Automated Reasoning and Program Verification

Laura Kovacs
TU Vienna

Outline

Satisfiability and Randomisation
Randomly Generated Clause Sets
Sharp Phase Transition
Randomised Algoritms for Satisfiability-Checking

Satisfiability and Randomisation

» SAT solving of randomly generated set of clauses are very hard
for DPLL-based SAT solvers;

» Some small randomly generated set of clauses cannot be
satisfied by DPLL-based SAT solvers, whereas random SAT
algorithms can satisfy them;

» Small randomly generated set of clauses are useful for
debugging SAT solvers;

» Experiments show that randomly generated set of clauses
become from satisfiable to unsatisfiable in a very narrow region.

Random Clause Generation

How can one generate a random clause?

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

» Fix a number n of boolean variables;

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

» Fix a number n of boolean variables;

» Select a literal among py, ..., P, —P1
probability.

gee ey

—pn with an equal

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.

» Fix a number n of boolean variables;

» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of the clause;

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of the clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

» SAT is NP-complete;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.
k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

» SAT is NP-complete;

» 2-SAT is decidable in linear time;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.
k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

» SAT is NP-complete;

» 2-SAT is decidable in linear time;

» 3-SAT is NP-complete.

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

» SAT is NP-complete;
» 2-SAT is decidable in linear time;
» 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

LiVIioVIigVig...

And replace it by two clauses:

LiVvioVvn
-nVizgVig...

where nis a new variable.

Randomly Generated Sets of k-Clauses

Suppose we generate random clauses one after one. How does the
set of models of this set change?

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

Number of models: 32

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

Number of models: 32

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24

Ps
0
1
0
1

P2 Ps Pa
0
0
0
0

P1
1
1
1
1

Ps
0
1
0
1

P2 P3P
0 O
0 o0
0 o
0 O

P1
0
0
0
0

Example (obtained by a program) for n=5and k = 2
—P2 V 7p3
—P2 V Py

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3
—P2 V Py

[eNeNe)

o O o

OO+

o0+ +

— O OOoOOo

O+ +

- T

Number of models: 20

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2

Number of models: 20

Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

Number of models: 20

Example (obtained by a program) for n=5and k = 2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12

Example (obtained by a program) for n=5and k = 2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

5 B
P2V pi 1 0 0 1 0
“P2 V P2 1 0 0 1 1
p1V p 1 0 1 0 O
~Ps5 V Ps 1 0 1 0 1
P4V Ps 1 0 1 1 o0
10 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

11 0 1 1

Number of models: 12

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 x “Ps 1 0 0 0 1
T2 V P 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
~Ps5 V Ps 1t 0 1 0 1
P4V Ps 1 0 1 1 o0

o
o
o o
- o
o =

Number of models: 9

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 x s 1 0 0 0 1
P2 V P 1 0 0 1 0
PV p2 1 0 0 1 A
PV pi
—Ps V Ps i 0 1 0 1
PaV Ps 1 0 1 1 0
—Ps \V 03 10 1 1 1

o
o
o o
- o
o =

Number of models: 9

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
ﬁgz x “Ps 1 0 0 0 1
P2 VP 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
PaV Ps 1 0 1 1 0
—Ps5 V —p3

Number of models: 7

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
ﬁgz x s 1 0 0 0 1
P2 V P 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
P4V Ps 1 0 1 1 o0
—Ps V Ps3
P2V Py

Number of models: 7

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—p2 V —p3

v, 1 0 0 0 {1

P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py
1 1 0 0 1
1 1 0 1 0

Number of models: 4

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2 T

1 o o0 o0 1

o
o
S

Number of models: 4

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
sV —p2 1 1 0 O 1

1 o o0 o0 1

Number of models: 3

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
sV —p2 1 1 0 O 1
Ps VvV p2

1 o o0 o0 1

Number of models: 3

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

Number of models: 1

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

—P1V P4

Number of models: 1

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2

Number of models: 1

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2
—p1V —Ps

Number of models: 1

Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2
—p1V —Ps

Number of models: 0
This set of 13 clauses is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

» Number n of boolean variables;

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:
» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of the clauses.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:
» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of the clauses.

Generate m clauses, each one has k literals randomly generated
among ps, .- ., Pn, 7P1, - - - , 7Pp With an equal probability.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of the clauses.

Generate m clauses, each one has k literals randomly generated
among p1, ..., Pn, —P1, - - -, 7Py With an equal probability.

Exercise: What is the probability that the resulting set is unsatisfiable
form=1and m=2?

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of the clauses.

Generate m clauses, each one has k literals randomly generated
among ps, .- ., Pn, 7P1, - - - , 7Pp With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Real number r: ratio of clauses per variable.

