when
we speak about a formula from a derivation, we will normally mean
a concrete node in the derivation containing this formula (note that
a tree-like derivation may contain more than one node with the
same formula). Later we will also discuss derivations in the dag
form. Nonetheless, for simplicity, for the moment we prefer to deal
with trees instead of dags.

The first thing to note is that every derivation is also a set of
nodes occurring in it and slicing off simply removes one node from
this set. This means that a sequence of slicing off transformations
removes a subset of nodes. Every removed node G, at the point
of removal, is replaced by a set of other nodes occurring in the
derivation (namely, the premises of G at that point). Each of the
nodes in this set can in turn be removed (and replaced by other
nodes) etc., so eventually the place of any removed node will be
taken by a set of nodes occurring in the final derivation. We will
call this set a trace of F and define it formally below.

DEFINITION 5.3 (Trace). Let S = Π0, . . . ,Πk be a sequence of
derivations such that each member in the sequence except Π0 is
obtained by slicing off a single grey node from the previous one.
For every grey node G in Π0 we define a set of formulas, call trace
of G (with respect to S), as follows:

1. If G was never sliced off, that is, it occurs in Πk, then
trace(G)

def
= {G}.

2. Suppose G was sliced off at some point, that is, G is the formula
A as in Definition 5.1. Then trace(G)

def
= trace(An+1)∪ . . .∪

trace(Am). 2

Denote any sequence S of slicing off transformations with the
initial derivation Π and final derivation Π′ by Π 99K Π′. It is not
hard to argue that the following lemma holds.

LEMMA 5.4. The trace of a node does not depend on the sequence
of transformations S but only depends on the initial and the final

derivation in S. That is, for every two derivations of the form
Π 99K Π′ with the same initial derivation Π and final derivation
Π′, and for every grey node G in Π, the trace of G is the same in
both derivations. 2

In the rest of this section we will normally assume a fixed initial
derivation Π and various sequences Π 99K Π′. In view of this
lemma we will simply speak about the trace of G in Π′.

Suppose Π 99K Π′ is a sequence of transformations. Let us
introduce some propositions characterising the behaviour of grey
nodes in Π on this sequence.

. s(G): G was sliced off;

. r(G): the trace of G contains a red formula;

. b(G): the trace of G contains a blue formula;

. g(G): the trace of G contains only grey formulas;

. d(G): G belongs to the digest of Π′.

We define the set VΠ of propositional variables as consisting of all
the variables s(G), r(G), b(G), g(G), d(G) denoting these propo-
sitions. Later we will add to VΠ more variables.

Then, for every sequence of transformations Π 99K Π′ and
every grey node G in Π, each of the above propositions is either true
or false on this sequence. Therefore, if we take any propositional
formula built from these propositions, it is also either true or false
on this sequence.

5.1 Expressing the Digest
Our next aims are to write down a propositional formula that
expresses that Π′ is local, and also represent the digest of any
local refutation. To this end we will first introduce propositional
variables and formulas over grey nodes, then write down further
formulas of these propositions that are satisfied when Π′ is local,
and finally show that satisfiability of these propositions implies
locality of Π′.

Propositions rc and bc. Take a local derivation Π with Π 99K Π′.
For each grey node G in Π we first introduce the propositions
rc(G) and bc(G) expressing that G is not sliced off and is a
conclusion of a symbol-eliminating inference in Π with at least one
red (respectively, blue) premise. The propositional variables rc(G)
and bc(G) are added to VΠ.

We will only define rc(G), since the case of bc is symmetric.
Consider the following cases depending on the inference intro-

ducing G in Π.

1. G is introduced by an inference with only grey premises:
G1 · · · Gm

G
,

We then write:

rc(G)↔ (¬s(G) ∧ (r(G1) ∨ . . . ∨ r(Gm))). (3)

The conditions on the traces of G1, . . . , Gm ensure that G can
be written as the conclusion of a symbol eliminating inference
with at least one red premise. Namely, if r(Gi) holds, then by
slicing off Gi and some of the grey nodes from its derivation, G
becomes the conclusion of a symbol eliminating inference with
at least one red premise.

2. G is introduced by an inference with at least one red premise:
R1 · · · Rn G1 · · · Gm

G
.

We then have:
rc(G)↔ ¬s(G). (4)

3. G is introduced by an inference with at least one blue premise
B1 · · · Bn G1 · · · Gm

G
.

Due to the locality of derivations, we write:

¬rc(G). (5)

Equations (3)-(5) are added to the set of propositional formulas PΠ

over VΠ.

Propositions rf and bf . We introduce the propositions rf (G)
and bf (G) for every grey node G, and add the corresponding vari-
ables to VΠ. These propositions are closely related to the definition
of digest. The proposition rf (G) holds iff on the path from G to
the root of Π either (i) all nodes are grey, or (ii) the first colored
node is a blue one. Likewise, the proposition bf (G) expresses that
on the path from G to the root of Π, there exists a colored node and
the first colored node is a red one.

We will only write down properties of rf , the case of bf is
similar. We define rf “inductively”, starting from the root (the
bottom formula) of the derivation Π.

1. If the successor of G in Π is a red formula, then we write

¬rf (G). (6)

2. If the successor of G in Π is a blue formula, then we write

rf (G). (7)

3. Finally, if the successor of G in Π is a grey node G1, then we
write

rf (G)↔ (rf (G1) ∨ bc(G1)) ∧ ¬rc(G1). (8)

Equations (6)-(8) are added to PΠ.

Proposition d. By straightforward inspection of the definition of
digest, it is not hard to argue that d(G) can be expressed as follows:

d(G)↔ (rc(G) ∧ rf (G)) ∨ (bc(G) ∧ bf (G)). (9)
We add (9) to PΠ.

5.2 Expressing Locality
Take a local derivation Π and a grey node G in it. Depending on
the inference introducing G, there are four possible cases:

1. G is a leaf of Π;

2. G is introduced by an inference with grey premises;

3. G is introduced by an inference with at least one red premise;

4. G is introduced by an inference with at least one blue premise.
In this case, due to the locality of Π, all premises in the deriva-
tion tree of G are either blue or grey.

