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Vorwort

Das Kolloquium Programmiersprachen und Grundlagen der Programmierung
(KPS) findet 2015 zum 18. Mal statt. Es setzt eine Reihe von Arbeitstagun-
gen fort, die von den Professoren Friedrich L. Bauer (TU München), Klaus In-
dermark (RWTH Aachen) und Hans Langmaack (CAU Kiel) ins Leben gerufen
wurde. Aus den ursprünglich drei Arbeitsgruppen sind in der Zwischenzeit weit-
ere Forschungsgruppen in ganz Deutschland und darüberhinaus hervorgegangen.
Seit 2007 präsentiert sich die Veranstaltung als ein offenes Forum für interessierte
deutschsprachige Wissenschaftler. Die folgende Liste gibt einen Überblick über
die bisherigen Tagungsorte und Veranstalter und zeigt die inzwischen 35-jährige
Tradition der KPS-Treffen:

2013 Lutherstadt Wittenberg Martin-Luther-Universität Halle-Wittenberg
2011 Schloss Raesfeld, Raesfeld Westfälische-Wilhelms-Universität Münster
2009 Maria Taferl TU Wien
2007 Timmendorfer Strand Universität zu Lübeck
2005 Fischbachau Ludwig-Maximilians-Universität München
2004 Freiburg-Munzingen Albert-Ludwigs-Universität Freiburg
2001 Rurberg in der Eifel RWTH Aachen
1999 Kirchhundem-Heinsberg FernUniversität in Hagen
1997 Avendorf auf Fehmarn Christian-Albrechts-Universität zu Kiel
1995 Alt-Reichenau Universität Passau
1993 Garmisch-Partenkirchen Universität der Bundeswehr München
1991 Rothenberge bei Steinfurth Westfälische-Wilhelms-Universität Münster
1989 Hirschegg Universität Augsburg
1987 Midlum auf Föhr Christian-Albrechts-Universität zu Kiel
1985 Passau Universität Passau
1982 Altenahr RWTH Aachen
1980 Tannenfelde im Naturpark Aukrug Christian-Albrechts-Universität zu Kiel

Das diesjährige Kolloquium Programmiersprachen und Grundlagen der Program-
mierung (KPS 2015) wird nach 2009 zum zweiten Mal vom Institut für Com-
putersprachen der Technischen Universität Wien organisiert. Wir freuen uns, zu
diesem 18. Kolloquiumstreffen vom 5. bis 7. Oktober 2015 in Pörtschach am
Wörthersee mehr als 70 Teilnehmer von 37 Universitäten, Firmen und außeruni-
versitären Forschungseinrichtungen aus 10 Ländern begrüßen zu können: aus
Österreich, der Schweiz, Deutschland, Schweden, Dänemark, Frankreich, Hol-
land, England, Irland und den USA. Besonders freuen wir uns, Prof. Dr. Dr.h.c.
Hans Langmaack als einen der Gründerväter dieser Kolloquiumsreihe unter
den Teilnehmern begrüßen zu können sowie auch eine große Zahl Veranstalter
früherer Kolloquiumstreffen: Prof. Dr. Gunther Schmidt (1993), Prof. Dr. Tiziana
Margaria und Prof. Dr. Bernhard Steffen (1995), apl. Prof. Dr. Thomas Noll
(2001), Prof. Dr. Peter Thiemann (2004), Prof. Dr. Clemens Grelck (2007),
Prof. Dr. Herbert Kuchen (2011) sowie Dr. Roswitha Picht und Prof. Dr. Wolf
Zimmermann (2013).

Ganz besonders freuen wir uns auch, dass nahezu alle Teilnehmer am diesjährigen
KPS-Treffen in einem Vortrag über ihre Forschungsarbeit berichten oder diese



in Form eines Posters in der erstmalig auf einem KPS-Treffen veranstalteten
Poster-Ausstellung vorstellen. Um all dies im Rahmen der zur Verfügung stehen-
den Zeit zu ermöglichen, verzichten wir in diesem Jahr auf einen eingeladenen
Hauptvortrag.

Der vorliegende Tagungsband ist als Bericht 2015-IX-1 in der Schriftenreihe
des Instituts für Computersprachen der TU Wien erschienen. Er enthält Ausar-
beitungen von 57 in einem Vortrag vorgestellten Beiträgen von mehr als 100
Autoren, zum Teil in Form von Kurzzusammenfassungen. Zusätzlich enthält er
Kurzbeschreibungen für einige ausgestellte Poster. Die Themen der Beiträge
und Poster zeigen die Breite, Vielfalt und Lebendigkeit der wissenschaftlichen
Forschung im Bereich Programmiersprachen und Grundlagen der Programmierung
im deutschsprachigen Raum.

Für organisatorische Hilfe und Unterstützung bei der Planung und Vorbere-
itung dieses Kolloquiums bedanken wir uns sehr herzlich bei der Fachgruppe
Programmiersprachen und Rechenkonzepte im Fachbereich Softwaretechnik der
Gesellschaft für Informatik (GI), der Oesterreichischen Computer Gesellschaft
(OCG), der Einrichtung kinderTUWien und dem Convention Bureau Kärnten.
Unser besonderer Dank gilt Ewa Vesely, bei der nicht nur immer wieder alle
Fäden der Vorbereitung zusammengelaufen sind, sondern die auch stets entschei-
dende Ideen in die Planung eingebracht und umgesetzt hat. Herzlich danken
möchten wir auch allen Mitarbeitern des Hauses Parkhotel Pörtschach für die
gute Zusammenarbeit bei der Vorbereitung dieses Treffens. Ganz besonders be-
danken wir uns bei allen Autoren für ihr Engagement und die gute und zeit-
gerechte Zusammenarbeit, die diesen Tagungsband ermöglicht haben.

Wir wünschen allen Teilnehmern am Kolloquium interessante und span-
nende Vorträge, fruchtbare Diskussionen und vielfältige Anregungen für die
eigene Forschungsarbeit, das Kennenlernen neuer Kollegen und das Wiedersehen
guter Bekannter, das Anbahnen und Knüpfen neuer Kontakte und die Vertiefung
bestehender Kooperationen, eine kurzweilige und erlebnisreiche Exkursion in die
Landeshauptstadt Kärntens Klagenfurt und eine angenehme und stimulierende
Zeit in Pörtschach am Wörthersee und der Wörtherseeregion.

Willkommen zur KPS 2015!

Wien, im September 2015 Jens Knoop
M. Anton Ertl
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Mössenböck: High-Performance Language Composition: Sup-
porting C Extensions for Dynamic Languages . . . . . . . . . . . . . . . . 193

Michael Haidl and Sergei Gorlatch: Programming GPUs with
C++14 and Just-In-Time Compilation . . . . . . . . . . . . . . . . . . . . . . . 208

Mathias Hedenborg, Jonas Lundberg, Welf Löwe and Martin Trapp:
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Default Rules for Curry?

– Extended Abstract –

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. In functional logic programs, rules are applicable indepen-
dently of textual order, i.e., any rule can potentially be used to evaluate
an expression. This is similar to logic languages and opposite to func-
tional languages, e.g., Haskell enforces a strict sequential interpretation
of rules. However, in some situations it is convenient to express alterna-
tives by means of compact default rules. Although default rules are often
used in functional programs, the non-deterministic nature of functional
logic programs does not allow to directly transfer this concept from func-
tional to functional logic languages in a meaningful way. In this paper
we propose a new concept of default rules for Curry that supports a
programming style similar to functional programming while preserving
the core properties of functional logic programming, i.e., completeness,
non-determinism, and logic-oriented uses of functions. We discuss the
basic concept and sketch an initial implementation of it which exploits
advanced features of functional logic languages.

1 Motivation

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [3, 6] for recent surveys). In
particular, the functional logic language Curry [7] extends Haskell with com-
mon features of logic programming, i.e., non-determinism, free variables, and
constraint solving. Moreover, the amalgamated features of Curry supports new
programming techniques, like deep pattern matching through the use of func-
tional patterns, i.e., evaluable functions at pattern positions [1]. As a simple
example, consider an operation isSet intended to check whether a given list
represents a set, i.e., does not contain duplicates. In Curry, we might implement
it as follows (“++” denotes the concatenation of lists):

isSet (_++[x]++_++[x]++_) = False

isSet _ = True

The first rule uses a functional pattern: it returns False if the argument matches
a list where two identical elements occur. If this is not the case, the second rule

? This material is based in part upon work supported by the National Science Foun-
dation under Grant No. 1317249.
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returns True. However, according to the Curry’s semantics, all rules are tried to
evaluate an expression. Therefore, the second rule is always applicable to calls of
isSet so that the expression isSet [1,1] will be evaluated to False and True.

The unindented application of the second rule can be avoided by the ad-
ditional requirement that this rule should be applied only if no other rule is
applicable. We call such a rule a default rule and mark it by adding the suffix
’default to the function’s name. Thus, if we define isSet with the rules

isSet (_++[x]++_++[x]++_) = False

isSet’default _ = True

then isSet [1,1] evaluates only to False and isSet [0,1] only to True.
In the following, we sketch an implementation of default rules in Curry where

we assume familiarity with the basic concepts of functional logic programming
and Curry (see [3, 6, 7]).

2 Default Rules

Default rules are often used in both functional and logic programming. For in-
stance, the following Haskell function reverses a two-element list and leaves all
other lists unchanged:

rev2 [x,y] = [y,x]

rev2 xs = xs

The second rule is applied only if the first rule is not applicable, which yields
the intended semantics. We can avoid the consideration of rule orderings by
replacing the second rule with rules for the patterns not matching the first rule:

rev2 [x,y] = [y,x]

rev2 [] = []

rev2 [x] = [x]

rev2 (x:y:z:xs) = x:y:z:xs

This coding is cumbersome in general and impossible in conjunction with func-
tional patterns, as used in the first rule of isSet above, since a functional pat-
tern conceptually may denote an infinite set of standard patterns (e.g., [x,x],
[x,-,x], [-,x,-,x],. . . ). Thus, there is no finite complement of some functional
patterns.

In Prolog, one often uses the cut operator to implement the behavior of
default rules. For instance, rev2 can be defined as a Prolog predicate as follows:

rev2([X,Y],[Y,X]) :- !.

rev2(Xs,Xs).

Although this behaves as intended for instantiated lists, the completeness
of logic programming is destroyed by the cut operator. For instance, the
goal rev2([],[]) is provable, but Prolog does not compute the answer
{Xs=[],Ys=[]} for the goal rev2(Xs,Ys).

These examples show that a new concept of default rules is required for
functional logic programming if we want to keep the strong properties of the
base language, in particular, the completeness of logic-oriented evaluations. To
avoid developing a new logic foundation of functional logic programming with

13



default rules, we try to reuse existing features of functional logic languages. We
describe our approach explaining the translation of the default rule for rev2. The
extension to functional patterns and conditional rules can be done in a similar
way.

An operation is defined by a set of “standard” rules and one optional default
rule that is applied only if no standard rule is applicable because it do not match
or its condition is not satisfiable. For this reason, we translate a default rule into
a standard rule by adding the condition that no other rule is applicable. For this
purpose, we translate the original non-default rules into “test applicability only”
rules where the right-hand side is replaced by a constant (here: the unit value
“()”):

rev2’TEST [x,y] = ()

Now we add to the default rule the condition that rev2’TEST is not applicable.
Since we are interested in the failure of attempts to apply rev2’TEST, we use a
primitive for encapsulating search to check whether rev2’TEST has no value. In
functional logic programming, set functions [2] or an operator allValues [5] have
been proposed for this purpose, which behave similarly to Prolog’s findall but
can be used in a declarative manner. Using these primitives, one could translate
the default rule into

rev2’DEFAULT xs | isEmpty (allValues (rev2’TEST xs)) = xs

Hence, this rule can be applied only if all attempts to apply a non-default rule
fail. To complete our example, we add this translated default rule as a further
alternative to the non-default rule so that we obtain the definition

rev2 [x,y] = [y,x]

rev2 xs | isEmpty (allValues (rev2’TEST xs)) = xs

Thanks to the logic features of Curry, one can use this definition also to generate
appropriate argument values for rev2. For instance, if we evaluate the expression
rev2 xs with the Curry implementation KiCS2 [4], the search space is finite and
computes, among others, the binding {xs=[]}. This shows that our concept of
default rules is more powerful than existing concepts in functional or logic pro-
gramming. The actual transformation scheme for default rules is more advanced
than sketched above in order to accommodate also functional patterns and con-
ditionals rules and to ensure the optimality of functional logic computations even
in the presence of default rules.

3 Examples

To show the advantages of default rules for functional logic programming, we
sketch a few more examples. In the classical n-queens puzzle, one must place
n queens on a chess board so that no queen can attack another queen. This
can be solved by computing some permutation of the list [1..n], where the i-
th element denotes the row of the queen placed in column i, and check whether
this permutation is a safe placement. The latter property can easily be expressed
with functional patterns and default rules where the non-default rule fails on a
non-safe placement:
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safe (_++[x]++y++[z]++_) | abs (x-z) == length y + 1 = failed

safe’default xs = xs

Hence, a solution can be obtained by computing a safe permutation:

queens n = safe (permute [1..n])

This example shows that default rules are a convenient way to express negation-
as-failure from logic programming. This programming pattern can also be ap-
plied to solve the map coloring problem. Our map consists of the states of the
Pacific Northwest and a list of adjacent states:

data State = WA | OR | ID | BC

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

Furthermore, we define the available colors and an operation that associates
(non-deterministically) some color to a state (the infix operator “?” denotes a
non-deterministic choice between its arguments):

data Color = Red | Green | Blue

color x = (x, Red ? Green ? Blue)

A map coloring can be computed by an operation solve that takes the informa-
tion about potential colorings and adjacent states as arguments, i.e., we compute
correct colorings by evaluating the initial expression

solve (map color [WA,OR,ID,BC]) adjacent

The operation solve fails on a coloring where two states have an identical color
and are adjacent, otherwise it returns the coloring:

solve (_++[(s1,c)]++_++[(s2,c)]++_) (_++[(s1,s2)]++_) = failed

solve’default cs _ = cs
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Abstract—Programming accelerators such as GPUs with
low-level APIs and languages such as OpenCL and CUDA
is difficult, error-prone, and not performance-portable. Au-
tomatic parallelization and domain specific languages (DSLs)
have been proposed to hide complexity and regain performance
portability. We present PENCIL, a rigorously-defined subset of
GNU C99—enriched with additional language constructs—that
enables compilers to exploit parallelism and produce highly
optimized code when targeting accelerators. PENCIL aims to
serve both as a portable implementation language for libraries,
and as a target language for DSL compilers.

We implemented a PENCIL-to-OpenCL backend using a
state-of-the-art polyhedral compiler. The polyhedral compiler,
extended to handle data-dependent control flow and non-affine
array accesses, generates optimized OpenCL code. To demon-
strate the potential and performance portability of PENCIL
and the PENCIL-to-OpenCL compiler, we consider a number
of image processing kernels, a set of benchmarks from the
Rodinia and SHOC suites, and DSL embedding scenarios for
linear algebra (BLAS) and signal processing radar applications
(SpearDE), and present experimental results for four GPU
platforms: AMD Radeon HD 5670 and R9 285, NVIDIA
GTX 470, and ARM Mali-T604.

Keywords-automatic optimization; intermediate language;
polyhedral model; domain specific languages; OpenCL

I. INTRODUCTION

Software for hardware accelerators is currently written
using low-level APIs and languages such as OpenCL [1] and
CUDA [2], which have a steep learning curve, are laborious
and error-prone to program with, and lack performance
portability: the performance of an accelerated application
may vary dramatically across platforms. Hence, developing
software at this level is unattractive and costly.

A compelling alternative for developers is to program in
higher-level languages and to rely on compilers to automat-
ically generate efficient low level code. For general-purpose

†anton@dividiti.com

languages in the C family, this approach is hindered by the
difficulty of static analysis in the presence of pointer alias-
ing. The possibility of aliasing often forces a parallelizing
compiler to assume that it is not safe to parallelize a region
of source code, although aliasing might not actually occur
at runtime. Domain-specific languages (DSLs) can help to
side-step this problem: it is often clear how parallelism
can be exploited given high-level knowledge about standard
operations in a particular domain, such as linear algebra [3],
image processing [4] or partial differential equations [5]. A
drawback of the DSL approach is the significant effort re-
quired to implement a compiler generating highly optimized
OpenCL or CUDA code for multiple platforms.

To address the above problems, we present PENCIL, a
platform-neutral compute intermediate language. PENCIL
aims to serve both as a portable implementation language
for libraries, and as a target language for DSL compilers.

PENCIL is a rigorously-defined subset of GNU C99 that
enforces a set of coding rules predominantly related to
restricting the manner in which pointers can be manipu-
lated. These restrictions make PENCIL code “static analysis-
friendly”: the rules are designed to enable better optimiza-
tions and parallelization when translating a PENCIL program
to a lower-level program. PENCIL is also equipped with
language constructs such as assume predicates and side
effect summaries for functions, which assist with propagating
to a PENCIL compiler optimization-enabling information.

PENCIL is easy to learn, as it is C-based. It also interfaces
with non-PENCIL C code, which allows legacy applications
to be ported incrementally to PENCIL. From the point of
view of DSL compilation, PENCIL offers a tractable target:
all a DSL-to-PENCIL compiler has to do is to faithfully
encode the semantics of the input DSL program into PEN-
CIL—a PENCIL compiler takes care of auto-parallelization
and optimization for multiple accelerator targets. Because
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DSL-to-PENCIL compilers have tight control over the code
they generate, they can aid the effectiveness of the PENCIL
compiler by communicating domain-specific information via
the language constructs that PENCIL provides.

We demonstrate the capabilities of PENCIL and its novel
static analysis-friendly features in a state-of-the-art polyhe-
dral compilation flow—extended with a PENCIL front-end
and implementing advanced combinations of loop and data
transfer optimizations. To this end, we consider a number
of applications with irregular, data-dependent control and
dataflow, making this the first time a fully-automatic polyhe-
dral compilation flow is capable of parallelizing a variety of
real-world, non-static-control applications. The applications,
which originate from hand-written benchmark suites or were
generated by DSL-to-PENCIL compilers, are:
• seven image processing kernels written in PENCIL and

covering computationally intensive parts of a computer
vision stack used by Realeyes, a leader in recognizing
facial emotions (http://www.realeyesit.com);

• five benchmarks extracted from the SHOC [6] and
Rodinia [7] suites and re-written in PENCIL;

• six kernels generated using the VOBLA linear algebra
DSL compiler [3];

• two signal processing radar applications generated from
code written in the SpearDE streaming DSL [8].

To assess performance portability, we present an experi-
mental evaluation of generated OpenCL code on four GPU
platforms: AMD Radeon HD 5670 and R9 285, Nvidia
GTX 470, and ARM Mali-T604. The performance results
are promising, considering the implementation efforts for
these applications and benchmarks. For example, for the
VOBLA linear algebra DSL, we were able to generate code
that has performance close to the cuBlas [9] and clMath [10]
BLAS libraries [11]. For the Realeyes image processing
benchmarks, we could match, and sometimes outperform,
the OpenCV image processing library [12].

In summary, our main contributions are:
• PENCIL, a platform-neutral compute intermediate lan-

guage for direct accelerator programming and DSL
compilation;

• a polyhedral compilation flow that leverages the fea-
tures of PENCIL to handle applications that go beyond
the classical restrictions of the polyhedral model, in-
cluding forms of dynamic, data-dependent control flow
and array accesses;

• an evaluation of PENCIL on multiple GPUs and several
real-world, non-static-control applications that were
previously out of scope for polyhedral compilation.

II. OVERVIEW OF PENCIL

PENCIL is a subset of the C99 language carefully de-
signed to capture static properties essential for implementing
advanced loop nest transformations. The language provides

constructs that help parallelizing compilers to perform more
accurate static analyses and generate efficient target-specific
code. The constructs allow communicating information that
is difficult for a compiler to extract, but that can be easily
captured from DSLs or expressed by expert programmers.

Our aim was for PENCIL to be a strict subset of C99.
However, where necessary and when no alternatives existed,
we exploited the flexibility of GNU C extensions such as
type attributes and pragmas. The pragmas were inspired by
familiar annotations for exploiting vector- and thread-level
parallelism, but retain a strictly sequential semantics.

PENCIL is not coupled to any particular compiler or target
language. However, as we have validated PENCIL using a
polyhedral compiler targeting OpenCL, we will refer to this
compiler when discussing the implementation of PENCIL.

A. Design Goals

We designed PENCIL with four main goals in mind:
Ease of analysis. The language should simplify static code
analysis to enable a high degree of optimization. The main
impact of this is that the use of pointers is disallowed, except
in specific restricted cases.
Support for domain-specific information. The language
should provide facilities that enable a domain expert or
a DSL-to-PENCIL compiler to convey domain-specific in-
formation that may be exploited by a compiler during
optimization. For example, PENCIL should allow the user
to indicate bounds on array sizes, enabling placement or
staging of arrays in the local memory of a GPU.
Portability. A standard, non-parallelizing C99 compiler
supporting GNU C extensions should be able to compile
the language. This ensures portability to platforms without
specialized PENCIL support and allows existing tools to be
used for debugging (unparallelized) PENCIL code.
Sequential semantics. The language should have a sequen-
tial semantics to simplify DSL compiler development and
direct programming in PENCIL, and, importantly, to avoid
committing to any particular parallel patterns.

In designing the PENCIL extensions to C99, we analyzed
numerous benchmarks and DSLs [13] and identified lan-
guage constructs that would be helpful in exposing par-
allelism and enabling compiler optimizations. In deciding
which language features to include, we were guided by the
principle that all domain-specific optimizations should be
performed at the DSL compiler level, while the PENCIL
compiler should be responsible only for parallelization,
data locality optimization, loop nest transformations, and
mapping to OpenCL. This means that only those proper-
ties that are useful for improved static analysis and target
mapping need to be expressible in PENCIL. Domain-specific
properties that are not useful for optimization do not have to
be conveyed and should thus not be a part of PENCIL. This
keeps PENCIL general-purpose, sequential and lightweight.
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Figure 1. A high level overview of the PENCIL compilation flow

Figure 1 gives a high level overview of a typical PENCIL
usage scenario. First, a program written in a DSL is trans-
lated into PENCIL. Some domain-specific optimizations may
be applied prior to or during this translation, while delay-
ing target-specific optimizations to later compilation stages.
Second, the generated PENCIL code is combined with hand-
written PENCIL that implements library functions; PENCIL
is used here as a standalone language. The combined code
is then optimized and parallelized. Finally, highly optimized
OpenCL code is generated. The generated code is autotuned
through profiling-based iterative compilation.

B. PENCIL Coding Rules

We detail the most important restrictions imposed by
PENCIL from the point of view of enabling GPU-oriented
compiler optimizations. For more details, see [14], [15].

Pointer restrictions. Pointer declarations and definitions
are allowed in PENCIL, but pointer manipulation (including
arithmetic) is not, except that C99 array references are
allowed as arguments of functions. Pointer dereferencing
is also not allowed except for accessing C99 arrays. These
restrictions essentially eliminate aliasing problems, which is
important for parallelization and data movement between the
different address spaces of accelerators such as GPUs.

No recursion. Recursive function calls are not allowed, as
they are forbidden in languages such as OpenCL.

Sized, non-overlapping arrays. Arrays must be declared
using the C99 variable-length array syntax [16], and the
declaration of each function argument that is of array type
must use pencil_attributes, a macro expanding to the
C99 restrict and const type qualifiers followed by the
static keyword (see Figure 4). During optimization, the
PENCIL compiler thus knows the length of each array (in
parametric form), and knows that arrays do not overlap.

Structured for loops. A PENCIL for loop must have a
single iterator, invariant start and stop values, and a constant
increment (step), where invariant means that the value does

not change in the loop body. Precisely specifying the loop
format avoids the need for sophisticated induction variable
analyses which may fail under unpredictable conditions.

A further guideline—which is not mandatory as it cannot
be statically checked in general—is that array accesses
should not be linearized. Linearization obfuscates affine
subscript expressions, hindering effective compilation. Mul-
tidimensional arrays should be used instead.

PENCIL also supports OpenCL scalar builtin functions
such as abs, min, max, sin, cos, using a target-independent
and explicitly typed naming scheme (using suffixes to dis-
tinguish between float and double builtins).

C. Assume Predicates

We now describe assume predicates, the first main con-
struct introduced by PENCIL. The other new constructs—
the independent directive, summary functions, and the
__pencil_kill function—follow in Sections II-D–II-F.

An assume predicate, written __pencil_assume(e),
with e a Boolean expression, indicates that e is guaranteed
to hold whenever the control flow reaches the predicate. This
knowledge is taken on trust by the PENCIL compiler, and
may enable generation of more efficient code. If e is violated
during execution, the semantics of the PENCIL program
is undefined. This is not checked at runtime, but optional
runtime checking, for debugging, could be provided. In the
context of DSL compilation, an assume predicate allows a
DSL-to-PENCIL compiler to communicate high level facts.

The general 2D convolution example of Figure 2 illus-
trates the use of __pencil_assume. This image processing
kernel calculates the weighted sum of the area around
each input pixel using a kernel matrix kern_mat for the
weights. The convolution code is part of an image processing
benchmark from Realeyes (see also Section IV-A).

In Realeyes’s production environment, the size of the
kern_mat never exceeds 15×15, as indicated by the assume
predicates. While the image processing experts know this,
without the predicates the compiler must assume that the
kernel matrix can be arbitrarily large. When compiling for a
GPU target the compiler must thus either allocate the kernel
matrix in the GPU’s global memory rather than in fast local
memory, or must generate multiple variants—one to handle
large kernel matrix sizes and another for smaller kernel
matrix sizes—selecting between variants at runtime. Instead,
the __pencil_assume statements in the code communicate
limits on the size of the array, allowing the compiler to store
the whole array in local memory.

D. The Independent Directive

The independent directive is used as a loop annotation,
and is semantically similar to the equally named High
Performance Fortran directive [17]. The directive indicates
that the result of executing the loop does not depend on
the execution order of the data accesses from different loop
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1 #define clampi(val, min, max) \
2 (val < min) ? (min) : (val > max ) ? (max):(val)
3

4 __pencil_assume(ker_mat_rows <= 15);
5 __pencil_assume(ker_mat_cols <= 15);
6

7 for (int i = 0; i < rows; i++)
8 for (int j = 0; j < cols; j++) {
9 float prod = 0.0f;

10 for (int e = 0; e < ker_mat_rows; e++)
11 for (int r = 0; r < ker_mat_cols; r++) {
12 row = clampi(i+e-ker_mat_rows/2, 0, rows-1);
13 col = clampi(j+r-ker_mat_cols/2, 0, cols-1);
14 prod += src[row][col] * kern_mat[e][r];
15 }
16 conv[i][j] = prod;
17 }

Figure 2. PENCIL code for general 2D convolution

iterations. As such, the accesses from different iterations
may be executed in parallel.

In practice, independent is used to indicate that a loop
has no loop carried dependences. The directive can also
be used when some dependences exist but the user wants
to ignore them. In such cases the execution order of the
data accesses may have to be constrained using specific
synchronization constructs. Examples include reductions im-
plemented via atomic regions, and the use of low-level
atomics to give semantics to so-called “benign races”, where
the same value is written to a location by multiple threads in
parallel. It may be necessary to invoke external non-PENCIL
functions to enable parallelization of an algorithm that can
tolerate arbitrarily-ordered execution of intermediate steps.

The independent directive has an effect only on the
marked loop, not on any nested or outside loops. It accepts
a reduction clause, the purpose of which is to enable paral-
lelization of loops whose only dependences are on variables
into reductions are computed. For brevity we do not discuss
this clause further.

Figure 3 shows a code fragment of our PENCIL imple-
mentation of the breadth-first search benchmark from the
Rodinia [7] benchmark suite. The benchmark computes the
minimal distance from a given source node to each node
in the input graph. The algorithm maintains a frontier and
computes the next frontier by examining all unvisited nodes
adjacent to the nodes in the current frontier. All nodes in a
frontier have the same distance from the source node.

The for loop of Figure 3 can be parallelized because
each node in the current frontier can be processed indepen-
dently. This creates a possible race condition on the cost

and next_frontier arrays, but this race condition can
be ignored, because all conflicting threads will write the
same value. By specifying the independent pragma, the
programmer guarantees that the race condition is benign,
enabling parallelization.

E. Summary Functions

The effect of a function call on its array arguments is
usually derived from analyzing the called function. In some

/* Examine nodes adjacent to current frontier */
#pragma pencil independent
for (int i = 0; i < n_nodes; i++) {
if (frontier[i] == 1) {
frontier[i] = 0;
/* For each adjacent edge j */
for (int j = edge_idx[i];

j < edge_idx[i] + edge_cnt[i]; j++) {
int dst_node = dst_node_index[j];
if (visited[dst_node] == 0) {
/* benign race: threads write same values */
cost[dst_node] = cost[i] + 1;
next_frontier[dst_node] = 1;

}
}

}
}

Figure 3. PENCIL code fragment for breadth-first search

cases, the results of such an analysis may be too inaccurate,
and in the extreme case, when no code is available, the
compiler must conservatively consider the possibility that all
elements of each array argument are accessed. To mitigate
this problem, PENCIL allows the user to associate a summary
function with each function. A summary function has a
signature identical to the function it is associated with, and
the association informs the PENCIL compiler that it may
derive the memory accesses from the summary function.

In practice, summary functions are used to describe the
memory access patterns of library functions called from
PENCIL code (and whose source code is usually not avail-
able for analysis), and of non-PENCIL functions called from
PENCIL code, as they may be difficult to analyze otherwise.
To associate a summary function with a function foo(),
a programmer uses the attribute pencil_access(name),
where name is the name of summary function describing
the accesses of foo().

Summary functions are not executed, but only used for
analyzing memory footprints: A summary function must
access the same memory elements as the function it is
associated with, or an over-approximation thereof. Providing
a summary function can enable more precise static analysis
than the default conservative assumption that all elements of
all array arguments can be accessed. In general, a summary
can be simpler than the function it summarizes: it only
needs to capture sets of accesses, not their order and number
of occurrences. As an example, if a function were to be
executed on a processor having no direct access to main
memory, the compiler could use its summary to determine
the memory elements that would need to be marshaled into
and out of the function (cf. [18]).

The functions __pencil_use and __pencil_def are
designed to be used in summary functions to mark memory
accesses. A call to __pencil_use(A[e]) indicates that a
read from array A at index e may occur, while a call to
__pencil_def(A[e]) indicates that a write to array A at
index e must occur.

For writes, may information can also be conveyed by
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__attribute__((pencil_access(summary_fft32)))
void fft32(int i, int j, int n,

float in[pencil_attributes n][n][n]);

int ABF(int n, float in[pencil_attributes n][n][n]) {
// ...
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
fft32(i, j, n, in);

// ...
}

void summary_fft32(int i, int j, int n,
float in[pencil_attributes n][n][n]) {

for (int k = 0; k < 32; k++)
__pencil_use(in[i][j][k]);

for (int k = 0; k < 32; k++)
__pencil_def(in[i][j][k]);

}

Figure 4. Code from Adaptive Beamformer, illustrating summary functions

using a __pencil_maybe predicate, which evaluates to a
Boolean value unknown at compile-time. More specifically,
the conditional
if (__pencil_maybe)
__pencil_def(A[e]);

indicates that a write may occur to array A at index e.
This nicely fits any static analysis capable of extracting may
and/or must information from conditional expressions and is
also consistent with the usage of wildcards in intermediate
verification languages such as Boogie [19].

Figure 4 shows a loop nest extracted from the Adaptive
Beamformer (ABF) benchmark presented in Section IV-D.
The code calls a function fft32 (a Fast Fourier Transform).
The function only reads and modifies (in place) 32 elements
of its input array in, it does not modify any other parts of the
array. The function is not analyzed by the PENCIL compiler
because it is not a PENCIL-function. Without a summary
function the compiler would conservatively assume that the
whole array passed to fft32 is accessed for reading and
writing, preventing parallelization. The summary function
indicates that each iteration of the loop nest only reads and
writes 32 elements of the input array, allowing the compiler
to parallelize the loop nest.

Writing summary functions for library routines is the
most common use case for summaries, and is the library
developer’s responsibility. The summary functions should be
provided in the library’s header files and are used directly
by the PENCIL compiler. In less common cases, summary
functions are either written by the PENCIL programmer or
automatically generated by a DSL compiler.

F. Kill Statements

The __pencil_kill builtin function allows the user to
refine dataflow information within and across any control
flow region. The __pencil_kill function is polymorphic
and signals that its argument (a variable or array element)
is dead at the program point where the call to the function
occurs, meaning that no data flows through this argument

from any statement instance executed before the kill to any
statement instance executed after.

The information is used in several ways, as explained in
detail in [20]. The effect of __pencil_kill is illustrated
by the following example:
__pencil_kill(A);
for (int i = 0; i < n; i++) {
if (B[i] > 0)
A[i] = B[i];

}

If the above loop is mapped to a GPU kernel, then the A

array needs to be copied out from the GPU to the host after
computation, because some elements of A may be written to
by the loop. This copy-out overwrites the original contents
of A on the host. Since not all elements of A may be written
to, the array must in principle also be copied in to ensure that
the elements not written to retain their original values after
the copy-out. The __pencil_kill(A) statement indicates
that the data in A is not expected to be preserved by the
region and that the copy-in may be omitted.

III. POLYHEDRAL COMPILATION OF PENCIL CODE

We next explain how specific PENCIL features can be
compiled with a polyhedral compiler. (But, to reiterate,
PENCIL is not tied to any particular compilation technique.)

A. Polyhedral Compilation

Polyhedral compilation uses an abstract mathematical rep-
resentation to model programs. Each statement in a program
is represented using three pieces of information: an iteration
domain, access relations and a schedule. The representation
is first extracted from the program’s AST, it is then analyzed
and transformed (loop optimizations are applied during this
step), and finally it is converted back into an AST.

