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Satisfiability and Randomisation

» SAT solving of randomly generated set of clauses are very hard
for DPLL-based SAT solvers;

» Some small randomly generated set of clauses cannot be
satisfied by DPLL-based SAT solvers, whereas random SAT
algorithms can satisfy them;

» Small randomly generated set of clauses are useful for
debugging SAT solvers;

» Experiments show that randomly generated set of clauses
become from satisfiable to unsatisfiable in a very narrow region.
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Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of the clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?
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SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k (k-clauses).

» SAT is NP-complete;
» 2-SAT is decidable in linear time;
» 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

LiVIioVIigVig...

And replace it by two clauses:

LiVvioVvn
-nVizgVig...

where nis a new variable.



Randomly Generated Sets of k-Clauses

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

Number of models: 32



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

Number of models: 32



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24



Ps
0
1
0
1

P2 Ps  Pa
0
0
0
0

P1
1
1
1
1

Ps
0
1
0
1

P2 P3P
0 O
0 o0
0 o
0 O

P1
0
0
0
0

Example (obtained by a program) for n=5and k = 2
—P2 V 7p3
—P2 V Py

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3
—P2 V Py

[eNeNe)

o O o

OO+

o0+ +

— O OOoOOo

O+ +

- T

Number of models: 20



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2

Number of models: 20



Example (obtained by a program) for n=5and k = 2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

Number of models: 20



Example (obtained by a program) for n=5and k = 2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12



Example (obtained by a program) for n=5and k = 2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

5 B
P2V pi 1 0 0 1 0
“P2 V P2 1 0 0 1 1
p1V p 1 0 1 0 O
~Ps5 V Ps 1 0 1 0 1
P4V Ps 1 0 1 1 o0
10 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

11 0 1 1

Number of models: 12



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps
P2 x “Ps 1 0 0 0 1
T2 V P 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
~Ps5 V Ps 1t 0 1 0 1
P4V Ps 1 0 1 1 o0

o
o
o o
- o
o =

Number of models: 9



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps
P2 x s 1 0 0 0 1
P2 V P 1 0 0 1 0
PV p2 1 0 0 1 A
PV pi
—Ps V Ps i 0 1 0 1
PaV Ps 1 0 1 1 0
—Ps \V 03 10 1 1 1

o
o
o o
- o
o =

Number of models: 9



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps
ﬁgz x “Ps 1 0 0 0 1
P2 VP 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
PaV Ps 1 0 1 1 0
—Ps5 V —p3

Number of models: 7



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps
ﬁgz x s 1 0 0 0 1
P2 V P 1 0 0 1 0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
P4V Ps 1 0 1 1 o0
—Ps V Ps3
P2V Py

Number of models: 7



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

—p2 V —p3

v, 1 0 0 0 {1

P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py
1 1 0 0 1
1 1 0 1 0

Number of models: 4



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2 T

1 o o0 o0 1

o
o
S

Number of models: 4



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
sV —p2 1 1 0 O 1

1 o o0 o0 1

Number of models: 3



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
sV —p2 1 1 0 O 1
Ps VvV p2

1 o o0 o0 1

Number of models: 3



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

Number of models: 1



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

—P1V P4

Number of models: 1



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2

Number of models: 1



Example (obtained by a program) for n=5and k = 2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2
—p1V —Ps

Number of models: 1



Example (obtained by a program) for n=5and k = 2
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Number of models: 0
This set of 13 clauses is unsatisfiable.
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Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Real number r: ratio of clauses per variable.

Generate [rn| clauses, each one has k literals randomly generated
among p1, ..., Pn, P1,- - -, 7Py With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Denote by = (r, n) the probability that a randomly generated set of [rn]
k-clauses is unsatisfiable.
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SAT Roulette

We will generate random
instances of 3-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What will you bet on if
we generate 5
clauses?

» What will you bet on if
we generate 100
clauses?

» What will you bet on if
we generate 15
clauses?
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Scaling Window Effect for 3-SAT
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Conjecture: for n — oo every e-window “degenerates into a point”.



Sharp Phase Transition of 7(r, n)
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Easy-Hard-Easy Pattern
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Experiments show that the crossover point for 3-SAT is 4.25.
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Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
return don’t know
end
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SAT as a Decision Problem

Decision problem: any problem in any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance is a system of linear integer inequalities;
» an answer is yes if it the instance has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable).

Witness for an instance Z: any data D such that, given D, one can
check in polymonial time (in the size of D) that D is a yes-answer of 7.

Satisfiability has short witnessess: interpretations.

Unsatisfiability has no polynomial-size witnessess,
unless NP = co — NP.
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