For each of these cases, we will show how to write down formulas
expressing that Π 99K Π′ results in a local derivation, that is, Π′ is
local. Each below listed propositional formulas is added to PΠ.
General properties of grey nodes. Note that, if a node G is not sliced
off, then its trace is {G}, so we have g(G):

¬s(G)→ g(G). (10)
We also know that a node which is sliced off cannot belong to

the digest:

s(G)→ ¬d(G). (11)

Observe that equations (10)-(11) do not make use of the as-
sumptions that Π is local. That is, (10)-(11) hold for arbitrary
derivations.

Further, note that for local derivations the properties b, r and g
are mutually exclusive. Therefore, for every grey node node G we
add the following properties expressing mutual exclusion:

color(G)
def
= (b(G) ∨ r(G) ∨ g(G)) ∧

(b(G)→ ¬r(G) ∧ ¬g(G)) ∧
(r(G)→ ¬b(G) ∧ ¬g(G)) ∧
(g(G)→ ¬r(G) ∧ ¬b(G)).

(12)

G is a leaf. In this case, G cannot be sliced off and we have:

leaf (G)
def
= ¬s(G) ∧ g(G) (13)

G is introduced by an inference with grey premises:

G1 · · · Gm

G
.

The locality of Π 99K Π′ implies that if the trace of any
G1, . . . , Gm contains a red (respectively, blue) formula, then the
traces of G1, . . . , Gm cannot contain a blue (respectively, red) for-
mula. To further reason about the trace of G, consider the following
cases.

(i) If G is never sliced off in Π 99K Π′, then the trace of G
is clearly grey. Whether G is a conclusion of a symbol eliminat-
ing inference only depends on whether the trace of some of the
G1, . . . , Gm contains either a blue or a red formula.

(ii) If G is sliced off, then the color of the formulas in the
trace of G depend on the color of the formulas from the traces of
G1, . . . , Gm.

Based on the above reasoning, we introduce the following for-
mula capturing the properties of the trace of G:

grey(G)
def
= (r(G1) ∨ . . . ∨ r(Gm)→ ¬b(G1) ∧ . . . ∧ ¬b(Gm)) ∧

(b(G1) ∨ . . . ∨ b(Gm)→ ¬r(G1) ∧ . . . ∧ ¬r(Gm)) ∧
(s(G) ∧ (r(G1) ∨ . . . ∨ r(Gm))→ r(G)) ∧
(s(G) ∧ (b(G1) ∨ . . . ∨ b(Gm))→ b(G)) ∧
(s(G) ∧ g(G1) ∧ . . . ∧ g(Gm)→ g(G)) ∧
(¬s(G)→ g(G)).

(14)
G is introduced by an inference with at least one red premise:

R1 · · · Rn G1 · · · Gm

G
.

In this case the locality of Π implies that the trace of G can contain
only red and grey formulas. Moreover, the color of the formulas
from the trace of G only depends on whether G is sliced off, as
follows.

(i) If G is sliced off, then the trace of G depends on the traces
of R1, . . . , Rn, G1, . . . , Gm, and hence the trace of G contains
at least one red formula. Also note, that if G is sliced off, then G
cannot belong to the digest of Π′.

(ii) If G is not sliced off, then trace(G) = {G}. Hence, the
trace of G only contains grey formulas. Moreover, note that G is the
conclusion of symbol eliminating inference. Thus, G also belongs
to the digest of Π′.

We therefore introduce the below formula for G, capturing the
properties of the trace of G:

red(G)
def
= ¬b(G1) ∧ . . . ∧ ¬b(Gm) ∧

(s(G)→ r(G)) ∧
(¬s(G)→ g(G)).

(15)

G is introduced by an inference with at least one blue premise:

B1 · · · Bn G1 · · · Gm

G
.

Similarly to the previous case, we introduce the following formula:

blue(G)
def
= ¬r(G1) ∧ . . . ∧ ¬r(Gm) ∧

(s(G)→ b(G)) ∧
(¬s(G)→ g(G)).

(16)

This completes our construction of the propositional variables
and formulas explained in the beginning of this section. Namely,
the set of variables VΠ consists of all variable s(G), r(G), b(G),
g(G), rc(G), bc(G), rf (G), bf (G) and d(G), and the set PΠ of
formulas are all formulas (3)–(16).

Our construction clearly implies the following result.

THEOREM 5.5. Let Π be a local derivation. Then a sequence
Π 99K Π′ satisfies all formulas (8)-(16) from PΠ if and only if
Π′ is local. Moreover, the propositions r(G), b(G), g(G), rc(G),
bc(G), rf (G), bf (G) and d(G) have their intended meaning, in
particular, in every model Π′ of these formulas G belongs to the
digest of Π′ if and only if d(G) holds on Π′.

5.3 Derivations as Dags
Refutations found by theorem provers are normally dags. Trans-
forming a dag to a tree can result in an exponential growth in size.
Therefore, it is desirable to change our technique to deal with dags.
The modification is quite simple: we allow a formula in a dag to be
sliced off only if all the tree derivations corresponding to the result-
ing dag are local. Note that this may result in a smaller choice of
grey slicing transformations as compared to refutations as trees and
hence larger interpolants. Nonetheless, expanding dags to trees may
turn to be unfeasible. Therefore, our implementation uses dags.

To build propositional formulas expressing locality on dags, one
should only modify the propositions rf (G) and bf (G).

Propositions rf and bf for dags. The proposition rf (G) holds
iff on all paths from G to the root of Π either (i) all nodes are grey,
or (ii) the first colored node is a blue one. Likewise, the proposition
bf (G) expresses that on all paths from G to the root of Π, the first
colored node is a red one. The axiomatisation of these propositions
is given below, and (6)-(8) are replaced by the below formulas in
PΠ.

We will only define rf , since the axiomatisation of bf is sim-
ilar. It is defined “inductively” starting from the root (the bottom
formula) of the derivation Π.