The iteration domain of a statement is a set that contains
all execution instances of the statement (a statement in a loop
has an execution instance for each loop iteration upon which
it executes). Each execution instance of a statement in a loop
nest is uniquely represented by an identifier and a tuple of
integers (typically, the values of the outer loop iterators).
These integer tuples are compactly described by quasi-
affine constraints. For example, the statement on Line 9 of
Figure 2, call it S0, has the following iteration domain:
{ S0(i,j) : 0 ≤ i < rows ∧ 0 ≤ j < cols }
A quasi-affine constraint is a constraint over integer values

and integer variables involving only the operators +, -, ×, /,
%, &&, ||, <, <=, >, >=, ==, !=, and the ternary ?: operator,
where the second argument of / and % must be a (positive)
integer literal, and where at least one of the arguments of
× must be a piece-wise constant expression. An example
of a quasi-affine constraint for a statement in a loop nest is
10× i+ j + n > 0, where i and j are loop iterators and n
is a symbolic constant (i.e., a variable that has an unknown
but fixed value for the duration of an execution). Examples
of non-quasi-affine constraints are i× i > 0 and n× i > 0.
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To be able to extract a polyhedral representation, all loop
bounds and conditions need to be quasi-affine with respect
to the loop iterators and a fixed set of symbolic constants.
This condition is called static-affine.

Access relations map statement instances to the array
elements that are read or written by those instances, where
scalars are treated as zero-dimensional arrays. An accurate
representation requires the index expressions in the input
program to be static-affine.

Finally, the schedule determines the relative execution
order of the statement instances. Program transformations
are performed via modifications of the schedule and depend
on dependence relations. These relations map statement
instances to statement instances that depend on them for
their execution, and are derived from the access relations
and the original execution order. In particular, two statement
instances depend on each other if they (may) access the same
array element, if at least one of those accesses is a write and
if the first is executed before the second.

B. Compilation of PENCIL

We adapted PPCG [21], an existing polyhedral compiler
for GPUs, to handle PENCIL. PPCG relies on the pet
library [22] to extract the iteration domain and access
relations; the dependence analysis is performed by the isl
library [23]. A new schedule is computed by isl using a
variant of the Pluto algorithm [24] (this latter step applies
most loop nest transformations).

We next discuss the changes we made to PPCG to support
PENCIL. For more details, including details on support for
arrays of structures, we refer the reader to [20].

Assume predicates. pet keeps track of constraints on the
symbolic constants of a program (i.e., of variables that have
an unknown but fixed value throughout an execution). The
constraints are automatically derived from array declarations
and index expressions. In particular, constraints are derived
that exclude negative array sizes and negative array indices
(negative indices are not allowed because they could result in
aliasing within an array). The constraints are used by PPCG
when generating an AST from a schedule to simplify the
generated AST expressions.

An assume predicate provides pet with additional con-
straints on the symbolic constants that may not be au-
tomatically derivable. For example, Lines 4, and 5 in
Figure 2 provide additional constraints on the symbolic
constants ker_mat_rows and ker_mat_cols. Although
the argument of a __pencil_assume statement can be any
expression, PPCG currently only exploits quasi-affine ones.

The kill builtin. A kill statement in pet represents the
fact that no dataflow on the killed data elements can pass
through an instance of the statement. This information can
be used during dataflow analysis to stop the search for
potential sources of data elements. When pet comes across

1 if (se[e][r] != 0)
2 sup = max(sup, img[cand_row][cand_col]);

Figure 5. Code extracted from dilate

1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < M; j++)
3 for (int k = 0; k < M; k++) {
4 B[i][j][k] = 0;
5

6 if (A[i][j][k] == 0)
7 break;
8 }

Figure 6. Code containing a break statement

a variable declaration, two kill statements that kill the
variable are introduced, one at the location of the variable
declaration and one at the end of the block that contains the
variable declaration. The use of the __pencil_kill builtin
introduces additional kill statements to pet.
Non-static-affine array accesses. To handle non-static-
affine accesses, pet has been modified to distinguish may-
writes vs. must-writes. Any index expression that cannot be
statically analyzed or that is not affine, is treated as possibly
accessing any index. This over-approximation typically re-
sults in the compiler statically identifying more dependences
than will actually be exhibited at runtime.
Non-static-affine conditionals and loop guards. PPCG
treats any non-static-affine conditional or loop with a non-
static-affine loop guard as a single macro-statement together
with its body (i.e., as a statement encapsulating both con-
trol and body). Any write inside such a macro-statement
is treated as a may-write. For example, the conditional
of Figure 5, extracted from the dilate benchmark, cannot
be analyzed. The if-statement and its body are therefore
considered as one macro-statement and the assignment to
sup is treated as a may-write.
While loops, break and continue. While loops and loops
containing break and continue statements are treated like
non-static-affine conditionals: the loop and its body are
considered to be a single macro-statement. For example, due
to the break in Figure 6, PPCG treats the entire loop headed
at Line 3 as a single statement. This means that PPCG can
schedule (i.e., change the order of execution of) the loop
headed at Line 3 and its body as a whole, but it cannot
schedule the individual statements in the body.
The independent directive. When the independent di-
rective is used to annotate a loop, the iterations of that loop
may be freely reordered with respect to each other, including
reorderings that result in distinct iterations accessing over-
lapping data. Through the directive the user asserts that no
dependences need to be introduced to prevent such reorder-
ings and that any variable declared inside the loop is private
to each iteration. pet handles the independent directive
by building a relation between the statement instances that
excludes them from depending on each other. Moreover,
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pet builds a set of variables that are local to the loop.
This set of variables is used by PPCG to ensure that their
live ranges do not overlap in affine transformations, and to
privatize them if needed when generating parallel code.
Summary functions. pet has been modified to extract
access information from called functions. If a summary
function is provided, the information is extracted from the
summary instead.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of OpenCL code gener-
ated from PENCIL using pencilcc, a version of PPCG
incorporating a runtime library and the changes discussed
in the previous section.1 To verify that PENCIL can be used
both as a standalone language and intermediate language for
DSL compilers, we used both benchmarks written directly
in PENCIL and code generated by DSL compilers. The set of
benchmarks written directly in PENCIL consists of a image
processing benchmark suite by Realeyes (Section IV-A)
and a selected set of benchmarks from the Rodinia and
SHOC suites (Section IV-B). The code generated by DSL-to-
PENCIL compilers originates from the VOBLA and SpearDE
DSLs (Sections IV-C and IV-D).

We used four GPU platforms for our experiments: an
Nvidia GTX 470 (with an AMD Opteron Magny-Cours
2 × 12 core CPU and 16GB RAM), an ARM Mali-T604
(with a dual-core ARM Cortex-A15 CPU and 2GB RAM),
an AMD Radeon HD 5670 (with an Intel Core2 Quad
Q6700 CPU and 8GB RAM) and an AMD Radeon R9 285
(with an Intel Xeon E5-2640 8 core CPU and 32GB RAM).
Hence, we covered both a relatively large set of real-word
applications and a relatively diverse range of platforms.

Our experiments were designed to evaluate (a) whether
PENCIL enables the parallelization (mapping to OpenCL)
of kernels that cannot be parallelized with current state-of-
the-art polyhedral compilers (Pluto [24]), and (b) whether
PENCIL enables the generation of efficient code (by com-
paring the performance of the automatically generated code
to hand-crafted code).

Autotuning. We developed an autotuning compiler frame-
work to facilitate the retargeting of our compiler to dif-
ferent GPU architectures. We applied autotuning to the
pencilcc-generated code only. Autotuning the hand-
crafted reference code (mostly implemented as libraries)
would be difficult, because the code is not designed to be
autotuned (work group sizes are hard-coded, changing the
use of local and private memory requires manual modifi-
cations, etc.). Moreover, the BLAS libraries (clMath [10]
and cuBlas [9]) do not require autotuning: they are already
configured with a set of optimal parameters for their target

1Version 0.4 of pencilcc is available at https://github.com/Meinersbur/
pencilcc. The experiments in this section were performed using an
older, development version: https://github.com/Meinersbur/pencil-driver/
tree/7a0dd59708253cb121cadf0b6529bd792b35c3fd.

architectures. Our autotuning framework searches for the
most appropriate optimizations (compiler flags) by gen-
erating many different code variants and executing them
on the target GPUs. The search covers combinations of
pencilcc’s compiler flags, including different work group
and tile sizes, whether to use local and/or private memory,
and which loop distribution heuristic to use (out of two pos-
sible heuristics). Autotuning each benchmark takes several
hours (except for the six VOBLA kernels, which take up to
two days due to the large search space).

Measurements. For our experiments, we let pencilcc
instrument the generated code to measure the wall clock
execution time, which includes the GPU kernel execution
time, duration of any data copies (between the host and the
GPU), and the time taken to execute on the host any program
code that was not offloaded to the GPU. The measured times
do not include device initialization and release, and kernel
compilation times. In order to exclude compilation time,
we either invoked a dry-run computation beforehand that
was not timed (caching compiled kernels), or subtracted the
compilation time from the total execution time, depending
on the way in which the reference implementation compiled
and invoked its kernels. We used OpenCL profiling tools to
further analyze the performance of the reference implemen-
tations and the pencilcc-generated code (obtaining the
number of cache misses, device global memory accesses,
device occupancy, etc.). Each test was run 30 times. Below,
we report the median of the speedups over the reference
implementations.

A. Image Processing Benchmark Suite

The image processing benchmark suite consists of a set
of kernels covering computationally intensive parts of the
computer vision stack by Realeyes ranging from. simple
image filters to composite image processing algorithms. For
each kernel in the benchmark suite we compared a straight-
forward (non-hand-optimized) PENCIL implementation with
the equivalent OpenCL kernel from the OpenCV version
2.4.10 image processing library [12].

The image processing suite consists of 7 kernels: affine
warping, image resize, general 2D convolution, gaussian
smoothing, color conversion, dilate, and basic image his-
togram (calculating the tonal distribution in an image).

An important characteristic of the image processing ker-
nels is that they contain non-static-affine code, which a
classic polyhedral compiler does not handle efficiently due
to the restrictions of the polyhedral model. The conditional
if (se[e][r] != 0) in Figure 5 is an example of such
non-static-affine code.

Five kernels from the benchmark suite have non-static-af-
fine conditionals and read accesses. One kernel has non-stat-
ic-affine write accesses. Hence, the compiler needs to handle
all of these. Non-static-affine write accesses are difficult to
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Table I
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE IMAGE PROCESSING BENCHMARKS

Benchmark Non-static-affine code Independent Assume Kill
resize required - - 33% ↑
dilate required - - 10% ↑
color conversion - - - 34% ↑
affine warping required - - 23% ↑
2D convolution required - 20% ↑ 21% ↑
gaussian smoothing required - - 47% ↑
basic histogram - required - -

Table II
SPEEDUPS OF THE CODE GENERATED BY PENCILCC OVER OPENCV

FOR THE IMAGE PROCESSING BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
resize 1.00 1.25 2.47 8.09
dilate 0.59 0.32 0.25 2.91
color conversion 1.32 2.37 1.56 1.11
affine warping 1.06 1.93 2.44 2.85
2D convolution 0.91 - 0.95 2.53
gaussian smoothing 0.92 0.97 0.51 1.61
basic histogram 0.45 0.42 0.16 4.34

handle because they prevent the compiler, in general, from
determining whether a loop is parallelizable.

The kernels require support for non-static-affine code,
the independent directive, and the __pencil_assume
and __pencil_kill builtins. Table I lists the features per
benchmark. In the case of non-static-affine code and the
independent directive, the table lists whether the feature
was required for OpenCL code generation. For the builtins,
the table shows the speedup obtained when support for the
feature was enabled (vs. disabled). The speedup shown is
for the Nvidia GTX 470, the effect on the other platforms
was similar. A ‘-’ indicates that a feature was not used in a
benchmark or its use did not affect code generation.

Support for non-static-affine code was required to gener-
ate OpenCL code for five kernels. For basic histogram, the
use of the independent directive enabled parallelization
and OpenCL code generation, which is difficult otherwise.
For dilate, assuming that the size of the structuring element
(the array representing the neighborhood used to compute
each pixel) is less than 16× 16 enabled pencilcc to map
the element to local memory, and allowed it to generate code
that was 20% faster compared to when it did not assume this.
The speedups associated with using __pencil_kill are
mainly due to the builtin enabling pencilcc to eliminate
redundant data copies.

Table II presents the speedups of the pencilcc-gen-
erated OpenCL code over the baseline OpenCV OpenCL
implementation. We used the same image to evaluate all
kernels (a 2880× 1607, 1.5MB image).

On the AMD Radeon R9 285 platform, the speedup of
the pencilcc-generated kernels over the OpenCV refer-
ence implementations was due to slow data copies used
by OpenCV. On this platform, OpenCV used OpenCL’s
clEnqueueWriteBufferRect, which copies data from

host to device while at the same time padding the data for
aligned memory accesses. pencilcc, on the other hand,
used OpenCL’s clEnqueueWriteBuffer, which copies
data but does not perform any padding. OpenCV’s approach
was 7× slower on the AMD Radeon R9 285 platform,
explaining the significant speedups we obtain. Note that,
although the use of clEnqueueWriteBufferRect may be
less efficient for these benchmarks, it may be more efficient
in other cases where only one data copy is performed and
many filters are applied on the same input image.

Other than the difference in data copies, there was no
significant difference in the speedups obtained on the AMD
Radeon R9 285 HD 5670 platforms, and we focus in the
latter AMD platform in the remainder of this section.
pencilcc does not apply any optimizations to data

copies other than eliminating spurious copies when the
user provides appropriate __pencil_kill statements. For
each of the image processing benchmarks, the amount of
data copied by the pencilcc-generated code (when using
__pencil_kill) was equal to the amount of data copied
by the reference implementation. Consequently, the listed
speedups (or slowdowns) were solely due to faster (or
slower) kernel execution times (except for the R9 285, as
discussed above).

The speedups of resize and color conversion on Nvidia,
ARM and AMD Radeon HD 5670 were due to the tiling of
the 2D loop nest in these two kernels, which considerably
enhanced data locality (up to 56% fewer L1 cache misses
on Nvidia for color conversion). In the case of affine
warping, the speedup was due to two optimizations: thread
coarsening, which merges multiple work items, leading to
less redundant computation, and tiling, which enhanced data
locality (up to 65% fewer L1 cache misses on Nvidia).

For basic histogram, the code generated by pencilcc
was generally slower than the OpenCV reference imple-
mentation. The OpenCV version was faster, because each
work group computes a histogram in local memory, and
the local histograms are only combined into one global
histogram during a final reduction. Automatic generation of
such reductions is not yet supported by pencilcc.

In the case of dilate, the OpenCV reference implementa-
tion was vectorized, while pencilcc currently does not
support the generation of vectorized code. The lack of
vectorization affected the performance most on AMD and
ARM. In addition, the OpenCV reference implementation
mapped the input image array to local memory while
pencilcc’s local memory heuristic decided not to apply
this mapping. As a consequence, the pencilcc-generated
code accessed global GPU memory 175 times more than
the OpenCV implementation, which led to a decrease in
performance. The same problem with the local memory
heuristic applied to gaussian smoothing.

The performance of 2D convolution matched that of the
OpenCV reference implementation on Nvidia and AMD.
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Table III
SELECTED BENCHMARKS FROM THE RODINIA AND SHOC SUITES

Benchmark (Suite) Data set size Description/notes
2D stencil (SHOC) 100 iter., 4096× 4096 grid On structured grid
Gaus. elim. (Rodinia) 1024× 1024 matrix Dense matrix
SRAD (Rodinia) 100 iter., 502× 458 image Image enhancement
SpMV (SHOC) 16384 rows Sparse matrix-vector multipl.
BFS (Rodinia) 4 million nodes Breadth-first search on graph

Table IV
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE RODINIA AND SHOC BENCHMARKS

Benchmark Non-static-affine code Independent
2D stencil - -
Gaussian elimination - -
SRAD required -
SpMV required -
BFS required required

The reference implementation could not be run on the ARM
Mali GPU, as it used hardcoded local memory and work
group sizes that exceeded hardware limits.

B. Rodinia and SHOC Benchmark Suites

Our second set of benchmarks consists of reverse-engi-
neered benchmarks from the Rodinia [7] and SHOC [6]
suites. We selected the benchmarks, listed in Table III, based
on diversity (i.e., covering different Berkeley ‘motifs’ [25]
such as dense and sparse linear algebra, structured grids, and
graph traversal), and for their ability to pose a challenge
to traditional polyhedral compilers due to their use of
non-static-affine code. We compared the performance of
pencilcc-generated code for these benchmarks with the
Rodinia and SHOC reference implementations.

Table IV lists the PENCIL features required for each of
the benchmarks and shows the effect of the features on
pencilcc’s ability to generate OpenCL code. Support
for non-static-affine code is required by three benchmarks,
which use non-static-affine read accesses, conditionals, and
write accesses. The non-static-affine write accesses, in BFS,
prevent the compiler from parallelizing the code, and require
use of the independent directive. We did not make use
of __pencil_kill annotations for the benchmarks in this
suite. Assume predicates were useful in providing optimiza-
tion hints to the compiler for the 2D Stencil, SpMV and
BFS benchmarks. This was especially important for enabling
generation of OpenCL code that could be automatically
vectorized by the ARM Mali compiler, but for this bench-
mark suite we did not conduct a controlled measurement of
performance with vs. without assume predicates.

Table V shows the speedups over the OpenCL reference
implementations. The speedups for 2D Stencil and Gaussian
Elimination are mainly due to tiling which enhanced data
locality and reduced cache misses (we observed 4× fewer
L1 cache misses for 2D Stencil on Nvidia GTX 470). For
SRAD, the PENCIL-generated OpenCL code was signifi-
cantly slower than the reference implementation, mainly

Table V
SPEEDUPS FOR THE OPENCL CODE GENERATED BY PENCILCC OVER

THE RODINIA AND SHOC REFERENCE IMPLEMENTATIONS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
2D stencil 3.44 3.04 2.68 5.76
Gaussian elimination 0.67 1.54 4.39 2.58
SRAD 0.22 0.34 0.43 0.56
SpMV 1.17 1.67 1.04 1.08
BFS 0.65 0.78 0.43 0.72

because pencilcc did not map a reduction to OpenCL
(pencilcc currently does not support the generation of
parallel reductions). This leads to additional data transfers
between the host and the device. For BFS, the generated
OpenCL code was also slower than the reference code, again
due to additional data transfers. These data transfers were
due to pencilcc only mapping the bodies of while loops
to the device and generating data transfers at the beginning
and end of each loop iteration.

C. VOBLA DSL for Linear Algebra

The image processing benchmarks and Rodinia and
SHOC benchmarks of Sections IV-A and IV-B demonstrate
the use of PENCIL as a standalone language. Here and in
Section IV-D, we consider benchmarks in which PENCIL is
used as an intermediate language for DSL compilers.

VOBLA is a domain specific language for implementing
linear algebra algorithms, providing a compact and generic
representation using an imperative programming style [3].
The main control flow operators of VOBLA are if, while,
for, and forall. The if and while operators have stan-
dard semantics. The for and forall operators iterate over
a scalar range (e.g., 0:3) or arrays. forall indicates that
the iterations of a loop can be executed in any order.

The VOBLA-to-PENCIL compiler is fairly simple and
does not perform any sophisticated optimizations. Advanced
loop nest transformations are handled by pencilcc. The
VOBLA compiler only uses assume predicates and the
independent directive. The __pencil_kill builtin is
only useful to eliminate spurious data transfers in non-static
control code and is not needed for the purely static control
code of VOBLA. Summary functions are only needed when
library functions are called, but these are not generated by
the VOBLA compiler.

The VOBLA compiler infers assume predicates from
relations between array sizes. For example, for the statement
C = A + B, the VOBLA compiler infers that the sizes of
A and B are equal and generates a __pencil_assume
statement that indicates this. As a consequence, pencilcc
does not need to generate code to handle the case in which
the sizes of A and B differ. This information can, e.g., be
exploited when pencilcc decides to fuse loops that iterate
over A and B, respectively.

The VOBLA compiler generates the independent di-
rective when translating forall operators: each forall
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Table VI
PERFORMANCE GAINS FOR BENCHMARKS COMPILED FROM VOBLA

WHEN ASSUME PREDICATES ARE ENABLED

Benchmark Nvidia GTX 470
gemver 6% ↑
2mm 84% ↑
3mm 91% ↑
gemm 71% ↑
atax 13% ↑
gesummv 2% ↑

Table VII
SPEEDUPS OBTAINED WITH PENCILCC OVER THE BLAS LIBRARIES

Benchmark Nvidia GTX 470 AMD Radeon HD 5670 AMD Radeon R9 285
gemver 1.17 2.14 0.39
2mm 0.91 0.62 0.14
3mm 0.87 0.66 0.12
gemm 1.09 0.69 0.19
atax 0.88 1.79 0.37
gesummv 1.03 1.83 0.33

operator is translated into a PENCIL for loop that is
annotated with independent.

We used VOBLA to implement a set of linear algebra
kernels and compared the code generated by pencilcc
with equivalent code that calls BLAS library functions.
The kernels are gemver (vector multiplication and matrix
addition), 2mm (2 matrix multiplications), 3mm (3 matrix
multiplications), gemm (general matrix multiplication), atax
(matrix transpose and vector multiplication), and gesummv
(scalar, vector and matrix multiplication).

The VOBLA implementations were first compiled to
PENCIL using the VOBLA compiler and then mapped to
OpenCL using pencilcc. We compared the code with two
highly optimized BLAS library implementations:
• the clMath 2.2.0 [10] BLAS library provided by AMD

and used for comparison on the AMD platforms, and
• the cuBlas 5.5 [9] BLAS library provided by Nvidia

and used for comparison on the Nvidia platform. In
this case we used pencilcc to generate CUDA code
instead of OpenCL code.

We do not provide a comparison for the ARM platform,
as no BLAS library is available on that platform. We used
a matrix size of 4096× 4096 for all benchmarks.

Table VI shows that the code obtained for the Nvidia
GTX 470 was significantly faster with assume predicates
enabled. For example, the code generated for gemm with
assume predicates is 71% faster than without.

Table VII shows the speedups for the kernels generated
by pencilcc over the BLAS libraries. The pencilcc-
generated kernels for the Nvidia and the AMD HD 5670
platforms were close in performance to the highly optimized
BLAS libraries for 2mm, 3mm, atax and gemm (e.g., 0.69×
for gemm on the AMD platform). The main optimizations
applied to these kernels were tiling, loop fusion, and the
use of local and private memory. The BLAS library code
still outperforms the pencilcc-generated code as it im-

plements many other optimizations such as vectorization
(clMath) and the use of register tiling (cuBlas). The speedups
for gesummv and gemver were due to loop fusion and tiling
across different BLAS library calls. For example, the gemver
kernel consists of a sequence of 6 BLAS library calls and
although the individual BLAS library functions are highly
optimized, better performance can be obtained by fusing and
tiling across function calls. clMath is highly vectorized and
tuned for the AMD R9 285. Since pencilcc does not
perform vectorization, it fails to reach the performance levels
for clMath on this platform.

D. SpearDE DSL for Data-Streaming Applications

SpearDE [8] is a domain-specific modeling and program-
ming framework for signal processing applications, designed
by Thales Research and Technology. We evaluated PENCIL
using two representative SpearDE applications: Adaptive
Beamformer (ABF) and Space-Time Adaptive Processing
(STAP). Both are common signal processing applications for
radar systems. We compared the pencilcc-generated code
with the sequential CPU version, because no parallel version
was available to us.

AFB and STAP are relatively large: ABF consists of 38
statements in the polyhedral representation (with a loop
depth reaching five), and STAP consists of 88 statements
(with a loop depth reaching seven). The STAP code is
distributed across 12 separate PENCIL functions. The func-
tions were optimized individually, because pencilcc’s
optimization pass currently does not scale to a fully inlined
version reaching about 1000 lines of code.

As shown in Table VIII, ABF and STAP benefit from sup-
port for non-static-affine code, the independent directive,
summary functions, and the __pencil_kill builtin. The
speedups reported are again for the Nvidia GTX 470.

As mentioned in section II-E, ABF calls a fast Fourier
transform function. Without a summary, the compiler as-
sumes that the function modifies its whole input array, mak-
ing parallelization impossible. The use of the independent
directive in STAP enables the parallelization of a loop with
non-static-affine array accesses.

Both ABF and STAP use PENCIL only for the com-
putationally intensive parts of the code. Many temporary
arrays used in these parts are allocated outside the PENCIL
regions. However, as pencilcc does not analyze non-
PENCIL code, it cannot assume that the arrays are temporary.
Using __pencil_kill allows the compiler to infer that the
arrays do not need to be copied between host and device. In
the case of STAP, copying the temporary arrays cannot be
completely avoided, as the code is distributed across multiple
functions and the temporaries are used in several of them.

Table IX shows the speedups of the pencilcc-generated
code over the sequential code. On all platforms, the speedup
for ABF was due to parallelization and tiling. The generated
code did not make use of local memory, but privatization
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Table VIII
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE SPEARDE BENCHMARKS

Benchmark Summary functions Non-static-affine Independent Kill
ABF required required - 14% ↑
STAP - required 6% ↑ 4% ↑

Table IX
SPEEDUPS WITH PENCILCC OVER THE SEQUENTIAL CPU CODE FOR

THE SPEARDE BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
ABF 11.00 1.88 2.05 3.69
STAP 2.94 0.51 0.89 1.72

of scalars was essential for making parallelization possible.
This was also the case for STAP, except that the generated
kernel code did not perform well on short-vector architec-
tures (ARM Mali and AMD Radeon HD 5670), which suffer
from no automatic vectorization in pencilcc.

The performance of ABF and STAP was also affected
by limitations of pencilcc’s two loop fusion/distribution
heuristics. The first tries to fuse loops as much as possible,
which maximizes temporal locality, but does not take into
account resource limits (register pressure), resulting in a
loss of performance on GPUs. The second heuristic tries
to distribute loops as much as possible, which maximizes
parallelism but may damage locality (e.g., the imaginary
and real parts of complex-valued arithmetic are computed in
separate OpenCL kernels when this heuristic is applied). The
implementation of a heuristic similar to Pluto’s smartfuse
heuristic [24] would allow a better trade-off between paral-
lelism and data locality and would enhance performance.

E. Discussion of Results

As our experiments show, the independent directive
and (in the case of SpearDE) summary functions improve
pencilcc’s ability to generate OpenCL. Assume predi-
cates and the __pencil_kill builtin enhance the quality
of the generated code. Performance-wise, 72% of the gen-
erated kernels reach at least 50% of the performance of the
hand-optimized reference implementations, and in 47% of
the cases the generated kernels outperform the reference
implementation. Our experiments also expose some limi-
tations of the current setup. In particular, the inability of
pencilcc to generate parallel reductions, its limited loop
fusion heuristics, handling while loops as black boxes, and
the lack of vectorization and register tiling.

We have not discussed the performance of our autotuning
framework. In brief: it performed well on small PENCIL
benchmarks, but for larger benchmarks (e.g., the SpearDE
ones), we ran into problems due a combinatorial explosion
in the number of compiler options. This warrants further
investigation into search heuristics and predictive modeling.

V. RELATED WORK

Summary functions have first been proposed as abstract
domain transformers of numerical libraries in PIPS [26]. As
a language construct, they find their origin in the decoupled
access/execute (æcute) model [18], which allows express-
ing memory access patterns and execution constraints of
kernels. PENCIL’s summary functions are, to the best of
our knowledge, the first attempt to abstract interprocedural
access patterns in C99.

PENCIL’s directives are inspired by directive-based lan-
guages such as OpenMP [27] and OpenACC [28]. In
PENCIL, the independent directive describes the absence
of loop carried dependences and such information can be
used to enable a range of loop nest transformations rather
than enabling loop parallelization alone. A semantically
similar directive, also called independent, occurs in High
Performance Fortran [17]. What sets PENCIL apart is its
sequential semantics. As a subset of C, it is designed to
allow advanced compilers to perform better static analysis,
enabling automatic parallelization.

PENCIL builtins such as __pencil_assume allow the
PENCIL compiler to receive additional information from a
DSL compiler or from an expert programmer. The compiler
can exploit this information to enable further optimizations.
Microsoft Visual C and clang 3.6 support, respectively,
semantically identical __assume and __builtin_assume
builtins. These builtins could be used as a substitute when
available.

DSL compilers targeting GPUs typically map DSL code
directly to OpenCL and CUDA, relying on DSL constructs
that express parallelism. Using such an approach, DSL
compilers such as Halide [4] and Diderot [29] (for image
processing) and OoLaLa [30] (for linear algebra) show
promising results. Our complementary goal is to build a
more generic framework and intermediate language to be
used by different domain specific optimizers.

Delite [31] is a generic framework for building DSL
compilers. Delite relies on information from a DSL to decide
whether a loop is parallel but has no facilities for advanced
loop nest transformations. We therefore believe that generic
DSL frameworks like Delite can benefit from using PENCIL
and a polyhedral compiler.

VI. CONCLUSION

We have presented PENCIL, a portable intermediate lan-
guage designed to enable productive and efficient accelerator
programming. PENCIL is unique in its design combining a
sequential semantics, strict compliance with C, and a rich
set of attributes and pragmas that enable static analysis.
PENCIL makes many forms of non-static-affine code and
access patterns amenable to advanced loop transformation
and parallelization within the polyhedral framework.

We have evaluated the design and implementation of
PENCIL on a representative set of benchmarks across several
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GPU-accelerated platforms. Some of these benchmarks are
written in a domain-specific language and then compiled
to PENCIL. Our experiments validate the use of PENCIL
together with an optimizing compiler as a valuable building
block for enabling performance-portable accelerator pro-
gramming.
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Zusammenfassung. Diese Arbeit präsentiert typische Muster auf At-
tributgrammatiken und Definitionstabellen. Die präsentierten Muster
nutzen, im Gegensatz zu vielen bestehenden Erweiterungen von Attri-
butgrammatiken, Typen und Baumstruktur aus. Analog den Entwurfs-
mustern Objekt-orientierter Sprachen werden die vorgestellten Muster
auf Laufzeiteinfluss, Speichereinfluss und Einsatzgebiet untersucht.

1 Einleitung

Programmiersprachen sowie Domänen-spezifische Sprachen(DSLs1) lassen sich
mit Attributgrammatiken entwickeln[18,21]. Bei der Entwicklung von Spra-
chen mit Attributgrammatiken werden ähnliche Attributierungsregeln verwen-
det. Aufgrund dieser typischen Muster existieren eine Reihe von Erweiterungen
und Bibliotheken für die Vereinfachung der Spezifikation unter Verwendung von
Attributgrammatiken wie bspw. [8,11,25,23,10,16,17,2].

Werden Definitionstabellen und geordnete Attributgrammatiken[12] genutzt,
so ist die Auswahl an typischen Mustern eine andere, als dies bspw. bei
der Verwendung von Higher-Order Attributgrammatiken der Fall wäre. Letz-
tere erlauben keine Funktionen mit Seiteneffekten und betrachten, im Ge-
gensatz zu geordneten Attributgrammatiken, Attribute nicht als Vor- und
Nachbedingungen[11,23]. Analog Entwurfsmustern[9] stellen wir eine Auswahl
der typischen Muster in geordneten Attributgrammatiken vor und evaluieren
diese bzgl. Laufzeiteinfluss, Speicherverbrauch und Anwendungsfällen.

In Abschnitt 2 stellen wir nochmals kurz Attributgrammatiken und die von
uns verwendete Syntax vor. Abschnitt 3 behandelt bestehende und von uns for-
mulierte Muster, welche in Abschnitt 4 evaluiert werden. Ein Überblick über
verwandte Arbeiten folgt in Abschnitt 5. Wir geben eine Zusammenfassung und
einen Ausblick in Abschnitt 6.

?Diese Arbeit wurde im Rahmen des vom Bundesministerium für Bildung und For-
schung (BMBF) geförderten Forschungsprojekts

”
ELSY“ (Nr. 16M3202D) erstellt.

1 engl: domain specific languages
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〈Program〉 ::= 〈Decls〉

〈Decls〉 ::= 〈Decls〉 〈Decl〉
| ε

〈Decl〉 ::= 〈VariableDecl〉

〈VariableDecl〉 ::= 〈VarDef 〉 〈Expression〉

〈Decl〉 ::= 〈Eval〉

〈Eval〉 ::= 〈Expression〉

〈Expression〉 ::= 〈Expression〉 ’+’ 〈Expression〉
| 〈Expression〉 ’-’ 〈Expression〉
| 〈VarReference〉
| 〈Constant〉

〈VarReference〉 ::= identifier

〈VarDef 〉 ::= identifier

〈Constant〉 ::= number

Abb. 1 – Abstrakte Syntax einer Sprache zur Auswertung von Ausdrücken; Nicht-
terminale groß beginnend, Terminale klein beginnend

2 Grundlagen

Wir folgen in unserer Präsentation den Darstellungen aus [18], [12] sowie [11].
Eine Kontext-freie Grammatik G , (N,T, P, Z) mit Nichtterminalen N , Ter-
minalen T , ausgezeichneter Wurzel Z ∈ N und Produktionen p ∈ P definiert
eine Sprache L(G). Wird durch G eine Sprache L(G) definiert, die eine gültige
Folge von Grundsymbolen angibt, dann wird G als konkrete Syntax bezeich-
net. Definiert G hingegen Baumaufbaukonstruktoren heißt G abstrakte Syntax.
Produktionen werden durch BNF oder EBNF dargestellt und sind eindeutig
identifizierbar. Ein Beispiel einer abstrakten Syntax für eine sehr einfache Aus-
druckssprache findet sich in Abbildung 1.

Ein Symbol Y (∈ (N ∪ T )) heißt ableitbar aus X, geschrieben als X ⇒ Y,
genau dann, wenn eine Produktion mit linker Seite X existiert, bei der auf der
rechten Seite das Symbol Y vorkommt; formal: ∃p ∈ P, p : X ::= u Y v für
u, v ∈ (N ∪ T )∗. Der reflexiv-transitive Abschluss einer Ableitung wird mit

∗⇒
notiert. Üblicherweise werden u und v von uns nicht weiter beachtet und daher
auch nicht aufgeführt.

