Automated Reasoning and Program Verification

Laura Kovács
TU Vienna
SMT questions - where are we now?

- Deciding a conjunction of literals in a theory: How can we check whether a set of literals is satisfiable, where a literal is a positive or negative atomic formula?

- Deciding arbitrary formulas in a theory: How can we put theory reasoning and SAT solving together? For example, for deciding an arbitrary formula in $T\mathcal{E}$, $T\mathcal{A}$ and $T\mathcal{Q}$?

- Combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories? For example, for deciding a formula in the $T\mathcal{E} \cup T\mathcal{A} \cup T\mathcal{Q}$?
SMT questions - where are we now?

▶ Deciding a conjunction of literals in a theory: How can we check whether a set of literals is satisfiable, where a literal is a positive or negative atomic formula?

We already have a decision procedure for \mathcal{TE} and \mathcal{TQ}.
SMT questions - where are we now?

- **Deciding a conjunction of literals in a theory:** How can we check whether a set of *literals* is satisfiable, where a literal is a positive or negative atomic formula?

 We already have a decision procedure for \mathcal{T}_E and \mathcal{T}_Q. What about \mathcal{T}_A?
SMT questions - where are we now?

- **Deciding a conjunction of literals in a theory:** How can we check whether a set of *literals* is satisfiable, where a literal is a positive or negative atomic formula?

 We already have a decision procedure for T_E and T_Q. What about T_A?

- **Deciding arbitrary formulas in a theory:** How can we put theory reasoning and SAT solving together?
SMT questions - where are we now?

- **Deciding a conjunction of literals in a theory**: How can we check whether a set of *literals* is satisfiable, where a literal is a positive or negative atomic formula?

 We already have a decision procedure for \mathcal{T}_E and \mathcal{T}_Q. What about \mathcal{T}_A?

- **Deciding arbitrary formulas in a theory**: How can we put theory reasoning and SAT solving together?

 For example, for deciding an arbitrary formula in \mathcal{T}_E, \mathcal{T}_A and \mathcal{T}_Q?
SMT questions - where are we now?

- **Deciding a conjunction of literals in a theory**: How can we check whether a set of *literals* is satisfiable, where a literal is a positive or negative atomic formula?

 We already have a decision procedure for T_E and T_Q. What about T_A?

- **Deciding arbitrary formulas in a theory**: How can we put theory reasoning and SAT solving together?

 For example, for deciding an arbitrary formula in T_E, T_A and T_Q?

- **Combination of theories**: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?
SMT questions - where are we now?

- Deciding a conjunction of literals in a theory: How can we check whether a set of literals is satisfiable, where a literal is a positive or negative atomic formula?
 We already have a decision procedure for T_E and T_Q. What about T_A?

- Deciding arbitrary formulas in a theory: How can we put theory reasoning and SAT solving together?
 For example, for deciding an arbitrary formula in T_E, T_A and T_Q?

- Combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?
 For example, for deciding a formula in the $T_E \cup T_A \cup T_Q$?
Outline

Theory of Arrays

SMT and Non-Unit Clauses
Deciding \mathcal{T}_A

The theory of arrays \mathcal{T}_A is defined by

- a signature $\Sigma_A = \{\text{read}, \text{write}\}$ where

 - read is a binary function: $\text{read}(A, x)$ is the value of array A at position x
 - write is a ternary function: $\text{write}(A, x, v)$ is the modified array A in which the element at position x has value v

From now on, we consider \mathcal{T}_A as part of the language.