1. Suppose at least one of the successors of G is a red formula. In
this case we write:

¬rf (G). (17)

2. Otherwise, all the successors of G are either grey or blue:

G
G1 · · · Gm B1 · · · Bk

.

In this case we write

rf (G)↔((rf (G1) ∨ bc(G1)) ∧ . . . ∧ (rf (Gm) ∨ bc(Gm))∧
¬rc(G1) ∧ . . . ∧ ¬rc(Gm)).

(18)

5.4 Minimising Interpolants in Local Proofs
Theorem 5.5 shows how one expresses locality and digest using
the propositional formulas PΠ. This allows us to introduce various

measures of “quality” of interpolants and use these measures, to-
gether with an SMT solver, to find local proofs giving interpolants
that are better in these measures.

As usual, we define a clause to be a disjunction, possibly empty,
of literals, that is, atomic formulas and their negations. Since most
theorem provers and SMT solvers present proofs as dags of clauses,
apart from some preprocessing deriving a set of clauses from R, B
and the theory, we assume that the digest of a proof is a set of
clauses. If such a clause contains free variables, it is assumed to be
implicitly universally quantified. We know that the interpolant ex-
tracted from a proof is a propositional combination of clauses oc-
curring in this proof. If a particular clause is a propositional combi-
nation of smaller formulas, then the interpolant can be considered a
propositional combination of these smaller formulas. The smallest
formulas of this form are well-studied in the automated deduction
community and called components. We will take a slightly modi-
fied definition of components from [23].

DEFINITION 5.6 (Component). A component of a clause C is ei-
ther

. a ground atomic formula occurring in C, or

. a non-ground clause C1 such that C has the form C1∨C2, both
C1 and C2 are non-empty, and the only component of C1 is C1

itself.

A clause C is said to be a g-atom if C is the only component of
itself.

For example, the clause p(x)∨ a 6= 2∨ q(x) has two components:
p(x) ∨ q(x) and a = 2. Note that we have the following equiva-
lence:

∀x(p(x) ∨ a 6= 2 ∨ q(x)) ≡ ∀x(p(x) ∨ q(x)) ∨ ¬(a = 2).

In general, the universal closure of every clause is a boolean
combination of the universal closures of its components. Therefore,
the extracted interpolant is a boolean combinations of g-atoms,
which are components of the formulas in the digest.

The problem of generating minimal interpolants can be thus
reduced to the problem of minimising, in some sense, the set of
g-atoms used in the interpolant. As minimality of interpolants is
not well-understood, we introduce various measures for minimising
the size of interpolants. Namely, we are interested in minimising
interpolants with respect to (i) the number of g-atoms and (ii) the
total weight of g-atoms, counted as a number of symbols. One
can also argue that ground interpolants are more useful than those
containing quantifiers, so in addition, when the refutation is non-
ground, we can also minimise (iii) the number of quantifiers in the
g-atoms.

For doing so, we use the fact that the digest of a derivation can
be expressed using propositional variables d(G) over grey nodes
G and transform the minimisation problem to solving a pseudo-
boolean optimisation problem over VΠ as explained below.

We consider a local refutation Π. For every component g of a
grey clause G of Π, we introduce a distinct propositional variable
v(g). Intuitively, this variable will denote that g occurs in the digest
of the transformed proof Π′. For every grey node G in Π, let
g1, . . . , gk be all g-atoms of G. We then introduce the following
axiom:

d(G)→ v(g1) ∧ . . . ∧ v(gk). (19)
In what follows, let g1, . . . , gm be all g-atoms occurring in all

grey nodes of Π. Let w1, . . . , wm be the total weights of these
atoms, respectively. We denote by q1, . . . , qm the number of quan-
tifiers used, respectively, in g1, . . . , gm

The problem of minimising interpolants is then reduced to the
problem of minimising (one of) the following sums:

atomcost
def
= v(g1) + . . . + v(gm). (20)

weightcost
def
= w1v(g1) + . . . + wmv(gm). (21)

quantifiercost
def
= q1v(g1) + . . . + qmv(gm). (22)

Each of these sums is expressed as a pseudo-boolean constraint
over the g-atoms g1,gm. A solution to the minimisation
problem of the left-hand side of (20)-(22) gives us a subset
of {g1, . . . , gm}, such that the interpolant constructed from the
boolean combinations of the formulas in this subset is a smallest
interpolant among all interpolants that can be extracted from the
various local Π′ resulting from grey slicing.

Minimisation of atomcost gives the smallest interpolant in
the number of distinct g-atoms. Likewise, the minimal values of
weightcost and quantifiercost correspond to the interpolant with
the smallest total weight and the smallest number of quantifiers, re-
spectively. Algorithm 1 puts together the algorithm for minimising
interpolants.

ALGORITHM 1. Minimising Interpolants
Input: Closed formulas R and B such that R → ¬B, and a
refutation Π from R,B.
Output: Minimised interpolants Iatom, Iweight, Iquant of R and ¬B
Assumption: All colored symbols of R and B are uninterpreted
constants

1 begin

I. Proof Localisation.

2 Compute local proof Πl from Π, using Theorem 4.2.
II. Expressing locality.

3 G := {}, PΠ := {}
4 for each grey node G in Πl do
5 Express d(G). Let PΠ := PΠ∪{(3), (4), (5), (17), (18), (9)}.
6 Express general properties. Let PΠ := PΠ∪{(10), (11), (12)}.
7 If G is a leaf, PΠ := PΠ ∪ {(13)}.
8 If G is introduced by an inference with only grey premises,

PΠ := PΠ ∪ {(14)}.

9 If G is introduced by an inference with a red premise,

PΠ := PΠ ∪ {(15)}.

10 If G is introduced by an inference with a blue premise,

PΠ := PΠ ∪ {(16)}.