Für eine abstrakte Syntax G , (N,T, P, Z) lässt sich nun eine Attributgram-
matik AG , (G, A,R,B) definieren, wobei A die Menge aller Attribute für alle
Terminale und Nichtterminale der abstrakten Syntax G sind. Für ein Symbol
X ∈ N mit Attribut a ∈ A(X) schreiben wir X.a. Für eine Produktion p ∈ P ,
Symbole Xi ∈ (N ∪ T ), i ∈ [1, n] und Nichtterminal X0 schreiben wir p als p : X0
::= X1 · · · Xn. Solch einer Produktion ist eine Attributierungsregel r ∈ R(p) zu-
geordnet; für eine beliebige Funktion f und Symbole der Produktion mit Indizes
j, k, l ∈ [0, n] und beliebige, den Symbolen zugeordnete Attribute a, b, . . . , u ∈ A,
hat r die Form Xj .a ← f(Xk.b, . . ., Xl.u). Analog exisiteren Produktionen zuge-
ordnete Berechnungen B. Ein solches Attribut Xj .a heißt definiert in p; defi-
nierte Attribute für ein Symbol auf der linken Seite einer Produktion heißen
synthetisiert, definierte Attribute für Symbole der rechten Seite einer Produk-
tion ererbt. Sind bei Berechnungen oder Attributierungsregeln Infixoperationen
üblich, so verwenden wir ebenfalls Infixoperationen, die Identitätsfunktion wird
von uns nicht mit aufgeführt.
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1 declare_prop val :: Int← 0
2
3 rule Expression ::= Constant
4 attr Expression.val← str_to_int(Constant.sym)
5
6 rule Expression ::= VarReference
7 attr Expression.val← VarReference.key:val
8
9 rule Expression1 ::= Expression2 ’-’ Expression3

10 attr Expression1.val←Expression2.val - Expression3.val
11
12 rule Expression1 ::= Expression2 ’+’ Expression3

13 attr Expression1.val←Expression2.val + Expression3.val
14
15 rule VariableDecl ::= VarDef Expression
16 attr VarDef.key:val← Expression.val
17 VariableDecl.names_chn← Expression.names_chn >= VarDef.key:val
18
19 chain names_chn
20 symbol Program
21 attr head.names_chn← ∅
22
23 symbol VarDef
24 attr ↑bind← bind_in_env(↓names_chn, ↑sym)
25 ↑key← keyof(↑bind)
26 ↑has_err← ↑sym /∈ ↓names_chn
27
28 cond ↑sym /∈ ↓names_chn
29 => error "Already declared: " ++ ↑sym
30
31 symbol VarReference
32 attr ↑bind← lookup(↓names_chn, ↑sym)
33 ↑key← keyof(↑bind)
34 ↑has_err← ↑sym ∈ ↓names
35
36 cond ↑sym ∈ ↓names_chn
37 => error "Unknown symbol " ++ ↑sym
38
39 rule Eval ::= Expression
40 attr Eval.val← Expression.val
41
42 · · ·
43
44 symbol Program
45 attr cond ↑has_err =>
46 error "Cannot evaluate program."
47 print(↑val)
48
49 bind_in_env :: Env => String => Bind
50 keyof :: Bind => Key
51 print :: Int => ()
52 str_to_int :: String => Int

Quelltext 1 – Ausschnitt der Implementierung der Ausdruckssprache mit
abstrakter Syntax aus Abb. 1

Wir benutzen in der Praxis geordnete Attributgrammatiken, daher wer-
den Attributierungsregeln und Berechnungen als Vor- und Nachbedingungen
aufgefasst[11,12]. Für geordnete Attributgrammatiken lassen sich effiziente Eva-
luatoren generieren[12]. Eine detaillierte Vorstellung von Attributgrammatiken
mit verschiedenen Unterarten findet sich in [3]. Für die Präsentation in dieser
Arbeit reicht folgende Definition geordneter Attributgrammatiken aus:
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Definition 1. Eine Attributgrammatik AG , (G, A,R,B) mit abstrakter Syn-
tax G , (N,T, P, Z) heißt geordnet wenn für jedes Symbol X ∈ (N ∪ T ) und
damit assoziierten Attributen A(X) eine Halbordnung existiert, sodass in jedem
Kontext von X die Auswertereihenfolge der Attribute in diesem Kontext diese
Halbordnung enthält[12].

Eine wesentliche Erweiterung, die für die Verwendung typischer Muster not-
wendig ist, findet sich mit Symbolen und Klassen in Attributgrammatiken.

Definition 2. Sei AG , (G, A,R,B) eine attributierte Grammatik mit ab-
strakter Syntax G , (T,N, P, Z), Nichtterminalen X0 ∈ N, Xi ∈ (N ∪ T ), i ∈
[1, n], n ∈ N. Für alle Produktionen p, qi ∈ P der Form p : X0::=X1 · · · Xn,
qi : Xi::=vi, wobei vi ∈ (T ∪ N)∗, den Attributen a, b ∈ A(Xi) sowie beliebi-
gen Ausdrücken e0, e1 existieren folgende Regelerzeugungsmuster:

Symbole (u.a. [11,15,19]):

1 symbol X1

2 attr ↓a← 10
3 ↑b← f(this.a)

entspricht

1 rule q1: X1 ::= v
2 attr X1.b←f(X1.a)
3
4 rule p: X0 ::= X1 · · · Xn

5 attr X1.a←10

Klassen (u.a. [11,15,19]):

1 class symbol V
2 attr ↓a← 10
3 ↑b← 100
4 symbol X1 ←V

entspricht
1 symbol X1

2 attr ↓a← 10
3 ↑b← 100

Head und Tail (ebenfalls [11,15,19]):

1 symbol X0

2 attr head.a← e0
3 ↑b← tail.b

entspricht
1 rule p: X0 ::= X1 · · · Xn

2 attr X1.a←e0
3 X0.b←Xn.b

Attributierungsregeln werden, abhängig vom Attributtyp (ererbt, synthetisiert), in
Symbole bzw. Produktionen übernommen. Wird in einer Produktion ein Attribut
eines Symbols bereits definiert, für das eine Symbol-Attributierungsregel existiert,
so wird diese nicht übernommen. Analoges gilt für Symbole und Klassensymbo-
le. Zuerst werden Klassensymbol-Attributierungsregeln in Symbole übernommen,
dann Symbol-Attributierungsregeln in Produktionen. Wird in mehreren Klassen-
symbolen ein Attribut definiert und erbt ein Symbol von mehreren dieser Klas-
sensymbole, dann ist die attributierte Grammatik konsistent, genau dann wenn
alle vererbenden Klassensymbole dieselbe Attributierungsregel für das definierte
Attribut angeben.

Für beliebige Symbole S stehen demnach head und tail für das erste bzw.
letzte Symbol auf der rechten Seite aller Produktionen mit linker Seite S.
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1 symbol X
2 attr ↑a← 10
3 -- Propagation von X.a als Attribut b mit dem Wert von X.a
4 propagate X.a as b
5 -- Inklusion des Attributs
6 symbol Y
7 attr ↓c← include X.a
8 -- Kettenattribut
9 chain a

Quelltext 2 – Erweiterung von Attributgrammatiken mit Inklusion, Pro-
pagation, Kettenberechnung und Beträgen, X

∗⇒ Y, Wurzel
Z[15,7]

Ausgehend von Definition 2 lassen sich Inklusion, Ketten und Unterbaumzu-
griffe definieren. Eine umfangreiche Behandlung dieser findet sich u.a. in [11,2]
sowie [7]. Quelltext 2 zeigt enige dieser existierenden Erweiterungen, wobei
der Zugriff auf Attribute in einem höheren Kontext über include geschieht,
propagate X.a as b analog der Inklusion ein Attribut b mit dem Wert von
X.a in jedem von X aus ableitbaren Nichtterminal definiert und chain für ein At-
tribut a eine vorgefertigte Auswertereihenfolge definiert, bei der zuerst von links
nach rechts in die Tiefe zur Berechnung abgestiegen wird[15,14]. Diese Auswert-
ereihenfolge kann auch optimiert werden – es ist nicht notwendig in Teilbäume
abzusteigen, in denen weder lesender noch schreibender Attributzugriff statt fin-
det, d.h. weder Vor- und Nachbedinungen durch das Kettenattribut in diesem
Teilbaum definiert werden[14].

Kommt ein Nichtterminal auf der linken Seite nur in Form von Kettenpro-
duktionen, d.h. Produktionen mit genau einem Symbol auf der rechten Seite
der Produktion, vor, dann werden die Kettenattributierungen zum Holen ei-
nes synthetisierten Attributs von uns nicht mit aufgeschrieben (Lösungsansätze
dafür werden u.a. in [22,15,14] vorgestellt). Wie in [10] und [11] beschrieben,
können diese Attributierungen aus einer Spezifikation heraus generiert werden.
Bei Nichtterminalen aus denen nur Terminale direkt ableitbar sind, wird auf
den Wert, bzw. die Zeichenfolge, des Terminalsymbols mit dem Attribut sym

von diesem Nichtterminal aus zugegriffen.
Die Typisierung der Funktionen, Attribute, Bedingungen und Ausdrücken

folgt typischerweise der Programmiersprache, für die ein Evaluator generiert
wird oder in der der Evaluator interpretiert wird. Für die Präsentation in dieser
Arbeit wird ein an Haskell angelehntes Typsystem ohne Klassen, Monaden oder
parametrischer Datentypen, aber traditioneller mathematischer Funktionsappli-
kation, genutzt. Funktionen mit Seiteneffekt werden von uns statt mit Monaden
mit dem Typ () deklariert. Dieser

”
Typ“ kann nur als letzter Typ, oder im

Falle von Funktionen, die Speicher allozieren, als erster Argumenttyp vorkom-
men. Typen werden, abzüglich eben genannter, wie in Haskell definiert. Wir
verwenden die Listendarstellung Haskells zur Beschreibung allgemeiner mehr-
elementiger Datentypen, bspw. Listen, Arrays oder Mengen.
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Einhergehend mit den Konventionen von Haskell werden Terminale, Nicht-
terminale, Typen und Typkonstruktoren bei uns am Anfang groß geschrieben;
Variablen, Funktionsnamen und Attribute hingegen werden am Anfang klein ge-
schrieben. Funktionen werden bei uns wie in Haskell typisiert, wenngleich wir
Currying in der Praxis nicht einsetzen.

Die üblichen Datentypen wie Bool, Int, String und Typen zur Code-
Generierung und Namensanalyse sind vordefiniert. Zum Zugriff auf die Defi-
nitionstabelle dient der Typ Key, zum Aufbau des Namensraums werden Env
und Bind genutzt.

Die Definitionstabelle, als Bestandteil der Namensanalyse, kann automatisch
aus Spezifikationen generiert werden[25]. Wir beschreiben eine Eigenschaft n,
die in der Definitionstabelle abgelegt werden soll, mit

declare_prop n :: τ ←e

oder

declare_prop n :: τ

wobei τ ein beliebiger Typ ist und e ein beliebiger Ausdruck. Letzterer gibt
an, welcher Wert angenommen werden soll, wenn ein Eintrag nicht in der Defi-
nitionstabelle vorhanden ist. Das Setzen eines Wertes in der Definitionstabelle
erfolgt über ein Attribut vom Typ Key gefolgt von einem Doppelpunkt und
dem Namen der zu setzenden Eigenschaft. Soweit möglich, verzichten wir auf
die Präsentation der Typen, wenn diese aufgrund der Verwendung hergeleitet
werden können oder für das Verständnis bzw. das vorgestellte Muster nicht von
Relevanz sind.

Zusätzliche Abhängigkeiten, die in geordneten Attributgrammatiken (siehe
[12]) notwendig sein können, werden von uns mit

symbol X
attr ↑gotB← true >= constituent Y.gotB

definiert, wobei >= für die zusätzliche Abhängigkeit einer Attributierung
steht und constituent alle von X ableitbaren Y

”
aufsammelt“. Bei der Defini-

tion eines Wertes kommt in unserer Präsentation constituent nur vor, wenn
der Wert irrelevant ist und dadurch nur eine Abhängigkeit geschaffen werden
soll. Für eine detaillierte Einführung zu constituent wird auf [15] und [11]
verwiesen.

Quelltext 1 zeigt einen Ausschnitt zur Implementierung der Ausdrucksspra-
che aus Abbildung 1 unter Verwendung der bisher eingeführten Notation und
Muster.

3 Typische Muster und deren Äquivalenzen

Bei der Vorstellung der Muster betrachten wir eine abstrakte Syntax definiert
durch eine Grammatik G , (T,N, P, Z) mit attributierter Grammatik AG ,
(G, A,R,B). Für die folgende Präsentation sei folgende Notation eingeführt: für
i ∈ [0, n], j ∈ [0,m],m, n ∈ N sind als Nichtterminale A, B, Xi ∈ N sowie als
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Terminale Ej ∈ T üblich. Mit kleinen Buchstaben werden Attribute a, b, · · · , z ∈
A notiert. Wir fordern üblicherweise, dass Z

∗⇒ A, sowie für alle i ∈ [0, n], n ∈
N : A

∗⇒ Xi gilt2. Werden in den aufgelösten Mustern Attribute verwendet, die
bei der Definition des Musters nicht verwendet werden, so sind dies neue, bisher
nicht benutzte oder definierte, Attribute. Werden bei den folgenden Mustern
keine Quellen in der Definition angeben, so konnten dazu von uns bisher keine
Quellen gefunden werden, die das Muster so oder in ähnlicher Form beschreiben.

3.1 Direkte Muster, Basismuster und Kombinationen

Ein häufig auftretendes Muster, bspw. bei der Hashwert-Berechnung oder Code-
generierung, ist die Bestimmung eines Attributs auf Basis eines anderen Attri-
buts.

Definition 3. (Attributabbildung)

1 a is fx(X0.b) entspricht
1 symbol X0

2 attr ↑a←fx(this.b)

für ein X0 für das b definiert wird und einem neuen Attribut a. Wird X0. vor b
weggelassen, so gilt diese Abbildung für jedes Symbol Xi, für das b definiert wird.

Diese Attributabbildung findet sich z.B. in Quelltext 1 bei der Berechnung
von VarDef.key aus dem Attribut bind. Der zweite Teil der Definition erlaubt
zusätzlich die Berechnung von VarReference.key ohne weitere Spezifikation.
Es wird eine Vereinfachung der Attributabbildung für mehrere Symbole der
abstrakten Syntax ermöglicht. In anderen Fällen kann man die Attributabbil-
dung heranziehen um andere Muster zu beschreiben. Aufgrund der einfacheren
Präsentation und der Möglichkeit der verlustfreien Abbildung von Baumstruk-
turen auf Listen und wieder zurück[24] betrachten wir bei den Mustern diese
als Liste von Attributwerten. Unter dieser Betrachtung beschreibt Def. 3 die
Funktion map :: (τa → τb)→ [τa]→ [τb] bzw. den einzelnen Schritt von map.

Ebenfalls häufig bei der Codegenerierung oder Typisierung anzutreffen sind
einfache Beiträge. Diese werden genutzt um eine Faltung über Attribute von
Knoten des abstrakten Syntaxbaumes durchzuführen.

Definition 4. (einfache Beiträge, u.a. [7,2,11])

1 contribute X1.a, · · ·, Xn.o
2 to A.b←e using ⊕ entspricht

1 chain b
2 symbol A
3 attr head.b← e
4
5 symbol X1

6 attr ↑b← tail.b ⊕ this.a
7 · · ·
8 symbol Xn

9 attr ↑b← tail.b ⊕ this.o

für eine binäre Operation ⊕ : τ → τ → τ und einen Initialisierungsausdruck e,
der auch durch eine Konstante c repräsentiert werden kann.

2 Damit gilt auch Z
∗⇒ Xi für i ∈ [0, n], n ∈ N.

34



Für einen Typ τ und eine binäre Operation ⊕::τ → τ → τ sowie eine Kon-
stante cmuss (τ,⊕, c) ein Monoid sein, d.h. c ist das neutrale Element von τ bzgl.
der Operation ⊕, welche assoziativ sein muss. Bei der Betrachtung als Liste von
Attributen sind einfache Beiträge der funktionalen Programmierung mit fold

nicht fern. Allerdings unterscheidet sich bei einfachen Beiträgen die Signatur mit
fold :: (τ → τ → τ) → τ → [τ ] → τ geringfügig von der bekannten Signatur
funktionaler Programmierung.

Ist die Operation ⊕ nicht assoziativ können Umsortierungen und andere Ak-
tionen beim Aufbau der abstrakten Syntax (siehe dazu auch [10]) zu unerwarte-
ten Ergebnissen führen. Die Auswertung folgt der Baumstruktur des abstrakten
Syntaxbaums.

Einfache Beiträge und Attributabbildungen können genutzt werden um das
Aufsammeln von Attributen in ein anderes Attribut oder gar einen Definiti-
onstabelleneintrag zu erreichen[14]. Dies ist nicht zu verwechseln mit Collec-
tion-Attributen aus [7,2], denn diese sind bereits in Beiträgen (Def. 4) gebündelt.
Das Aufsammeln von Attributen kann in der Codegenerierung und auch Ty-
pisierung genutzt werden um Funktionsparameter oder auch Parametertypen
aufzusammeln.

Definition 5. (Aufsammeln, u.a. in [2,7])

1 collect X1.b,· · ·,Xn.b in X0.a entspricht

1 X1.b
′ is (X1.b:[])

2 . . .
3 Xm.b′ is (Xm.b:[])
4 contribute X1.b

′, · · · Xm.b′

5 to X.a← [] using ++

wobei (:) : τY → [τY ] → [τY ] ein Listenkonstruktor, [] die leere Liste darstellt,
++: [τY ] → [τY ] → [τY ] die Listenkonkatenation und τY der Typ der Attribute
Xi.b ist; die aufgesammelten Attribute müssen denselben Typ haben.

Definition 5 beschreibt somit eine Parametrierung einfacher Beiträge um At-
tribute aufzusammeln, wobei eine wesentlich kompaktere Darstellung erreicht
wird, als dies mit Beiträgen selbst erreichbar ist. Nicht nur Funktionsparameter
und Parametertypen lassen sich dadurch aufsammeln, sondern ebenso Konstruk-
toren oder Alternativen. Das Aufsammeln beschreibt also die Anwendung der
Faltung um die implizite Liste der Baumstruktur explizit in einem Attribut ab-
zulegen.

Ein wiederkehrendes Muster, bspw. bei der Lebendigkeitsanalyse oder der
Analyse allgemeiner Abhängigkeitsbeziehungen, ist das

”
runterreichen, zusam-

menfassen, aufsammeln und ablegen“. Beispielhaft für dieses Muster, da es im
Rahmen der Analyse von Pumpensystemen (siehe [1]) häufig vorkommt ist die
Beschreibung von Abhängigkeitstypen.

Definition 6. (Abhängigkeitsaufbau) Seien τ1 und τ2 Typen

1 deptype of (τ1, τ2) is
2 A.a => X0.b in B.c entspricht

1 propagate A.a as a′

2 X0.b
′ is ((X0.a

′, X0.b):[])
3 contribute X0.b

′

4 to A.sub_c← [] using ++
5 contribute A.sub_c
6 to B.c← [] using ++
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wobei B
∗⇒ A und der Typ von A.a bzw. X0.b τ1 bzw τ2 ist.

Der Abhängigkeitsaufbau wird ausschließlich durch Rückführung auf andere
Muster erreicht.

Soll die Sortierung von Elementen bestimmt werden, Listen durchnummie-
riert werden oder ganz allgemein etwas unter Definition weiterer Attribute be-
stimmt werden, so nutzen wir dafür komplexe Beiträge. Ein komplexer Beitrag
erweitert einen einfachen Beitrag um Zwischenergebnisse und zusätzlicher Ver-
allgemeinerung.

Definition 7. (komplexer Beitrag) Für Attribute und Definitionstabellenei-
genschaften xi, i ∈ [1, n], Ausdrücke ej für j ∈ [1, p], p ∈ N ist

1 contribute X1.a, · · ·, Xn.o
2 to A.c←e
3 via x1 ←e1,
4 · · ·
5 xo ←eo,
6 chain← ep

äquivalent mit

1 chain c
2 symbol A
3 attr head.c← e
4
5 symbol X1

6 attr ↑xo ←eo
7 · · ·
8 ↑x1 ←e1
9 ↑c←ep

10 >= (t.xo, · · ·, t.x1)
11 · · ·
12 symbol Xn

13 attr ↑xo ←eo
14 · · ·
15 ↑x1 ←e1
16 ↑c←ep
17 >= (t.xo, · · ·, t.x1)

Bei komplexen Beiträgen erfolgt der Beitrag erst nach Berechnung aller
via-Attribute. Diese via-Attribute können als Seiteneffekte während der Fal-
tung betrachtet werden. Folgende Annahme muss in weiteren Arbeiten überprüft
werden.

Hypothese 1. (Ordnungserhaltend): Für eine gegebene geordnete Attribut-
grammatik ist diese durch Hinzufügen der Expansion der Definitionen 4 und 7
weiterhin geordnet (Def. 1).

Durch komplexe Beiträge kann der Quelltext wesentlich knapper dargestellt
werden, jedoch ist Hauptanwendungsfall die Umsetzung anderer Muster und
Implementierung von Modulen.

Ein solches Muster ist die Akkumulation von Werten und stellt eine Para-
metrierung komplexer Beiträge dar. Für ein Symbol bestimmt die Präfixsumme
eine Akkumulation eines Attributs in der Reihenfolge der Eingabe und legt Zwi-
schenergebnisse in einem Attribut ab. Diese werden als Liste in einem Attribut
zur Verfügung gestellt.

Definition 8. (Präfixsumme) Seien die Attribute X1.a, · · · Xn.j und eine (as-
soziative) binäre Operation ⊕ :: τ → τ → τ dann sind
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1 scan X1.a, · · ·, Xn.j
2 to A.x← c with y using ⊕ äquivalent

1 contribute X1.a, · · ·, Xn.j
2 to A.chn← c
3 via y ←chain ⊕ tribute
4 chain← chain ⊕ tribute
5 collect X1.y,· · ·,Xn.y
6 in A.x

wobei tribute die Referenz auf den aktuellen Beitrag ist.

Für Präfixsummen bilden (τ,⊕, c) wieder einen Monoid.
Wie bereits beschrieben kommt es ebenfalls häufig vor Indizes zu bestimmen.

Da dies bei uns sehr häufig vorkommt, bspw. bei der Codegenerierung für die
Zugriffsauswahl bei Feldern und Verbünden, existiert folgendes Muster.

Definition 9. (Indexbestimmung)

1 count X0, · · ·, Xn

2 from A in s start with e entspricht

1 symbol X0

2 attr ↑trib← 1
3
4 · · ·
5
6 symbol Xn

7 attr ↑trib← 1
8 scan X0.trib, · · · Xn.trib
9 to A.cnt← e
10 with s using +

wobei cnt, trib und s neue Attribute sind und e ein Initialisierungswert.

Neben der beschriebenen Äquivalenz zur Indexbestimmung könnten auch
komplexe Beiträge ohne Umweg herangezogen werden.

Komplexe Beiträge sind somit vielseitig nutzbar. Ein weiteres Beispiel dafür
zeigt sich darin, dass diese genutzt werden können um die Namensanalyse,
ähnlich wie [16], umzusetzen. Im Gegensatz zu der Variante aus [16] ist die
folgende Definition nicht über Bibliothekscode und Vererbung oder reiner Tex-
tersetzung umgesetzt. Bei der Namensanalyse kommt es sehr oft vor, dass bereits
ein umfangreicher Teil der Definitionstabelle gefüllt werden kann.

Definition 10. (Namensanalyse)

1 use_before_def X1.sym, X2.sym
2 in A.n props: x1 � C.a,
3 · · ·
4 xo � D.y
5 with error unknown,
6 error unique

entspricht

1 contribute X1.sym to A.n
2 via x1 ←X1.c_a
3 · · ·
4 xo ←X1.d_y
5 bind← nbnd(chain,tribute)
6 key← keyof(bind)
7 chain← chain
8 propagage A.n as env
9
10 symbol X2

11 attr cond ↑sym ∈ this.env
12 => error "not defined"
13
14 symbol X1

15 attr cond ↑sym /∈ ↓n
16 => error "already defined"

wobei C, D ∈ (N ∪T ), xi, i ∈ [1, n], n ∈ N Attribute und Definitionstabelleneigen-

schaften, X1
∗⇒ D und X1

∗⇒ C. Seien τ der Typ eines Attributs y eines aus X1
ableitbaren Symbols Xi, analog D.y und C.a, entspricht props: xa � Xi.y
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1 collect Xi.y in X1.c_a bzw.
1 contribute Xi.y
2 to X1.c_a←c using r

wenn der Typ von X1.xa [τ ] ist (linke Seite), respektive in allen anderen Fällen;
wobei (τ, r, c) einen Monoid bilden. Die Attribute bind und key sind neue, noch
nicht verwendete Attribute zum Zugriff auf die Definitionstabelle. Dazugehörige
Funktionen erstellen einen Eintrag im Namensraum (nbnd) und machen diesen
als Definitionstabelleneintrag (keyof) verfügbar.

Eine weitere zu prüfende Eigenschaft ist das Verhalten der Kombination die-
ser Muster miteinander. Seien Am, An und Ae die Attribute eines Musters, wobei
Am die referenzierten Attribute eines Muster darstellt, An die neuen Attribute
bei der Expansion eines Musters und Ae , Am ∪An die expandierten Attribute
eines Musters sind und Am ∩An = ∅ gilt. Weiterhin seien zwei beliebige Muster
m1 und m2, wobei Anm1

∩ Anm2
= ∅ und eine geordnete Attributgrammatik

AG , (G, A,R,B). Folgende Annahme muss von uns noch bewiesen werden:

Hypothese 2. (Abgeschlossenheit der Kombination) Für zwei beliebige Mu-
ster m1 und m2 und expandierter Varianten M1 , Rm1 ∪Bm1 , M2 , Rm2 ∪Bm2

ist AG′ , (G, A∪Anm1
∪Anm2

, R∪Rm1
∪Rm2

, B ∪Bm1
∪Bm2

) eine geordnete
Attributgrammatik.

3.2 Muster der Definitionstabelle

Bei Verwendung der Definitionstabelle unter Beachtung der Ordnungseigenschaft
geordneter Attributgrammatiken treten weitere Muster auf. Zum Befüllen und
dann Abfragen, bspw. bei der Alias- oder Typanalyse, kommt folgendes Muster
zum Einsatz:

Definition 11. (Speichern und Laden):

1 store_load X0.x1,· · ·,Xn.xn

2 in A.a with A.k:p :: τ
3 via Y1.b1 ←e1
4 · · ·
5 Ym.bm ←em

bzw.

1 declare_prop p :: τ
2 symbol S
3 attr ↑gotStA_k_p← true
4 >= constituent A.k:p
5 symbol Y1

6 attr this.b1 ←e1
7 >= include S.gotStA_k_p
8 · · ·
9 symbol Ym

10 attr this.bm ←em
11 >= include S.gotStA_k_p
12 symbol A
13 attr this.a← A.k:p
14 >= include S.gotStA_k_p

wobei Yj ∈ (N ∪T ), j ∈ [1,m],m ∈ N; S , Z, und die Xi.xi, i ∈ [0, n] analog Def.
10 über Aufsammeln oder Beitrag in die Definitionstabelleneigenschaft A.k : p
hinzugenommen wird. Die via-Attribute müssen nicht aufgeführt werden.
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Das Muster zum Speichern und Laden stellt also sicher, dass, bevor eine Spal-
te der Definitionstabelle geladen wird, der Eintrag in dieser Spalte vorhanden
ist.

Für viele der Muster aus Abschnitt 3.1 existieren Varianten, die die gewonne-
nen Informationen in die Definitionstabelle überführen. Diese Varianten unter-
scheiden sich nur marginal – durch Verwendung von zu speichernden Eigenschaf-
ten statt Attributen – von den ursprünglichen Mustern. Wir verzichten daher
auf einer Präsentation dieser Muster.

3.3 Weitere Muster

Viele Muster lassen sich durch Bibliotheken umsetzen. Beispiele dafür sind
die Namensanalyse oder die Analyse der Gültigkeitsbereichze von Bezeichnern
(Scoping)[16]. Andere Muster basieren auf der der Generierung von Konstruk-
toren, die in der Attributgrammatik als Makros zur Verfügung gestellt werden
können, bspw. Codegenerierung oder Typanalysen[17,25]. Eine genaue Vorstel-
lung dieser Ansätze würde den Rahmen dieser Arbeit sprengen.

Muster, die die Definitionstabelle analysieren oder traversieren existieren
ebenso wie Muster, die Einträge in der Definitionstabelle aus bestehenden Ein-
trägen bestimmen. Die Beschreibung der Traversierung der Definitionstabelle
kann ebenso kompakt erfolgen, wie OCL dies für andere Mengen-orientierte Da-
tentypen erreicht.

4 Evaluierung der Muster

Anhand des Sprachbeispiels aus Abschnitt 2, insbesondere Quelltext 1, wird vor-
gestellt, wie sich die Muster bezüglich Speicher- und Laufzeiteinfluss verhalten.

Die Verwendung von Mustern statt der Quellen aus Quelltext 1 zeigt Quell-
text 3.

Das konkrete Speicher- und Laufzeitverhalten der Muster ist abhängig von
der konkreten Ausprägung des Musters und der verwendeten Hilfsfunktionen
sowie Algorithmen. Darüber hinaus ist auch die verwendete Grammatik sowie
die Eingabe an den generierten Evaluator oder Übersetzer wichtig.

Wir beschränken uns daher darauf nur auf einige Sonderfälle einzugehen.
Eine Propagation erzeugt, wenn das Attribut aufgrund von Optimierungen ei-
ne globale Variable ist (siehe dazu [13]), ein neues Attribut. Das Erlauben von
Seiteneffekten könnte andernfalls zu Änderungen von Werten zwischen Start
der Propagation und Auswertung des propagierten Attributs an anderen Stellen
führen. Weiterhin erzeugen via-Attribute neue Attribute bzw. Definitionstabel-
lenspalten.

Die Laufzeit der Muster ist selten höher als ein kompletter Durchlauf des
abstrakten Syntaxbaums. Eine Ausnahme bilden die auf komplexen Beiträgen
aufbauenden Muster sowie Muster der Definitionstabelle, welche einen zweiten
Besuch eines Knotens nach sich ziehen. Diese Betrachtung schließt jedoch nicht
aus, dass es keine zusätzlichen Besuche eines Knotens gibt, wenn andere Attri-
butierungsregeln vorhanden sind.
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1 declare_prop val :: Int← 0
2 val is str_to_int(Constant.sym)
3 def_before_use VarDef.sym, VarReference.sym in Program.names_chn
4 with error unknown, error unique
5
6 symbol VarDef
7 attr ↑has_err← ↑sym /∈ ↓names_chn
8
9 symbol VarReference
10 attr ↑has_err← ↑sym ∈ ↓names
11
12 · · ·
13
14 deptype of (Key, Key) is VarDef.key =>VarReference.key in Program.deps
15 count VarDef from Program in defs
16
17 symbol Program
18 attr ↑has_err← cyclic(↑deps) || Program.defs > 1
19 cond ↑has_err =>
20 error "Cannot evaluate program."
21 print(↑val)

Quelltext 3 – Ausschnitt der Implementierung der Ausdruckssprache mit
abstrakter Syntax aus Abb. 1

5 Verwandte Arbeiten

Attributgrammatiken wurden von Knuth in [18] eingeführt. Wesentliche Erweite-
rungen der klassischen Attributgrammatiken finden sich in geordneten Attribut-
grammatiken (Ordered Attribute Grammars) von Kastens beschrieben in [12],
wiederbeschreibbaren (bzw. umschreibbaren) Referenz-Attributgrammatiken von
Hedin[4] und Higher-Order Attributgrammatiken[23].

Kastens zeigte in [12], dass es für die sehr mächtige Menge geordneter Attri-
butgrammatiken immer möglich ist eine effiziente Berechnungsstrategie zu be-
stimmen und einen Evaluator zu generieren, der für alle Eingaben diese Berech-
nungen durchführt. Die Übersetzerbau-Werkzeugsammlung eli[6] nutzt OAGs
zur Generierung vollständiger Übersetzer. Eli unterstützt gleichzeitig bereits ei-
ne Reihe von Erweiterungen klassischer Attributgrammatiken wie Vererbung
und parametrierbare Module. Für eli wurde ebenfalls der

”
abstrakte Datentyp

zur Namensanalyse“ in [16] vorgestellt.
In [11] werden syntaktische Methoden zur Modularisierung von Attribut-

grammatiken vorgestellt. Module lassen sich durch Parameter individualisieren
und werden instanziiert.

DSLs, die auf dem Erkennen typischer Muster in Attributgrammatiken ba-
sieren und Konstruktoren definieren, finden sich in [17]. Weitere Beispiele, wie
Verwendung der Definitionstabelle oder Codeerzeugung, werden in [25] vorge-
stellt.

Erstmals wurde eine Variante des contribution-Musters in [2] vorgestellt. Im
Gegensatz zu unserer Variante sind keine in einem Symbol lokalen via-Attribute
vorgesehen. Auf Boylands Arbeiten aufbauend wird u.a. in [8,4,7,20] eine Vari-
ante vorgestellt, die Feld-orientiert arbeitet. Für skalare Datentypen sind Hilfs-
klassen zu schreiben[20].
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Einen Überblick über Attributgrammatiken liefern [3] sowie [22]. Letzteres
liefert darüber hinaus einen Überblick zur Verringerung des Aufwands bei der
Spezifikation mit Attributgrammatiken.

6 Zusammenfassung

In dieser Arbeit wurden eine Reihe typischer Muster in geordneten Attribut-
grammtiken vorgestellt. Es wurde gezeigt, wie auf Basis dieser Muster weite-
re Muster aufgebaut werden können. Die von uns vorgestellten Muster sind
kompakter und bieten einen höheren Abstraktionsgrad als die entsprechenden
Lösungen, die mit rein Modul-basierten Lösungen wie [11] möglich wären. Für
die präsentierten Muster konnten Anwendungsfälle vorgestellt werden. Ebenso
wurde auf Speichereinfluss und Laufzeiteinfluss der Muster eingegangen, wenn-
gleich eine genauere Untersuchung und dazugehörige Vorstellung notwendig ist.

