Übersetzerbau in österreichischen Softwarefirmen
TU Wien
11.4.2019
CATENA

“Partner of choice in System IP and IC Design”

• IC design-house founded in 1986
• Shares acquired by NXP Semiconductors, April 2012
• Maintains independent operations, working for 3rd parties
• Development of RF, Analog, Mixed-Signal and DSP Systems with a focus on Integrated Circuits and Wireless IPs
• 6 development centers
• http://www.catena.tech
Offices

Delft, The Netherlands 1986
- Headquarters
- RF/AMS design, RF System architecture

Eindhoven, The Netherlands 2000
- System Architecture,
- Digital and DSP design, Embedded SW

Kista, Sweden 2001
- RF/AMS design
- RF System architecture

Vienna, Austria 2006
- DSP Architecture and Tooling

Dresden, Germany 2016
- Digital design
- Embedded SW

Pavia, Italy 2017
- RF/AMS design
Applications Areas

• **Wireless Communication**
 • Datacom (Bluetooth, WiFi 802.11x, WiMax, ZigBee, ISM Bands)
 • Proprietary Wireless Links (e.g.: Wireless Loudspeakers)
 • RFID Readers

• **Consumer & Automotive Electronics**
 • FM/AM Broadcast (Car, Portable and Mobile Phones)
 • Digital Radio (DAB(+), DMB-T, DRM(+), RDS, DARC)
 • TV Tuners (DVB Terrestrial, Cable and Satellite, Mobile TV)
 • GPS, GLONASS, Beidou Front-End
 • Keyless Entry and Immobilizer
 • Sensor Electronics

• **Industrial & Medical**
 • Advanced Measurement Circuits (MEMS Gyro/Accelerometer)
 • Implantable Wireless Communication (Pacemakers)
 • Electron Beam Deflector (deep submicron manufacturing equipment)
Catena DSP GmbH

Albertgasse 35, 1080 Wien
4 employees

Tooling Environment for Embedded Cores

Application-Specific Adaptable Architecture
Design space exploration

• Goal
 – Optimize chip area
 – Reduce power dissipation & energy consumption
• Based on a central architecture configuration
• Tools are dynamically configured to a specific target processor
• 2 phases
 – Evaluation phase
 – Production phase
Evaluation

• Find out important key parameters
 – Number of registers
 – VLIW width
 – Custom instructions
• Iterative approach
 – Build
 – Simulate
 – Evaluate
 – Modify
 – Repeat until happy

Production

• Key parameters settled
 – Fine tuning
 – Binary encoding
• Generate HW description
 – e.g. instruction decoder
 – Verilog, VHDL
Embedded Core - Example

AAA
Compiler overview
Target independent MIR passes

- SSA
- Inlining
- Loop optimizations
- SIMD code generation
- Copy- and constant-propagation
- Partial redundancy elimination
- Hardware loops
- Instruction selection
Target dependent LIR passes

- Control-flow optimizations
- IF-conversion
- VLIW instruction scheduling
- Software pipelining
- Register allocation
- Coalescing
- Spilling
domain specifics (1)

• Processor (micro) architecture is scalable in various key parameters
• Harvard processor architectures
• VLIW ISA, explicit parallelism
 – Scheduler, SWP
• Special Addressing Modes
 – Support for code like “x = *p++;”
• Fixed point calculations
 • Type system extensions
 • Specialized code recognized during tree pattern matching
domain specifics (2)

• Delayed branches
 • Explicit delay slots
• Predicated Execution
 – IF-conversion
• Hardware Loops
 – Used for loops with statically known iteration count
• DSP Instructions, e.g. multiply-accumulate
 – Pattern matching rules

\[
\text{mac a, b, c}
\]
Example: FIR filter kernel

```c
#define FILTER_ORDER 26
#define N (FILTER_ORDER + 1)

int fir_kernel(int delay[N], int coeff[N])
{
    long a = 0;
    for (int i = 0; i < N; ++i)
        a += ((long)delay[i] * coeff[i]) << 1;
    return a >> 16;
}
```

fir_kernel:

b0:
- mov, i 0, L0
- ld (R0) += 1, hD1 || ld (R1) += 1, lD1 || bkrep.i 25, b2_end
- ld (R0) += 1, hD1 || ld (R1) += 1, lD1

b2:
- ld (R1) += 1, lD1 || ld (R0) += 1, hD1 || mac.f hD1, lD1, A0

b2_end:
- mov hD0, lD0

b5:
- mac.f hD1, lD1, A0
- mac.f hD1, lD1, A0
- ret
- mnop
Finally …

- Internship/master's thesis
 - On request

- We are looking for an embedded firmware developer

 write an email to
 - christian.panis@catena.tech
 - ulrich.hirnschrott@catena.tech
 - benedikt.lukas.huber@catena.tech (that is me)

- Questions?