- the following axioms:

 - equality axioms
 - $x = y \rightarrow \text{read}(\text{write}(A, x, v), y) = v$ (read-over-write 1)
 - $x \neq y \rightarrow \text{read}(\text{write}(A, x, v), y) = \text{read}(A, y)$ (read-over-write 2)

\mathcal{T}_A-satisfiability of a formula F is reduced to \mathcal{T}_E-satisfiability

Idea:
1. F contains no write-terms. Then, treat read-terms as uninterpreted function terms
2. F contains write-terms. Then, write-terms occur in the context of a read-term, so use (read-over-write) axioms to "eliminate" write-terms
Deciding \mathcal{T}_A

The theory of arrays \mathcal{T}_A is defined by

- a signature $\Sigma_A = \{\text{read}, \text{write}\}$ where

 * read is a binary function: $\text{read}(A, x)$ is the value of array A at position x
 * write is a ternary function: $\text{write}(A, x, v)$ is the modified array A in which the element at position x has value v

From now on, we consider $=$ as part of the language.
Deciding \mathcal{T}_A

The theory of arrays \mathcal{T}_A is defined by

- a signature $\Sigma_A = \{\text{read}, \text{write}\}$ where

 - read is a binary function: $\text{read}(A, x)$ is the value of array A at position x
 - write is a ternary function: $\text{write}(A, x, v)$ is the modified array A in which the element at position x has value v

From now on, we consider $=$ as part of the language.

- the following axioms:

 equality axioms from \mathcal{T}_E

 \[
 \begin{align*}
 x = y & \Rightarrow \text{read}(\text{write}(A, x, v), y) = v \quad \text{(read-over-write 1)} \\
 x \neq y & \Rightarrow \text{read}(\text{write}(A, x, v), y) = \text{read}(A, y) \quad \text{(read-over-write 2)}
 \end{align*}
 \]
Deciding \mathcal{T}_A: Congruence Closure Algorithm

The theory of arrays \mathcal{T}_A is defined by

- a signature $\Sigma_A = \{\text{read, write}\}$ where

 - read is a binary function: $\text{read}(A, x)$ is the value of array A at position x
 - write is a ternary function: $\text{write}(A, x, v)$ is the modified array A in which the element at position x has value v

 From now on, we consider $=$ as part of the language.

- the following axioms:

 - equality axioms from \mathcal{T}_E

 $\begin{align*}
 x = y & \rightarrow \text{read}(\text{write}(A, x, v), y) = v \quad \text{(read-over-write 1)} \\
 x \neq y & \rightarrow \text{read}(\text{write}(A, x, v), y) = \text{read}(A, y) \quad \text{(read-over-write 2)}
 \end{align*}$

 \mathcal{T}_A-satisfiability of a formula F is reduced to \mathcal{T}_E-satisfiability
Deciding \mathcal{T}_A: Congruence Closure Algorithm

The theory of arrays \mathcal{T}_A is defined by

- a signature $\Sigma_A = \{\text{read}, \text{write}\}$ where

 - read is a binary function: $\text{read}(A, x)$ is the value of array A at position x
 - write is a ternary function: $\text{write}(A, x, v)$ is the modified array A in which
 the element at position x has value v

From now on, we consider $=$ as part of the language.

- the following axioms:

 - equality axioms from \mathcal{T}_E

 $x = y \rightarrow \text{read}(\text{write}(A, x, v), y) = v$ \hspace{1cm} (read-over-write 1)

 $x \neq y \rightarrow \text{read}(\text{write}(A, x, v), y) = \text{read}(A, y)$ \hspace{1cm} (read-over-write 2)

\mathcal{T}_A-satisfiability of a formula F is reduced to \mathcal{T}_E-satisfiability

Idea:

1. F contains no write-terms. Then, treat read-terms as uninterpreted function terms

2. F contains write-terms. Then, write-terms occur in the context of a read-term, so use (read-over-write) axioms to “eliminate” write-terms
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no write-terms:
 - use fresh function symbol f_A for array variables A
 - replace $\text{read}(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no $write$-terms:
 - use fresh function symbol f_A for array variables A
 - replace $read(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula

2. F contains $write$-terms, say $read(write(A, x, v), y)$
 - Using (read-over-write 1), replace F by the following formula F_1:
 \[
 F_1 : x = y \land F[v]
 \]
 where $F[v]$ denotes the formula obtained by replacing $read(write(A, x, v), y)$ with v in F.
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no write-terms:
 - use fresh function symbol f_A for array variables A
 - replace $\text{read}(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula

2. F contains write-terms, say $\text{read} (\text{write}(A, x, v), y)$
 - Using (read-over-write 1), replace F by the following formula F_1:
 \[
 F_1 : x = y \land F[v]
 \]
 where $F[v]$ denotes the formula obtained by replacing $\text{read}(\text{write}(A, x, v), y)$ with v in F. If F_1 is \mathcal{T}_A-satisfiable, return satisfiable.
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no write-terms:
 - use fresh function symbol f_A for array variables A
 - replace $\text{read}(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula

2. F contains write-terms, say $\text{read}(\text{write}(A, x, v), y)$
 - Using (read-over-write 1), replace F by the following formula F_1:
 \[
 F_1 : x = y \land F[v]
 \]
 where $F[v]$ denotes the formula obtained by replacing $\text{read}(\text{write}(A, x, v), y)$ with v in F. If F_1 is \mathcal{T}_A-satisfiable, return satisfiable
 - Using (read-over-write 2), replace F by the following formula F_2:
 \[
 F_1 : x \neq y \land F[\text{read}(A, y)]
 \]
 where $F[\text{read}(A, y)]$ denotes the formula by replacing $\text{read}(\text{write}(A, x, v), y)$ with $\text{read}(A, y)$ in F. If F_1 and F_2 are \mathcal{T}_A-unsatisfiable, return unsatisfiable
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no *write*-terms:
 - use fresh function symbol f_A for array variables A
 - replace $\text{read}(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula

2. F contains *write*-terms, say $\text{read}(\text{write}(A, x, v), y)$
 - Using (read-over-write 1), replace F by the following formula F_1:
 $$F_1 : x = y \land F[v]$$
 where $F[v]$ denotes the formula obtained by replacing $\text{read}(\text{write}(A, x, v), y)$ with v in F. If F_1 is \mathcal{T}_A-satisfiable, return **satisfiable**
 - Using (read-over-write 2), replace F by the following formula F_2:
 $$F_1 : x \neq y \land F[\text{read}(A, y)]$$
 where $F[\text{read}(A, y)]$ denotes the formula by replacing $\text{read}(\text{write}(A, x, v), y)$ with $\text{read}(A, y)$ in F. If F_2 is \mathcal{T}_A-satisfiable, return **satisfiable**

If F_1 and F_2 are \mathcal{T}_A-unsatisfiable, return **unsatisfiable**
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Algorithm for deciding \mathcal{T}_A

1. F contains no $write$-terms:
 - use fresh function symbol f_A for array variables A
 - replace $read(A, x)$ with $f_A(x)$ in F
 - decide and return \mathcal{T}_E-satisfiability of resulting formula

2. F contains $write$-terms, say $read(write(A, x, v), y)$
 - Using (read-over-write 1), replace F by the following formula F_1:
 \[F_1 : x = y \land F[v] \]
 where $F[v]$ denotes the formula obtained by replacing $read(write(A, x, v), y)$ with v in F. If F_1 is \mathcal{T}_A-satisfiable, return satisfiable
 - Using (read-over-write 2), replace F by the following formula F_2:
 \[F_1 : x \neq y \land F[read(A, y)] \]
 where $F[read(A, y)]$ denotes the formula by replacing $read(write(A, x, v), y)$ with $read(A, y)$ in F. If F_2 is \mathcal{T}_A-satisfiable, return satisfiable

If F_1 and F_2 are \mathcal{T}_A-unsatisfiable, return unsatisfiable
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(write(A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)}$$
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[
x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(}\text{write(}\text{write}(A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)
\]

Use (read-over-write-1), and get:

\[
F_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land v_2 \neq \text{read}(A, y)
\]
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[
\begin{align*}
x_1 &= y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \\
\text{read}(\text{write}(\text{write}(A, x_1, v_1), x_2, v_2), y) &\neq \text{read}(A, y)
\end{align*}
\]