Hervorzuheben sind Beiträge als Muster, die in vielen Szenarien eingesetzt
werden können und auch als Basis für andere Muster von Nutzen sind. Beiträge,
wie sie von Hedin (siehe u.a. [7,4]) verwendet werden, gehen auf die globalen

”
Collection“-Attribute Boylands (siehe [2]) zurück und verhalten sich ähnlich
dem constituent-Konstrukt aus LIGA und GAG (siehe u.a. [15]) in der
Wurzel. Im Gegensatz zu den eben beschriebenen Ansätzen erlauben komple-
xe Beiträge auch die Einführung oder Verwendung zusätzlicher Attribute ohne
direkten Beitrag zu einem Attribut. Damit gehen diese von uns vorgestellten
Muster weiter als bisherige Ansätze.

Ebenfalls in [2] erkannt wurden Muster zum Aufsammeln von Attributen,
jedoch keine verbesserte Abstraktion als Beiträge dafür gefunden, die bei Boy-
land noch als Attribute der Wurzel interpretiert werden können. In der bei uns
vorliegenden Form bieten sich mehr Einsatzmöglichkeiten.

Die von uns vorgestellte Namensanalyse unterscheidet sich von den in [16]
und [5] durch Verwendung des Musters mit Beiträgen und damit einhergehend
der Möglichkeit die Definitionstabelle sofort mit semantisch relevanten Informa-
tionen zu befüllen. Es existieren weitere Eigenschaften bei der Namensanalyse,
wie Namensbereiche, auf die wir bisher nicht eingegangen sind. Eine Herausforde-
rung wird es sein, diese in Muster zu fassen, die mit anderen Mustern kombiniert
immernoch eine geordnete Attributgrammatik ergeben.

Es existieren viele Erweiterungen, Bibliotheken und Werkzeuge denen ge-
mein ist, dass sie aufgrund des Erkennens typischer Muster entwickelt wurden,
bspw. [11,2,25,16,17]. Dennoch wurden diese typischen Muster nicht genutzt um
einen höheren Abstraktionsgrad zu gewinnen, der auf die Semantik des Musters
eingeht.

In den (älteren) Übersichtsarbeiten [3] und [22] wird nicht auf typische Mu-
ster eingegangen – Ausnahme bildet der Zugriff auf entfernte Attribute. Letzteres
ist ähnlich der Propagation und dem Aufsammeln.

Neben den in Abschnitt 3 beschriebenen Mustern existieren weitere Mu-
ster, welche insbesondere auf der Verwendung von Graphen oder Datentypen,
basieren. Diese weiteren sowie rein auf Produktionen anwendbaren Muster zu
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identifizieren und zu analysieren ist das Ziel zukünftiger Forschung. Weiterhin
muss ebenfalls noch gezeigt werden, dass die von uns aufgestellten Hypothesen
(1 und 2) gültig sind. Wir erwarten von den dazugehörigen Beweisen konkretere
Aussagen bzgl. Laufzeiteinfluss und Speichereinfluss als dies in Abschnitt 4 von
uns erfolgt ist.

Die von uns gewonnenen Ergebnisse wollen wir in einer DSL zur Verfügung
stellen.
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Abstract

We argue that computing systems requirements must be based on precisely described domain
models. We further argue that domain science & engineering offers a new dimension in
computing. We review our work in this area and we hint at a research and experimental engi-
neering programme for the first two phases of the triptych of domain enginering, requirements
engineering and software design.

1 Introduction

This author can refer to some substantial evidence [19, 21, 33] that using formal specifications in
software development brings some substantial benefits. Section 2 recalls a first, 1981–1984, instance
of such benefits. Yet, as also outlined in [15, Bjørner & Havelund: 40 Years of Formal Methods —
10 Obstacles and 3 Possibilities], “propagation” of formal methods into a wider industry seems
lacking. Although [35, Woodcock et al.] lacks a reference to the formal methods project covered
in Sect. 2, it is a fair reference to a number of projects supporting the author’s “benefits” claim.

1.1 The Domain Engineering Claim

In this paper we wish, however, to not “push” the formal methods claim, but to “push” a, or
the, domain science & engineering claim: in order to design software one must have a good grasp of
its requirements; in order to prescribe requirements one must have a good grasp of the underlying
domain; so we expect that behind every serious software development there lies a stable domain
description. This, then, is the purpose of this paper: to “tout” the concept of domain science and
engineering, emphasizing, in this paper, the latter.

1.2 Aim of Paper

So this is neither a theory nor a programming methodology paper. It is a review paper: “where
do we stand ?” with respect to being able to develop correct software and software that meets
customers’ expectations ?; and “how can those two issues: ‘correctness’ and ‘meeting expectations’
be improved ?”.

∗This paper is the background paper for a 15 minute presentation to be given at KPS 2015, Parkhotel Pörtschach,
Wörthersee, Austria, October 5–7, 2015. The presentation is, obviously, expected to be approximately 12–15 slides !

1
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1.3 Structure of Paper

Section 2 brings two examples: one of arbitrary, but well-formed transportation nets (illustrated by
a road net), the other of arbitrary, but well-formed pipelines with the flow (laws) of liquid materials.
The purpose of Sect. 2 is to review a 44 man-year project using formal methods (“lightly”). We
bring this example — of a now more than 30 year old project (1981–1984) — to show an early
use of a carefully narrated formal domain description, a project that we claim to have been
a very successful one. Section 3 overviews our concept of TripTych development: from domain
descriptions, via requirements prescriptions, to software design. We emphasize the domain science
& engineering aspects. Section 4 Discusses our claim that this TripTych suggests a new foundation
for computing science.

2 A Background Development

We sketch the structure of a successful 44 man year project which developed a commercial compiler
according to the TripTych approach and using formal specifications — with success measured in
therms of meeting customers’ expectations and being correct.

2.1 The 1981–1984 DDC Ada Compiler Development Project

In the spring semester (6 months) of 1980 five MSc students worked out their MSc theses: A For-
mal Description of Ada. The four theses were published as [19]. That work became the basis for a
full-scale industry-size project: The DDC1 ADA Compiler Project, funded, in part by the CEC, the
Commission of the European Countries. The project was carried out according to abstraction and
refinement principles — as far as the · · · dotted box: the leftmost dynamic semantics (quadruple
of) boxes2 as well as the A-code Language and Compiling Algorithm is concerned — laid down in [2],
and can be diagrammed as shown in Fig. 1 We explain the approach taken to develop, using formal
specifications, an industry-strength, commercial compiler for the US DoD3 Ada programming lan-
guage. We do so using Fig. 1 as a reference point. Each box represents a specification and denotes
a mathematical object. Each directed line between boxes represents a step of development, from
a higher to a lower level of abstraction, and denotes a proof (of correctness, also a mathematical
object). There were three phases of development: the domain engineering phase, the requirements
engineering phase, and the software design phase. They are clearly marked in Fig. 1. First a formal
description was developed for Ada. This phase is referred to as the ‘Domain’. It had four stages:
first the Abstract Syntax, then (developed “concurrently”) the Higher-order Static Semantics, the
“Denotational” Dynamic Sequential Semantics and the “Operational” Dynamic Parallel Semantics.
Then a phase, Requirements, consisting of several stages. The refinement work represented by each
of the boxes, were conditioned by various requirements. But we show such only for two boxes:
dashed, labelled pointed lines. The Higher-order Static Semantics is refined in two stages: first a
Resumption Static Semantics and then a First-order Static Semantics. The “Denotational” Dynamic
Sequential Semantics was, in principle, refined in three stages: a 1st-order Functional Interpreter, a
Imperative Stack dynamic semantics and a Macro-expansion dynamic semantics. From the Opera-
tional “Parallel” Semantics was developed an operational Run-time Semantics for the concurrency
constructs of Ada. From the Macro-expansion semantics was developed the design of an A[da]
Code Language which was given a semantics commensurate with the specification language and
Macro-expansion semantics. And from the Macro-expansion semantics and the A Code Language
was developed a Compiling Algorithm which to every construct of Ada prescribed a sequence of A
Code. The Run-time Interpreter was developed from the Operational “Parallel” Ada Semantics. Two
requirements assumptions were: the compiler should execute within a 128 KB addressing space,
and the compiled code should likewise execute within a 128 KB addressing space. Therefore the
compiler need be decomposed into a number of passes where a pass was defined as that of a linear

1DDC: Dansk Datamatik Center was an industry-operated R&D centre, 1979–1989.
2“Denotational” Sequental Ada, 1st-order Functional Interpreter, Imperative Stack and Macro-Expansion
3DoD: Department of Defense
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Figure 1: The Ada Compiler Software Development Graph. Bold-faced Boxes published in [19]

reading of of the Ada program text either left-to-right (forwards), or right-to-left (backwards),
and in either pre-, in- or post-order4. From the combined 1st-order Static Semantics and the
Compiling Algorithm was, after careful analysis of these, developed a specification for a multi-pass
administrator. The multi-pass analysis and synthesis resulted in five passes for the statics checks
(i.e., “front-end”), and four passes for the code generator (i.e., “back-end”). These concluded the
domain and requirements phases which were all specified in VDM [16, 31] for a total of approx-
imately 10.000, respectively 56,000 lines of VDM and formula annotations. The nine compiler
Passes, Multi-pass Administrator, and the Run-time Administrator were all coded from their specifi-
cations in a subset of the Ada language for which a compiler was developed in parallel with the
full-Ada development !

2.2 A Review

2.2.1 Resources

The above project took place more than 30 years ago ! Approximately the following man-power
resources were used: For the Domain phase: seven people, one year; for the Requirements phase
(exclusive of the Multi-pass Administrator : eleven people, one year; for the Multi-pass Administrator :
six people, half a year; and for the rest (nine Passes and the Administrators): 12 people, 14 months.
The subset Ada compiler development consumed seven man years. Thus a total of 42 man years
was spent on effective development and its management, 2 man years on management of donors,
funding and marketing.

4Pre-order: visiting program phrase tree nodes when first encountered; in-order: any time encountered, or
post-order: when last encountered.
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2.2.2 Formal Methods “Lite”

VDM was the prime “carrier” of the Ada compiler development. The domain and the requirements
phases were specified in VDM. No properties of these specifications were formalised let alone
proved. The first 10 years of use by industry on three continents (China, Japan, USA and Europe)
revealed few, and only trivial errors: less than 2% of original development resources were spent
on error corrections with average “repair” times being in the order of 1–2 days.

2.2.3 Epilogue

The above-outlined Ada compiler development project was reported in [21, 33]. The use of formal
methods was clear. But ‘formal methods’ were not used in any other sense than formal specifica-
tions. Properties of and relationships between stage specifications, i.e., boxes, were not formalised.
And yet, the project must be judged an unqualified success for formal methods. It took far fewer
manpower resources than any other Ada compiler development project in those days. It had far,
far fewer “bugs” than any comparable software development project in those days or since. Yet
there were no tools available: No VDM syntax checker, No specification analyser. No nothing !

3 The Triptych of Software Engineering

We suggest a TripTych view of software engineering: before software can be designed and coded
we must have a reasonable grasp of “its” requirements; and before requirements can be prescribed we
must have a reasonable grasp of “the underlying” domain. To us, therefore, software engineering
contains the three sub-disciplines:

• domain engineering,

• requirements engineering and

• software design.

3.1 What’s New ?

So “What’s New ?” in this ? Well, as far as the surveyed compiler development is concerned,
nothing: that is how one should develop compilers — although it seems that it was done only
once ! 5 What can we learn from the example of Sect. 2 ? We can postulate that when there is
a formal understanding of the domain — and of the stages from domain to requirements and
on to software design, then software can be developed with greater assurance of meeting users’
expectations and be correct than if not ! So that is what we are therefore proposing: to treat the
domain, the application area for software development, as “a language” whose terms designate
phenomena in the domain and “spoken/uttered” about by practitioners in the domain. So we
consider a domain description to be the description of the syntax and the semantics of a language.

3.2 Domain Science & Engineering

3.2.1 What is a Domain ?

A domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”,
and perdurant, that is temporally “fleeting” entities.

5Most textbooks in compiler development do not cover neither static nor dynamic semantics formally — and
they certainly do not motivate the run-time stack stack/unstack operations upon procedure calls and returns such
as done in [2].
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3.2.2 Example Domains

To help understand the above delineation of the ‘domain’ concept we list some examples for which
we can also refer to some either published or reported domain descriptions:

Example 1 . Manifest Domain Names: Examples of suggestive names of manifest domains are: air traffic,

banks, container lines, documents, hospitals, manufacturing, pipelines, railways and road nets.

3.2.3 Comparison to Other Sciences and Their Engineering

We focus on the natural sciences and their engineerings: civil (or construction) engineering (build-
ings, roads, bridges, tunnels, etc.), mechanical engineering, chemical engineering, electrical (power
engineering), electronics engineering (VLSI, IT hardware, etc.) and radio engineering (radio waves,
transmitters, receivers, etc.). For all of these related technologies engineers are properly educated,
knows the underlying sciences, that is, the domains of their artifacts. Not so, today, 2015, for
software engineers for the domains listed in Example 1. Software engineers asked to develop soft-
ware for either of air traffic control, banking. container lines, health care, railways, road pricing,
etcetera, are expected to find out, themselves, what the relevant domain is, how it behaves, etc.
No wonder that it often fails !

3.2.4 Domain Descriptions: Internet References

Now, we would not postulate the above without firm evidence. “Proof in the pudding” sort-of-
evidence that domains can indeed be properly, informally and formally described. We shall first
mention some existing descriptions before we exemplify fragments of such descriptions.

We list a number of reports all of which document descriptions of domains. These de-
scriptions were carried out, by the present author, in order to research and develop the do-
main analysis and description concepts now summarised in the present paper. These reports
ought now be revised, some slightly, others less so, so as to follow all of the prescriptions of
the current paper. Except where a URL is given in full, please prefix the web reference with:
http://www2.compute.dtu.dk/~dibj/.

1 A Railway Systems Domain D.Bjørner et al.

• Scheduling and Rescheduling of Trains; C.W.George and S.Prehn, 1996, amore/sched-
uling.pdf

• Formal Software Techniques in Railway Systems; 2000, amore/dines-fac.pdf

• Dynamics of Railway Systems; 2000, amore/ifac-dynamics.pdf

• Railway Staff Rostering; A.Strupchanska et al., 2003, amore/albena-amore.pdf

• Train Maintenance Routing; M.Peñicka et al., 2003, amore/martin-amore.pdf

• Train Composition and Decomposition: Domain and Requirements (draft), P.Karras
et al., 2003, amore/panos-amore.pdf

2 Models of IT Security. Security Rules & Regulations, it-security.pdf, 2006. See [13]. A
sketch is given of the IT security rules laid down by ISO

3 A Container Line Industry Domain, container-paper.pdf, 2007

4 The “Market”: Consumers, Retailers, Wholesalers, Producers, themarket.pdf, 2007 See [3].

5 What is Logistics ? logistics.pdf, 2009

6 A Domain Model of Oil Pipelines, pipeline.pdf, 2009

7 Transport Systems, comet/comet1.pdf, 2010

8 The Tokyo Stock Exchange, todai/tse-1.pdf and todai/tse-2.pdf, 2010

9 On Development of Web-based Software. A Divertimento, wfdftp.pdf, 2010

10 Documents (incomplete draft), doc-p.pdf, See [12]. 2013
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3.2.5 An Example: Road Nets, Vehicles and Traffic

Parts The root domain, ∆D, whose description is to be exemplified, is that of a composite traffic
system (1a.) with a road net, (1b.) with a fleet of vehicles and (1c.) of whose individual position
on the road net we can speak, that is, monitor.

1 We analyse the traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

2 The road net consists of two composite
parts,

a an aggregation of hubs and

b an aggregation of links.

type
1. ∆∆

1a. N∆

1b. F∆

1c. M∆

value
1a. obs part N∆: ∆∆ → N∆

1b. obs part F∆: ∆∆ → F∆

1c. obs part M∆: ∆∆ → M∆

type
2a. HA∆

2b. LA∆

value
2a. obs part HA∆: N∆ → HA∆

2b. obs part LA∆: N∆ → LA∆

3 Hub aggregates are sets of hubs.

4 Link aggregates are sets of links.

5 Fleets are sets of vehicles.

6 We introduce some auxiliary functions.

a links extracts the links of a network.

b hubs extracts the hubs of a network.

type
3. H∆, HS∆ = H∆-set
4. L∆, LS∆ = L∆-set
5. V∆, VS∆ = V∆-set
value
3. obs part HS∆: HA∆ → HS∆

4. obs part LS∆: LA∆ → LS∆

5. obs part VS∆: F∆ → VS∆

6a. links∆: ∆∆ → L-set
6a. links∆(δ∆) ≡ obs part LS(obs part LA(δ∆))
6b. hubs∆: ∆∆ → H-set
6b. hubs∆(δ∆) ≡ obs part HS(obs part HA(δ∆))

Unique Identifiers We cover the unique identifiers of all parts, whether needed or not.

7 Nets, hub and link aggregates, hubs and
links, fleets, vehicles and the monitor all

a have unique identifiers

b such that all such are distinct, and

c with corresponding observers.

8 We introduce some auxiliary functions:

a xtr lis extracts all link identifiers of a
traffic system.

b xtr his extracts all hub identifiers of a
traffic system.

c given an appropriate link identifier
and a net get link ‘retrieves’ the des-
ignated link.

d given an appropriate hub identifier
and a net get hub ‘retrieves’ the des-
ignated hub.

type
7a. NI, HAI, LAI, HI, LI, FI, VI, MI
value
7c. uid NI: N∆ → NI
7c. uid HAI: HA∆ → HAI
7c. uid LAI: LA∆ → LAI
7c. uid HI: H∆ → HI

7c. uid LI: L∆ → LI
7c. uid FI: F∆ → FI
7c. uid VI: V∆ → VI
7c. uid MI: M∆ → MI
axiom
7b. NI

⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.
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where axiom 7b is expressed semi-formally, in mathematics.

value
8a. xtr lis: ∆∆ → LI-set
8a. xtr lis(δ∆) ≡
8a. let ls = links(δ∆) in {uid LI(l)|l:L•l ∈ ls} end
8b. xtr his: ∆∆ → HI-set
8b. xtr his(δ∆) ≡
8b. let hs = hubs(δ∆) in {uid HI(h)|h:H•k ∈ hs} end

8c. get link: LI → ∆∆
∼→ L

8c. get link(li)(δ∆) ≡
8c. let ls = links(δ∆) in
8c. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end
8c. pre: li ∈ xtr lis(δ∆)

8d. get hub: HI → ∆∆
∼→ H

8d. get hub(hi)(δ∆) ≡
8d. let hs = hubs(δ∆) in
8d. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end
8d. pre: hi ∈ xtr his(δ∆)

Mereology

9 Links are connected to exactly two distinct hubs.

10 Hubs are connected to zero or more links.

11 For a given net the link and hub identifiers of the mereology of hubs and links must be those
of links and hubs, respectively, of the net.

type
9. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
10. HM = LI-set
value
9. mereo L: L → LM
10. mereo H: H → HM
axiom [Well−formedness of Road Nets, N ]
11. ∀ n:N,l:L,h:H• l ∈ obs part Ls(obs part LC(n))∧h ∈ obs part Hs(obs part GC(n))
11. let his=mereology H(l), lis=mereology H(h) in
11. his⊆∪{uid H(h) | h ∈ obs part Hs(obs part HC(n))}
11. ∧ lis⊆∪{uid H(l) | l ∈ obs part Ls(obs part LC(n))} end

Attributes We may not have shown all of the attributes mentioned below — so consider them
informally introduced !

• Hubs: locations6 are considered static, wear and tear (condition of road surface) is considered
inert, hub states and hub state spaces are considered programmable;

• Links: lengths and locations are considered static, wear and tear (condition of road surface)
is considered inert, link states and link state spaces are considered programmable;

6By location we mean a cadestral/geodetic position.
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• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine
power (kW/horse power) are considered static; velocity and acceleration may be considered
reactive (i.e., a function of gas pedal position, etc.), global position (informed via a GNSS:

Global Navigation Satellite System) and local position (calculated from a global posi-
tion) are considered biddable

We treat one attribute each for hubs, links, vehicles and the monitor. First we treat hubs.

12 Hubs

a have hub states which are sets of pairs of identifiers of links connected to the hub7,

b and have hub state spaces which are sets of hub states8.

13 For every net,

a link identifiers of a hub state must designate links of that net.

b Every hub state of a net must be in the hub state space of that hub.

14 Hubs have geodetic and cadestral location.

15 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.

type
12a. HΣ = (LI×LI)-set
12b. HΩ = HΣ-set
value
12a. attr HΣ: H → HΣ
12b. attr HΩ: H → HΩ
axiom
13. ∀ δ:∆,
13. let hs = hubs(δ) in
13. ∀ h:H • h ∈ hs •

13a. xtr lis(h)⊆xtr lis(δ)

13b. ∧ attr Σ(h) ∈ attr Ω(h)
13. end
type
14. HGCL
value
14. attr HGCL: H → HGCL
15. xtr lis: H → LI-set
15. xtr lis(h) ≡
15. {li | li:LI,(li′,li′′):LI×LI •

15. (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}

Then links.

16 Links have lengths.

17 Links have geodetic and cadestral location.

18 Links have states and state spaces:

a States modeled here as pairs, (hi′, hi′′), of identifiers the hubs with which the links are
connected and indicating directions (from hub h′ to hub h′′.) A link state can thus
have 0, 1, 2, 3 or 4 such pairs.

b State spaces are the set of all the link states that a link may enjoy.

type
16. LEN
17. LGCL
18a. LΣ = (HI×HI)-set
18b. LΩ = LΣ-set
value
16. attr LEN: L → LEN

17. attr LGCL: L → LGCL
18a. attr LΣ: L → LΣ
18b. attr LΩ: L → LΩ
axiom
18. ∀ n:N •

18. let ls = xtr−links(n), hs = xtr hubs(n) in
18. ∀ l:L•l ∈ ls ⇒

7A hub state “signals” which input-to-output link connections are open for traffic.
8A hub state space indicates which hub states a hub may attain over time.
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18a. let lσ = attr LΣ(l) in
18a. 0≤card lσ≤4
18a. ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ ⇒

18a. {get H(hi′)(n),get H(hi′′)(n)}=mereo L(l)
18b. ∧ attr LΣ(l) ∈ attr LΩ(l)
18. end end

Then vehicles.

19 Every vehicle of a traffic system has a position which is either ‘on a link’ or ‘at a hub’.

a An ‘on a link’ position has four elements: a unique link identifier which must designate
a link of that traffic system and a pair of unique hub identifiers which must be those of
the mereology of that link.

b The ‘on a link’ position real is the fraction, thus properly between 0 (zero) and 1 (one)
of the length from the first identified hub “down the link” to the second identifier hub.

c An ‘at a hub’ position has three elements: a unique hub identifier and a pair of unique
link identifiers — which must be in the hub state.

type
19. VPos = onL | atH
19a. onL :: LI HI HI R
19b. R = Real axiom ∀ r:R • 0≤r≤1
19c. atH :: HI LI LI
value
19. attr VPos: V∆ → VPos
axiom
19a. ∀ n∆:N∆, onL(li,fhi,thi,r):VPos •

19a. ∃ l∆:L∆•l∆∈obs part LS(obs part N∆(n∆))
19a. ⇒ li=uid L∆(l)∧{fhi,thi}=mereo L∆(l∆),
19c. ∀ n∆:N∆, atH(hi,fli,tli):VPos •

19c. ∃ h∆:H∆•h∆∈obs part HS∆(obs part N(n∆))
19c. ⇒ hi=uid H∆(h∆)∧(fli,tli) ∈ attr LΣ(h∆)

And finally monitors. We consider only one monitor attribute.

20 The monitor has a vehicle traffic attribute.

a For every vehicle of the road transport system the vehicle traffic attribute records a
possibly empty list of time marked vehicle positions.

b These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier,
the same pair of ‘’to’ and ‘from’ hub identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and
hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and
link mereologies.

type
20. Traffic = VI →m (T × VPos)∗

value
20. attr Traffic: M → Traffic
axiom
20b. ∀ δ:∆ •

20b. let m = obs part M∆(δ) in
20b. let tf = attr Traffic(m) in
20b. dom tf ⊆ xtr vis(δ) ∧
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20b. ∀ vi:VI • vi ∈ dom tf •

20b. let tr = tf(vi) in
20b. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

20b. let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in
20b. t<t′

20(b)i. ∧ case (vp,vp′) of
20(b)i. (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
20(b)i. → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′

20(b)i. ∧ li ∈ xtr lis(δ)
20(b)i. ∧ {fhi,thi} = mereo L(get link(li)(δ)),
20(b)ii. (atH(hi,fli,tli),atH(hi′,fli′,tli′))
20(b)ii. → hi=hi′∧fli=fli′∧tli=tli′

20(b)ii. ∧ hi ∈ xtr his(δ)
20(b)ii. ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ)),
20(b)iii. (onL(li,fhi,thi,1),atH(hi,fli,tli))
20(b)iii. → li=fli∧thi=hi
20(b)iii. ∧ {li,tli} ⊆ xtr lis(δ)
20(b)iii. ∧ {fhi,thi}=mereo L(get link(li)(δ))
20(b)iii. ∧ hi ∈ xtr his(δ)
20(b)iii. ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ)),
20(b)iv. (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
20(b)iv. → etcetera,
20b. → false
20b. end end end end end

3.2.6 Another Example: Pipelines
Parts

21 A pipeline consists of an indefinite number of pipeline units.

22 A pipeline units is either a well, or a pipe, or a pump, or a valve, or a fork, or a join, or a sink.

23 All these unit sorts are atomic and disjoint.

type
21. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
21. Well, Pipe, Pump, Valv, Fork, Join, Sink
value
21. obs part Us: PL → U-set
type
22. U == We | Pi | Pu | Va | Fo | Jo | Si
23. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink

Unique Identifiers

24 Every pipeline unit has a unique identifier.

type
24. UI
value
24. uid U: U → UI

Materials

25 Applying obs material sorts U to any pipeline unit, u:U, yields

a a type clause stating the material sort LoG for some further undefined liquid or gaseous mate-
rial, and
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b a material observer function signature.

type
25a LoG

value
25b obs mat LoG: U → LoG

Mereology Pipeline units serve to conduct fluid or gaseous material. The flow of these occur in only
one direction: from so-called input to so-called output.

26 Wells have exactly one connection to an output unit.

27 Pipes, pumps and valves have exactly one connection from an input unit and one connection to an
output unit.

28 Forks have exactly one connection from an input unit and exactly two connections to distinct output
units.

29 Joins have exactly one two connection from distinct input units and one connection to an output
unit.

30 Sinks have exactly one connection from an input unit.

31 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit
identifiers.

type
31. UM′=(UI-set×UI-set)
31. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value
31. mereo U: UM
axiom [ Well−formedness of Pipeline Systems, PLS (0) ]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=mereo U(u) in
case (card iuis,card ouis) of

26. (0,1) → is We(u),
27. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
28. (1,2) → is Fo(u),
29. (2,1) → is Jo(u),
30. (1,0) → is Si(u)

end end

Attributes Let us postulate a[n attribute] sort Flow. We now wish to examine the flow of liquid (or
gaseous) material in pipeline units. We use two types

32 F for “productive” flow, and L for wasteful leak.

Flow and leak is measured, for example, in terms of volume of material per second. We then postulate
the following unit attributes “measured” at the point of in- or out-flow or in the interior of a unit.

33 current flow of material into a unit input con-
nector,

34 maximum flow of material into a unit input
connector while maintaining laminar flow,

35 current flow of material out of a unit output
connector,

36 maximum flow of material out of a unit out-
put connector while maintaining laminar flow,

37 current leak of material at a unit input con-
nector,

38 maximum guaranteed leak of material at a
unit input connector,

39 current leak of material at a unit input con-
nector,

40 maximum guaranteed leak of material at a
unit input connector,

41 current leak of material from “within” a unit,
and

42 maximum guaranteed leak of material from
“within” a unit.
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type
32. F, L
value
33. attr cur iF: U → UI → F
34. attr max iF: U → UI → F
35. attr cur oF: U → UI → F
36. attr max oF: U → UI → F

37. attr cur iL: U → UI → L
38. attr max iL: U → UI → L
39. attr cur oL: U → UI → L
40. attr max oL: U → UI → L
41. attr cur L: U → L
42. attr max L: U → L

The maximum flow attributes are static attributes and are typically provided by the manufacturer as
indicators of flows below which laminar flow can be expected. The current flow attributes are dynamic
attributes

Intra Unit Flow and Leak Law

43 For every unit of a pipeline system, except the well and the sink units, the following law apply.

44 The flows into a unit equal

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.

axiom [ Well−formedness of Pipeline Systems, PLS (1) ]
43. ∀ pls:PLS,b:B\We\Si,u:U •

43. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
43. let (iuis,ouis) = mereo U(u) in
44. sum cur iF(iuis)(u) =
44a. sum cur iL(iuis)(u)
44b. ⊕ attr cur L(u)
44c. ⊕ sum cur oF(ouis)(u)
44d. ⊕ sum cur oL(ouis)(u)
43. end

45 The sum cur iF (cf. Item 44) sums current input flows over all input connectors.

46 The sum cur iL (cf. Item 44a) sums current input leaks over all input connectors.

47 The sum cur oF (cf. Item 44c) sums current output flows over all output connectors.

48 The sum cur oL (cf. Item 44d) sums current output leaks over all output connectors.

45. sum cur iF: UI-set → U → F
45. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
46. sum cur iL: UI-set → U → L
46. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
47. sum cur oF: UI-set → U → F
47. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
48. sum cur oL: UI-set → U → L
48. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks

Inter Unit Flow and Leak Law

49 For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output connector

b equals the flow into that other unit at the connector from the given unit plus the leak at that
connector.
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axiom [ Well−formedness of Pipeline Systems, PLS (2) ]
49. ∀ pls:PLS,b,b′:B,u,u′:U•

49. {b,b′}⊆obs part Bs(pls)∧b 6=b′∧u′=obs part U(b′)
49. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
49. ui=uid U(u),ui′=uid U(u′) in
49. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
49a. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
49b. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
49. end
49. comment: b′ precedes b

From the above two laws one can prove the theorem: what is pumped from the wells equals what is
leaked from the systems plus what is output to the sinks.

3.2.7 Domain Descriptions: Methodology

By a method we shall understand a set of principles for selecting and applying techniques and tools for
constructing artifacts By methodology we shall understand the study and knowledge of methods.

The tools of the domain description method centers around two kinda of prompts. By a prompt we
shall understand something that induces an action, an occasion or incitement to inspire, or an assist
suggesting something to be expressed. There are two kinds of prompts: analysis prompts and description
prompts. The analysis prompts to be summarised below can be thought of as predicates that the domain
engineer applies to phenomena of the domain yielding true, false or undefined answers. The description
prompts to be summarised below are applied, by the domain engineer, to phenomena of the domain for
which preceding analysis prompts has yielded truth answers. Thus the domain analysis & description process
alternates between analysis prompts and description prompts. The domain description method is here spe-
cialised to manifest domains [11]. First the domain engineer cum scientist examines a perceived domain
phenomena, φ: is entity(φ), and if true, then inquires which of is endurant(φ) or is perdurant(φ)
holds. If is endurant(φ) holds then the domain analyser inquires as to whether is discrete(φ) or
is continuous(φ) holds. If is discrete(φ) holds then is part(φ) holds, otherwise either of is material

or is component holds. If is part(φ) then either is atomic(φ) or is composite(φ). If is composite(φ)
holds then observe parts(φ) yields some parts that can now be analysed, eventually leading the domain
analyser to conclude that the part φ can be described. By applying observe part sorts(φ) to a compos-
ite domain δ we then obtain its constituent parts — as exemplified in formula lines 1.–1c. and similarly
formula lines 2a.–2b. Some composite parts may be modelled by concrete types: has concrete type(φ)
in which case observe part types(φ) will yield those concrete types as exemplified in formula lines 3.–5 ,
and in formula lines 21 . Once the atomic and composite parts of a domain has been settled their proper-
ties: unique identifiers, mereology and attributes can be analysed and described. First their uniqueness:
observe unique identifiers, such as f.ex. illustrated by formula lines 7a.–7b. Once all parts have been
identified one can inquire as to their mereology: how parts relate to other parts: if has mereology(φ)
holds then observe mereology(φ) yields which specific other parts, of same or other sorts, such as for
example in formula lines 9.–10 or formula lines 31. Finally a last set of properties of parts can be inves-
tigated, namely their attributes. Any part, φ, may have any number of attributes. The analysis prompt
attribute names(φ) yields names of attributes. — with the description prompt observe attributes(φ)
yielding their description — as in formula lines 12a.–12b. or in formula lines 16.–18b.

There are other aspects to the methodology analysing and describing endurants: gaseous or liquid
materials being contained in parts, and perdurants actions, events and behaviours. We shall not cover
these here, but refer to [10, Manifest Domains: Analysis & Description] and [11, From Domain Descriptions
to Requirements Prescriptions].

3.2.8 Domain Science

There are a number of issues that need be researched.

A Prompt Semantics: The analysis and description prompts need be precisely, that is, mathematically
defined. Such a semantics is a first step towards securing a foundation for our approach. We refer to [8].

Laws of Domain Descriptions: A semantics of the analysis and description prompts and thus their
applications is expected to satisfy the following law: Analysing (A) and/or describing (D) two otherwise
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unrelated composite parts, pi and pj , shall yield the same results whether pi is treated before pj or vice-
versa: A(pi);A(pj) and A(pj);A(pi), respectively D(pi);D(pj) and D(pj);D(pi). There are many others
such laws.

Laws of Domains: Given an appropriate domain description it should be possible to prove certain
laws about that domain. An example: Assume a railway system with trains operating according to a
timetable that prescribes train departures from and arrivals at any station according to a 24 hour cycle,
and assume that all trains function precisely. Now we would expect the following law to hold over any 24
hour period: The of trains arriving at a station, minus the number of trains ending their journey at that
station, plus number of trains starting their journey at that station, equals the number of trains leaving
that station •

• • •

Physics is characterised by its laws. So should man-assisted domains. A proper theory of domain descrip-
tion should invite domain laws to be identified and proved. There is a rich world “out there”.