Generate [rn| clauses, each one has k literals randomly generated
among ps1, .- ., Pn, 7P1, - - - , 7Pp With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Real number r: ratio of clauses per variable.

Generate [rn| clauses, each one has k literals randomly generated
among p1, ..., Pn, P1,- - -, 7Py With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Denote by = (r, n) the probability that a randomly generated set of [rn]
k-clauses is unsatisfiable.

Roulette

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What will you bet on if
we generate 5
clauses?

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What will you bet on if
we generate 5
clauses?

» What will you bet on if
we generate 100
clauses?

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What will you bet on if
we generate 5
clauses?

» What will you bet on if
we generate 100
clauses?

» What will you bet on if
we generate 15
clauses?

SAT Roulette

We will generate random
instances of 3-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What will you bet on if
we generate 5
clauses?

» What will you bet on if
we generate 100
clauses?

» What will you bet on if
we generate 15
clauses?

Probability of obtaining an unsatisfiable set of 3-SAT

(r,80)
1.0
0.9 //
0.8
0.7

0.6 //
0.5 /

0.4

0.3
0.2
0.1

3.0 3.5 4.0 4.5 5.0 55 6.0

Probability of obtaining an unsatisfiable set of 3-SAT

Crossover point: the value of r at which the probability crosses 0.5.

7(r, 80)

1.0

0.9 //
0.8
0.7

0.6 /
0:4 /

0.3

0.2
0.1

3.0 3.5 4.0 4.5 5.0 55 6.0

Probability of obtaining an unsatisfiable set of 3-SAT

Crossover point: the value of r at which the probability crosses 0.5.

7(r, 80)

1.0
0.9 //
0.8
0.7
0.6 /
0.5 |/

0.4 /'
0.3

0.2
0.1

o f

3.0 3.5 4.0 4.5 5.0 55 6.0

e-window

Take a (small) number 0 < e < 0.5. e-window is the interval of values
of r where the probability is between e and 1 — e.

e-window

Take a (small) number 0 < e < 0.5. e-window is the interval of values
of r where the probability is between e and 1 — e.

For example, take ¢ = 0.1.

e-window

Take a (small) number 0 < ¢ < 0.5. e-window is the interval of values
of r where the probability is between e and 1 — e.

For example, take ¢ = 0.1.

w(r,80)
1.0

0.9 el

0.8
0.7

0.6 /
0.5

/
0.3
0.2

O -wind n
U T=WIHTAOW

0.1 / / ,

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Scaling Window Effect for 3-SAT

200

180

160

140

120

100

80

n

0.01-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect for 3-SAT

200

180

160

140

120

100

80

n

0.1-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect for 3-SAT

200

180

160

140

120

100

80

n

0.01-window

0.1-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect for 3-SAT

n

200

0.01-window

160

0.1-window

140

120

100

80

3.5 4.0 4.5 5.0 5.5

Conjecture: for n — oo every e-window “degenerates into a point”.

Sharp Phase Transition of 7(r, n)

w(r,n)
1.0
0.9 Vs
0.8 n=200 ///
0.7 =140
0.6 n—=380 /%/
0.5
[
0.3
0.2
y /)

A

3.0 3.5 4.0 4.5

Easy-Hard-Easy Pattern

8000

7000

6000

5000

4000

3000

2000

1000

DPLL branches
/r\ n =200
1
/I
1
1
/ '
1
-\
1
1
[\
1
1
/ !
1
[
1
easy / + hard easy
1 T~
' __crossoverpoint | ————|
3.0 35 4.0 45 5.0 55 6.0

Easy-Hard-Easy Pattern

8000

7000

6000

5000

4000

3000

2000

1000

DPLL branches

n =200

\

/

easy

)

hard

easy

_L - crossover point

N

\~_-_-

3.0 3.5

4.0

4.5

5.0

5.5

6.0

Experiments show that the crossover point for 3-SAT is 4.25.

Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know

Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times

end

Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
return don’t know
end

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of

this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable).

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable).

Witness for an instance Z: any data D such that, given D, one can
check in polymonial time (in the size of D) that D is a yes-answer of 7.

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable).

Witness for an instance Z: any data D such that, given D, one can
check in polymonial time (in the size of D) that D is a yes-answer of 7.

Satisfiability has short witnessess: interpretations.

SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable).

Witness for an instance Z: any data D such that, given D, one can
check in polymonial time (in the size of D) that D is a yes-answer of 7.

Satisfiability has short witnessess: interpretations.

Unsatisfiability has no polynomial-size witnessess,
unless NP = co — NP.

	Satisfiability and Randomisation
	Randomly Generated Clause Sets
	Sharp Phase Transition
	Randomised Algoritms for Satisfiability-Checking