Use (read-over-write-1), and get:

\[
F_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land v_2 \neq \text{read}(A, y)
\]

F_1 contains no write-terms, so rewrite it to:

\[
F'_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land f_A(y) = v_1 \land v_2 \neq f_A(y)
\]
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read}(\text{write}(\text{write}(A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)$$

Use (read-over-write-1), and get:

$$F_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land v_2 \neq \text{read}(A, y)$$

F_1 contains no write-terms, so rewrite it to:

$$F'_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land f_A(y) = v_1 \land v_2 \neq f_A(y)$$

F'_1 is \mathcal{T}_E-unsatisfiable.
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land read(A, y) = v_1 \land \neg read(write(write(A, x_1, v_1), x_2, v_2), y) = read(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

$F_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land read(A, y) = v_1 \land v_2 \neq read(A, y)$

F_1 contains no write-terms, so rewrite it to:

$F'_1 : x_2 = y \land x_1 = y \land x_1 \neq x_2 \land f_A(y) = v_1 \land v_2 \neq f_A(y)$

F'_1 is \mathcal{T}_E-unsatisfiable.
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(write(A, x_1, v_1), x_2, v_2), y)} \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(A, x_1, v_1), y)} \neq \text{read}(A, y)$
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[
x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \\
\text{read}(\text{write}(\text{write}(A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)
\]

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read}(\text{write}(A, x_1, v_1), y) \neq \text{read}(A, y)$

Use (read-over-write-1), and get:
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read}(\text{write}(\text{write}(A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$$F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read}(\text{write}(A, x_1, v_1), y) \neq \text{read}(A, y)$$

Use (read-over-write-1), and get:

$$F'_2 : x_1 = y \land x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land v_1 \neq \text{read}(A, y)$$
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[
x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(write(A, x_1, v_1), x_2, v_2), y) \neq read(A, y)}
\]

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

\[
F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(A, x_1, v_1), y) \neq read(A, y)}
\]

Use (read-over-write-1), and get: unsatisfiable

\[
F'_2 : x_1 = y \land x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land v_1 \neq \text{read}(A, y)
\]
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(}\text{write(}\text{write(}A, x_1, v_1), x_2, v_2), y) \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$$F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(}\text{write(}A, x_1, v_1), y) \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

$$x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(write(A, x_1, v_1), x_2, v_2), y)} \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$$F_2: x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(A, x_1, v_1), y)} \neq \text{read}(A, y)$$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$$F''_2: x_1 \neq y \land x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read}(A, y) \neq \text{read}(A, y)$$
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[
x_1 = y \land x_1 \neq x_2 \land read(A, y) = v_1 \land read(write(write(A, x_1, v_1), x_2, v_2), y) \neq read(A, y)
\]

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get:

$F_2 : x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land read(A, y) = v_1 \land read(write(A, x_1, v_1), y) \neq read(A, y)$

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get: unsatisfiable

$F''_2 : x_1 \neq y \land x_2 \neq y \land x_1 = y \land x_1 \neq x_2 \land read(A, y) = v_1 \land read(A, y) \neq read(A, y)$
Deciding \mathcal{T}_A: Congruence Closure by Example

Question: Is formula F given below \mathcal{T}_A-satisfiable?

\[x_1 = y \land x_1 \neq x_2 \land \text{read}(A, y) = v_1 \land \text{read(write(write(A, x_1, v_1), x_2, v_2), y)} \neq \text{read}(A, y) \]

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get: unsatisfiable

Use (read-over-write-1), and get: unsatisfiable

Use (read-over-write-2), and get: unsatisfiable

\[F \text{ is thus } \mathcal{T}_A\text{-unsatisfiable.} \]
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Summary: \mathcal{T}_A-satisfiability of a formula F is reduced to \mathcal{T}_E-satisfiability

Idea:

1. F contains no write-terms. Then, treat read-terms as uninterpreted function terms

2. F contains write-terms. Then, write-terms occur in the context of a read-term, so use (read-over-write) axioms to “eliminate” write-terms
Deciding \mathcal{T}_A: Congruence Closure Algorithm

Summary: \mathcal{T}_A-satisfiability of a formula F is reduced to \mathcal{T}_E-satisfiability

Idea:

1. F contains no write-terms. Then, treat read-terms as uninterpreted function terms

2. F contains write-terms. Then, write-terms occur in the context of a read-term, so use (read-over-write) axioms to “eliminate” write-terms

Computing \mathcal{T}_A-satisfiability is NP-complete.
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in T_E, T_A and T_Q
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in \mathcal{T}_E, \mathcal{T}_A and \mathcal{T}_Q

? What about deciding arbitrary formulas in a theory: How can we put together theory reasoning and SAT solving?
Problems — Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in \mathcal{T}_E, \mathcal{T}_A and \mathcal{T}_Q.

? What about deciding arbitrary formulas in a theory: How can we put together theory reasoning and SAT solving?

? What about combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in \mathcal{T}_E, \mathcal{T}_A and \mathcal{T}_Q.

? What about deciding arbitrary formulas in a theory: How can we put together theory reasoning and SAT solving?

? What about combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?

We next study satisfiability of arbitrary formulas in a theory.
Outline

Theory of Arrays

SMT and Non-Unit Clauses
Deciding \mathcal{T}_E: Problems Using Non-Unit Clauses

Example: Let’s try to prove the validity of the formula:

$$F : (a = b \lor a = c) \land f(a) = a \rightarrow f(f(b)) = a \lor f(c) = a.$$

This is equivalent to establishing unsatisfiability of

- $a = b \lor a = c$
- $f(a) = a$
- $f(f(b)) \neq a$
- $f(c) \neq a$
Deciding \mathcal{T}_E: Problems Using Non-Unit Clauses

Example: Let’s try to prove the validity of the formula:

$$F : (a = b \lor a = c) \land f(a) = a \rightarrow f(f(b)) = a \lor f(c) = a.$$

This is equivalent to establishing unsatisfiability of

$$a = b \lor a = c$$
$$f(a) = a$$
$$f(f(b)) \neq a$$
$$f(c) \neq a$$

We have a non-unit clause, so we can’t use congruence closure.

Inputs of the congruence closure algorithm are conjunctions of \mathcal{T}_E-literals.
Idea: Use a SAT Solver

Add a propositional symbol to name every theory atom:

\[
\begin{align*}
&a = b \lor a = c \\
&f(a) = a \\
&f(f(b)) \neq a \\
&f(c) \neq a \\
\end{align*}
\]

\[
\begin{align*}
&\textit{p}_1 \lor \textit{p}_2 \\
&\textit{p}_3 \\
&\neg \textit{p}_4 \\
&\neg \textit{p}_5 \\
\end{align*}
\]

\[
\begin{align*}
&\textit{p}_1 : a = b \\
&\textit{p}_2 : a = c \\
&\textit{p}_3 : f(a) = a \\
&\textit{p}_4 : f(f(b)) = a \\
&\textit{p}_5 : f(c) = a \\
\end{align*}
\]
Idea: Use a SAT Solver

Add a propositional symbol to name every theory atom:

\[a = b \lor a = c \]
\[f(a) = a \]
\[f(f(b)) \neq a \]
\[f(c) \neq a \]

\[p_1 \lor p_2 \]
\[p_3 \]
\[\neg p_4 \]
\[\neg p_5 \]

\[p_1 : a = b \]
\[p_2 : a = c \]
\[p_3 : f(a) = a \]
\[p_4 : f(f(b)) = a \]
\[p_5 : f(c) = a \]