3.2.9 What Can Be Described ?

Even if we limit ourselves to physically manifest domains [11], that is, entities that we can observe, i.e.,
see, in cases even touch, there are such which we do not yet know how to describe objectively, that is,
mathematically. Moreover, we cannot give a precise delineation of which domains, or aspects of domains,
are describable.

An example: We have described aspects of a pipeline system, Sect. 3.2.6. We have even postulated
(implementable) functions for observing the flow and leaks of the material (oil, gas, or other) conducted
by pipeline units. We also know, but do not show, how to formalise the fluid dynamics of these flows,
namely in terms of partial differential equations (PDEs) based on Bernoulli and Navier–Stokes models
through individual pipeline units. But we have yet to show how to combine our “discrete mathematics”
models with hose of fluid dynamics. One problem here is that our discrete mathematics descriptions model
an infinite variety of pipelines, that is, arbitrary compositions of pipeline units, whereas, conventionally,
PDEs, model the dynamics only of specific, single units. It has been suggested9 that perhaps the Wiener–
Feynman–Dirac–Wheeler concept of Path Integrals.10 may be a way to solve the problem •

Our domain models are just abstractions ! One cannot expect any domain description to “completely”
model a domain. There are simply too many properties to describe. And there are domain properties
that we can informally describe in words, but cannot yet formalise. Domain description is (therefore) a
matter of choice, of abstraction level and of what to include in the description and what to leave out !

3.3 Requirements Engineering

We would not advocate the TripTych to software development unless we had a method for “deriving”
requirements from domain descriptions. And from formal requirements prescriptions we know how to
design software such that D, S |= R, that is: the Software can be proved correct — in the context of the
Domain — with respect to the Requirements.

3.3.1 Three Kinds of Requirements

Our approach to the “derivation” of requirements is based on the following decomposition of requirements
into three kinds: domain requirements, interface requirements and machine requirements where the machine
is the hardware and software to be developed

3.3.2 Domain Requirements

By domain requirements we shall understand such requirements that can be expressed sôlely using terms
of the domain that is, terms defined in the domain description.

9Jakob Bohr, Technical University of Denmark
10The path integral formulation of quantum mechanics is a description of quantum theory which generalizes

the action principle of classical mechanics. It replaces the classical notion of a single, unique trajectory for a
system with a sum, or functional integral, over an infinity of possible trajectories to compute a quantum amplitude
wikipedia.org/wiki/Path integral formulation.
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The “derivation”11 of domain requirements prescriptions from domain descriptions is governed by a
set of “derivation” operations. Examples of these ‘derivation’ operations are: projection, instantiation,
determination, extension and fitting.

Projection means that we remove from the evolving requirements prescription those entity descriptions
of the domain which are not to be considered when (further) prescribing the requirements. An example:
From the example of the road net and traffic system we remove the vehicles and the monitor •

Instantiation means that we concretise, i.e., prescribe “less-abstract”, those retained domain phenomena
whose concretisation it is suitable to prescribe. An example: The general road net is instantiated to
a “linear” toll-road system of a sequence of toll-road hubs connected, “up” and “down” the toll-road to
neighbouring toll-road hubs, and, by means of toll-road plazas, to a remaining road net • What do we mean
by: “it is suitable to prescribe” ? Well, first of all, we have to realize the following: requirements must
only prescribe what can be computed. That means that entities whose realisability in terms of computable
data structure or functions must eventually be so prescribed. Secondly, as requirements prescription may,
and normally will proceed in stages, one (i.e., the requirements engineer) may decide to instantiate some
entities while leaving other entities “untouched”, only to return to the concretisation of these n a later
stage. And so forth. It is all a matter of style and taste !

Determination means that there may be entities, i.e., endurants or perdurants, that are described to
be non-deterministic in the domain but which, after projection and instantiation need be prescribed to
be “less non-deterministic”. An example: Whereas hubs in general allow traffic from any link incident
upon that hub to any links emanating from that hub but so that signaling, as expressed in the hub states,
may, at times, prevent some emanating links to be accessible from some incident links; a toll-road hub,
in order to be an appropriate toll-road, must allow for free flow from any incident link to any emanating
link •

Extension typically means that there may be entities that were “hitherto” not computationally feasible,
but where new technologies or higher labour costs mandate their feasibility — thus making way for
introducing these mew technologies into a this ‘extended’ domain. An example is that of the electronic
sensing of vehicles entering or leaving a toll-road — thus enabling “road pricing” •

Fitting is necessitated when two or more requirements projects based on “the same” domain, and
with “overlapping domain coverage” need be “harmonised”. An example: One set of requirements are
being prescribed for a road state-of-repair and maintenance facility, another set of requirements are being
prescribed for a road pricing system. Now they must both rely on some sort of representation of the same
road net •

3.3.3 Interface Requirements

By interface requirements we shall understand such requirements that can be expressed only using terms
both of the domain and of the machine.

In order to structure the interface requirements we introduce a notion of shared phenomena whether
endurants or perdurants. If a phenomenon is present in the domain and if it is also to be present in the
machine to be designed then that phenomenon is said to be shared. As a result we structure interface
requirements prescriptions around shared endurants, shared actions, shared events and shared behaviours.

Shared endurants pose two “problems” the initialisation of endurant data structures and their values,
and the regular access to and update of endurant data. Both must be prescribed. Usually both require
the interaction between the domain and the machine. An example: Road nets are shared between
the domain and the machine. Initially all hubs and all links need be structured in some data structure,
say a database. The shared endurant requirements must now specify which, usually composite database
operations are to be used in establishing the database, and which are to be used in accessing and updating
the endurants.

Shared actions imply an interaction between between the domain and the machine. That interaction
is typically manifested by interaction between either humans of the domain or physical domain entities
and the machine Example: Human/Machine Interaction: The payment of a road price fee today
involves a human (say, with a credit card) and the machine, checking and accepting or rejecting the
credit card, etcetera • Example: Machine/Machine Interaction: The electronic recording (within
the machine) of a vehicle passing a toll-gate barrier (another part of the machine) and the vehicle itself
(another machine, external to required machine) •

And so on, for shared events and shared behaviours.

11We put ‘derivation’ in double quotes because we do not mean ‘automatic’ derivation.
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3.3.4 Machine Requirements

By machine requirements we shall understand such requirements that can be expressed sôlely using terms
of the machine. Since that is the case: no “mention” of the domain in the machine requirements we shall
omit covering this field.

3.4 Discussion

We have suggested that there are a set of principles and techniques for “deriving” a major set of require-
ments from domain descriptions. This, then, is an argument for taking domain modelling serious: there
are principles and techniques for bringing you from domain descriptions to requirements prescriptions and
from there on to software design. We refer to [10, 2015] for details.

4 Are We Studying the Right Things ?

We claim to have justified our claim that Software must be designed on the basis of Requirements pre-
scriptions that have been “derived” from Domain descriptions, all of them formally. In this way we can
secure that software fulfill users’/customers’ expectations since the requirements are strongly related to
the domain and is correct: D, S |= R.

It is the only way in which we can see these two, expectations and correctness, fulfilled.

4.1 Papers on Domain Science & Engineering

I mention but a few of my earlier papers related to domain science & engineering. In chronological
order. For a comprehensive introduction to Domain Science & Engineering and to a novel approach to
Requirements Engineering I refer to [11, 10] respectively.

[5, Domain Engineering, 2008 ] treats and aspect of domain modelling referred to as domain facets. We
expect to revise [5].

[6, Domains: Their Simulation, Monitoring and Control, 2011 ]. The concepts of simulation, monitoring
and simulation are analysed in the light of the domain–requirements–design TripTych.

[7, A Rôle for Mereology in Domain Science and Engineering, 2009 ]. Stanis law Leśhniewski’s replacement
of Bertrand Russells set theory axiomatisation is reviewed amd it is shown how part/sub-part relations
can interpreted as a reation between (Hoare) CSP-processes.

[9, Domain Engineering – A Basis for Safety Critical Software. 2014 ]. Issues of system safety criticality that
can be considered already before requirements engineering are here seen in the light of domain engineering.

[11, Manifest Domains: Analysis & Description, 2014 ] is the definitive paper on domain analysis and
description.

[10, From Domains to Requirements — A Different View of Requirements Engineering, 2015 ] is the
definitive paper on “derivation” of requirements prescriptions from domain descriptions. It is a complete
rewrite of [4, From Domains to Requirements] and represents a complete rethinking of that paper.

4.2 A Research and Experimental Engineering Programme

In the papers on which the current paper is based a number of open problems have been identified.

4.2.1 The Mathematics of Analysis & Description Prompts

In [11, Domain Analysis: Endurants – An Analysis & Description Process Model ] we present a formal semantics
of the analysis and description process. In [10, From Domain Descriptions to Requirements Prescriptions —
a Different Approach to Requirements Engineering ] we present a ... The study of this area is elusive.

4.2.2 Analysis & Description Calculi for Other Domains

The analysis and description calculus of this paper appears suitable for manifest domains. For other
domains other calculi appears necessary. There is the introvert, composite domain of systems software:
operating systems, compilers, database management systems, Internet-related software, etcetera. The
classical computer science and software engineering disciplines related to these components of systems
software appears to have provided the necessary analysis and description “calculi.” There is the domain
of financial systems software accounting & bookkeeping, banking systems, insurance, financial instruments
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handling (stocks, etc.), etcetera. Etcetera. For each domain characterisable by a distinct set of analysis &
description calculus prompts such calculi must be identified. It seems straightforward: to base a method
for analysing & describing a category of domains on the idea of prompts like those developed in this paper.

4.2.3 On Domain Description Languages

We have in this paper expressed the domain descriptions in the RAISE [27] specification language RSL

[26]. With what is thought of as basically inessential, editorial changes, one can reformulate these domain
description texts in either of Alloy [30] or The B-Method [1] or VDM [17, 18, 23] or Z [36]. One could also
express domain descriptions algebraically, for example in CafeOBJ [25, 22, 24, 20]. The analysis and the
description prompts remain the same. The description prompts now lead to CafeOBJ texts.

We did not go into much detail with respect to perdurants, let alone behaviours. For all the very
many domain descriptions, covered elsewhere, RSL (with its CSP sub-language) suffices. But there are
cases where we have conjoined our RSL domain descriptions with descriptions in Petri Nets [34] or MSC

[29] (Message Sequence Charts) or StateCharts [28]. Since this paper only focused on endurants there
was no need, it appears, to get involved in temporal issues. When that becomes necessary, in a study
or description of perdurants, then we either deploy DC: The Duration Calculus [37] or TLA+: Temporal

Logic of Actions [32].

4.2.4 Commensurate Discrete and Continuous Models

The pipeline example hinted at co-extensive descriptions of discrete and continuous behaviours, the former
in, for example, RSL, the latter in, typically, the calculus mathematics of partial different equations (PDEs).
The problem that arises in this situation is the following: there will be, say variable identifiers, e.g., x,
y, . . . , z which in the RSL formalisation has one set of meanings, but which in the PDE “formalisation”
has another set of meanings. Current formal specification languages12 do not cope with continuity. Some
research is going on. But to substantially cover, for example, the proper description of laminar and
turbulent flows in networks (e.g., pipelines) requires more substantial results.

4.2.5 Interplay between Parts and Materials

The pipeline example revealed but a small fraction of the problems that may arise in connection with
modeling the interplay between parts and materials. Subject to proper formal specification language and,
for example PDE specification we may expect more interesting laws, as for example those of pipeline flows
and even proof of these as if they were theorems. Formal specifications have focused on verifying properties
of requirements and software designs. With co-extensive (i.e., commensurate) formal specifications of
both discrete and continuous behaviours we may expect formal specifications to also serve as bases for
predictions.

4.2.6 The Mathematics of Domain-to-Requirements Operators

In [10, From Domain Specifications to Requirements Prescriptions – A Different View of Requirements Engineer-
ing ]13 we postulate that certain properties hold between domain requirements prescriptions “before”and
“after” the application of the domain-to-requirements operations: projection, instantiation, determination,
extension and fitting. These postulated properties need be studied further.

4.2.7 Further Work on Domain-to-Requirements and Interface Techniques

In [10, From Domain Specifications to Requirements Prescriptions – A Different View of Requirements En-
gineering ] we have shown a number of techniques for domain-to-requirements operations, in particular
those that yield domain requirements. In [10] we also show some techniques that pertain to interface
requirements, but it seems more study is required.

12Alloy [30], Event B [1], RSL [26], VDM-SL [17, 18, 23], Z, etc.
13[10] is a complete rewrite/rethinking of [4].
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4.3 Tony Hoare’s Summary on ‘Domain Modeling’

In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps conceived as stubborn insistence, on
domain engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote14:

“There are many unique contributions that can be made by domain modeling.

1 The models describe all aspects of the real world that are relevant for any good software design in the
area. They describe possible places to define the system boundary for any particular project.

2 They make explicit the preconditions about the real world that have to be made in any embedded software
design, especially one that is going to be formally proved.

3 They describe the whole range of possible designs for the software, and the whole range of technologies
available for its realisation.

4 They provide a framework for a full analysis of requirements, which is wholly independent of the tech-
nology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in any design project, and
identify those that are independent and those that conflict. Late discovery of feature interactions can
be avoided.”

4.4 Are We Studying the Right Things ?

By computer science we understand the study and knowledge about the phenomena that can “exist inside”
computers. By computing science we understand the study and knowledge about how to construct those
phenomena.

If we accept the TripTych dogma of basing software design on precise requirements prescriptions which
are based on precise domain descriptions, then training, teaching and research in computer and computing
science must be revised.
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Abstract
Making effective use of the GPU parallel power requires relatively
complex and tedious work: Understandably, most programmers
spare the efforts. The Alea reactive dataflow programming model
now aims to substantially lower this threshold by simplifying GPU
parallelization quite radically. Programs are described as data that
is asynchronously propagated through a graph of operations, each
typically predestined for vector parallelization. Programmers do no
longer need to write GPU-specific code but instead leave the GPU-
parallelization to the runtime system. Due to the declarative and
reactive paradigm, operations can be easily scheduled as parallel
streams on a GPU with minimum memory copying overheads.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages

Keywords GPU; parallelization; reactive; dataflow

1. Introduction
For many programmers, the threshold for engaging GPU paral-
lelization is too high. In order to make adequate use of the many
cores of a GPU, several obstacles need to be taken: (1) Algorithms
need to be tailored for vector parallelization since the cores are
de facto per-element views of vector-parallel instructions. (2) The
parallel implementation is based on a rather low-level machine-
centric programming models such as CUDA [1], OpenCL [2], or
other alternatives [3, 4]. (3) Integrating the typical C technology
stack into a managed environment, such as .NET, necessitates extra
workarounds. Therefore, GPU parallelization is unfortunately often
perceived as too difficult, too costly and offering only a marginal
benefit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Several cross-platform frameworks support GPU parallel pro-
gramming in managed runtimes, such as in Java [6, 7] or .NET
[5, 8, 9]. The programming abstractions, however, essentially re-
main at the same low level of CUDA or OpenCL. More elegant in-
tegrations have been proposed but they usually lack generality, e.g.
a LINQ-integration [10, 11] only supports a limited set of query
operations. Dataflow programming models for GPU are more gen-
eral: Xcelerit [12], PTask [13], and FastFlow [14] follow this ap-
proach but have the drawback that programmers typically have to
implement custom nodes since the model has no or only fixed pre-
defined operations. This is where more low-level and tedious pro-
gramming is again involved. We also believe that substantial bene-
fits can be gained if dataflow would become more reactive, i.e. fully
asynchronous and ready to process sequences of inputs. For a more
detailed analysis, see the discussion of related work in Section 4.

Our goal is to radically simplify GPU parallelization while still
retaining expressiveness and efficiency. For this reason, we have
developed Alea reactive dataflow, a programming model based on
.NET. A computation is described as data propagated through a
directed graph of operations. The propagation is asynchronous,
reactive and push-based, while operations are typically vector-
parallelizable and generic. Programmers can easily define com-
putations without writing GPU code.

The runtime system takes care of the efficient parallelization
on GPUs, by streaming operations, configuring launches and mini-
mizing copying between CPU and GPU memory. The runtime sys-
tem as well as the implementation of operations guarantee mem-
ory safety. Although we currently focus on GPUs, the model could
be equally applied to general heterogeneous distributed paralleliza-
tion.

The remainder of this paper is structured as follows. Section 2
introduces the programming model. Section 3 briefly outlines the
current runtime system. Section 4 discusses related works. Section
5 finally draws a conclusion.

2. Programming Model
Alea reactive dataflow programs are defined by connecting opera-
tions to form a directed graph. Computations are triggered by feed-
ing input to operations. This implies a chain of reactions: Opera-
tions execute asynchronously whenever sufficient input is present
and thereby produce output passed to subsequent operations. To
obtain results, output can be observed from any operation. In the
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Map 

Input: T[] 

Output: U[]

Multiplication 

Left: T[,] Right: T[,] 

Output: T[,] 

Splitter 

Input: Tuple<T, U>

First:  T Second: U

Figure 1. Three operations with input and output ports.

following subsections, we explain the elementary concepts of the
programming model, accompanied by two exemplary application
cases.

2.1 Operations
An operation represents a self-contained unit of calculation that
has a set of input ports and a set of output ports. A port denotes
a stream of data of a defined type. The stream can be infinite with
data arriving in arbitrary intervals. When data is present at a defined
set or subset of the input ports, the operation consumes this data as
input, performs a calculation to produce data as output for a set
or subset output ports. Input is processed in the order as it arrives,
triggering output in the corresponding order, i.e. later input cannot
result in earlier output. However, data can arrive at each port at
different time intervals; they are not mutually synchronized.

Figure 1 depicts operations, with input ports at the top border
and output ports at the bottom border. Each port is specified with
a name and the type of the data. An operation is an instance
of a particular class, implementing the operation. The operation
determines which input ports are required to trigger a calculation,
e.g. Multiplication requires data at both input ports to trigger.
Analogously, the operation also defines to which output ports data
is passed, e.g. Splitter yields data at both output ports for each
input.

Operations can feature multiple implementations for different
processor architectures, such as GPUs or CPUs, see Section 3. To
be suited for GPUs, operations typically implement a massively
vector-parallel (SIMD) calculation per input, e.g. Map transforms
an array of elements. Many operations are generic, i.e. only pro-
vide partial implementation skeleton to be completed by a dele-
gate/lambda at construction time, e.g. the element-wise map func-
tion delegate of the Map operation. This enables relatively high ex-
pressiveness despite a fixed set of prefabricated operation classes.
Internally, operations can be stateless or stateful, i.e. work with or
without a state that is stored between executions.

2.2 Graphs
Operations can be interconnected to form a graph. The output port
of a preceding operation can be connected to one or multiple input
ports of a succeeding operation, provided that the ports have the
same type. Whenever data is passed to an output port, the data
becomes available at all connected input ports. Multiple output
ports may be also connect to the same input port, if the types match,
using an arbitrary order to merge the data of multiple output ports
into a common input port.

Figure 2 outlines a graph for a Monte Carlo Pi approximation.
Figure 3 shows a graph for the iterative computation of the steady
state in a Markov chain, based on the iterative formula bi+1 = Abi

until bi+1 = bi. Splitter and Merger are used to synchronize
A and b input, in the case of concurrent processing of multiple
Markov chain inputs.

Passing is asynchronous, i.e. an operation can produce data to
an output port, without awaiting the consumption of the data by any
other connected operations. Operations adhere to the principle that
passed data is immutable. Data can thus be passed by copying or by
referencing. If an arbitrary merge order is inappropriate, dedicated
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var random = new Random<float>(); 
var pairing = new Pairing<float>(); 
var map = new Map(p =>  

   p.X * p.X + p.Y * p.Y <= 1  

   ? 1 : 0); 
var average = new Average<int>(); 
 
random.Output.ConnectTo(pairing.Input); 
pairing.Output.ConnectTo(map.Input); 
map.Output.ConnectTo(average.Input); 

 

average.Output.OnReceive(x =>  

           Console.WriteLine(x * 4)); 

 

random.Input.Send(1000); 

random.Input.Send(1000000); 

Figure 2. Monte Carlo Pi approximation dataflow graph.

 

var source = new Splitter 

                     <Matrix, Vector>(); 

var mult = new Multiplication 

                     <Matrix, Vector>(); 

var cmp = new Predicate<Vector> 

        ((a, b) => Abs(a - b) > 1E-6); 

var next = new Merger<Matrix, Vector>(); 

var cond = new Condition<Vector>(); 

 

source.First.ConnectTo(mult.First); 

source.Second.ConnectTo(mult.Second); 

source.First.ConnectTo(next.First); 

mult.Output.ConnectTo(next.Second); 

mult.Output.ConnectTo(cmp.First); 

source.Second.ConnectTo(cmp.Second); 

next.Output.ConnectTo(cond.PassThrough); 

cmp.Output.ConnectTo(cond.Criterion); 

cond.True.ConnectTo(source.Input); 

 

cond.False.OnReceive(Console.WriteLine); 

source.Send(new Tuple(A, b0)); 

Splitter 

Multiplication 

Merger Predicate 

(A, bi) 

(A, bi+1) 

A 
bi 

bi+1 

bi+1 

Condition 

Figure 3. Markov chain steady state as dataflow graph.

operations may be used to join multiple data streams. Graphs can
have cyclic connections, such as for iterative or continuous compu-
tations (e.g. Figure 3). Ports can also have no connections: they may
be unused or serve for external sending or reception, as explained
in the next subsection.

2.3 Dataflow
A dataflow is the propagation of data through the graph. Data
can be sent to any input port. Sending is asynchronous, i.e. does
not block. Multiple data can also be sent at the same time to
the same input port, in which case no order is postulated for the
data. Conversely, data can also be received from any output port
by registering delegates that are asynchronously invoked whenever
output data is produced at that port. Figure 2 and 3 also demonstrate
how data is sent to input ports and received from output ports
(highlighted in red font).

The reception delegates are executed by arbitrary threads, i.e.
multiple output data can be processed concurrently. If multiple del-
egates are registered for an output port, all are invoked in arbitrary
order or possibly concurrently. Data streams require no explicit ter-
mination but represent a conceptually infinite sequence of data.

2.4 Short Notation
A shortcut fluent-style notation can be used for the graph and
dataflow definition, see Figure 4. The selection of input and output
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var random = new Random<float>(); 

random 

  .Pairing() 

  .Map(p => p.X * p.X + p.Y * p.Y <= 1 ? 1 : 0) 

  .Average() 

  .OnReceive(a => Console.WriteLine(a * 4)); 

random.Send(1000); 

random.Send(1000000); 

Figure 4. Short notation for the Monte Carlo Pi example.

port is thereby implicit if the operation has a single input or output
port, respectively.

3. Runtime System
The dataflow runtime support is realized by two components: a
scheduler and the internal implementations of operations.

Operations implement a function for determining when suffi-
cient input is available to trigger the calculation. Moreover, an op-
eration provides one or multiple mappings to defined processor
architectures, such as CPU and GPU. The GPU mapping resem-
bles the standard CUDA model [1], however type-safely integrated
into .NET. As for generic operations, the concrete delegate .NET
IL code is gathered and translated to CUDA code at runtime or at
compile-time, and eventually fused into the operation’s CUDA ker-
nel. The GPU mapping of an operation additionally defines a script
of specific malloc/launch commands as an execution plan to hap-
pen in the future. At the planning time, the script has only restricted
information about the data to be processed, i.e. only knows scalar
values and the sizes of input blocks to make decisions for optimal
kernel launch configurations. The CPU mapping can be directly ex-
ecuted by the .NET TPL [15]. In contrast to GPU mappings, a CPU
implementation can be stateful, i.e. carry state over calculation by
defining their own CPU-side synchronization on that state.

Programmers can implement custom operations, by providing
the mapping for CPU and/or CUDA. This certainly requires more
expert knowledge in GPU parallelization. However, we aim to pro-
vide a good base functionality supplying a well-selected set of
generic operations, such that users usually do not need to imple-
ment custom operations.

The scheduling is currently realized for hybrid CPU and single
GPU execution. For an input, the scheduler collects the largest
non-cyclic sub-graph of GPU-implemented operations to start these
operation in one stream. Memory copying is only necessary and
performed for transitions between CPU and GPU operations or
when the host program sends data to or receives data from GPU
operations. As transmitted data must be immutable, it can be shared
or copied. Deallocation of GPU memory is automatically managed
by the scheduler and not within the operation implementations. The
scheduler disposes GPU memory blocks when no longer used by a
running operation or contained in a data stream.

The dataflow system uses Alea cuBase [8] as the underlying en-
gine for the CUDA runtime and compilation support within .NET.

4. Related Work
Our model is strongly inspired by Rx.NET [16, 17] and TPL
dataflow [18]. These models are however not designed for GPUs,
as the blocks are generally unsuited for vector parallelization. A
further significant difference is that we support multiple input and
output ports. This permits the design of arbitrary well-controlled
mergers or splitters. In the TPL dataflow for example, splitting and
merging can only be controlled to a limited degree, by filtering
messages or using batch/join blocks with specific merge pattern.
We also abandon the concept of explicit termination of a stream.

Several frameworks improve cross-platform GPU paralleliza-
tion, e.g. for Java [6, 7] or .NET [5, 8, 9]. However, the majority
essentially exposes the same low-level programming model. Pro-
grammers are still bothered by technical artefacts, such as writing
SIMD-kernels, copying between CPU and GPU memory, wrapping
code in special classes, dealing with launch configurations, thread
block ids etc. Notable simplification are achieved by more abstract
models, such as translating .NET LINQ expressions to GPU paral-
lel code [10, 11]. However, the expressiveness of this approach is
inherently limited by the fixed set of LINQ query functions, basi-
cally being projection, mapping, filtering, ordering, and grouping.

Dataflow models allow the composition of parallel operations
by minimizing memory transfers. Xcelerit [12], PTask [13], and
FastFlow [14] are all based on this paradigm, to enable heteroge-
neous parallel computing in particular also for GPUs. These system
still do not go as far as desired: A created graph essentially serves
a single computation and/or synchronous invocation from the host
side limits concurrency. In combination with a reactive concept,
their practicability could be raised, i.e. by allowing the same graph
to asynchronously process a conceptually infinite sequence of in-
puts, sent in arbitrary intervals. In contrast to the aforementioned
systems, we also support generic operations, i.e. operations that im-
plement a partial algorithm skeleton and are completed by a user-
specific delegate/lambda/functor upon creation. This naturally re-
quires cross-compilation of host code to the GPU platform.

5. Conclusions
The Alea reactive dataflow programming model enables simple
but powerful GPU parallelization in .NET. Due to the descriptive
paradigm, programmers are liberated from writing explicit low-
level GPU code. This promotes fast and condensed program formu-
lation, while the scheduler enables efficient and memory-safe exe-
cution behind the scenes. The reactive push-based paradigm makes
the model particularly general, i.e. supports cycles, infinite stream
of input delivered in arbitrary intervals. Naturally, the usefulness of
the model stands and falls with the set of operations that is avail-
able. Generic operations provide a substantial step in this direction,
such that programmers usually do not need to implement custom
operations. Our work is still in progress: In the future, we plan to
enhance the scheduler for the support of multiple GPUs and cluster
distribution, as well as for further optimizations. Moreover, we aim
to continuously extend the generic operation catalogue.

Addendum
This research is funded by the Swiss National Commission of
Technology and Innovation (CTI), project number 16130.2. All
trademarks, trade names etc. are the property of their respective
owners.
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In software engineering, one often comes across pairs of functions which look
�something-like-inverse� to each other; reading and writing a �le, sending and
receiving data, parsing and pretty-printing. Modern programming languages pro-
vide almost no support for keeping these function pairs consistent. The concepts
bijection and injection more often than not do not apply and there is no other
concept readily available for what it means for these function pairs to be consis-
tent. We make an attempt to categorize di�erent classes of such function pairs
and investigate their properties whilst providing the basis for a functional pro-
gramming language with some yet unseen advantages.

1 Introduction

It is not rare to come across pairs of functions that look like inverses of each other.
Parsing a grammar and pretty-printing the corresponding tree is one example.
These two functions are usually written independently of each other. A close
inspection often reveals that their source code shares a lot of structure. For
every case distinction in the parser there tends to be a corresponding case in
the pretty-printer. The �rst mathematical concept that comes to mind here are
bijective functions, or injective functions if we allow partiality. Unfortunately,
the parser/pretty-printer pair typically is not a partial injection. Whitespace
and super�uous parentheses are often dropped from the parsed tree. Yet one
can still formulate a consistency requirement: pretty-printing a tree and then
parsing the result should always yield exactly the same tree. Reading a �le while
allowing many old versions of the �le format and writing the �le in the latest
version is another function pair that falls into this category. More examples are
constructor/pattern pairs of algebraic data types, operations together with their
undo-operation in user interfaces, and conversion between di�erent �le formats.
Such a function pair is the type of mathematical object which we begin to study
in this paper.

Keeping both functions consistent with each other by hand can be very error-
prone in a large software project. Thus, it is not surprising that research in the
area of reversible computation and bidirectional transformations has already
investigated several solutions. In [6], simple bidirectional isomorphisms are com-
posed to construct more complex parser/pretty-printer pairs. Logic programming
and De�nite Clause Grammars are used in [4] to de�ne reversible grammars. The
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problem of whitespace is not addressed in these frameworks. The programming
languages INV [5] for writing injective programs and Boomerang [1] for writing
lenses both use a point-free style to compose complex function pairs, which is
unfamiliar to many programmers and not always the best paradigm for a given
problem. The programming language Janus [9] is an applicative, imperative, re-
versible programming language. RFun [10] is an applicative, functional, reversible
programming language. Janus and RFun only deal with injective functions.

In this paper, we sketch a programming language for reversible programs,
that allows a point-free and an applicative style. To make best use of the point-
free style, the programming language also includes syntactical constructions com-
mon in functional languages. Moreover, we require that the semantics of the re-
versible sub-language are such that, when a reversible program is interpreted as
an irreversible one, it has exactly the same behavior. In other words, reversible
programs should be a subset of irreversible ones. Additionally, we will try to �nd
suitable concepts of programs beyond injective functions that are appropriate
for the examples given above.

Note that, we want to specify two functions, as opposed to �nding an arbi-
trary reverse function. A comparison between other techniques and the combi-
nator approach that we employ, can be found in [2]. As this is still much work
in progress, our results must be taken tentatively.

1.1 Notation and Assumptions

We write function composition using �;� in `computer science' order, i.e., f ;g =
λx • g (f x). Function application binds strongest, followed by function composi-
tion. The identity function on A is denoted by idA : A → A with idA x = x
for all x ∈ A. We will drop type subscripts most of the time. When talk-
ing about operators, we use dots to denote the operator itself. For example,
·;· : (A→ B)× (B → C)→ A→ C is the function composition operator.

We use a partial lambda term of the form λx | P (x) • E(x) that de�nes a
function only on those values x where the predicate P (x) is true. The function
is unde�ned on other values, including values on which P is unde�ned. This
notation is inspired by the Z-Notation [8].

We assume all functions to be continuous in the domain theoretic sense.
Thus, we also assume a complete partial order (v) with bottom (⊥) to exist on
all types. Top and Bot denote the type of all values and the type of no values
respectively.

We will use bold font to denote reversible functions and operators on re-
versible functions.

2 Structure of a Reversible Functional Program

As the title of this paper says, we are going to describe an approach for a
programming language that is both functional and reversible. By functional, we
mean that a program is a function. By functional programming we mean that a
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program is constructed by composing functions. By reversible we mean programs
can be run in two directions: the normal direction, that assigns an output value
to an input value, and the reverse direction, that assigns an input value to an
output value.

Remark 1. What we mean by reversible here is di�erent from what is typically
referred to as reversible. A reversible function can be applied in reverse on its
own output to produce some input value, not necessarily the original value. The
reverse of functions that do have such a behavior are typically called inverse. A
better terminology for such functions would be invertible.

We always treat both directions in parallel resulting in the following de�ni-
tion. This is also called the combinator approach [2].

De�nition 1. A pair of functions t = (
−→
t ,
←−
t ) with opposing types, i.e.,

−→
t :

A → B and
←−
t : B → A, is called a janus.

−→
t is called the normal direction

and
←−
t the reverse direction of t. We will sometimes write t =

(−→
t←−
t

)
where it

improves readability. We write A � B as an abbreviation for (A→ B)× (B →
A). The composition, t1;t2 : A� C, of two januses t1 : A� B and t2 : B � C

is de�ned as t1;t2 = (
−→
t1 ;
−→
t2 ,
←−
t2 ;
←−
t1 ). The reverse, t† : B � A, of a janus t : A� B

is de�ned as t† = (
←−
t ,
−→
t ).

Our approach can now be phrased: whereas functional programming consists
of composing functions, generalized reversible functional programming consists
of composing januses.

Remark 2. It is easy to see that janus composition is associative, (t†)† = t and

(t1;t2)† = t†2;t
†
1. Let idA = (idA, idA), then januses form a dagger category �

thus, the choice of symbol for janus reverse. Together with

A⊗B = A×B
t1 ⊗ t2 = (λ(a, b) • (

−→
t1 a,

−→
t2 b), λ(c, d) • (

←−
t1 c,
←−
t2 d))

swapA,B = (λ(a, b) • (b, a), λ(b, a) • (a, b))

assocA,B,C = (λ((a, b), c) • (a, (b, c)), λ(a, (b, c)) • ((a, b), c))

I = {()}
rightA = (λa • (a, ()), λ(a, ()) • a)

januses become a dagger symmetric monoidal category.

Even though this paper is about generalizing reversible programming be-
yond injective functions, they are a useful object of investigation for �nding
what makes reversible programs di�erent from irreversible ones. One important
observation is that injective functions cannot throw away information. The prime
example for functions that throw away information are the projection functions,
speci�cally π1 : A×B → A with π1 (a, b) = a. How could a janus look like whose
normal direction is that of a projection function? There does not seem to be a
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generic way how the B-component can be recomputed from the A-component.
Thus, we provide one ourselves.

