
Advanced Topics in Theoretical Computer Science
Problem Set 4
Due November 22, 2012

Problem 4.1. (15 points) For each of the following three languages Bi over the alphabet
{0, 1}, give either a PDA that accepts Bi or a CFG that generates Bi.

a. B1 is the set of palindromes, i.e., the set of words that read the same forwards and backwards.
For eample, 010 is a palindrome; 0100 is not.

b. B2 = {12k013k | k ≥ 0}.

c. B3 is the set of words that contain more 1’s than 0’s.

Solution:

a. CFG:
S → ε | 0 | 1 | 0 S 0 | 1 S 1.

PDA:

//ONMLHIJK
ε,ε→$

//ONMLHIJK
ε, ε→ ε
0, ε→ ε
1, ε→ ε

//

0, ε→ 0
1, ε→ 1

�� ONMLHIJK
ε,$→ε

//

0, 0→ ε
1, 1→ ε

�� ONMLHIJKGFED@ABC

b. CFG:
S → 0 | 11 S 1 1 1.

PDA:

//ONMLHIJK
ε,ε→$

//ONMLHIJK
1,ε→#

��

0,ε→ε
//ONMLHIJK

ε,$→ε
//

1,#→ε
�� ONMLHIJKGFED@ABC

ONMLHIJK
1,ε→#

//ONMLHIJK
ε,ε→#

bbEEEEEEEEEEE

Note that the choice of the symbol we push and pop from the stack (here #) does not
matter as long as it is used consistantly for both operations. In particular, this symbol
does not have to be in the input alphabet Σε, but only in the stack alphabet Γε.



c. CFG:
S → 1 B | 0 S S | S S
B → ε | 0 B 1 | 1 B 0 | B B

PDA:

//ONMLHIJK
ε,ε→$

//ONMLHIJK

1, 0→ ε
1, ε→ 1
0, ε→ 0
0, 1→ ε

��

ε,1→ε
//ONMLHIJK
ε, 1→ ε

��

ε,$→ε
//ONMLHIJKGFED@ABC

We build a similar automaton as for the language which contains as many 0’s as 1’s,
except that after parsing the input, we should be left with atleast one 1 in the stack. In
the CFG, S denotes strings with atleast one more 1 than number of 0’s. B denotes strings
with equal number of 0’s and 1’s.

Problem 4.2. (15 points) For a word x of even length, let half (x) be the first half of x. For
a language C, let

half (C) = {half (x) | x ∈ C and |x| is even}.

a. If C is a regular language, is half (C) necessarily regular as well? If so, then given a finite
automaton for C, construct a finite automaton for half (C). If not, then prove that half (C)
is not regular for some regular language C of your choice.

b. Show that if C is regular, then half (C) is context-free, e.g., given a finite automaton for C,
define a generic construction of a PDA that accepts half (C).

Solution:

a. If C is regular, half (C) is also regular. The word w is in half (C) if there is a state p in the
state set of the finite automaton accepting C such that there exists a run on w leading
from the initial state to p and there exists a word of length |w| in Σ∗ which has a run
leading from p to a final state of the automaton. We use this property in the following
construction:

We consider an NFA N = (Q,Σ, δ, q0, F ) accepting C. For simplicity reasons, we assume
that N has no ε-transitions. Therefore, if N contains ε-transitions, we need to remove
them first using the algorithm covered during the lecture. We defineM = (Q′,Σ, δ′, q′0, F

′)
as follows:

Q′ : Q× P(Q)
q′0 : (q0, F )
F ′ : {(q, S) ∈ Q′ | q ∈ S}
δ′ : δ′((q, T ), a) =

⋃
q′∈δ(q, a) (q′, T ′)

where T ′ = {t ∈ Q | there exists b ∈ Σ such that δ(t, b) ∩ T 6= ∅}
Intuitively, this machine simulates N both forward from the start state and backwards
from the final states. The only complication is that in the backward direction, the machine
simultaneously goes backwards along all arrows. If there is a state reachable forwards
reading w that is also reachable backwards reading some x ∈ Σ∗ of length |w|, then M
accepts. Therefore M recognizes the language half (C).



b. We first note that, using the construction above, we are able to construct a finite automa-
ton for half (C) given a finite automaton for C. Since every finite automaton is also a
pushdown automaton (which doesn’t use the stack), anwering question a. also answers
question b. If we reason on languages only, we show in question a. (by construction) that
if C is regular, then half (C) is also regular. Since a regular language is also context free
(the set of regular languages is included in the set of context free languages), half (C) is
context free.

It is also possible to make use of the stack and build a PDA which only uses 2 · |Q| + 2
states rather than the exponential number of states introduced by the powerset in a.).
We build this automaton by combining two copies of the finite automata given for C. We
start by putting a stack bottom delimiter ($) on the stack, then move to the inital state
of the first copy of the automaton. This copy has been slightly modified to push a symbol
on the stack each time a symbol is read on the input. There is an ε-transition from every
state of this first copy to the same state in the second copy. The second copy has been
modified so that it doesn’t read the input at all, but pops one element from the stack on
each transition which was reading the input in the original automaton. The final states
of the second copy contains a transition going to the final state of the PDA if the stack
is empty. Below is a formal definition of this construct. For simplicity reasons, we give it
for a DFA.

Given a DFAN = (Q,Σ, δ, q0, F ) accepting C, we define the PDA P = (Q′,Σ,Γ′, δ′, q′0, F
′)

as follows:

Γ′ {$,#}
Q′ : ({0, 1} ×Q) ∪ {q′0, qf}
F ′ : {qf}
δ′ : δ′(q′0, ε, ε) = ((0, q0), $)

and for every q ∈ Q, we have
δ′((0, q), a, ε) = ((0, δ(q, a)),#) for each a ∈ Σ
δ′((0, q), ε, ε) = ((1, q), ε)
δ′((1, q), ε,#) = {((1, δ(q, a)), ε) | a ∈ Σ}
δ′((1, q), ε, $) = (qf , ε) if q ∈ F

An accepting run on this PDA would go as follows: first the entire word w is read by the
first copy of the original DFA, and for each symbol read on the input, a # gets pushed
on the stack. Once the word has been read, the stack contains |w| symbols and the
automaton moves to the second copy of the DFA, in which every transition happens with
a pop from the stack. If the second copy ends in a final state with an empty stack, then
there must be a word x such that wx ∈ C and |x| = |w|. Therefore w ∈ half (C).