1. Use a SAT solver (DPLL) over the propositional clauses.
2. If the SAT solver returns unsatisfiable, \(\neg F \) is unsatisfiable.
3. If the SAT solver returns satisfiable, we obtain a set of literals \(L_1, \ldots, L_n \) representing a model \(I \) of the propositional clauses.
Idea: Use a SAT Solver
Add a propositional symbol to name every theory atom:

\[
\begin{align*}
\text{atom} &= a = b \lor a = c \\
f(a) &= a \\
f(f(b)) &\neq a \\
f(c) &\neq a
\end{align*}
\]
\[
\begin{align*}
p_1 \lor p_2 \\
p_3 \\
\neg p_4 \\
\neg p_5
\end{align*}
\]
\[
\begin{align*}
p_1 : a = b \\
p_2 : a = c \\
p_3 : f(a) = a \\
p_4 : f(f(b)) = a \\
p_5 : f(c) = a
\end{align*}
\]

1. Use a SAT solver (DPLL) over the propositional clauses.
2. If the SAT solver returns unsatisfiable, \(\neg F \) is unsatisfiable.
3. If the SAT solver returns satisfiable, we obtain a set of literals \(L_1, \ldots, L_n \) representing a model \(I \) of the propositional clauses.
4. Using the theory solver (congruence closure), check satisfiability of the theory literals corresponding to \(I \).
5. If the theory solvers returns satisfiable, \(\neg F \) is satisfiable.
6. If the theory solvers returns unsatisfiable,
Idea: Use a SAT Solver

Add a propositional symbol to name every theory atom:

\[
\begin{align*}
 a = b \vee a = c & \quad \quad p_1 \lor p_2 \\
 f(a) = a & \quad \quad p_3 \\
 f(f(b)) \neq a & \quad \quad \neg p_4 \\
 f(c) \neq a & \quad \quad \neg p_5 \\
\end{align*}
\]

1. Use a SAT solver (DPLL) over the propositional clauses.
2. If the SAT solver returns unsatisfiable, \(\neg F \) is unsatisfiable.
3. If the SAT solver returns satisfiable, we obtain a set of literals \(L_1, \ldots, L_n \) representing a model \(I \) of the propositional clauses.
4. Using the theory solver (congruence closure), check satisfiability of the theory literals corresponding to \(I \).
5. If the theory solvers returns satisfiable, \(\neg F \) is satisfiable.
6. If the theory solvers returns unsatisfiable, add \(\neg L_1 \lor \ldots \lor \neg L_n \) to the set of propositional clauses and go back to step 1.
Idea: Use a SAT Solver

Add a propositional symbol to name every theory atom:

\[
\begin{align*}
 a &= b \lor a = c \\
 f(a) &= a \\
 f(f(b)) &\neq a \\
 f(c) &\neq a
\end{align*}
\]

DPLL(\mathcal{T}) Algorithm for SMT

1. Use a SAT solver (DPLL) over the propositional clauses.
2. If the SAT solver returns unsatisfiable, \(\neg F \) is unsatisfiable.
3. If the SAT solver returns satisfiable, we obtain a set of literals \(L_1, \ldots, L_n \) representing a model \(I \) of the propositional clauses.
4. Using the theory solver (congruence closure), check satisfiability of the theory literals corresponding to \(I \).
5. If the theory solvers returns satisfiable, \(\neg F \) is satisfiable.
6. If the theory solvers returns unsatisfiable, add \(\neg L_1 \lor \ldots \lor \neg L_n \) to the set of propositional clauses and go back to step 1.
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in T_E, T_A, and T_Q.

✓ Put together theory reasoning and SAT solving
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in \mathcal{T}_E, \mathcal{T}_A and \mathcal{T}_Q.

✓ Put together theory reasoning and SAT solving

? What about combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?
Problems – Where are we now?

✓ Deciding theory: Check satisfiability of a set of literals in T_E, T_A and T_Q.

✓ Put together theory reasoning and SAT solving

? What about combination of theories: Given decision procedures for theories, how can we build a decision procedure for formulas using several theories?

We next study satisfiability of formulas in combination of theories!