11 Compute G = g1 ∨ · · · ∨ gk, where gi are g-atoms.
12 G = G ∪ {g1, . . . , gk}
13 endfor
14 PΠ := PΠ ∪ {(19)}
15 endfor

III. Minimising Interpolants.

16 min atomcost := {gi1 , . . . , gin}

:= min{gi1 ,...,gin}

(∑
gi∈G v(gi) ∧ PΠ

)
17 min weightcost := {gi1 , . . . , gin}

:= min{gi1 ,...,gin}

(∑
gi∈G wiv(gi) ∧ PΠ

)
where wi denotes the weight of gi

18 min quantcost := {gi1 , . . . , gin}

:= min{gi1 ,...,gin}

(∑
gi∈G qiv(gi) ∧ PΠ

)
where qi denotes the number of quantifiers uses in gi

19 Iatom = InterpolantR,B(min atomcost)
20 Iweight = InterpolantR,B(min weightcost)
21 Iquant = InterpolantR,B(min quantcost)
22 return {Iatom, Iweight, Iquant}.
23 end

Algorithm 1 uses the result of Theorem 4.2 and starts with
translating the input refutation Π of R,B into a local one Πl

(line 2). Note that this step is only applied when Π is non-local,
more precisely, when the non-local steps of Π contain colored
constants. Further, the set G of g-atoms from Πl and the set PΠ

of (pseudo-boolean) constraints expressing locality of Πl are ini-
tialised (line 3). Next, for each grey node G in Πl the constraints
expressing locality conditions over the digest and inferences of Πl

are constructed, (lines 5-10). Note that the propositional formulas
rf (G) and bf (G) are expressed based on the dag-representation
of proofs. The set of g-atoms of G is extracted and added to G
(lines 11-12). Then, the property whether G is in the digest of Πl

is expressed in terms of g-atoms and added to the constraint set PΠ

(line 14). As a result of these steps, at the end of line 15 of Al-
gorithm 1, the constraint set PΠ is expressed as a set of clauses
ensuring the locality of Πl (Theorem 5.5). Next, minimal inter-
polants wrt to the number of g-atoms (line 16), the total weight
of g-atoms (line 17), and the number of quantifiers in the g-atoms
(line 18) are derived by solving a pseudo-boolean optimisation
problem over g-atoms. To this end, the interpolation procedure
InterpolantR,B(. . .) of [18] is called to generate interpolants
as boolean combinations of the derived minimal set of g-atoms
(lines 19-21).

THEOREM 5.7. Algorithm 1 is correct. That is, given two formulas
R and B and a refutation Π, Algorithm 1 returns the minimal
interpolants of R and ¬B wrt the imposed measures (20)-(22)
among all interpolants extracted from proofs obtained by grey
slicing of Π.

We next show that finding minimal interpolants by Algorithm 1 is
NP-hard.

THEOREM 5.8. Given two formulas R and B and a refutation Π
of R,B → ⊥. Extracting a minimal reversed interpolant from Π
by grey slicing is an NP-hard optimisation problem.

PROOF. We use a reduction from finding a maximal independent
set of a graph G(V,E) with a set of vertices V = {v1, . . . , vm}
and a set of edges E = {(u1, w1), . . . , (un, wn)}, which is known
to be NP-hard.

To fulfil conditions of Theorem 2.2, we first fix a background
theory T . For each vertex v ∈ V we introduce a propositional grey
variable, also denoted by v, of weight 1. Further, for each edge
(u, v) ∈ E we add u→ v to the theory T .

Introduce also a blue propositional variable b and a red proposi-
tional variable r. Define B to be the blue formula v1∧ · · ·∧vm∧ b
and R to be the red formula ¬v1 ∧ · · · ∧ ¬vm ∧ r.

Further, for each edge (u,w) ∈ E we introduce the following
derivation Πu,w:

B
u
w

Note that this derivation is sound in the underlying theory T . We
next construct the proof tree Π to be:

Interpolant size decrease
some 2− 4 4− 6 6− 8 > 8 to 0

Symbols 1369 369 55 24 20 386
g-atoms 912 248 37 16 7 386

Table 1. Minimisation results on 6577 TPTP problems with non-
trivial interpolants.

B
u1

w1 . . .

B
un

wn R

⊥
where the weight of ⊥ is considered to be zero. Observe that Π
is a valid refutation of R,B. Also note that building a minimal
interpolant from Π reduces to finding a derivation Π′ obtained from
Π by grey slicing with a minimal number of g-atoms.

Let Π′ be any derivation obtained from Π by grey slicing.
Denote by D′ the digest of Π′. For every edge (u,w) ∈ E, the
subderivation Πu,w either remains a subderivation of Π′, or u gets
sliced off. In the first case we have u ∈ D′, in the second case
w ∈ D′. Therefore, either u 6∈ V − D′, or w 6∈ V − D′, which
implies that V −D′ is an independent set.

Using similar arguments, one can prove that every independent
set S of vertices is a subset of V − D′ for some digest D′ of a
derivation obtained from Π by grey slicing. As each set V −D′ is an
independent set as well, for every maximal independent set S there
exists a digest D′ such that S is equal to V −D′. Therefore finding
a digest of the minimal size is equivalent to finding a maximal
independent set. 2

Let us finally note that our method can be extended with other
proof transformations and optimisation criteria (e.g., [9, 16]), to
improve the quality of interpolants. For example, many approaches
use templates to identify predicates desirable to be used in invari-
ants or interpolants. Algorithm 1, thanks to its generality, can easily
be modified to give preference to predicates matching predefined
templates. We therefore believe that our method is of an indepen-
dent value, since one can first minimise the interpolant and then try
to make it semantically better using other methods. Another impor-
tant feature of our algorithm is that it optimises the proof globally:
that is, the optimal solution is not necessarily a sum of optimal so-
lutions given by local proof transformations. We believe this a very
essential property of the algorithm not shared by other known ap-
proaches to minimising interpolants.

6. Experimental Results
6.1 Implementation
We implemented our interpolant minimisation method in C++ and
integrated it in version 1.8 of the Vampire theorem prover [24]. For
minimising the set of pseudo-boolean constraints we used version
1.0.29 of the SMT solver Yices [10].

