Problem 7.1. (30 points) Consider the following four languages:

- $L_1 = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \subseteq \{00, 11\}\}$
- $L_2 = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{00, 11\}\}$
- $L_3 = \{\langle M, q \rangle \mid \text{TM } M \text{ visits state } q \text{ on some input }\}$
- $L_4 = \{\langle M, q \rangle \mid \text{TM } M \text{ visits state } q \text{ on some input within 1000 steps}\}$

Consider the following four mutually exclusive statements about a language L:

- **S1** The language L is recursive
- **S2** The language L is r.e., but not recursive.
- **S3** The language L is co-r.e., but not recursive.
- **S4** The language L is not r.e., nor co-r.e.

You are asked to determine for each language L_1 to L_4 which one of the statements **S1** to **S4** is true. You need to justify your answers as follows:

- To justify **S1**, give a high-level description of a Turing decider that accepts L.
- To justify **S2**, give (i) a high-level description of a Turing recognizer that accepts L, and (ii) a mapping reduction from either A_{TM} or E_{TM} to L.
- To justify **S3**, give (i) a high-level description of a Turing recognizer that accepts the complement of L and (ii) a mapping reduction from \overline{A}_{TM} or E_{TM} to L.
- To justify **S4**, give (i) a mapping reduction from either A_{TM} or E_{TM} to L and (ii) a mapping reduction from \overline{A}_{TM} or E_{TM} to L.

Solution:

1. L_1 is co-r.e., but not recursive (S2).
 - L_1 is co-r.e.

 Proof: Here is a Turing Machine that accepts the complement of L_1, where the complement of L_1 is $\overline{L_1} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \not\subseteq \{00, 11\}\}$:

 On input $\langle M \rangle$,
 - Let $f : \mathbb{N} \rightarrow \Sigma^*$ be a function that enumerates all words in Σ^*.
 - For $j = 0, 1, 2, \ldots$,
 - For $i = 0$ to j,
 - Simulate M on $f(i)$ for j steps,
 - if $\langle M \rangle$ accepts and $f(i) \not\in \{00, 10\}$ then ACCEPT.
• \(L_1\) is not recursive.

Proof: \(\overline{A_{TM}} \leq_m L_1\).

Given \(\langle M, w \rangle\) construct \(\langle M' \rangle\) such that \(\langle M, w \rangle \in \overline{A_{TM}}\) iff \(\langle M' \rangle \in L_1\).

That is, \(w \notin L(M)\) iff \(M'\) accepts at most the words \(\{00, 11\}\). \(M'\) behaves as follows:

On input \(x\),
- If \(x = 00\) or \(x = 11\) then ACCEPT.
- Else if \(x = 111\) then,
 - Simulate \(M\) on \(w\). If \(M\) accepts then ACCEPT.
 - Otherwise REJECT.

We need to prove that \(w \notin L(M)\) iff \(M'\) accepts at most the words \(\{00, 11\}\).

- \(\Rightarrow\)
 If \(w \notin L(M)\) the language of \(M'\) is \(\{00, 11\}\) by construction, so \(M'\) accepts exactly the words \(\{00, 11\}\). Thus, \(L(M') = \{00, 11\}\) and \(M' \in L_1\).

- \(\Leftarrow\)
 Proving this is equivalent with proving that if \(w \in L(M)\) then \(M'\) accepts a word that is not in \(\{00, 11\}\). If \(w \in L(M)\) the language of \(M'\) is \(\{00, 11, 111\}\) by construction. So \(M'\) also accepts the word \(111 \notin \{00, 11\}\), and therefore \(M' \notin L_1\).

2. \(L_2\) is not r.e, nor co-r.e. (S4)

• \(L_2\) is not r.e.

Proof: \(\overline{A_{TM}} \leq_m L_2\).

Given \(\langle M, w \rangle\) construct \(\langle M' \rangle\) such that \(\langle M, w \rangle \in \overline{A_{TM}}\) iff \(\langle M' \rangle \in L_2\).

That is, \(w \notin L(M)\) iff \(M'\) accepts exactly the two words \(\{00, 11\}\). \(M'\) behaves as follows:

On input \(x\),
- If \(x = 00\) or \(x = 11\) then ACCEPT.
- Else if \(x = 111\) then,
 - Simulate \(M\) on \(w\). If \(M\) accepts then ACCEPT.
 - Otherwise REJECT.