De�nition 2. The janus constructor forgetA,B : (A → B) → (A× B � A) is
de�ned as forgetA,B f = (π1, λa • (a, f a)).

Related to not using a variable at all is the issue of using the value of a
variable more than once. In the irreversible world, this is represented by the
function δA : A → A × A with δA a = (a, a). In the reverse direction, it is
possible that the two copies of the variable have di�erent values. Which do we
choose? Should we combine them? Disallow such combinations? And again, it
is up to the programmer to decide. (forgetA,A idA)† is one way � keep the �rst
value and ignore the second. Keeping the second value can be achieved by using
swap;(forget id)†. There also exists a canonical solution if the data type admits
equality testing.

De�nition 3. Let A be a type equipped with a binary function · == · : A×A→
Bool with (a1 == a2) v (a1 = a2). Then the janus dupA : A� A×A is de�ned
as dupA = (δA, λ(a1, a2) | a1 == a2 • a1).

2.1 Janus Classes

What we have described so far, are just arbitrary pairs of functions with reverse
type signatures. And actually, forget is su�cient to construct any janus from
its two directions.

Corollary 1. Any t : A� B can be decomposed as

t = (forgetA,B
−→
t )†;swapA,B;forgetB,A

←−
t .

If we assume that the relationship between normal and reverse direction in
simple januses is always useful, then the mere way in which complex januses are
constructed from simpler januses will likely result in a useful janus. Nonetheless,
it is possible � and interesting � to ensure certain consistency conditions.

Figure 1 shows the janus subsets, which we call janus classes, that are going
to be used in the remainder of this paper.

Class's name Condition Abbreviation

inverse
−→
t ;
←−
t v id ∧←−t ;

−→
t v id in

semi-inverse
−→
t ;
←−
t v id si

reverse semi-inverse
←−
t ;
−→
t v id rs

pseudoinverse
−→
t ;
←−
t ;
−→
t v −→t ∧←−t ;

−→
t ;
−→
t v ←−t pi

generic � gj

irreversible (
←−
t = ⊥) ir

Fig. 1: Janus classes
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Inverse januses are similar to partial injective functions. The condition states
that, if both directions are de�ned at a point, information is never lost. The
di�erence to injective functions is that one direction may be de�ned and returns
a value at which the other direction is unde�ned.

Semi-inverse and reverse semi-inverse januses can be seen as transformations
that may lose information only in one direction. It is easy to see that forget f
is reverse semi-inverse for any f , since the information that is computed by f
the reverse direction is simply thrown away in the normal direction. All of the
example function pairs given in the introduction are actually either semi-inverse
or reverse semi-inverse.

Pseudoinverse januses are named so, because they have a lot in common
with Moore�Penrose pseudoinverses of matrices. The condition on pseudoin-
verse januses can be rewritten into t;t†;t v t, from which t†;t;t† v t† follows.
Also, the januses t;t† and t†;t are (partial) idempotent and self-reverse, which
loosely corresponds to being hermitian. Pseudoinverse januses can be seen as
those losing information in both directions, but only during the �rst pass. After
a pseudoinverse janus has been applied to a value in one direction, applying it
again backward and again forward will yield the same value or will be unde�ned.

Irreversible `januses' represent normal functions. They are, on one hand, iso-
morphic to the januses class given by the condition

←−
t = ⊥, but, on the other

hand, they can be seen as the type A → B × Top → Bot. Thus, they aren't
really januses from the typing perspective, but this view will be useful when we
de�ne the semantics. They basically are januses of which we promise never to
invoke the reverse direction.

In Figs. 2a and 2b we overload ·;· and ·† on janus classes, such that, if ti is in
janus class Ji for i ∈ {1, 2}, then t1;t2 is in janus class J1;J2 and t†1 is in janus class
J†1 . It is worth noting that inverse, semi-inverse and reverse semi-inverse januses
are closed under composition, but pseudoinverse januses are not. Nonetheless,
we can still compose pseudoinverse januses with semi-inverse januses from the
right and reverse semi-inverse januses from the left.

; in si rs pi gj ir

in in si rs pi gj ir

si si si gj gj gj ir

rs rs pi rs pi gj ir

pi pi pi gj gj gj ir

gj gj gj gj gj gj ir

ir ir ir ir ir ir ir

(a) Composition

J J†

in in

si rs

rs si

pi pi

gj gj

ir �

(b) Reverse

in

si rs

pi

gj

ir

(c) Inclusion lattice

Fig. 2: Relations between janus classes
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The correctness proof for ·† is straight-forward. The correctness proof for ·;·
requires many case distinctions and is not very enlightening. We will only prove
one case here as an example.

Lemma 1. Let t1 : A � B be reverse semi-inverse and t2 : B � C be pseu-
doinverse. Then t1;t2 : A� C is pseudoinverse.

Proof. First, we have to prove
−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v −−−−→(t1;t2). The left-hand side

simpli�es by de�nition 1 to

−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) =

−→
t1 ;
−→
t2 ;
←−
t2 ;
←−
t1 ;
−→
t1 ;
−→
t2 .

Since
←−
t1 ;
−→
t1 v id by assumption, and

−→
t2 is continuous and thus monotone, we

have −−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v −→t1 ;

−→
t2 ;
←−
t2 ;
−→
t2 .

We also have
−→
t2 ;
←−
t2 ;
−→
t2 v −→t2 by assumption and can conclude

−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v −→t1 ;

−→
t2 =

−−−−→
(t1;t2) .

←−−−−
(t1;t2);

−−−−→
(t1;t2);

←−−−−
(t1;t2) v ←−−−−(t1;t2) is proven analogously, but using the assump-

tion
←−
t2 ;
−→
t2 ;
←−
t2 v ←−t2 . Thus, t1;t2 is pseudoinverse. ut

Figure 2c shows how janus classes are included in each other. This complete
lattice de�nes a partial order, ≤, that we can use to broaden a janus type.

Finally, we look at how janus classes compose in parallel. We can prove in
general that they are closed under any bifunctor.

De�nition 4. A bifunctor F is a mapping from pairs of types to types and also
a (continuous) mapping from pairs of functions to functions, such that

1. f : A→ B ∧ g : C → D =⇒ F (f, g) : F (A,C)→ F (B,D),
2. F (idA, idB) = idF (A,B), and
3. F (f1;f2, g1;g2) = (F (f1, g1));(F (f2, g2)).

We extend a bifunctor F to januses, such that for any two januses t1 : A� B
and t2 : C � D, F (t1, t2) = (F (

−→
t1 ,
−→
t2 ), F (

←−
t1 ,
←−
t2 )). Thus, we have F (id, id) =

id, F (t1;t2, t3;t4) = (F (t1, t3));(F (t2, t4)) and F (t†1, t
†
2) = (F (t1, t2))† from the

functor laws.

Remark 3. The parallel composition, ⊗, from remark 2 is actually a bifunctor
extended to januses. The bifunctor maps a pair of functions, (f, g), to the func-
tion λ(a, b).(f a, g b).

Again, we shall show proof for only one janus class as an example.

Lemma 2. Let t1 : A � B and t2 : C � D be both semi-inverse and F be a
bifunctor, then F (t1, t2) : F (A,C) � F (B,D) is also semi-inverse.
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Proof. We have to prove
−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) v id. The left-hand side simpli-

�es as follows
−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) = F (

−→
t1 ,
−→
t2 );F (

←−
t1 ,
←−
t2 ) = F (

−→
t1 ;
←−
t1 ,
−→
t2 ;
←−
t2 )

by de�nition 4. Because F is monotone and
−→
ti ;
←−
ti v id for i ∈ {1, 2}, we have

−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) v F (id, id) = id .

Thus, F (t1, t2) is semi-inverse. ut

2.2 Choice

With ⊗ it is possible to compose reversible functions in parallel. We now de�ne
the functor ⊕ that composes januses as alternatives of each other.

De�nition 5. Let ⊕ be the bifunctor with

A⊕B = A+B

t1 ⊕ t2 = λx |
{
x = inj1 a • inj1(

−→
t1 a)

x = inj2 b • inj2(
−→
t2 b)

where A + B is the sum type, and inj1 : A → A + B and inj2 : B → A + B are
the corresponding injections.

To actually make the choice, we use the following janus constructor.

De�nition 6. Let if si : (A→ Bool)→ (A� A+A) with

if si c =



λx |

{
c x • inj1 x
¬c x • inj2 x

λy |
{
y = inj1 a • a
y = inj2 a • a


 .

Since there is an isomorphism between A + A and A × Bool, if si is just
a special form of forget†. Thus, if si is not inverse, but only semi-inverse. It
discards one bit of information in the reverse direction. Therefore, we cannot
use it to construct inverse, reverse semi-inverse, or pseudoinverse januses. We
de�ne an inverse version that checks whether the correct alternative was used in
the reverse direction.

De�nition 7. Let if in : (A→ Bool)→ (A� A+A) with

if in c =




λx |
{

c x • inj1 x
¬c x • inj2 x

λy |
{
y = inj1 a ∧ c a • a
y = inj2 a ∧ ¬c a • a


 .

With these janus constructors as building blocks, it is possible to de�ne a
janus from alternative januses depending on a condition and an assertion. For
example, the janus if si c; (t⊕ e) ;(if in a)† is semi-inverse if t and e are semi-
inverse. For the compound janus to be de�ned at all, c and a should be related
predicates. One typically expresses the same condition as the other, but in terms
of a di�erent data type.
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2.3 Higher-Order Januses

Since we want to create a reversible language that has as many features of
irreversible languages as possible, we have to look at januses over januses. The
�rst non-trivial higher-order janus that comes to mind, is the janus that reverses
other januses.

De�nition 8. Let revA,B : (A� B) � (B � A) with revA,B = (·†, ·†).

rev is a bijection and thus inverse.

A core concept of functional programming is the existence of a function
eval : A× (A→ B)→ B, that applies a function to a value and returns the result.
Turning this signature into a janus, like eval′ : A× (A� B) � B, is not going
to work. How are we supposed to compute from just a value the function and its
argument from which the value originated? Instead, we use a trick. If not only
the result of the janus application is returned, but also the janus, then we can
de�ne a useful, higher-order janus.

De�nition 9. Let jevalA,B : A× (A� B) � B × (A� B) with

−−−−−−→
jevalA,B (a, t) = (

−→
t a, t)

←−−−−−−
jevalA,B (b, t) = (

←−
t b, t) .

Currying is another core concept of functional programming. Since currying
is a bijection, we can de�ne it as a janus.

De�nition 10. Let curryA,B,C : (C → A→ B) � (A× C → B) with

−−−−−−−−→curryA,B,C f = λ(a, c) • f c a
←−−−−−−−−curryA,B,C f = λc • λa • f (a, c) .

Again, there is no obvious correspondent in the janus world. Using a similar
trick as above we can �nd the following janus.

De�nition 11. Let jcurryA,B,C : (C → (A� B)) � (A× C � B × C) with

−−−−−−−−−→
jcurryA,B,C f = (λ(a, c) • (

−−→
(f c) a, c), λ(b, c) • (

←−−
(f c) b, c)

←−−−−−−−−−
jcurryA,B,C t = λc • (λa • π1 (

−→
t (a, c)), λb • π1 (

←−
t (b, c))) .

The argument of type C acts like a context in which the transformation
between A and B is performed (explaining our unusual choice of type variable
names).

Remark 4. An interesting fact is that jeval can be derived from jcurry by

jevalA,B =
−−−−−−−−−−−→
jcurryA,B,A�B idA�B .
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−−−−→
jcurry suggests an idea how to bridge the irreversible and reversible world.

A function f : C → (A � B) could be any irreversible function that computes

a janus.
−−−−→
jcurry turns this into a janus, that we can use as a building block to

compose more complex januses from. One variable of type A (or more than one,
if A is a tuple) is consumed to produce a new variable of type B, while using �
but not consuming � a variable of type C in that transformation. What this also
suggests is that, when some expression is applied to a janus, the janus itself may
be computed in an irreversible fashion from all variables that are not consumed
in that expression.

2.4 Recursion

Since januses are just pairs of functions, de�ning a generic janus recursively by
taking the �xpoint, fix F , of a function F : (A � B) → (A � B) just works.
For recursion to make sense for other janus classes, the janus class has to be
ω-complete and contain ⊥. In this case, we can apply �xpoint induction. Again,
we prove this for semi-inverse januses as an example.

Lemma 3. Let F : (A � B) → (A � B) preserve semi-inverse januses. Then
fix F is semi-inverse.

Proof. By �xpoint induction.

1. Since
−→⊥ ;
←−⊥ = ⊥ v id, ⊥ is semi-inverse.

2. F preserves semi-inverse januses by assumption.

3. Let t1 v t2 v . . . be an ω-chain of semi-inverse januses, and let t =
⊔
i ti.

Then we have

−→
t ;
←−
t =

(⊔

i∈ω

−→
ti

)
;

(⊔

i∈ω

←−
ti

)
=
⊔

i1∈ω

⊔

i2∈ω

−→
ti1 ;
←−
ti2 =

⊔

i∈ω

−→
ti ;
←−
ti v

⊔

i∈ω
id = id .

Thus, t is semi-inverse and the set of semi-inverse januses is ω-complete. ut

3 Generalized Reversible Functional Programming

In the previous chapter, we have e�ectively de�ned a point-free language for
generalized reversible functional programming. This chapter will do the same in
an applicative style. The syntax for this language is given in Fig. 3.
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J ::= in|si|rs|pi|gj|ir
E ::= V |?V
| (E, . . . , E)

| E E

| λJE ⇒ E| . . . |E ⇒ E

| S;E

T ::= Top|Bot|Equ|Bool|Int|List|
| T × · · · × T
| T J T

S ::= S;S

| let E ⇐ E

| forget E ⇐ E

| remember E ⇐ E

Fig. 3: Syntax of the reversible language

Not surprisingly we generalized function types (A→ B) to janus types (A J
B) by including the janus class. We also distinguish types with equality and
without equality. Those with equality are a subtype of Equ. As expected from
the type signature (A→ B)× (B → A), reversible januses are invariant in their
type arguments. But they are covariant in their janus class, i.e., a janus class
A J1 B is considered a subclass of A J2 B if and only if J1 ≤ J2.

What probably is most unusual is the omission of a sub-language for patterns.
In this language all expressions can be used as a pattern. A de�nition involving
a function application, let x = f e for example, can be easily reversed if f is
a reversible function. The reverse is let e = f† x. This is equivalent to writing
let f e = x in our language. Thus, when the term f e is used to pattern match a
value v, the reverse direction of the value of f is applied to v and this transformed
value is then pattern matched against e.

The only exception is that λ-constructs cannot be used as a pattern. Matching
against a λ-construct would mean �nding the values of the free variables in the λ-
construct that make it equal to the function matched against. This is undecidable
in general. Thus, λ-expressions have to be restricted to the body of irreversible
functions. Here, we do not enforce this restriction in the syntax to simplify the
denotational semantics.

The denotational semantics, J·KE , in Fig. 4 assigns each expression a janus
of type Γ � Top× Γ , where Γ = V → Top is the type of variable assignments.
The normal direction de�nes the semantics when the expression is used as a
value. The reverse direction de�nes the semantics when the expression is used
as a pattern.

Let-expressions are generalized to statements and the scoping expression,
s;e. The forget- and remember-statements allow the explicit discarding and
reconstruction of information. A statement's denotation, J·KS : Γ � Γ , is simply
a janus between environments, as it can only produce and consume variables.

Tuple expressions evaluate their components from left to right. Thus, values
consumed in the right sub-expression are available to the left sub-expression, but
not vice versa. Pattern matching of tuples happens necessarily in the opposite
direction, from right to left.
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JvKE =

(
λγ • (γ v, γ)

λ(x, γ) | γ v == x • γ

)

J?vKE =

(
λγ • (γ v, γ\v)

λ(x, γ)|v /∈ dom •γ ∪ (v 7→ x)

)

J(e1, . . . , en)KE = Je1K ⊗̂(. . . ⊗̂ JenK)

where a⊗̂b = a;(id⊗ b);assoc†

Jf eKE = JeKE ;
−−−−→
jcurry (

−−→
JfKE ;π1)

JλJp1 ⇒ e1| . . . |pn ⇒ enKE =

(
λγ •

(
(forgetλx.γ)†;β;forgetλy.γ, γ

)

−

)

where β = Jp1K†E ; Je1KE ⊕̂
J

(. . . ⊕̂J JpnK†E ; JenKE)

where a ⊕̂J
b = ifJ (−→a · 6= U); (a⊕ b) ;(ifJ† (←−a · 6= U))†

where if in = if rs = ifpi and if si = ifgj = if ir = if ir†

Js;eKE = JsKS ; JeKE
Js1;s2KS = Js1KS ; Js2KS

Jlet p⇐ eKS = JeKE ; JpK†E
Jforget p⇐ eKS = JpKE ;swap;forget (

−−→
JeKE ;π1)

Jremember p⇐ eKS = Jforget p⇐ eK†S

Fig. 4: Denotational semantics of the reversible language

From the discussions about dup and jcurry we derive the following rules
regarding variables:

1. Variables of types with equality may be used multiple times. They act as
duplicates, when used as a value, or equality checks, when used as a pattern.
This allows us to omit literal values in the syntax. Literal values can be
emulated by de�ning them as variables in the outermost scope.

2. If the current scope is that of an irreversible function, variable usage is
loosened to the normal de�ne-before-use rule. There, even types without
equality may be duplicated.

3. The janus sub-expression of a janus application is an irreversible scope and
has access to all variables that are not consumed or produced in the argument
sub-expression. The same is true for the right sub-expression of a forget-
and remember-statement.

4. Otherwise, variables must be de�ned exactly once and then consumed exactly
once. In order to di�erentiate between a de�nition/consumption use and a
copy/equality test use of a variable, we introduce the ?V form. This is only
necessary in order to keep the semantics simple and compositional. Every
variable must be de�ned using the ?V form. In a reversible scope, the last
usage of every variable must also be a ?V form.
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The other peculiarity of these semantics is how we treat pattern matching.
Januses de�ned in this system are implicitly using the Maybe (or Option) monad.
The special semantic value U is used to denote when a janus is unde�ned
at the given argument, the None (or Nothing) case. This includes the condi-
tional lambda expression, that we have used until now, i.e., ¬P (x) =⇒ (λy |
P (y) • E(y))x = U. All functions are implicitly strict in U, i.e., f U = U.
The lambda expression is the only place where we treat U in a special way
and this is where the pattern matching happens. Also, note that U is di�er-
ent from ⊥. We leave ⊥ as the semantic value for non-termination. Especially,
non-termination in a predicate still leads to a non-terminating function, i.e.,
P (x) = ⊥ =⇒ (λy | P (y) • E(y))x = ⊥.

Remark 5. This treatement is similar to exceptions in the programming language
Haskell [3]. U can be emulated by a special exception and pattern matching is
then just syntactic sugar for handling this exception.

Pattern matching generally happens in a similar way to other functional
languages. The sub-cases of a function are tried in order. The �rst case that
matches, i.e., is not U, is the one that determines the output. But from the
discussions about if si and if in, we know that, depending on the janus class, we
have to perform some consistency checking afterwards. For inverse, reverse semi-
inverse, and pseudoinverse januses, we have to ensure that none of the cases, that
were unde�ned in the normal direction, are de�ned in the reverse direction. The
same is true when going backwards for inverse, semi-inverse, and pseudoinverse
januses.

3.1 An Example

As an example, we will de�ne the janus parseInt : List rs Int that computes
from a list of digits the corresponding number and vice versa. parseInt shall
discard leading zeros and, therefore, is reverse semi-inverse. For this example, we
assume the constants true : Bool, false : Bool, nil : List and cons : Int×List in
List are already de�ned in the global context with their usual meaning. These
are usually de�ned as type constructors in irreversible languages. Since type
constructors are always injective, they extend naturally to januses. We assume
the binary operators + and ∗ of type Int ir (Int in Int) which perform
addition/subtraction and multiplication/partially de�ned division respectively.
The syntactic sugar for these operators swaps the arguments, i.e., l + r ≡ (· +
·) r l. Hence, it is the left operand which is consumed, and the right operand
stays untouched. We also assume // : Int ir (Int ir Int) which performs
integer division with rounding towards negative in�nity.

The janus d2n in Fig. 5 is a �rst step. It uses the janus constructor muladd :
Int ir (Int× Int rs Int) with the following behavior:

muladd k =

(
λ(a, b) • a ∗ k + b

λy • (by/kc , y mod k)

)
.
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l e t muladd ⇐ λir ?k ⇒
λrs (?a , ?b ) ⇒

l e t ?w ⇐ ?a ∗ k ;
l e t ?y ⇐ ?b + w ;
forget ?w ⇐ y // k ∗ k ;
?y ;

l e t d2n ⇐ λrs

n i l ⇒ 0
| cons (?d , ? l ) ⇒

muladd 10 (d2n ? l , ?d ) ;
l e t append ⇐ λin

( n i l , ?x ) ⇒ cons (? x , n i l )
| ( cons (?y , ? l ) , ?x ) ⇒

cons (?y , append (? l , ?x ) ) ;
l e t reverse ⇐ λin

n i l ⇒ n i l
| cons (? x , ? l ) ⇒

append ( reverse ? l , ?x ) ;
l e t compose_rs ⇐ λir ? f ⇒ λir

?g ⇒ λrs ?x ⇒ g ( f ?x ) ;
l e t parseInt ⇐

compose_rs reverse d2n ;

l e t divmod ⇐ λir ?k ⇒
λsi ?y ⇒

remember ?w ⇐ y // k ∗ k ;
l e t ?b ⇐ ?y − w ;
l e t ?a ⇐ ?w / k ;
(?a , ?b ) ;

l e t n2d ⇐ λsi

0 ⇒ n i l
| ?x ⇒ l e t (?n , ?d ) ⇐ divmod 10 ?x ;

cons (?d , n2d ?n ) ;
l e t unappend ⇐ λin

cons (? x , n i l ) ⇒ ( n i l , ?x )
| cons (?y , unappend† (? l , ?x ) ) ⇒

( cons (?y , ? l ) , ?x ) ;
l e t unreverse ⇐ λin

n i l ⇒ n i l
| ?y ⇒ l e t (? r , ?x ) ⇐ unappend ?y ;

cons (? x , unreverse ? r ) ;
l e t compose_si ⇐ λir ? f ⇒ λir

?g ⇒ λsi ?x ⇒ g ( f ?x ) ;
l e t pre t t yPr in t In t ⇐

compose_si n2d unreverse ;

Fig. 5: Semi-reversible number parser and its reverse

The statement let ?y ⇐ ?b+w is where we use
−−−−→
jcurry to its full extent. The

variable w is used here in an irreversible context, even though it is de�ned in a
reversible context. This is sound, because w does not appear in the argument to
the janus · + w, which is just b.

The implementation of d2n is straight-forward, but it has a problem: It reads
the digits in the wrong order. We want the most signi�cant digit to be the �rst
in the list. This is solved by the janus reverse, which is written in terms of
the janus append. Their de�nition is no di�erent from that in an irreversible,
functional language. The de�nition just happens to be reversible.

Finally, we de�ne parseInt in a point-free style, to show-case this possibility.
Figure 5 also shows an implementation of the reverse for each of the above

januses and janus constructors. The reverse of any lambda expression, λJp⇒ b,
is simply λJ†e⇒ p. This does not help much in understanding what is going on.
From the denotational semantics (Fig. 4) we can derive the simpli�cation rules
in Fig. 6. The implementations utilizes those simpli�cations, in order to make
the source code easier to understand.

Jlet e1 e2 ⇐ e3KS =
r
let e2 ⇐ e†1 e3

z

S

JλJlet e1 ⇐ e2; e3 ⇒ e4KE = JλJe3 ⇒ let e2 ⇐ e1; e4KE
JλJe1 e2 ⇒ e3KE = JλJe1 ?x⇒ let e2 ⇐ ?x; e2KE with x new variable

JλJforget e1 ⇐ e2; e3 ⇒ e4KE = JλJe3 ⇒ remember e1 ⇐ e2; e4KE

Fig. 6: Useful equivalences
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4 Related Work

The observation that duplication in one direction requires equality testing in the
other direction � as in dup � has been noted before [5,10].

The construction if in c; (t⊕ e) ;(if in a)† is inspired and closely related to the
if-statement in the programming language Janus. Our pattern matching algo-
rithm is an instance of that construction. It actually generalizes the symmetric
�rst-match policy from RFun.

Our treatment of januses as irreversible expressions � as motivated by
−−−−→
jcurry

� is a generalization of reversible updates from [9].

Lenses are isomorphic to a subset of inverse januses. A lens l consists of two
functions l.get : A→ B and l.put : B ×A→ A adhering to the lens laws

l.get(l.put(b, a)) v b
l.put(l.get(a), a) v a .

These laws are equivalent to requiring the janus t : A � B × A to be inverse
and have

−→
t ;π2 = idA.

5 Future Work

Amore thorough domain theoretic treatment of the reversible language is needed.
Issues like recursion and loops will then have a stronger basis.

A proper type system should prove that de�ned januses actually belong to
their respective janus class. The janus class of a reversible λ-expression is almost
derivable from the denotational semantics from Fig. 4 using the foundations that
were laid out in Section 2. We must additionally prove that JvKE and J?vKE are

inverse, and that
−−−−→
jcurry (

−−→
JfKE ;π1) has the same janus class as

−−→
JfKE .

A category theoretic treatment might also be enlightening. Especially in re-
gards to quantum computation, which shares many properties with reversible
programming and in recent years got their share of category theory in [7].

The same holds for linear type systems. The language proposed here has a
lot in common with linear languages, only we do not consume variables in the
function part of a function application. This suggests a modi�cation of the modus

ponens in linear logic to
A→ B A

A→ B B
, where the implication may be reused.

A usability issue comes up when we de�ne binary operators like ·+ · : Int→
(Int � Int). Only one of its arguments can be consumed. The other one must
be constant in the current scope. But which one? Is it necessary to have two
versions of each binary operator? Is it useful to have typing rules that can deal
with overloaded operators? Or is our current approach, where the left operand
is always consumed, su�cient?
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6 Introduction†

We have de�ned januses as the core concept of a reversible program along with
other concepts to compose large januses from smaller ones. The functors ⊗ and ⊕
for parallel and alternative execution, if as basis for choice and pattern matching,
forget as means to discard information and jcurry as the bridge between the
irreversible and reversible world. One fundamental observation is that, unlike in-
jective functions, general januses can discard information, but unlike irreversible
functions, they cannot discard information implicitly.

We have also given the syntax and semantics for a programming language
that allows to write reversible and irreversible januses. Recursion, pattern match-
ing, and higher order programming are possible and even look like functional
programming. The language allows to use irreversible functions to compute re-
versible januses and invoke them in even in a reversible context. As a side e�ect,
this language generalizes pattern matching to all expressions except lambda ab-
stractions. It especially allows to pattern-match against a janus application.

Januses with certain consistency requirements have been identi�ed. These
janus classes compose with relatively simple rules and form a complete lattice.
Our example program shows how a very simpli�ed parser can be written as a
reverse semi-inverse janus. Its reverse, the pretty-printer, is implicitly speci�ed
by the same source code.
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Extended Abstract It is becoming more and more common that research com-
munities related to a specific topic organize themselves in order to gain visibility,
foster collaboration, and coordinate the research activities among the commu-
nity members. The resulting organizations are usually rather loosely structured,
informal, and open to all researchers interested in participating.

In the field of programing languages, program analysis, and compilers the
German-speaking research community has a long tradition of informal meetings
that bring researchers and practitioners together. These meetings serve as an
open forum for discussions, for spreading new ideas, but also help to meet other
researchers, to foster exchange, and to develop new collaborations. Participants
in those meetings easily can see how active and vibrant the German-speaking
community in this field is – this is again proven by the high number of partici-
pants to this edition of KPS.

The French community is equally active and striving, and also has a, not
equally long, but equally successful tradition in gathering its community mem-
bers at informal meetings. Participants in events of both communities quickly
realize that the French and the German meetings share a common spirit: foster-
ing exchange.

Despite the success on both sides, the French- and the German-speaking
communities as such stay largely separate – even-though visitors from abroad
are in principle welcome. In this presentation, we will explain the current way
that both compiler communities are organized and summarize the communities’
activities. The ultimate goal is to gather feedback from the community members
regarding the development of joint activities – for instance, joint meetings – in
order to foster the exchange across boarders. These joint activities could even
lead to the creation of a joint organizational structure such as an international
Groupement de Recherche.3

3 http://www.cnrs.fr/en/workingwith/GDRI.htm
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Background and Links x

Florian Brandner – together with Laure Gonnord and Fabrice Rastello – is
co-coordinator of the French compilation community:

– Website of the Compilation group:
http://compilation.gforge.inria.fr/

– The parent organization of the group:
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Jens Knoop is elected chairman of the executive board of the special interest
group on "Programmiersprachen und Rechenkonzepte":

– Website of the special interest group "Programmiersprachen und Rechenkonzepte":
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– The parent organization of the special interest group:
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Abstract We explore software diversity as a defense against side-channel
attacks by dynamically and systematically randomizing the control flow
of programs. Existing software diversity techniques transform each pro-
gram trace identically. Our diversity based technique instead transforms
programs to make each program trace unique. This approach offers prob-
abilistic protection against both online and off-line side-channel attacks.
In particular, we create a large number of unique program execution
paths by automatically generating diversified replicas for parts of an input
program. Replicas derived from the same original program fragment have
different implementations, but perform semantically equivalent computa-
tions. At runtime we then randomly and frequently switch between these
replicas.
We evaluate how well our approach thwarts cache-based side-channel
attacks, in which an attacker strives to recover cryptographic keys by
analyzing side-effects of program execution. Our method requires no
manual effort or hardware changes, has a reasonable performance impact,
and reduces side-channel information leakage significantly.

Keywords: language-based security, software diversity, dynamic diver-
sity, side channels.

1

1 Motivation

Artificial software diversity, like its biological counterpart, is a highly flexible and
efficient defense mechanism. Code injection, code reuse, and reverse engineering at-
tacks are all significantly harder against diversified software ([10,16,35,21,42,18,14,12]).
We propose to extend software diversity to protect against side-channel attacks,
in particular cache side channels.

Essentially, artificial software diversity denies attackers precise knowledge of
their target by randomizing implementation features of a program. Because code
reuse and other related attacks rely on static properties of a program, previous
work on software diversity predominantly focuses on randomizing the program

1 Note: This paper appeared at NDSS’15.
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main() a() d() b() d() b() …

timing channel

program trace

Figure 1: Time based side channel exploitable through a sequence of function
calls in a program trace.

representation, e.g., the in-memory addresses of code and data. Side-channel
attacks, on the other hand, rely on dynamic properties of programs, e.g., execution
time, memory latencies, or power consumption. Consequently, diversification
against side channels must randomize a program’s execution rather than its
representation.

Most existing diversification approaches randomize programs before execution,
e.g., during compilation, installation, or loading. Ahead-of-time randomization is
desirable because re-diversification during runtime impacts performance (similar
to just-in-time compilation). Some approaches interleave program randomization
and program execution ([30,18,38,22]). However, the granularity of randomization
in these approaches is quite coarse, potentially allowing an attacker to observe
the program uninterrupted for long enough to carry out a successful side-channel
attack. We avoid this problem by extending techniques used to prevent reverse
engineering such as code replication and control-flow randomization ([6,14]).
Unlike these approaches, however, we replicate code at a finer grained level and
produce a nearly unlimited number of runtime paths by randomly switching
between these replicas. Rather than making control flow difficult to reverse
engineer, our technique randomly switches execution between different copies of
program fragments, which we refer to as replicas, to randomize executed code and
thus side-channel observations. We call this new capability dynamic control-flow
diversity.

To vary the side-channel characteristics of replicas, we employ diversifying
transformations. Diversification preserves the original program semantics while
ensuring that each replica differs at the level of machine instructions. To protect
against cache side-channel attacks we use diversifications that vary observable
execution characteristics. Like other cache side-channel mitigations, such as
reloading the cache on context switches and rewriting encryption routines to
avoid optimized lookup tables, introducing diversity has some performance impact
which we rigorously quantify in this paper.

In combination, dynamic control-flow diversity and diversifying transforma-
tions create binaries with randomized program traces, without requiring hardware
or developer assistance. In this paper we explore the use of dynamic control-flow
diversity against cache-based side-channel attacks on cryptographic algorithms.
Our main contributions are the following:
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– We apply the new capability of dynamic control-flow diversity to the problem
of side channels. To the best of our knowledge, this is the first use of automated
software diversity to mitigate cache side channels.

– We show how to generate machine code for efficient randomized control-flow
transfers and combine this with a diversifying transformation to counter
cache-based side-channel attacks.

– We present a careful and detailed evaluation of applying diversity to protect
cache side channels and report the following:

- Security: Our techniques successfully mitigate two realistic cache side-
channel attacks against AES on modern hardware.

- Performance: Applying dynamic control-flow diversity with effective
security settings to an AES micro-benchmark of the libgcrypt library results
in performance impacts of 1.75x and protecting a real-world application
using AES results in a slowdown of 1.5x.

2 Side-Channel Background

The execution of a program is described by its control flow. The sequence of all
control-flow transitions a program takes during execution is usually referred to
as an execution path, or a program trace. A program trace describes the dynamic
behavior of a program. Figure 1 illustrates a program trace at the granularity of
function calls.

Executing programs on real hardware results in dynamic properties that leak
information, such as timing or power variation. For example, Figure 1 shows a
side channel based on time spent in executing the function sequence d(), b(), d(),
b(). By observing dynamic properties of a program trace through a side channel,
attackers can derive information about the actual program execution, such as
inferring secret inputs to the program.

2.1 Threat Model

Since side-channel attacks often target secret keys of a process performing
encryption, in this paper we assume that an attacker is targeting such a secret key.
To demonstrate the applicability of our techniques, we assume an advantageous
scenario for this attacker and reason that our defense remains effective under
weaker assumptions.