Due to the lack of realistic verification benchmarks, that is ex-
amples coming from some industrial project, we evaluated our
method on the following two classes of problems. First, we took
a collection of examples over first-order logic with equality from
the TPTP library [25]. We minimised interpolants in the first-order
proofs generated by Vampire. Second, we considered SMT bench-
marks from the SMT-Lib library [2] that come from bounded model
checking. We analysed proofs generated by the Z3 SMT solver [8].
We used version 2.19 of Z3 without any modification. However, for
minimising interpolants from Z3 proofs, we implemented a parser
for processing and translating Z3 proofs into local proofs. To this
end, we used our algorithm for proof localisation (see proof of The-
orem 4.2).

0 < 5 5− 9 10− 19 20− 49 50− 99 100− 199 ≥ 200
Before 3055 530 1099 1578 2035 991 260 84
After 3441 522 1225 1557 1882 766 166 73

Table 2. Number of symbols in TPTP benchmark interpolants,
before and after minimisation.

All experiments reported in this paper were carried out using a
64-bit 2.33 GHz quad core Dell server with 12 GB RAM.

6.2 First-Order Problems
For this part of the experiments, we took a collection of first-order
problems from the TPTP library. We started with annotating these
problems with coloring information, using the following coloring
strategies.

(1) We order symbols by the number of their occurrences in the
problem, and starting with the symbols occurring the least number
of times, we attempt to assign colors to them. A color can be
assigned to a symbol if the symbol does not occur in a formula
with a symbol that was already assigned with the opposite color.
The colors are being assigned in an alternating manner. If the last
assigned color was red, we first attempt assigning blue to the next
symbol, and try to assign red only if this the blue color ended in an
unsuccessful assignment (i.e. an input formula with two different
colored symbols is obtained). We stop when we have attempted to
assign a color to all the symbols.

(2) The previous assignment strategy is more or less random.
To use interpolants in a more logical way, we used the following
idea. Typically, TPTP problems come with annotations classifying
formulas from a problem into axioms, conjectures and hypotheses.
We have to prove the conjecture from the axioms and hypotheses.
It is commonly the case that axioms axiomatise some theory, so
we have to prove that the hypotheses imply the conjecture in the
theory given by the axioms. This gives us the following way of
coloring the problem symbols. We assign blue color to symbols
appearing only in the formulas of the conjecture (i.e. formula B),
and red color to symbols occurring only in hypothesis (i.e. formula
R). The symbols shared by the conjecture and the hypotheses
are considered grey, as well as the symbols occurring only in the
axioms.

Local proofs for the colored TPTP problems were generated us-
ing the interpolation mode of Vampire [13]. Altogether, we eval-
uated our minimisation method on 9632 colored TPTP examples.
Out of the 9632 problem instances, 3055 problems had trivial in-
terpolants, that is the interpolant was either > or ⊥. This left us
with 6577 problems with non-trivial interpolants. We were inter-
ested to see how our minimisation algorithm performs on these
problems. To this end, for each of the 6577 problems, our min-
imisation method took the corresponding local proof generated by
Vampire and derived the smallest interpolants by minimising (i)
the number of symbols (i.e total weight) and (ii) the number of
g-atoms in the interpolant. Table 1 gives a summary on how the
size of the interpolant decreases after minimisation, as compared
to the interpolant extracted from the original proof. Rows 1 and 2
of Table 1 show respectively the changes in the interpolant size af-
ter minimising the number of symbols, respectively the number of
g-atoms in the interpolant. For each imposed measure, column 1 of
Table 1 lists the number of examples where the size of the inter-
polants has decreased only by a small amount. The numbers shown
in column 2 (resp. in column 3, column 4, and column 5) corre-
spond to the number of those examples whose interpolants became
2-4 (resp. 4-6, 6-8, and more than 8) times smaller after minimisa-
tion. Column 6 gives the number of examples whose interpolants
became trivial after minimisation, even though the non-minimised
interpolants were non-trivial.

0 <5 5-9 10-19 20-49 50-99 100-199 ≥200
Symbolspre 112 3 149 150 82 90 321 1216
Symbolspost 112 5 168 158 56 87 323 1214
g-atoms 112 1558 303 114 9 0 0 0
Quantifiers 464 279 291 367 394 157 123 48

Table 3. Minimisation results on 2123 SMT benchmarks.

In Table 2 we report on the number of symbols in the inter-
polants before (row 1) and after (row 2) minimisation. Each col-
umn of Table 2 gives the number of interpolants whose number of
symbols satisfy the numeric constraint given in the first cell of the
column. That is, column 1 gives the number of trivial interpolants
(the number of symbols is 0), column 2 shows the number of in-
terpolants with less than 5 symbols, column 3 reports shows the
number of interpolants that contain between 5 and 9 symbols etc.

By analysing the results of Table 1, we note that for 854 (re-
spectively 694) examples the number of symbols (respectively, the
number of g-atoms) of the interpolant decreased by at least a fac-
tor of 2. However, we also note that for 4354 (respectively 4971)
problems out of the 6577 examples we tried minimisation did not
improve the size: these examples are omitted in Table 1. As the
qualitative studies of interpolants is a challenging topic, we believe
that the experimental results reported in Table 1 show the potential
of our method in generating better interpolants.

In Figures 2 and 3 we show a colored proof of a TPTP prob-
lem before and after minimization. Formulas appearing in the in-
terpolant are given in bold, while other consequences of symbol
eliminating inferences in italic. Red symbols in the proof are un-
derlined, whereas blue symbols are underbraced. Figures 4 and 5
show the proof before and after minimisation in a tree form. As
mentioned, formulas denoted by R (resp. by B or G) refer to red
(resp. blue or grey formulas). The formulas G814 and G41 appear
in the original interpolant, but when G815, G45 and G41 are sliced
off by the minimisation algorithm, the new interpolant formulas are
G853 and G86. This is because the formula G853 is eliminating red
symbols from the premises it received as a result of the slicing. The
formula G86 now appears in the interpolant because it is an ances-
tor of a red symbol eliminating formula. Even though we still have
two formulas in the interpolant, its size decreased because G853 is
a trivial formula⊥. When compared to Figure 4, note that the num-
ber of grey formulas in Figure 5 has decreased due to grey slicing.