We need to prove that \(w \notin L(M)\) iff \(M'\) accepts exactly the two words \(\{00, 11\}\).

- \(\Rightarrow\)
 If \(w \notin L(M)\) the language of \(M'\) is \(\{00, 11\}\) by construction, so \(M'\) accepts exactly \(\{00, 11\}\).

- \(\Leftarrow\)
 If \(w \in L(M)\) the language of \(M'\) is \(\{00, 11, 111\}\) by construction. So \(M'\) accepts the three words \(\{00, 11, 111\}\), and not only the two words \(\{00, 11\}\).

• \(L_2\) is not co-r.e.

Proof: \(A_{TM} \leq_m L_2\).

Given \(\langle M, w \rangle\) construct \(\langle M' \rangle\) such that \(\langle M, w \rangle \in A_{TM}\) iff \(\langle M' \rangle \in L_2\).

That is, \(w \in L(M)\) iff \(M'\) accepts exactly the two words \(\{00, 11\}\). \(M'\) behaves as follows:

On input \(x\),
- If \(x = 00\) then ACCEPT.
- Else if \(x = 11\) then
– Simulate \(M \) on \(w \). If \(M \) accepts then \textbf{ACCEPT}.
– Otherwise \textbf{REJECT}.

We need to prove that \(w \in L(M) \) iff \(M' \) accepts exactly the two words \{00, 11\}.

– ’\(\Rightarrow \)’
 If \(w \in L(M) \) the language of \(M' \) is \{00, 11\} by construction, so \(M' \) accepts exactly the two words \{00, 11\}.

– ’\(\Leftarrow \)’
 If \(w \notin L(M) \) the language of \(M' \) is \{0\} by construction, so \(M' \) accepts only the word 00, and not both words 00 and 11.

3. \(L_3 \) is r.e., but not recursive. \(\text{(S2)} \)

 - \(L_3 \) is r.e.

 \textit{Proof:} Here is a Turing Machine that accepts \(L_3 \)

 On input \(\langle M, q \rangle \)
 – Let \(f : \mathbb{N} \rightarrow \Sigma^* \) be a function that enumerates all words in \(\Sigma^* \).
 – For all \(j = 0, 1, 2, \ldots \),
 – For all \(i = 0 \) to \(j \),
 – Simulate \(M \) on \(f(i) \) for \(j \) steps,
 – if \(M \) has visited \(q \) then \textbf{ACCEPT}.
 – otherwise continue.

 - \(L_3 \) is not recursive.

 \textit{Proof:} \(\overline{E_{TM}} \leq_m L_3 \).

 Given \(\langle M \rangle \) construct \(\langle M', q' \rangle \) such that \(\langle M \rangle \in \overline{E_{TM}} \) iff \(\langle M', q' \rangle \in L_3 \).

 That is, \(L(M) \) is not empty iff \(M' \) visits \(q' \) on some input. We choose \(M' = M \) and \(q' = q_a \), where \(q_a \) is the accepting state of \(M \).

 We need to prove that \(L(M) \) is not empty iff \(M' \) visits \(q' \) on some input.

 – ’\(\Rightarrow \)’ Let \(w \in L(M) \). This word exists as \(L(M) \) is not empty. When running \(w \) on \(M' \) the state \(q' \) will be visited as \(q' \) is the accepting state of \(M' \).
 – ’\(\Leftarrow \)’ The word on which \(M' \) visits \(q' \) is accepted so \(L(M') \) is not empty. As \(M' = M \), it follows that \(L(M) \) is not empty.

4. \(L_4 \) is recursive. \(\text{(S1)} \)

 \textit{Proof:} Here is a Turing Decider that accepts \(L_4 \)

 On input: \(\langle M, q \rangle \)
 – Let \(f : \mathbb{N} \rightarrow \Sigma^* \) be a function that enumerates all words in \(\Sigma^* \) of length at most 1000.
 – For \(i = 0, 1, \ldots \),
 – Simulate \(M \) on \(f(i) \) for 1000 steps,
 – if \(M \) visits \(q \) then \textbf{ACCEPT}.
 – otherwise continue.

 - \textbf{Reject}.