Tromer et al. [39] classified side-channel attacks into synchronous and asyn-
chronous attacks depending on whether or not the attacker can trigger processing
of known inputs (usually plain- or cipher-texts). Synchronous encryption attacks,
where the attacker can trigger and observe encryption of known messages, are
generally easier to perform, and thus harder to defend against, since the attack
does not need to determine the start and end of each encryption. We assume
as strong a position for the attacker as possible and therefore will consider the
scenario where an attacker can request and observe encryption of arbitrary chosen
plaintexts.
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To minimize external noise, we assume that the attacker is co-resident on
the same machine as the target process. We also assume that the attacker can
execute arbitrary user-mode code on a processor core shared with the target
process but does not have access to the address space of the target process.

In the interest of allowing a strong attacker model, we advise but do not require
that the protected binary be kept secret. Since we randomly generate diverse
but semantically equivalent binaries, preventing the attacker from reconstructing
the target environment is an advisable defense-in-depth against off-line attacks,
such as the cross-VM attack described by Zhang et al. [44]. Deploying protected
programs with differing layouts is also an effective defense against code-reuse
attacks [23] and we can defend in the same manner by deploying randomized
binaries which include dynamic control-flow diversity.

If we allow access to the binary, we must be careful that the attacker is not
able to accurately determine which replica of each program unit was executed
in an observed program trace. An attacker who observes a complete trace of
control-flow transfers could filter out the effects of the replicas’ diversifying
transformations, regardless of what those effects are. In practice, a user-level
process cannot observe all control-flow transfers of another process, especially at
the granularity of basic blocks2.

2.2 Example Attacks

To demonstrate an example of our dynamic control-flow diversity defense, we
chose two synchronous, known input cache attacks on AES described by Tromer
et al. [39]: EVICT+TIME and PRIME+PROBE. Although these representative
cache attacks have limited scope, an attacker could use this type of attack to
compromise a system-wide filesystem encryption key or target a proxy server
where an attacker can trigger encryption of known plaintexts. In addition, these
attacks are representative of cache-based side channels and are the basis of
several more complex side-channel attacks [44,43,36]. While we demonstrate the
effectiveness of our technique against cache-based side channels in particular, we
expect that the same general defense paradigm can be applied to other categories
of side channels using different diversifying transformations than the ones we
discuss in Section 3.1.

Caches exploit temporal and spatial locality to speed up access to recently
used data. This helps to compensate for the speed gap between processors and
main memories. As a side effect, caches increase the correlation between program
inputs and its execution characteristics.

Modern processors access the cache in units called “cache lines,” which are
typically 64 bytes long. Each cache level is partitioned into n “cache sets,” and
each memory line can be placed into exactly one of these n sets. Each set stores
at most m lines simultaneously, in which case the cache is called “m-way set

2 Gullasch et al. [20] describe a DoS attack against the OS scheduler which could result
in such fine-grained information, but the OS scheduler can be hardened to prevent
such attacks.
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Tag Set'# Line'Offset
6 bits12 bits46 bits

Memory Address

Set 1 line 1
Set 1 line 2

Set 1 line 12
Set 2 line 1
Set 2 line 2

Set 4096 line 12

Cache Structure

Cache'Line'Data Metadata

64 bytes

Figure 2: Example of cache structure on a modern processor. Cache shown is
3MB in size, with 4096 (212) sets, 12-way associativity and 64-byte cache lines.
Memory addresses are broken into a 46-bit (or less) tag, a 12-bit set number and
a 6-bit line offset.

associative”. In practice, caches are 4-, 8-, 12- and 16-way associative. Figure 2
shows the structure of a 3MB 12-way set associative cache found in our test
system.

For efficiency, the processor shares these caches between running processes
but prevents processes from accessing data belonging to other processes via
the virtual memory abstraction. However, since data from multiple processes is
concurrently stored in the cache, adversaries can indirectly deduce information
about which cache locations a target process accesses by observing side-effects
of cache accesses. Since the data cache access patterns of many programs are
input-dependent and predictable, attackers can use knowledge of some inputs
and the target’s data access patterns to derive the secret input.

To exploit cache access patterns, all cache timing attacks rely on the same
fundamental principle of cache behavior: accessing data stored in the cache is
measurably faster than accessing the data from main memory. As a result, attacks
can exploit this principle as a side channel and observe different cache behavior
for certain segments of a program trace. In the EVICT+TIME attack, we observe
the effect of evicting an entire cache set and forcing the encryption program to
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Algorithm 1: EVICT+TIME attack.

Input : Cache set c to probe, plaintext p, key k.
Output : Time needed to encrypt the plaintext after probing c.
Encrypt(k, p);
Evict cache set c;
t0 ←Time();
Encrypt(k, p);
t1 ←Time();
return t1 − t0;

Algorithm 2: PRIME+PROBE attack.

Input : Array C of cache sets to probe, plaintext p, key k.
Output : Array T of times needed to probe each set in C.
foreach c ∈ C do

Read w values into cache set c from memory;
end
Encrypt(k, p);
foreach c ∈ C do

t0 ←Time();
Read w values from cache set c;
t1 ←Time();
T [c]← t1 − t0;

end
return T ;

fetch values from main memory, while in the PRIME+PROBE attack we fill a
cache set and check which cache lines the encryption evicts by observing the time
to reload our data.

For convenience we summarize both AES attacks here but refer interested
readers to Tromer et al. [39] for further details. Optimized AES implementations
use four in-memory tables (T0 through T3, each containing 256 four-byte values)
during encryption, and the access pattern of these tables varies according to the
key and plaintext inputs. Specifically, during the first of ten encryption rounds
for plaintext p and key k, the encryption process will access table Tl at index
pi ⊕ ki for all i = 0, . . . , 15 where l = i mod 4. Since we assume the attacker
knows the plaintext p, the attacker is able to derive information about the key
from information about which table elements are loaded from memory.

Algorithm 1 shows the EVICT+TIME attack. We derive the table access
patterns by observing the total execution time of the encryption routine. By
first running the encryption on a chosen, random plaintext, we prime the cache
with the table entries required during the encryption of this plaintext. We then
completely evict a cache set by loading a set of memory locations that all map
into the chosen cache set. By timing another encryption of the same plaintext,
we can then, by averaging over many runs, determine whether the encryption
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Figure 3: Side-channel resistance of diversification techniques.

used a table value from that cache set, since the encryption routine will take
longer when accessing an evicted table entry due to the cache miss.

The PRIME+PROBE attack (shown in Algorithm 2) is very similar to the
EVICT+TIME attack, but with the timing and eviction roles flipped. In this
attack we first create a known starting cache state by loading a set of memory
locations into each relevant cache set. We then trigger encryption of a chosen
plaintext, which will modify this cache state by caching accessed table entries.
Finally, we determine which cache sets were modified by timing a load of each
cache set again. The cache sets corresponding to table entries that the encryption
accessed will take longer to load than those not used, since the encryption table
entry will have displaced one of the original entries loaded by the attacker and
thus incur at least one cache miss.

By analyzing a large set of these cache observations for randomly chosen
plaintexts, we can determine the key bits that correspond to table indices in the
first round of encryption. For each guess of a key byte k̂i, we average all observed
timings for the cache set evictions corresponding to table entry Ti mod 4[k̂i ⊕ pi].
In both attacks, the highest observed average time should correspond to the
correctly guessed key byte. However, with 64 byte cache lines, four table entries
fit into each cache line, and we can only observe accesses at the granularity of
cache lines, which means that we can only determine the high nibble of each key
byte with this analysis. Therefore, to determine the lower four bits of each key
byte, we must analyze the second round of encryption as described by Tromer
et al. This analysis, while more involved, is conceptually analogous to the first
round analysis and we refer interested readers to the description in the original
paper.

3 Dynamic Control-Flow Diversity

Most diversification techniques prevent attackers from constructing reliable
attacks by randomizing the layout of a program’s data and code. Since modern
exploits such as code reuse attacks depend on detailed knowledge of the program
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Figure 4: Function call graph before and after replicating the function d().

layout and internals, automatically modifying these aspects of the program
implementation hinders development of reliable exploits using techniques such
as return-oriented programming. However, software diversity affects not only
program layout but also alters program side-effects, such as run time, power
usage and cache usage. Even simply re-ordering functions can have a large effect
on cache usage and performance since code will be aligned differently in the
instruction cache.

Since software diversity affects performance and cache usage, by extension we
observed that it could be useful to disrupt or add noise to side channels. However
static compile-time or load-time diversity is insufficient, since side-channel attacks
are online dynamic attacks and attackers can simply profile the static target
binary to learn its runtime characteristics. Re-diversifying and switching to a new
variant during execution is also insufficient since side-channel attacks are fast
enough to complete between reasonably spaced re-diversification cycles. Figure 3
illustrates the effect of diversification techniques on side channels. While the
program trace of the original program leaves a specific footprint on the executing
hardware, diversified program variants (labeled as static variant 1 and static variant
2) each have a different footprint. This diversity is likely to thwart offline profiling
attacks, but online side-channel attacks that deduce information by monitoring
the running program are not affected by these diversification techniques.

We extend previous, mostly static software diversification approaches by
dynamically randomizing the control flow of the program while it is running.
Rather than statically executing a single variant each time a program unit is
executed, we create a program consisting of replicated code fragments with
randomized control flow to switch between alternative code replicas at runtime.

In Figure 3, we see the effect of dynamic control-flow diversity in the bottom
row, labeled dynamic variant 1. For the trace segment the attacker is interested
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Figure 5: Detailed view of randomized trampoline d’() and interaction with the
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in, the program can now take numerous different paths, effectively preventing
the attacker from constructing a reliable model to infer program execution
information from side-channel characteristics, such as timing.

We build our control-flow diversity on a conventional compiler-based diversifi-
cation system that creates randomized variants of a program fragment, such as a
function or a basic block, by applying diversifying transformations. A diversify-
ing transformation preserves program semantics but transforms implementation
details. Examples of previously proposed diversifying transformations include
insertion of NOP instructions, permutation of function or basic block layout,
and randomization of register assignments. In Section 3.1 we discuss a diversi-
fying transformation to illustrate the effects of control-flow diversity on cache
side channels, but other transformations could be used to protect against other
instances and varieties of side-channel attacks.

To create control-flow diversity, we begin by choosing a set of program
fragments (either functions or basic blocks) to transform. If a developer knows
that some sections of the program, such as encryption routines, are particularly
interesting targets for side-channel attacks, the developer can manually specify
this set of program fragments to diversify. In addition, for blanket coverage we
can randomly select candidate program fragments. Since randomized control-flow
transfers add performance overhead, the software distributor should adjust the
percentage of duplicated fragments to balance security and performance.

After choosing a set of functions and/or basic blocks, we clone each chosen
program fragment a configurable number of times. We then use different diver-
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100: 0xABABCDCD
Main App Thread(s)

…

goto cf_table[100]

…

tmp = Memory[load_table[200]]

…

99: 0x34523232

101: 0x32345982

199: 0x12345678

201: 0xABBB1234

Table Rewriter Thread

for (;;) {
  for each table T {
    for each entry E in T {
      re-randomize(E);
    }
  }
  sleep();
}

WritesReads

Tables

200: 0x23451234

Figure 6: Memory layout of runtime address tables, along with pseudocode of
the randomization algorithm. The randomization algorithm runs periodically in
an infinite loop for the entire duration of the program.

sifying transformations for each clone to create functionally-equivalent replicas
that differ in runtime characteristics. The set of transformations applied to each
program fragment may include completely different transformations, applications
of the same transformation with different parameters, or some combination of
both. Figure 4 shows an example of this process applied to a function.

We then integrate these randomized replicas into a program that dynamically
chooses control-flow paths at runtime. For each replica, we replace all references
to the original fragment with a randomized trampoline. As illustrated in Figure 5,
whenever the program executes a trampoline it randomly chooses a replica to
transfer control to.

We use the SIMD-Oriented Fast Mersenne Twister pseudorandom number
generator (PRNG) [37], since the runtime needs to quickly generate random
numbers. Although our chosen PRNG is not cryptographically secure, it is
sufficient for our purposes, since we assume the attacker cannot extract every
control-flow transfer through the noisy side channel. If defending a side channel
through which extracting the dynamic control flow and predicting the PRNG
stream is easier than extracting the targeted secret information, this PRNG could
easily be replaced by a cryptographically secure PRNG. Processor-integrated
random number generators would be ideal to fill this role, and, as processors
with this capability become widespread, we expect that the processor can fill a
randomness buffer instead of using a software PRNG.

3.1 Cache Noise Transformation

In order to produce structurally different but semantically identical variants,
we randomly apply diversifying transformations to the program code. These
transformations change how a program looks to an observer (who might either
read the binary itself, or observe it through side channels) without affecting
program semantics. We investigated one specific transformation, inserting cache
noise, to disrupt cache side-channel observations. However, this technique is only
one example of possible side-channel disrupting transformations. When protecting
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other side channels, one may need different transformations, e.g., disrupting power
observations might require randomly weaving in another unrelated program to
ensure that the inserted code is indistinguishable from the original program code.

We initially investigated disrupting the EVICT+TIME attack by randomly
inserting NOP instructions into the code. However, after optimizing our ran-
domness generation, we found that NOP instructions do not add enough time
fluctuation to disrupt the attack. In addition, NOP instructions have no effect
on cache usage, and thus do nothing to affect the PRIME+PROBE attack. We
therefore turned our attention to inserting random memory loads, which disrupt
both timing and cache snooping side channels.

To ensure that inserted loads have a high likelihood of actually impacting
the performance of the targeted program, we want to create loads that evict
a specific set of cache lines, specifically those that the target uses. In addition,
attempting to read from invalid addresses (such as unallocated regions in the
process address space) can potentially crash the target program, stopping the
attack. For these reasons, we restrict the loads to a linear region, selected at
program load-time. In the case of our AES experiments, this region covers only
the AES S-box tables but in general is adjustable for other applications.

Our compiler randomly picks the locations to insert loads at compile time,
and the target program itself picks the base and size of the region at load-time
during program initialization. We leave the size of each load (in bytes) up to the
implementation, and use single-byte loads in our evaluation. While implementing
this cache diversification technique, we identified two ways of computing the
address accessed by each load instruction: (i) static address and (ii) dynamic
address computation.

In the first technique, static address computation, the compiler randomly
picks an address (inside the range), then hard-codes it inside the program so the
load is the same for every execution:

offset = 0x123 // Random constant < region_size

addr = region_base + offset

tmp = Memory[addr] // Volatile load

The second technique, dynamic address computation, loads addresses chosen
dynamically while the program is running. We extend the same cached random
tables used for control-flow diversity described below, and constantly rerandomize
this table to contain valid addresses. This results in the following code for inserted
load i:

addr = Memory[random_table[i]]

tmp = Memory[addr] // Volatile load

Static address computation requires the region size to be defined at com-
pile time and a global variable region base to be initialized at run time. The
background thread for dynamic address computation randomly picks addresses
for each table slot using global variables region base and region size that are
initialized at run time.
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Figure 7: Average accuracy of AES side-channel attacks with our defense. The
dashed line shows the expected number of correct bits for randomly chosen keys
(8 bits). Error bars represent two standard errors from the mean.

3.2 Table Randomization Optimization

One of our main design goals was to make the randomized trampolines and
memory loads be fast enough for practical usage. A naive initial implementation
that called a random number generator for every control-flow transfer or memory
operation proved to have unacceptably large overhead, even when buffering
randomness. We instead chose to store branch targets and memory load addresses
in tables and periodically re-randomize this table asynchronously in a background
thread. At program startup we create a background thread that repeatedly iterates
over all tables and randomizes each entry. Trampolines are then just a single
indirect branch through a control-flow cache table, while the memory loads
require an extra load from the table. Figure 6 shows the memory layout of the
tables and the pseudocode of the table randomization algorithm which runs in
the background thread.

Our dynamic control-flow transfer implementation could be further optimized
to use inline caching and rewrite static branch instructions rather than an external
table in data memory. However, branch targets are rerandomized frequently, so
changing code page permissions from executable to writable and back may trump
the performance improvement from inline caching. Alternatively, code pages
could be left writable and executable, although this increases the risk of a code
injection attack and may still be slow if instruction cache flushes are required.

4 Evaluation

To analyze the security and performance characteristics of our techniques in a real-
world setting, we evaluated dynamic control-flow diversity as a defense for the two
side-channel attacks proposed by Tromer et al. [39] and discussed in Section 2.2.
We implemented these attacks targeting the AES-128 encryption routine in
libgcrypt 1.6.1, which is the current version of the cryptographic library underlying
GnuPG. Since our implementation does not currently support diversification
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of inline assembly, we disabled the assembly implementation of AES to force
libgcrypt to use its standard C implementation. It is worth noting that this is
an implementation limitation, and an industrial-strength implementation of our
transformations could easily support rewriting of inline assembly as well.

To simplify our attack implementation, we made a slight change to the
libgcrypt source code. We added an annotation to each of the targeted tables to
force the compiler to align table entries such that no entries crossed a 64 byte
cache line boundary. While both attacks could work around this alignment issue
with further engineering effort, this change allowed us to more accurately measure
the results of our protections.

We performed all security evaluations on an Intel Core 2 Quad Q9300 running
Ubuntu 12.04 with Linux kernel 3.5.0. We targeted our attacks at the L2 cache of
the processor; the Q9300 contains a 6MB L2 cache split into two halves, with each
3MB half being shared by two of the cores. The cache is 12-way set associative
with 64-byte lines and 4096 sets. To minimize system interference, we stopped
all unnecessary system daemons and pinned the attack to two cores, where the
second core accommodated the background rewriting thread. In addition, to
create the most advantageous situation possible for an attacker, our example
attacks call the libgcrypt encryption function as a black box in the same process,
rather than spawning or communicating with a separate process. Attacks in a
more realistic setting would require even more observations to reliably extract the
key, and our transformations would create additional uncertainty when coupled
with the extra intra-process system noise.

Modern processors implement a cache prefetching algorithm that assumes
spatial locality of cache accesses and speculatively loads additional cache lines
that the prefetching unit expects might be accessed soon. Prefetching improves
performance, especially for algorithms that access long linear regions of memory.
However, prefetching negatively impacts cache-based side-channel attacks by
introducing the difficulty of determining which lines were loaded by the encryption
algorithm and which by the prefetcher. For this reason, we disabled the prefetcher
completely on our test machine by setting several configuration bits in machine
status registers. While this slightly reduces the overall system performance, it
makes attacks much more consistent.

We implemented all transformations and insertion of dynamic control-flow
diversity as passes in version 3.3 of the Clang/LLVM compiler framework [29].
These new passes operate at the LLVM intermediate representation (IR) level,
and are thus platform-independent.

4.1 Security Evaluation

After testing our example attacks, we empirically found that 5 million iterations
of the EVICT+TIME attack and 75 thousand iterations of the PRIME+PROBE
attack were sufficient to derive 96% and 82% of the random key bits on average,
respectively. Although our attack implementation does not derive the full key in
all cases due to random system noise and complex processor variations, this is
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an implementation concern, and an attacker would likely tune these attacks for
increased accuracy.

To ensure that our baseline was accurate, we averaged 50 runs without
any diversification, using a new random secret key for each iteration. Since
our transformations rely on random choices during compilation, we tested each
instance with ten different random seeds and each seed with five random keys
(resulting in 50 runs total for each configuration) and report the average accuracy
over all seeds and keys for each configuration.

To ensure that functions or basic blocks relevant to the AES encryption im-
plementation were replicated, we manually inspected the libgcrypt implementation
and selected nine functions that the program executes for every AES encryption.
To collect comparable data for each experiment, we configured our compiler
to select all nine functions (or all basic blocks in the selected functions) for
replication.

We fixed the number of generated replicas for each program fragment to ten
in all cases. We found that further increasing this parameter had little effect on
the attack success with the number of iterations we tested. However, increasing
the replica count also had no measurable effect on runtime performance, and
only a moderate effect on file size. Therefore adding additional variants may be
a viable option to combat increasing attacker capabilities.

Security results for both the EVICT+TIME and PRIME+PROBE attacks
are found in Figure 7. We label the all static cache load variants with Static
and the dynamic variants with Dyn. Control-flow diversity with function and
basic-block replicas is labeled respectively with CF/F and CF/BB. We report key
recovery in number of bits for clarity, however, it is important to note that both
attacks derive the key in nibble-sized increments.

Static Loads Static cache noise at a 5–25% insertion rate had little effect on
the EVICT+TIME attack, resulting in 104–108 of 128 key bits recovered. Adding
dynamic control-flow diversity to static noise also had little effect, since there is
little timing variance between replicas when using static loads. Increasing this
percentage to 10–50% had a more pronounced effect. More loads naturally imply
that execution will be slower and thus more sensitive to cache collisions.

Dynamic control-flow diversity did have a significant effect on the PRIME+PROBE
attack when combined with static cache loads. Function-level dynamic control-
flow diversity reduced the correctly key recovered key bits from 52 with static
loads to 41, and basic-block level replication furthered reduced this to 31 bits.
With 10–50% cache noise insertion, we saw further reduction to 16 key bits
correctly recovered using basic-block dynamic control-flow diversity.

Dynamic Loads Dynamic loads had a larger effect on the EVICT+TIME
attack. Dynamic cache noise alone at a 5–25% rate reduced the average correctly
recovered key bits to 81. Adding dynamic control-flow diversity on top of this
further reduced the recovered key bits to 64 and 54 for function-level and basic
block-level diversity respectively. At the 10–50% insertion rate we observed
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similar trends, with CF/BB and dynamic loads reducing the EVICT+TIME key
recovery to 20 bits. Dynamic cache loads naturally have a higher performance
variation, since they require an extra indirect load to implement runtime dynamic
randomness. This results in a more pronounced impact on the EVICT+TIME
attack.

We observed similar trends for the PRIME+PROBE attack. While dynamic
loads have some effect on the attack by themselves, they are most effective when
combined with function or basic-block dynamic control-flow diversity. In the best
case (CF/BB + Dyn) we observed an average correct key recovery of only 14
bits. This result is near the theoretical limit of 8 bits where an attacker gains no
information from the side channel. Recovering 8 bits of the key is equivalent to an
adversary randomly guessing the key by nibbles without side-channel information,
since such an adversary has a 1 in 16 chance to guess each nibble correctly and
each key nibble is independent for uniform random keys. This expected number
of correctly guessed key bits with no knowledge is a lower bound on the accuracy
of any side-channel attack, and we show this bound as a dashed line in Figure 7.

Increasing samples To investigate whether the attacks could feasibly over-
come our defense by gathering more side-channel observations, we increased
the iteration count for both attacks. We found that while the attack accuracy
increased marginally with 4x and 8x the number of original attack measurements,
a realistic attack is still infeasible. With the CF/BB + Static (10–50%) setting, 4x
iterations resulted in average correctness of 70 bits for the EVICT+TIME attack
and 34 bits for the PRIME+PROBE attack. 8x iterations resulted in 42 correct
key bits on average for the PRIME+PROBE attack. These results indicate that
dynamic control-flow diversity is still effective in the presence of better resourced
attackers, although it may require a different diversifying transformation to be
more effective against the EVICT+TIME attack.

Collecting eight times more samples than in our baseline attack required
about five minutes of attack time, resulted in a 1.5GiB data file, and analysis
took about an hour on a high end, quad-core c3.xlarge Amazon EC2 instance.
In a more realistic situation collecting many more samples than this is likely
prohibitive. It is important to remember that our attack is simply encrypting
a single block, with no inter-process communication or application overhead.
Our tests represent a best-case scenario for an attacker. A realistic attack would
target a service which is doing more work than our test attacks, and thus data
collection would be far slower and noisier in practice.

4.2 Performance Evaluation

Most existing defenses against cache side-channel attacks, e.g., reloading sensitive
tables into cache after every context switch or rewriting encryption algorithms to
not use cached tables at all, introduce moderate overheads. Our transformations
also marginally increase the cost of AES encryption. However we believe this
overhead to be quite reasonable for an automated and general side-channel
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Figure 9: Performance slowdown factor for SPEC CPU2006 with function-level
dynamic control-flow diversity on 25% of functions and 10–50% static cache noise
inserted in all functions. Y-axis is on a log scale.

defense. To properly quantify this impact, we studied an AES micro-benchmark,
a full-fledged service — Apache serving files over HTTPS using AES — and the
SPEC CPU2006 benchmark suite.

From this performance analysis, in conjunction with attack success, we found
that the optimal trade-off between security and performance is the CF/F + Static
Loads setting. The CF/BB + Static Loads setting was slightly more effective, with
only a small marginal decrease in performance, and is thus also an ideal candidate
setting. Using dynamic loads, while slightly more effective, has a significantly
larger performance impact for comparably little marginal security benefit.

AES Micro-benchmark We first measured the increase in time introduced by
each transformation with an AES micro-benchmark. We generated ten random
different versions of libgcrypt for each set of parameters, ran each version of the
AES encryption function five million times on random plaintexts for each of ten
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Transformation File Size (KiB) Increase Factor

Baseline 657 1.00

Static Loads (5-25%) 657 1.00
CF/F + Static (5-25%) 702 1.07
CF/BB + Static (5-25%) 716 1.09
Dyn Loads (5-25%) 658 1.00
CF/F + Dyn Loads (5-25%) 755 1.15
CF/BB + Dyn Loads (5-25%) 727 1.11
Static Loads (10-50%) 657 1.00
CF/F + Static (10-50%) 766 1.17
CF/F + Static (10-50%) 941 1.43
CF/BB + Static (10-50%) 737 1.12
CF/BB + Static (25@10-50%) 837 1.27
Dyn Loads (10-50%) 660 1.00
CF/BB + Dyn Loads (10-50%) 759 1.15
CF/F + Dyn Loads (10-50%) 784 1.19

Table 1: File size increase for libgcrypt, relative to a non-diversified baseline.

different random keys and measured the number of cycles for each encryption.
The first column of each group in Figure 8 shows the slowdown for the libgcrypt

micro-benchmark.

We found that using function or basic-block level dynamic control-flow diver-
sity along with static cache noise results in a performance slowdown of 1.76x–2.02x
compared to the baseline AES encryption when using 10–50% cache noise inser-
tion. Dynamic cache noise at a 5–25% rate results in similar performance, but
10–50% insertion of dynamic loads has significantly more impact on performance
(2.39–2.87x slowdown).

In addition to measuring encryption time, we investigated the impact of our
transformations on the size of the encryption library. While desktop disk space is
currently plentiful, this is not the case for embedded or mobile systems. Many
programs are also distributed over the Internet through communication links
that have either bandwidth or data limits. Table 1 shows the impact of our
transformations on the size of the libgcrypt shared object.

Application Benchmark In the previous section we measured the performance
impact on AES encryption alone, encrypting a single block. However, to get
a more realistic picture of the performance impact of our techniques, we also
evaluated the performance overhead of dynamic control-flow diversity and our
transformations on Apache 2.4.10 serving AES encrypted data. We used the
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standard apachebench (ab) tool to evaluate performance, connecting over https
to an Apache instance using a diversified version of the OpenSSL 1.0.1 library3.

As seen in the second column of each group in Figure 8, the overall slowdown
of our techniques varies from 1.25x for static cache noise to 2.1x for dynamic.
The static noise CF/F and CF/BB settings in fact have identical overheads in this
test, and we therefore recommend the CF/BB setting for practical applications
which consist of more than just block cipher encryption. The overall performance
impact is naturally lower than the simple micro-benchmark, since Apache does
other processing in addition to encryption. However, this workload is more
representative of a real-world application of cryptography and AES in particular.

SPEC CPU2006 To illustrate the effects of our techniques on CPU intensive
workloads, we tested with the C and C++ portions of the SPEC CPU2006
benchmark suite. We selected one parameter setting: function-level dynamic
control-flow diversity with static noise. However, since SPEC does not have any
particular targets for cache side-channel attacks, we applied dynamic control-flow
diversity universally over all functions with a 25% probability. We also applied
static cache noise over all functions with a probability to insert noise for each
instruction chosen randomly for each basic block from the range 10–50%. These
parameters represent a worst-case for the CF/F + Dyn setting. To account for
random choices, we built and ran SPEC with four different random seeds

As we show in Figure 9, our transformations introduce a 1.82x geometric mean
overhead across all benchmarks. The xalancbmk and dealII benchmarks stand out
in this test. These particular benchmarks are large, complex C++ programs with
many function calls. Since we applied function dynamic control-flow diversity
across the entire program in this case, we naturally incur a higher overhead when
the program calls many small functions. In practice users of dynamic control-flow
diversity should target transformations in only the sections of code which might
be vulnerable to a side-channel attack, instead.

5 Discussion

Parameter Settings

In our experiments we determined that a 5–25% insertion percentage range for
cache noise instructions is too narrow. Dynamic control-flow diversity works best
when replicas have very different runtime behavior, since it relies on switching
between replicas with varying side-channel effects. In addition, libgcrypt is mostly
straight line code and thus has a relatively low number of functions and basic
blocks used for AES encryption. We expect that more complex cryptographic
algorithms such as RSA will have more control flow, and thus more opportunity
to insert dynamic control-flow diversity and switch between variants.

3 While we have not tested the effectiveness of the side-channel attack on this library, we
believe it would take minimal effort to port the attack to OpenSSL or other table-based
AES implementations.
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Cache noise, especially the dynamic variant, has an impact on execution time
and thus the EVICT+TIME attack. However, this transformation is designed
specifically to disrupt the PRIME+PROBE attack by polluting the cache and
masking real AES table cache accesses. A transformation targeted at varying the
running time of each replica would be more suited to disrupting this attack. We
could adapt proposed hardware junk code insertion techniques [25,5] to work with
dynamic control-flow diversity by inserting differing code with varying runtimes
into each replica.

In the best case, CF/BB + Dyn (10–50%), our EVICT+TIME attack can
derive only 4.96 key nibbles, or about 20 key bits. Even with a more performance
conscious alternative, CF/BB + Static (10–50%), we still prevent the attacker
from finding 80 of 128 key bits. In the PRIME+PROBE attack our experiments
show an average of 3.32 correctly recovered key nibbles, or 13.28 key bits, for the
CF/BB + Static (10–50%) setting. The remaining approximately unknown key
bits are too much to brute-force search, since this would require checking 2n key
guesses, where n is the number of unknown key bits. With this low correctness
an attacker is unlikely to even be able to determine which key nibbles are correct,
and thus would gain no useful information from the attack. Thus, we conclude
that our techniques effectively mitigate the PRIME+PROBE attack, given a
realistic attack scenario.

We chose example parameters of ten replicas for each program unit along with
5–25 and 10–50 percent probability of inserting cache noise operations at each
instruction as a starting point after initial experimentation. These parameters are
representative of a narrow and wider range of insertion. However, these parameters
may not represent an ideal trade-off between security and performance. In fact,
these parameter settings are not mutually exclusive, e.g., some functions may be
diversified with static noise while others get dynamic noise. Some combination of
function and basic block replicas may also be useful for some applications. For
future work, we propose to develop heuristics for automatic parameter selection
through application and attack profiling.

Disabled Cache

Disabling caching of critical memory is an often suggested naive approach to
preventing cache side-channel attacks [39]. This approach is attractive since
existing commodity processors support selectively disabling page caching, but
unfortunately it is prohibitively slow. To verify that this mitigation is impractical,
we carefully measured the performance of the AES routine in libgcrypt with
caching disabled for the AES lookup tables. This required writing a custom Linux
kernel module to map and mark a page of memory as uncacheable using the
Page Attribute Table (PAT) available on x86 CPUs. The user mode application,
in this case libgcrypt, can then map this page into its address space and store the
lookup table into it. This interface, while technically possible, is complex and
not available in the standard Linux kernel.

We modified libgcrypt to utilize this approach and tested the same AES
micro-benchmark described above. We found that disabling caching on only the
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single AES lookup page caused the encryption routine to be 75 times slower
than normal. Therefore disabling caching, even for a single page, is impractical
on modern hardware. We discuss other hardware based cache protections in
Section 6, however, these approaches are not available in commodity processors.

Implementation Limitations

For our initial investigation of applying control-flow diversity to side channels,
we manually inspected the libgcrypt AES implementation to select nine functions
relevant to the encryption algorithm. This simple step required no modification
to the original sources, and could be easily automated by supplying only an
encryption entry point. We forced our system to replicate these functions and
their basic blocks to demonstrate the effectiveness of our techniques in a con-
trolled environment, without the additional complication of having the system
automatically select program units for diversification at random. However, this
small manual effort was done to arrive at a controlled experiment and is not
required to use control-flow diversity. By randomly selecting program units for
replication with some configurable probability, our system can probabilistically
protect an entire application from side-channel attacks with no manual effort.

Instead of random or manual program unit selection, we believe that side-
channel analysis tools such as CacheAudit [15] can guide the selection of the
critical program fragments and parameters for diversification. This should elimi-
nate all manual effort while preserving a high level of security.

Related Attacks

Diversifying transformations, such as inserting cache noise instructions, can
also be used to perform fine grained code layout randomization. This provides
probabilistic protection against return-oriented programming and its variants
which makes it realistic to expect that our defense technique can simultaneously
defend against two or more fundamentally different classes of attacks. We will
pursue this research direction in follow up work as well.

6 Related Work

This paper unites two previously unrelated strands of research: side channels and
artificial software diversity. We discuss the related work in each of these areas
separately.

6.1 Side Channels

After Kocher described an initial timing side-channel attack on public-key cryp-
tosystems [27], researchers have proposed a multitude of side-channel attacks
against cryptographic algorithms. While researchers have proposed many different
side-channel vectors ranging from power analysis [26] to acoustic analysis [17],
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we focus on applying our techniques against timing and cache-based attacks not
requiring physical access. Cache-based attacks were first theoretically described
by Page [32] in 2002. In 2003, Tsunoo et al. [40] demonstrated cache-based attacks
against DES in practice. Bernstein [7] then presented a simple timing attack on
AES, along with potential causes of this timing variability, including variable
cache behavior and latency. Shortly after, Osvik, Shamir, and Tromer [31,39]
presented their attacks on AES, including the two example attacks used in this
paper. In addition to the two synchronous attacks we evaluated our techniques
against, Osvik et al. also described an asynchronous attack relying only on
passively observing encryptions of plaintexts from a known but non-uniform
distribution.

Recently, Hund et al. [24] used a cache-based timing side-channel attack to de-
randomize kernel space ASLR in order to accurately perform code-reuse attacks
in the kernel address space. Since we build our system on techniques proven to
be effective against code-reuse attacks, our dynamic control-flow diversity with
NOP insertion is a perfect fit to defend in depth against this attack.