6.3 Experiments with SMT Problems
We used a set of SMT-Lib benchmarks coming from bounded
model checking. Variables in these problems correspond to state
variables representing various unrolling steps of loops. These vari-
ables are typically indexed by integer constants, where the integer
index expresses the unrolling step to which the state variable be-
longs to.

Translating and localising Z3 proofs. We generated proofs of
SMT problems by using Z3. Z3 proofs are expressed in the sequent
calculus, while our proof localisation and minimisation algorithms
work with resolution-style proofs. We therefore parsed and trans-
lated Z3 proofs into our framework by using a simple Lisp parser.
To this end, we replaced conditionalised Z3 formulas of the form
A1, . . . , An ` F by implications (A1 ∨ . . . ∨An)→ F .

The coloring strategy we used for the SMT benchmarks was as
follows. Except the state variables, all other symbols were colored
grey. We divided the set of state variables into three parts. State
variables corresponding to the middle loop unrolling step were
left grey, variables from earlier states were marked red and those
from later states were colored blue. In our experiment this coloring
strategy turned out to be successful, in 95% of all examples we

853. ⊥ [815,86]
815. ¬ udl(sK0,rl(sK0)) [814,45]
814. ¬ udl(x0,rl(x1)) ∨ ¬ udl(x0,x1) [813,17]
813. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) [15,17]
86. udl(x0,rl(x0)) [79,49]
79. udl(x9,x7) ∨ ¬ udl(ptp︸︷︷︸(x7,x8),x9) [61,42]

61. udl(x7, ptp︸︷︷︸(x6,x8)) ∨ ¬ udl(x7,x5) ∨ udl(x5,x6) [57,33]

57. ¬ udl(x5, ptp︸︷︷︸(x6,x7)) ∨ udl(x5,x6) [33,43]

49. udl(ptp︸︷︷︸(rl(x3),x4),x3) [38,43]

45. udl(sK0,rl(rl(sK0))) [30,41]
43. ¬ udl(ptp︸︷︷︸(x1,x2),x1) [25,24]

42. ¬ udl(x0,x0) [25,27]
41. udol(sK0,rl(sK0)) [6,7]
38. udl(x0,rl(x1)) ∨ udl(x0,x1) [input]
33. udl(x1,x2) ∨ ¬ udl(x0,x1) ∨ udl(x0,x2) [input]
30. ¬ udol(x0,x1) ∨ udl(x0,rl(x1)) [input]
27. eld(x0,x0) [input]
25. ¬ udl(x0,x1) ∨ ¬ eld(x0,x1) [input]
24. eld(ptp︸︷︷︸(x1,x0),x1) [input]

17. ¬ lcl(x0,x1) [input]
15. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) ∨ lcl(x0,rl(x1))
[input]
7. ¬ edol(sK0,rl(sK0)) [input]
6. udol(x0,x1) ∨ edol(x0,x1) [input]

Figure 2. Proof of the GEO269+3 problem from the TPTP library.

tried input formulas have been translated into formulas colored by
at most one color.

However, the usage of colors yielded non-local Z3 proofs in
more than 90% of all examples we tried. We translated non-local Z3
proofs into local ones by applying our proof localisation algorithm.
To this end, we always used existential quantification to eliminate
red symbols from non-local inferences. As the size of generated
interpolants depends on the introduced quantified formulas, we
believe that a dynamic analysis over the colored symbols to be
eliminated, for example eliminate blue symbol instead of a red one,
is an interesting topic for further examination.

The result of proof localisation was further used to minimise
interpolants.

Minimising local SMT proofs. Altogether, we used 4347 SMT
benchmarks. Out of these 4347 examples, we generated inter-
polants for 2123 problems. We analyse these interpolants below
and summarize our results in Table 3.

The remaining 2224 SMT problems we could not fully process.
This was due to a 60s time limit which we imposed as the pro-
cessing time of one problem, including proof translation, coloring
and localisation. In 102 cases the run was terminated by reaching
the time limit in translating and coloring Z3 proofs, in 1580 cases
the timeout was reached in the proof localisation phase, and for
542 benchmarks the time limit was reached during the minimiza-
tion phase (in constructing and minimising the set of propositional
formulas).

Among the 2123 interpolants, 112 interpolants were trivial, and
1659 contained existential quantifiers introduced by proof locali-
sation. The number of symbols in the interpolants was decreased
by our minimisation algorithm for 331 interpolants, out of which
14 interpolants had a decrease by more than two times. The num-
ber of g-atoms in the interpolant decreased for 83 interpolants,
whereas the number of quantified variables was minimised for 7

853. ⊥ [814,86,30,6,7]
814. ¬ udl(x0,rl(x1)) ∨ ¬ udl(x0,x1) [813,17]
813. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) [15,17]
86. udl(x0,rl(x0)) [79,49]
79. udl(x9,x7) ∨ ¬ udl(ptp︸︷︷︸(x7,x8),x9) [61,42]

61. udl(x7, ptp︸︷︷︸(x6,x8)) ∨ ¬ udl(x7,x5) ∨ udl(x5,x6) [57,33]

57. ¬ udl(x5, ptp︸︷︷︸(x6,x7)) ∨ udl(x5,x6) [33,43]

49. udl(ptp︸︷︷︸(rl(x3),x4),x3) [38,43]

43. ¬ udl(ptp︸︷︷︸(x1,x2),x1) [25,24]

42. ¬ udl(x0,x0) [25,27]
38. udl(x0,rl(x1)) ∨ udl(x0,x1) [input]
33. udl(x1,x2) ∨ ¬ udl(x0,x1) ∨ udl(x0,x2) [input]
30. ¬ udol(x0,x1) ∨ udl(x0,rl(x1)) [input]
27. eld(x0,x0) [input]
25. ¬ udl(x0,x1) ∨ ¬ eld(x0,x1) [input]
24. eld(ptp︸︷︷︸(x1,x0),x1) [input]

17. ¬ lcl(x0,x1) [input]
15. ¬ udl(x0,x1) ∨ lcl(x0,x1) ∨ ¬ udl(x0,rl(x1)) ∨ lcl(x0,rl(x1))
[input]
7. ¬ edol(sK0,rl(sK0)) [input]
6. udol(x0,x1) ∨ edol(x0,x1) [input]

Figure 3. Transformed proof of Figure 2 by slicing off formulas
using weight minimization.

interpolants. Table 3 shows the distribution of the number of sym-
bol occurring in interpolants before (row 1) and after minimization
(row 2). The distribution of the number of g-atoms (row 3) and
quantifiers (row 4) in interpolants is shown only before minimiza-
tion, because the effect of minimisation on these values was not sig-
nificant. Each column of Table 3 gives the number of interpolants
whose number of size/g-atoms/quantifiers are bounded by the nu-
meric value given in the first cell of the column. That is, for exam-
ples, the number of symbols in 168 (row 2, column 3) interpolants
is between 5-9 after minimisation. The numbers given in column 1
of Table 3 correspond to the number of trivial interpolants.

The experiments show that our minimisation algorithm is not
very efficient on this benchmark suite compared to the first-order
benchmarks. We believe that the problem is not in the method but
in the way Z3 produces proofs (since the produced proofs were
not intended for interpolation). It was often the case that the proofs
contained very large formulas, sometimes mixing colors in these
formulas. The formulas are then quantified by other algorithm and
cannot further be removed from the proof, thus spoiling the minimi-
sation statistics. These formulas are normally large conjunctions or
if-then-else expressions, which can also be represented as conjunc-
tions and could have been split into smaller ones. This would not
only replace large formulas by smaller one, but also improve col-
oring of proofs and reduce (or eliminate) the necessity to quantify
formulas in them. We believe that our technique will work very
well if SMT solvers are modified to obtain proofs of a better qual-
ity. Moreover, once a proof is found, post processing can also be
done and one may try to change non-local parts of the proof again
by theorem proving.

7. Related Work
Interpolation has a number of application in formal verification,
ranging from approximating the set of reachable sets in predicate
abstraction [14, 16] to invariant generation of loops [21]. Formal
verification thus crucially depends to which extent “good” inter-
polants can be automatically generated.

R6 R7

G41 G30

G45

R15 R17

R813 R17

G814

G815

G25 B24

B43 G33

B57 G33

B61

G25 G27

G42

B79

G25 B24

B43 G38

B49

G86

G853

Figure 4. Proof tree for Figure 2.

General criteria for comparing interpolants can be defined by
the logical strength of the interpolant, see e.g. [9, 16]. The ap-
proach described in [16] reorders the sequence of resolution steps
in a proof to strengthen the derived interpolants. The main heuris-
tic used for proof transformation is to make resolution steps on
red/blue variables before those on grey variables. The work of
[9] extends [16] and gives a theoretical investigation on the logi-
cal strength of propositional interpolants extracted from resolution
proofs. The approach uses the notion of labeling functions, which
essentially label literals by red, blue or grey labels. The differences
among the labeling functions come from how grey literals are la-
beled (red, blue, or grey). The strength of the various labeling func-
tions is compared, and weaker or stronger interpolants are derived
by changing the deployed labeling functions and swapping some
nodes in the derivation.

Examples of [9] emphasise that weaker interpolants might lead
to better performance, whereas experimental results of [16] show
that stronger interpolants can speed up the convergence of a soft-
ware model checker based on predicate abstraction. Optimising in-
terpolants by only using the logical strength of the interpolant as a
selection criteria is thus not always the best way to go in designing
efficient interpolation algorithms.

The logical strength of the interpolant is also evaluated in [14,
21], in the context of verification of programs with loops. Although
one can derive various program properties by unwinding loop itera-
tion, the resulting set of program properties is a diverging sequence
of non-inductive formulas. In [14] interpolants are generated by
searching the proof space and avoiding divergence by deeper un-
windings of loop iterations. The method is further extended in [21]
to infer quantified interpolants. It is shown that by bounding the
behavior of the interpolating prover (e.g. delaying inferences over
colored or grey symbols), divergence is prevented and an induc-
tive invariant is eventually produced from quantified interpolants.
A somehow related approach is presented in [13, 18], where quan-
tified interpolants are extracted from first-order local proof. These
techniques generate interpolants by taking the boolean combina-
tions of the grey conclusions of the largest colored subderivations.

The works of [4, 5, 11, 19] evaluate the quality of interpolants
by using, in some sense, a different selection criteria. These meth-
ods are motivated to generate interpolants that are small in the num-
ber of their components, and describe interpolation procedures for
the theory of linear integer arithmetic w/o uninterpreted function
and predicate symbols. The approach of [4] computes ground inter-
polants that are exponential in the size of the proofs. The method
is improved in [19] by restricting the logical power of the inter-
polating prover, and is further extended in [5] by handling unin-
terpreted function and predicate symbols. To this end, [5] shows
that quantified interpolants are needed. However, by using guarded
quantifiers and divisibility predicates, the quantified interpolants
can be translated into equivalent quantifier-free formulas. A similar
problem is addressed and solved in [11], where ceiling functions
are used to avoid quantified interpolants and generate quantifier-
free interpolants of quantifier-free formulas in linear integer arith-
metic. Ceiling functions are handled in the interpolating prover by
replacing every non-variable ceiling term by a fresh integer vari-

R6 R7 G30

R15 R17

R813 R17

G814

G25 B24

B43 G33

B57 G33

B61

G25 G27

G42

B79

G25 B24

B43 G38

B49

G86

G853

Figure 5. Proof tree for the minimized proof of Figure 3.

able. Inequality constraints over the newly introduced integer vari-
ables are added to capture the semantics of ceiling terms. Whereas
[4, 5, 11, 19] show good performance on experiments, due to the
lack of realistic benchmarks, it is hard to draw broad conclusions
whether the interpolants generated by these works are the “best” in
size and expressiveness.

Contrary to all aforementioned works, we define a set of
pseudo-boolean constraints over the grey formulas of the proof.
Any solution to this set of constraints gives a different interpolant,
and any interpolant can be expressed as a solution of the constraint
set. The proof transformations carried out in our approach use only
slicing off formulas that are logical consequences of other formu-
las. Furthermore, we evaluate the logical strength of interpolants
by minimising the size, the total weight and the number of quan-
tifiers. Unlike [4, 5, 9, 11, 14, 16, 19], our method can generate
and minimise interpolants of quantified formulas. When compared
to [13], our experiments show that we get better interpolants then
the ones of [13] extracted from the largest colored subderivations.
More generally spoken, our minimisation algorithm can be applied
to any input proof, provided that the input proof can be translated
into an equivalent local proof. A special case of such proofs are
those whose only colored symbols are uninterpreted constants. Al-
though such a condition might sound severe, it turns out that in
practice a large class of examples satisfy this imposed restriction:
interpolation benchmarks in the combined theory of uninterpreted
functions, predicates and linear integer arithmetic coming from the
SMT community satisfy this coloring constraint [4, 5, 11, 19].

8. Conclusion
We described how interpolants extracted from arbitrary proofs can
be obtained and minimised in various ways giving smaller inter-
polants. Our method (1) takes an arbitrary refutation proof, (2)
translates it into a local one, provided that all colored symbols are
uninterpreted constants, (3) applies minimisation based on analysis
of grey areas in the refutation, and (4) computes a minimal inter-
polant by using pseudo-boolean optimisation.

Our method is very general and can be used with any theory
and in conjunction with any theorem prover that outputs refutation
proofs of interpolation problems. The evaluation of our method on
first-order and SMT bounded model checking benchmarks shows
that, in many cases, minimisation considerably decreases the inter-
polant size.

We intend to integrate our method into concrete verification
tools and evaluate our approach on more realistic verification
benchmarks. An interesting question we plan to address in the
future is how the quality of minimised interpolants effects the effi-
ciency of interpolation-based verification methods. Using a highly
optimised pseudo-boolean solver instead an SMT solver is left for
further experiments.

We believe that our method opens a new avenue on research
in interpolation-based methods. Indeed, other proof transformation
methods can be used as well. For example, we can quantify away
not only red, but sometimes also blue symbols or slice off colored
formulas. In addition, as we pointed out in Section 6 better proofs
can considerably improve the quality of interpolants.

Acknowledgments
We acknowledge funding from the University of Manchester and
an EPSRC Pathfinder grant (Hoder), the FWF Hertha Firnberg Re-
search grant T425-N23 and the FWF National Research Network
RiSE S11410-N23 (Kovács), and an EPSRC grant (Voronkov).

References
[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In

A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 2, pages 19–99. Elsevier Science, 2001.

[2] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[3] D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy Shape Analysis.
In Proc. of CAV, pages 532–546, 2006.

[4] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An Interpolating
Sequent Calculus for Quantifier-Free Presburger Arithmetic. In Proc.
of IJCAR, pages 384–399, 2010.

[5] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. Beyond Quantifier-
Free Interpolation in Extensions of Presburger Arithmetic. In Proc. of
VMCAI, pages 88–102, 2011.

[6] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri.
Kratos - A Software Model Checker for SystemC. In Proc. of CAV,
pages 310–316, 2011.

[7] W. Craig. Three uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory. Journal of Symbolic Logic,
22(3):269–285, 1957.

[8] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In Proc.
of TACAS, pages 337–340, 2008.

[9] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher.
Interpolant strength. In Proc. of VMCAI, pages 129–145, 2010.

[10] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Proc. of CAV, pages 81–94, 2006.

[11] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient Interpolant
Generation in Satisfiability Modulo Linear Integer Arithmetic. In
Proc. of TACAS, pages 143–157, 2011.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from Proofs. In Proc. of POPL, pages 232–244, 2004.

[13] K. Hoder, L. Kovacs, and A. Voronkov. Interpolation and Symbol
Elimination in Vampire. In Proc. of IJCAR, pages 188–195, 2010.

[14] R. Jhala and K. L. McMillan. A practical and complete approach to
predicate refinement. In Proc. of TACAS, pages 459–473, 2006.

[15] R. Jhala and K. L. McMillan. Array Abstractions from Proofs. In
Proc. of CAV, pages 193–206, 2007.

[16] R. Jhala and K. L. McMillan. Interpolant-Based Transition Relation
Approximation. Logical Methods in Computer Science, 3(4), 2007.

[17] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for Data
Structures. In SIGSOFT FSE, pages 105–116, 2006.

[18] L. Kovacs and A. Voronkov. Interpolation and Symbol Elimination.
In Proc. of CADE, pages 199–213, 2009.

[19] D. Kroening, J. Leroux, and P. Rümmer. Interpolating Quantifier-Free
Presburger Arithmetic. In Proc. of LPAR-17, pages 489–503, 2010.

[20] K. L. McMillan. An Interpolating Theorem Prover. Theor. Comput.
Sci., 345(1):101–121, 2005.

[21] K. L. McMillan. Quantified Invariant Generation Using an Interpolat-
ing Saturation Prover. In Proc. of TACAS, pages 413–427, 2008.

[22] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem
proving. In Handbook of Automated Reasoning, volume I, chapter 7,
pages 371–443. 2001.

[23] A. Riazanov and A. Voronkov. Splitting without Backtracking. In
Proc. of IJCAI, pages 611–617, 2001.

[24] A. Riazanov and A. Voronkov. The Design and Implementation of
Vampire. AI Communications, 15(2-3):91–110, 2002.

[25] G. Sutcliffe. The TPTP Problem Library and Associated Infrastruc-
ture. J. Autom. Reasoning, 43(4):337–362, 2009.