As side-channel attacks have matured, researchers have proposed numerous
defenses using both hardware and software. We will now briefly describe a few of
the relevant defenses.

Hardware Defenses Several different methods of preventing side channels at
the hardware level have been proposed, with varying degrees of practicality. In
the context of differential power analysis attacks, Irwin et al [25] proposed a new
stage in the processor execution pipeline which randomly mutates the instruction
stream with the assistance of a compiler-generated register liveness map. Among
other peephole transformations, this mutation unit adds instructions that do not
affect the correct functioning of the program, which are a super-set of our compiler-
based NOP insertion transformation. Since our transformations in software are
similar to the techniques Irwin et al. applied to differential power analysis, we
expect that our technique will apply directly to power analysis attacks as well.
Finally, Irwin et al. proposed a new probabilistic branch instruction, maybe, that
would allow us to efficiently randomize control flow without the use of a random
buffer. Ambrose et al. [5] also proposed inserting random instructions but with
the added requirement that inserted instructions modify processor state, e.g.,
registers, so the new instructions are indistinguishable from legitimate program
code.

To specifically target cache-based attacks, Page [33] proposed partitioning
the cache into disjoint configurable sets so that a sensitive program cannot share
cache resources with an attacker. However this would require a radical change
to current cache designs. Bernstein [7] suggested the addition of a new CPU
instruction to load an entire table into L1 cache and perform a lookup. This
approach provides consistent cache access behavior regardless of input, and as such
would eliminate cache side channels through table lookups. Wang and Lee [41]
also proposed two new hardware cache designs to mitigate cache side channels:
PLcache and RPcache. PLcache has the new capability of locking a sensitive
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cache partition into cache, while RPcache randomizes the mapping from memory
locations to cache sets. While these techniques are powerful mitigations against
cache side-channel attacks, they all require additional hardware features which
major processor vendors are unlikely to implement. In contrast, our techniques
require no special hardware support and can be used immediately.

Intel has recently implemented a new hardware instruction to perform en-
cryption and decryption for AES [19]. Since this instruction is data independent,
using it instead of a software routine should protect against side-channel attacks
on AES. However, this hardware only implements AES, and thus we still need
defensive measures to protect other cryptographic algorithms.

Software Defenses The ideal defense against side-channel attacks is to modify
the sensitive program so that it has no input-dependent side-effects, however this is
an extremely labor-intensive solution and is often infeasible. Developers generally
take this approach to removing timing side channels by creating algorithms that
run in constant-time regardless of inputs. Bernstein [7] strongly recommends this
approach, while cautioning that software which the programmer expected to run
in constant time may not do so due to hardware complexity.

Page [34] suggested manually adding noise to encryption to make cache side-
channel attacks more difficult in a manner conceptually similar to our automatic
randomizing transformations. For instance, Page manually inserted garbage
instructions and random loads into the encryption routine to combat timing
and trace based attacks respectively. Page’s work is a form of obfuscation rather
than diversification since all users run the same binaries with the same runtime
control-flow. Our combination of control flow randomization and garbage code
insertion simultaneously defends against code reuse attacks and side channels
whereas garbage code in itself does not protect against side channels and Page’s
transformations do not protect against code reuse.

Brickell et al. [8] proposed the use of compressed and randomized tables for
AES that would alleviate cache-based attacks. However, this implementation
process requires manually rewriting the AES implementation and is specific to
the operation of AES.

Cleemput et al. [9] proposed defenses that do not require manual program
modification. In particular, they described the use of compiler transformations to
reduce timing variability. Our approach, while also compiler-based, seeks to mask
variability rather than remove it entirely, since opportunities to automatically
eliminate variable-time routines are limited.

In their recent paper addressing side-channel attacks in the context of virtu-
alized cloud computing, Zhang and Reiter [45] proposed periodically scrubbing
shared caches used by sensitive processes. This scheme potentially breaks cache
snooping by a time-shared process on the same core, but will not necessarily com-
bat cache attacks in a Simultaneous Multithreading (SMT) context or continuous
power analysis attacks. Since our random decision points are more fine grained
than the scrubbing interval, our techniques have greater potential against these
fine-grained attacks, although this would require more investigation. In addition,
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control-flow diversity does not depend on any resources outside the program and
is thus applicable in situations without hypervisors, such as embedded software.

Finally, Tromer et al. [39] mention adding noise to memory accesses with
spurious accesses to decrease the signal available to the attacker. Effectively, our
technique accomplishes this goal in a general way that could be extended to other
side channels, and we provide a concrete evaluation showing its effectiveness in
practice. Since adding replicas exponentially increases the number of possible
execution traces, we can ratchet our defense up sufficiently so that an attacker
cannot feasibly collect and analyze enough samples.

6.2 Artificial Software Diversity

The literature on artificial software diversity is extensive; we limit ourselves to
the work most closely related to ours. Larsen et al. provides a comprehensive
systematization of approaches to artificial software diversity [28]. Cohen initially
pioneered software diversity as a protection against reverse engineering [10] and
was first to suggest garbage code insertion and transformations that obscure the
actual control flow. Collberg et al. [11] extended these ideas into a broader set of
obfuscating transformations against reverse engineering attacks and introduced
the notion of opaque predicates [13]. While opaque predicates usually refer to
predicates that have a known outcome at obfuscation time but are expensive to
decide afterward via static analysis, Collberg et al. also mention “variable” opaque
predicates that flip-flop between true and false at runtime. These ideas were
evaluated in depth by Anckaert et al. [6] as a defense against reverse engineering,
by Collberg et al. [12] in context of client-side tampering of networked systems,
and by Coppens et al. [14] to prevent reverse engineering of patches. Our work
differs in its use of control flow randomization: we use it to switch among
implementation variants (replicas) with fine-granularity—not as a randomizing
transformation in itself. Furthermore, we aim to thwart side-channel attacks
rather than reverse engineering.

Several diversified defenses against code reuse attacks have dynamic aspects.
Giuffrida et al. [18] presented a compiler-based approach that periodically reran-
domizes services in a microkernel OS while it is running. Live rerandomization
works by periodically transferring the application state from one process to
another such that the old and new processes run diversified variants of the
same input program. While this provides excellent protection against code reuse
attacks, the rerandomization overhead prevents the fine granularity our approach
efficiently supports.

Hiser et al. [21] performed fine-grained code layout randomization using a
process virtual machine. The approach uses a code cache that leads to predictable
program traces and might constitute a side channel in itself. Homescu et al. [22]
diversifies just-in-time compiled code and similarly caches translated code to
improve performance. Shioji et al. [38] introduced “code shredding” that embeds
random checksums in pointers to thwart control-flow hijacking. To improve
performance and add randomness, checksums are not masked out before the
pointer values are used in control flow transfers. Rather, the entire code section
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is replicated in process memory to make the targets of checksummed pointers
valid. Our use of code replication is more flexible because our granularity can
vary at the function or basic block level and has a lower memory overhead as a
result. Our performance overhead is also much lower since our compiler-based
approach avoids the overheads associated with binary rewriting; Shioji report
overheads ranging from 3x to 26x on Bzip2 1.0.5.

Novark and Berger secure the heap against memory management errors via a
randomizing memory allocator [30]. Allocations are placed randomly in memory
and stay in place until their deallocation. Freed pages are overwritten with
random data. While this can interfere with side-channel attacks, attackers can
sample the victim process arbitrarily many times between memory allocator
activations.

Summing up, our work is the first to use software diversity to mitigate cache
side-channel attacks. Previous diversification approaches comprise one or more
randomizing code transformations. Our approach consists of a runtime random-
ization mechanism to dynamically vary execution characteristics in addition to a
set of randomizing code transformations.

7 Conclusion and Outlook

We provide the first evaluation of software diversity as a side-channel mitigation.
To that end, we developed dynamic control-flow diversity which performs fine-
grained program trace randomization. Our technique does not require source
code modification or specialized hardware so it can be automatically applied to
existing software. We have implemented a prototype diversifier atop LLVM and
rigorously evaluated the performance of our techniques using modern, realistic
cache side-channel attacks in a setting that favors attackers. Our experimental
evaluation shows that our technique mitigates cryptographic side channels with
high efficacy and moderate overhead of 1.5–2x in practice, making it viable for
deployment.

Beyond the cryptographic side-channel problem addressed in this paper,
we expect that control-flow diversity is simultaneously effective against other
implementation-dependent attacks, including code reuse and reverse engineering.
We plan to explore this in future work.
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What every compiler writer should know about

programmers
or

“Optimization” based on undefined behaviour
hurts performance

M. Anton Ertl⋆

TU Wien

Abstract. In recent years C compiler writers have taken the attitude
that tested and working production (i.e., conforming according to the C
standard) C programs are buggy if they contain undefined behavior, and
they feel free to compile these programs (except benchmarks) in a way
that they no longer work. The justification for this attitude is that it
allows C compilers to optimize better. But while these “optimizations”
provide a factor 1.017 speedup with Clang-3.1 on SPECint 2006, for
non-benchmarks it also has a cost: if we go by the wishes of the compiler
maintainers, we have to “fix” our working, conforming C programs; this
requires a substantial effort, and can result in bigger and slower code.
The effort could otherwise be invested in source-level optimizations by
programmers, which can have a much bigger effect (e.g., a factor > 2.7
for Jon Bentley’s traveling salesman program). Therefore, optimizations
that assume that undefined behavior does not exist are a bad idea not just
for security, but also for the performance of non-benchmark programs.

1 Introduction

Compiler writers are sometimes surprisingly clueless about programming. For
example, the first specification for Fortran states: “no special provisions have
been included in the FORTRAN system for locating errors in formulas” and
“FORTRAN should virtually eliminate coding and debugging”, and this ap-
proach to error checking made it into the finished product; there were also no
programmer-defined functions in the original design, but that was fixed before
release [Bac81].

More recently, people have meant one of several different programming lan-
guages when they wrote about C; for clarity, we will use different names for these
programming languages:

⋆ Correspondence Address: Institut für Computersprachen, Technische Univer-
sität Wien, Argentinierstraße 8, A-1040 Wien, Austria; anton@mips.complang.

tuwien.ac.at

112



C⋆ A language (or family of languages) where language constructs correspond
directly to things that the hardware does. E.g., * corresponds to what a
hardware multiply instruction does. In terms of the C standard, conforming
programs are written in C⋆.

“C” The subset of C⋆ that excludes all undefined behavior according to the
C standard. In C-standard terms, programs written in “C” are stricty con-
forming programs.

Cbench A subset of C⋆ and (slight) superset of “C” that includes the bench-
marks considered relevant by the compiler maintainers (e.g., the SPEC CPU
benchmarks).

We look at the differences between C⋆ and “C” in Section 2.
Production programmers typically think in C⋆ when programming, and as a

result, they program in C⋆, so most production code is not written in “C” (see
Section 2). The cluelessness of many recent C compiler maintainers is that they
officially support only “C” and officially feel free to compile any source code that
performs undefined behavior into arbitrary machine code,1 even programs that
were tested and worked as intended with earlier versions of the same compiler.
As John Regehr puts it: “A sufficiently advanced compiler is indistinguishable
from an adversary.”2 Inofficially, these compilers support Cbench, but that is of
little benefit to other programs.

Unlike the authors of the first Fortran compiler, the current C compiler main-
tainers stubbornly insist on their view.3 The reason for this seems to be that
they evaluate their work through benchmark results of a certain set of bench-
marks; by only having to compile these benchmark programs as intended, they
want to give their optimizer freedom to produce better benchmark results.

Better benchmark numbers alone are a weak justification for not compiling
production programs as intended, so the C compiler maintainers also claim that
these “optimizations” give speedups for other programs. However, that would
require programmers to convert their C⋆ programs to “C” first, a process which
can produce worse code (Section 3), and more importantly, requires an effort that
would be much more effective if directed at source-level optimizations. We look at
the performance benefits of source-level optimizations in Section 4 and compare
it to the differences seen from “optimizations” based on undefined behavior.

Section 5 discusses what compiler writers, standards committees, program-
mers, and researchers can and should do about these issues.

2 The difference between C⋆ and “C”

Both languages have the same syntax and the same static semantics; the differ-
ence is in the run-time semantics.

1 The classical intimidation was “may format your hard drive”, but recently “make
demons fly out of your nose” (in short: nasal demons) seems to be more popular.

2 http://blog.regehr.org/archives/970
3 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
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C⋆ maps language elements to corresponding hardware features, and is con-
sistent about this, at least on the platform. The actual behavior at run-time
may be different between platforms, lead to an exception, or worse, overwriting
of an unrelated data structure (and it is thinkable, although very improbable,
that this eventually results in a formatted hard disk on some platforms), but
can always be explained by a sequence of hardware steps corresponding to the
source program.

“C” is a subset of C⋆ that tries to specify what is portable between different
hardware platforms (including some that have died out) and between different
C compilers. Therefore it specifies that the behavior of many language elements
under some circumstances is undefined, implementation-defined4, or similar. The
original idea was that C compilers implement C⋆, and that undefined behavior
gives them wiggle room to choose an efficient hardware instruction; e.g., for <<

use the hardware’s shift instruction, and differences between different architec-
tures for some parameters result in not defining the behavior in these cases. But
in recent years, compiler maintainers have gone beyond that and “optimized”
programs based on the assumption that undefined behavior does not happen, in
ways that do not correspond to any direct mapping from language element to
the actual hardware; e.g., they “optimize” a bounded loop into into an infinite
loop.

There are 203 undefined behaviors listed in appendix J of the C11 standard
(up from 191 in C99). And these are not just obscure corner cases that do
not occur in real programs, on the contrary, it is likely that most, if not all,
production programs exhibit undefined behavior; even in GCC and LLVM itself
(i.e., the pinnacles of the church of “C”), undefined behior has been found even
when just compiling an empty C or C++ program with optimizations turned
off.5 Standards conformance was a requirement to be considered for inclusion
in SPEC CPU 2006, yet 6 out of 9 C programs perform C99-undefined integer
operations [DLRA12], and these are not the only undefined behaviors around by
far.

2.1 Optimization⋆ and “Optimization”

An optimization is a program transformation that preserves the observable be-
havior of the program and hopefully results in a program that consumes fewer
resources (run-time and code size are typical metrics).

There are a large number of effective optimizations that can be used on
C⋆ programs (called optimizations⋆ in the following), e.g., strength reduction,
inlining, or register allocation. A simple example would be to optimize a multi-
plication by 5 into a lea instruction on the AMD64 architecture.

GCC and LLVM have been adding “optimizations” based on undefined be-
havior in “C”. These work by assuming that the program exhibits no undefined

4 And apparently the implementation is allowed to define the implementation-defined
behavior as undefined.

5 http://blog.regehr.org/archives/761
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behavior, and deriving various “facts” from this assumption, e.g., about values
of variables, propagates these “facts” throughout the program, and uses them
in other places for “optimizations”. An example is the following function from
the SPEC benchmark 464.h264ref:

int d[16];

int SATD (void)

{

int satd = 0, dd, k;

for (dd=d[k=0]; k<16; dd=d[++k]) {

satd += (dd < 0 ? -dd : dd);

}

return satd;

}

This was “optimized” by a pre-release of gcc-4.8 into the following infinite
loop:

SATD:

.L2:

jmp .L2

What happened? The compiler assumed that no out-of-bounds access to d
would happen, and from that derived that k is at most 15 after the access, so
the following test k<16 can be “optimized” to 1 (true), resulting in an endless
loop. Then the compiler sees that the return is now unreachable, that satd is
dead, that dd is dead, and k is dead, and optimizes the rest away.

The GCC maintainers subsequently disabled this optimization for the case
occuring in SPEC,6 demonstrating that, inofficially, GCC supports Cbench, not
“C”.

This kind of “optimization” certainly changes the observable behavior, but
its advocates defend it by saying that programs broken by these “optimizations”
have been buggy all along. Given the widespread occurence of undefined behavior
in production code, this means that the compiler maintainers feel free to compile
pretty much every production program in a way that it behaves differently than
intended and different from the code produced by an earlier version of the same
compiler and tested successfully.

If undefined behaviour is so widespread, why do we notice code broken by
“optimizations” only occasionally? Undefined behavior is a run-time property,
and only a small portion of these occurs in a way that can be turned into
(compile-time) “optimization”. Many of of these cases are checks for special
cases that do not occur in most executions, such as a check for a buffer overflow;
so “optimizing” such checks away may go unoticed unless the program tests for

6 It still strikes for other programs, see gcc bug 66875.
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these specific checks; and such testing may be hard to achieve in larger programs,
because 100% test coverage is hard to achieve.

Wang et al. [WZKSL13] have written a static program analyzer that tries to
find code that may be “optimized” away in “C”, but not optimized⋆ away in
C⋆. They found that 3,471 packages out of 8,575 packages in Debian Wheezy
contain a total of about 70,000 such pieces of code (as far as their checker
could determine). In most cases “optimizing” these pieces of code away would
result in code different from what the programmer intended (programmers rarely
write code that they intend to be optimized away). These numbers are pretty
alarming, but probably far lower than the number of undefined behaviors and
packages containing them.

More on optimization⋆ Actually I was a little bit too cavalier about optimiza-
tions⋆ not changing the observable behaviour of C⋆ programs. It is actually pos-
sible to write programs in C⋆ where any change in the generated code produces
an observable difference, e.g., a program that outputs the bytes in its object
code.

But C⋆programmers would not complain about that. They generally don’t
expect this level of stability. After all, the bytes in the object code change every
time there is a change in the program, e.g., due to a bug fix or a new feature.

What they do expect is, in the first order, the direct results of language
elements must not change if they are observable (i.e., influence output or excep-
tions/signals). So optimization such as strength reduction, dead code elimina-
tion, or jump optimization are fine.

Register allocation can change the results of accesses to uninitialized vari-
ables. This is also accepted by C⋆ programmers: they don’t rely on the values
of uninitialized variables, because these values often change during maintenance
even in the absence of register allocation.7

Of course, “optimization” defenders like to tell stories about bug reports
about changes in behavior due to, e.g., changed values of uninitialized variables
when optimization is turned on, implying that there is no difference between
optimization⋆ and “optimization”. But my guess is that in most such cases the
bug reporters were not aware that the reason for the breakage is an uninitialized
variable, and once they are aware of that, they are likely to change the program
to avoid using such values, because the program would also be likely to break
on maintenance.

And these kinds of reports are not that frequent: Of the 25 bug reports
for gcc components rtl-optimization and tree-optimization resolved or closed
between 2015-07-01 and 2015-07-16, three were marked as invalid, and all three
were due to “optimizations”, none due to optimizations⋆; Bug 66875 was very
similar to the SATD example shown above (but the bug reporter accepted that
his program is buggy due to the out-of-bounds array access), and Bugs 66804
and 65709 are both due to gcc using aligned rather than unaligned instructions

7 Alternatively, a compiler striving for a more deterministic behaviour could initialize
all uninitialized variables to a fixed value, at a small cost in performance.
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when autovectorizing code with unaligned accesses on the AMD64 architecture
(which normally does not impose alignment restrictions).

“Optimization” and benchmarks Compiler maintainers justify “optimiza-
tions” with performance, and they have benchmark results to prove it; actually,
not really (see below). But if they had such benchmark results, would they really
prove anything? There are significant differences between production programs
and benchmarks:

– Production programs are maintained, including performance tuning by pro-
grammers if desired.

– Benchmark programs are fixed, and are normally not changed anymore.
Therefore they cannot benefit from further source-level optimizations by
programmers.

– Benchmark programs are fixed, and therefore exempt from the policy of
compiler maintainers that it is ok to break code with undefined behavior,
as we have seen from the released gcc not breaking SATD() from SPECint.
Benchmark programs are not rewritten to eliminate undefined behaviors as
compiler maintainers demand of non-benchmark programs, and therefore do
not suffer from the worse code that such rewrites can cause (see Section 3).

Therefore, even if “optimizations” produce speedups for benchmarks, that
does not say anything about the performance effect of enabling “optimizations”
on production code.

But do “optimizations” actually produce speedups for benchmarks? Despite
frequent claims by compiler maintainers that they do, they rarely present num-
bers to support these claims. E.g., Chris Lattner (from Clang) wrote a three-part
blog posting8 about undefined behavior, with most of the first part devoted to
“optimizations”, yet does not provide any speedup numbers. On the GCC side,
when asked for numbers, one developer presented numbers he had from some
unnamed source from IBM’s XLC compiler, not GCC; these numbers show a
speedup factor 1.24 for SPECint from assuming that signed overflow does not
happen (i.e., corresponding to the difference between -fwrapv and the default
on GCC and Clang).

Fortunately, Wang et al. [WCC+12] performed their own experiments com-
piling SPECint 2006 for AMD64 with both gcc-4.7 and clang-3.1 with default
“optimizations” and with those “optimizations” disabled that they could iden-
tify, and running the results on a on a Core i7-980. They found speed differences
on two out of the twelve SPECint benchmarks: 456.hmmer exhibits a speedup
by 1.072 (GCC) or 1.09 (Clang) from assuming that signed overflow does not
happen. For 462.libquantum there is a speedup by 1.063 (GCC) or 1.118 (Clang)
from assuming that pointers to different types don’t alias. If the other bench-
marks don’t show a speed difference, this is an overall SPECint improvement by
a factor 1.011 (GCC) or 1.017 (Clang) from “optimizations”.

8 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
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2.2 The intended meaning of programs

Why do programmers program in C⋆, not in “C”? Programmers are usually
not language lawyers, nor should they be required to. They usually learn a
programming language by reading introductory books, by looking at programs
written in the language, and by trying out what the compiler does for various
programs, and build a relatively simple model from that, possibly incorporating
other knowledge (e.g., about hardware).

GCC maintainers have claimed that they don’t know what the intended
meaning of programs with undefined behaviour is. However, their own compiler
is evidence against this claim. It compiles exactly the code intended by the
programmer unless it sees enough of the program to derive “facts” that are then
used for “optimization”. E.g., in the SATD example, if the compiler did not know
the number of elements of d (e.g., because d is defined in a different compilation
unit), the compiler would not “optimize” the code and would compile it exactly
as intended.

And that’s what programmers expect: In the normal case a read from an
array (even an out-of-bounds read) performs a load from the address computed
for the array element; the programmer expects that load to produce the value at
that address, or, in the out-of-bounds case, it may also lead to a segmentation
violation (Unix), general protection fault (Windows), or equivalent; but most
programmers do not expect it to “optimize” a bounded loop into an endless
loop.

The expectations of programmers are reinforced, and partially formed, by the
behaviour of compilers. Most of the time programmers experience the compiler
without “optimizations” kicking in.

So, contrary to claims by “optimization” advocates9, the compiler does not
need psychic powers to determine the intent of the programmer in case of unde-
fined behaviour, it knows the intent already.

A common assumption is that this expected behaviour corresponds to the
behaviour when turning off optimization. That is often, but not always the case.
In particular, at least some versions of GCC “optimize” x+1<=x even with -O0.

The programmers’ model may or may not include some caveats (such as dif-
ferent sizes of pointers between 32-bit and 64-bit platforms, or that one should
avoid unaligned accesses on some hardware), but not all the fine details of un-
defined behavior in the C standard. And a programmer who programs for just
one platform will often not feel compelled to heed portability caveats even if he
knows them. So, we cannot exclude non-portable code from C⋆.

What is more likely to not be in C⋆ is non-maintainable assumptions (such as
the values of uninitialized variables). Still, be very cautious before introducing
new optimizations that rely on the assumption that a certain usage is unmain-
tainable and therefore won’t occur.

Coming back to the psychic powers question, while the compiler cannot know
which undefined behaviours a particular program exhibits, it is safe to use a con-
servative approximation (i.e. C⋆). One can ask whether the optimization under

9 news:<hO2dnSk5W8n4p57OnZ2dnUVZ_qSdnZ2d@supernews.com>
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consideration would break things that are likely to be stable across mainte-
nance, or one can use the large corpus of working free software to get an idea
which undefined behaviours do occur in production programs. Deriving such
knowledge from bug reports is also an option, if all else fails; e.g., if there are
several bug reports on alignment problems from autovectorization, obviously un-
aligned accesses are used by programmers on architectures that support them,
and therefore autovectorization should by default use SIMD instructions without
alignment restrictions on these architectures.

2.3 Security

I have read arguments that use security to justify compiling programs with
undefined behavior different from what was intended. While this paper focuses
on the performance and optimization claims, this section discusses this argument
briefly.

The argument tends to go something like this: Because there are out-of-
bounds array accesses that are security vulnerabilities (in particular, buffer over-
flow vulnerabilities), and out-of-bounds array accesses are undefined behaviors,
it is good for security to compile undefined behaviors differently from the expec-
tations of the programmer. There may be the assumption in this argument that
programmers are encouraged to produce fewer out-of-bounds array accesses if
compilers do that.

That argument is wrong for several reasons:

– Not all vulnerabilities perform undefined behavior (e.g., privilege escalation
or SQL injection).

– Undefined behavior is just as hard to find as vulnerabilities (both usually
only show up at run-time for certain corner-case inputs), so encouraging pro-
grammers to eliminate undefined behaviors will not make it easier to find
vulnerabilities. For a given amount of effort, it is more likely that program-
mers will find more vulnerabilities if they focus on vulnerabilities than if
they also have to look out for undefined behavior.

– Buffer overflow vulnerabilities will typically not be “optimized” into code
different from what the programmer intended, because the compiler usually
cannot statically determine for such code that the out-of-bounds access hap-
pens. If the compiler can determine it, reporting it to the programmer makes
much more sense than to “optimize” the code.

– Not all undefined behaviors result in a vulnerability; on the contrary, some
security checks perform undefined behavior, and have been “optimized” away
[WCC+12,WZKSL13]. There the “optimizing” compiler created a vulnera-
bility that was not present in the C⋆ source code.
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2.4 Expressive power

One might think that one can express in “C” all that one can express in C⋆,
but to my surprise that’s not the case. So while we are doing a detour from the
performance theme of the rest of the paper, let us look at an example of that.10

Given that C was designed as a systems programming language, implement-
ing a simple function like memmove() in terms of lower-level constructs should
be possible in C, e.g, as follows:

void *memmove(void *dest, const void *src, size_t n) {

if (dest<src)

memcpy_pos_stride(dest,src,n);

else

memcpy_neg_stride(dest,src,n);

}

where memcpy_pos_stride() copies the lower-addressed bytes of src before
higher-addressed bytes, and memcpy_neg_stride() copies the higher-addressed
bytes before the lower-addressed ones (I believe that these helper functions can
be implemented in “C”, but I also believed that of memmove() before looking
closely into it).

However, this implementation is C⋆, but not “C”, because p<q is not defined
in “C” if p and q point to different objects. Apparently the reason is to allow
more efficient implementation of these operations on segmented architectures
(by comparing only the offsets). However, it is likely that both variants above
work in C⋆ on such platforms, too, because the result of the comparison does
not matter if the pointers point to different objects/segments (in that case either
memcpy variant will be correct).

However, a “C” compiler might assume that src and dest point to the same
object, propagate that “knowledge” to all users of memmove(), and perform
various “optimizations” based on that, even on hardware with a flat address
space.

Another memmove() implementation is based on malloc()ing an intermediate
copy, but malloc() can fail, whereas the standard memmove() cannot.

3 Code quality

Your production program is not a benchmark, so compiler maintainers demand
that you change your program into a “C” program. Let’s see what this can do
to the code quality of a simple example.

We want to determine whether a variable x of some signed integer type is
the smallest value that type can hold. A succinct way to express this in C⋆ (and
in Java) is x-1>=x. This may seem puzzling if you think about these types as

10 For a longer discussion, see news:<2015May1.155805@mips.complang.tuwien.ac.at>
ff.
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mathematical integers, but note that these are bounded types; if x is the smallest
value, then x-1 cannot be smaller. Note that this does not depend on the signed
number representation; some machines may produce an exception on underflow,
but, when x is the smallest value, none produces a value that will produce false
for this comparison. However, gcc assumes that signed integer underflow does
not happen, and uses this assumption to “optimize” this test to always produce
false.11

So how do we rewrite this into “C”? If we assume that the type of x is long,
we can write x==LONG_MIN.12 Let us look at the code quality. For the x-1>=x

variant, we use the gcc option -fwrapv that some (but not all) versions of gcc
offer (as non-default option) to allow compiling many programs with signed
integer overflows as intended. On AMD64 gcc-5.2.0 produces:

x-1>=x

48 8d 47 ff lea -0x1(%rdi),%rax

48 39 c7 cmp %rax,%rdi

7f 06 jg ...

x==LONG_MIN

48 b8 00 00 00 00 00 00 00 80 movabs $0x8000000000000000,%rax

48 39 c7 cmp %rax,%rdi

75 05 jne ...

Three instructions each, but the “C” variant takes 15 bytes (both with -O3

and -Os (size optimization)), whereas the C⋆ variant takes 9. Another way to
implement this check would be

48 ff cf dec %rdi

71 05 jno ...

This takes two instructions and 5 bytes. An optimizing compiler would ideally
produce this machine code from all ways of expressing this check; that would be
an optimization⋆, and a particularly useful one, because one cannot express this
code more directly in C (the overflow flag is not a feature in the C programming
language).

Another example13 is the implementation of 32-bit rotation: The straight-
forward implementation in C⋆is (x<<n)|(x>>32-n) and compiles to the in-
tended code in current compilers but performs undefined behavior in “C” when
n = 0.14 A “C” version with the obvious zero check generates additional in-
structions on both GCC and Clang. The blog entry also looks at another variant

11 This even happens for -O0 on, e.g., gcc-4.1.2 on Alpha.
12 The type of x in the actual program may be a different signed integer type, resulting

in much more code to handle all these possible types, while x-1>=x is independent
of the type.

13 From http://blog.regehr.org/archives/1063
14 Presumably the reason for the undefined behaviour is that the machine instruction

for x>>32 produces x on some CPUs and 0 on others; note that either behavior
produces the correct result for this idiom.
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(x<<n)|(x>>(-n&31)),15 which gcc managed to compile into a rol, but Clang
didn’t and produced code that was longer by four instructions.

So, converting C⋆code to “C” can lead to worse code even on those compilers
whose maintainers say that we should do the conversion. You don’t see this effect
on benchmarks, because the benchmarks are not changed to eliminate undefined
behaviour.

4 Source-level optimizations

Programmers can be very effective at improving the performance of code, and
in particular, can do things that the compiler cannot do. Here we first look at
three examples.

4.1 SPECint

Wang et al. [WCC+12] did not just present the difference that “optimizations”
make for SPECint numbers (Section 2.1), they also looked at the reasons for
these performance differences, and found two small source-level changes that
made the less “optimizing” compiler variants produce just as fast code as the
default compilers.

For 456.hmmer, the problem is that an int index is sign-extended in every
iteration of an inner loop unless the sign-extension is “optimized” away by as-
suming that the int does not wrap around. The source-level solution is to use
an address-length or unsigned type for the index; Wang et al. used size_t, and
the slowdown from disabling “optimizations” went away for 456.hmmer.

For 462.libquantum, the problem is a loop-invariant load in the inner loop
that could not be moved out of the loop without assuming strict aliasing, because
there is a memory store (to a different type) in the loop. The source-level solution
is to move that memory access out of the loop. Wang et al. did that, and the
slowdown from disabling “optimizations” went away for 462.libquantum. Note
that, if the store was to the same type as the load, “optimization” could not
move the invariant load out, while source-level optimization still can.

Also note that you just need to look at the inner loops to find and perform
such optimization opportunities, while you have to work through your whole
program to convert it to “C”, plus you may incur slowdowns from the conversion.

4.2 Jon Bentley’s Traveling Salesman programs

In “Writing Efficient Programs” [Ben82], Jon Bentley used a relatively short
traveling-salesman program that uses a greedy (non-optimal) algorithm as run-
ning example for demonstrating various optimizations at the source code level;
each optimization step resulted in a new program. The programs in the book were
written in Pascal. I transliterated them to C in 2001, keeping the original opti-
mizations and a Pascal-like style (arrays instead of explicit pointer arithmetics),

15 n needs to be unsigned in order for this variant to be “C”.

122



except that I did not perform Bentley’s step 7 of switching from floating point
to integer arithmetics. This results in the programs tsp1...tsp9 (but without
tsp7).16

Given the Pascal-based style, I expect that these programs benefit from opti-
mizations like strength reduction and induction variable elimination more than
many other C programs. They are probably also closer to “C” than many other
C programs for the same reason; to test this, I compiled these programs with
gcc-5.2.0 -m32 -fsanitize=undefined -fsanitize-undefined-trap-on-error,
and they ran through (but note that these runs may still perform undefined be-
haviors that the checker does not check, or for other inputs).

Experimental setup: We used several compiler versions and different options:

gcc We used gcc versions 2.7.2.3 (1997), egcs-1.1.2 (1999, shortly before gcc-
2.95), and gcc-5.2.0 (2015). The earlier versions already “optimize” x-1>=x

(with no way to disable this “optimization”), but overall probably per-
form much less “optimization” than gcc-5.2.0; e.g., egcs-1.1.2 has an option
-fstrict-aliasing17, but (unlike gcc-5.2.0) does not enable it by default,
and gcc-2.7.2.3 does not even have such an option. In addition to “opti-
mizations”, hopefully gcc also added optimizations⋆ in these 18 years. We
use the -m32 option for gcc-5.2.0 to produce IA-32 code, because the earlier
compilers do not produce code for the AMD64 architecture that was only
introduced in 2003.

Clang/LLVM We also use clang 3.5 (2014) for breadth of coverage. We use
-m32 -mno-sse for comparability with the gcc results which also produce
code for IA-32 without SSE.

-fno... In addition to using -O3 and default optimizations (including “opti-
mizations”) we also compiled with -O3 but disabled as many “optimizations”
as we could identify: For gcc-5.2.0 we used
-fno-aggressive-loop-optimizations -fno-unsafe-loop-optimizations

-fno-delete-null-pointer-checks -fno-strict-aliasing

-fno-strict-overflow -fno-isolate-erroneous-paths-dereference

-fwrapv, for clang 3.5 we use -fno-strict-aliasing -fno-strict-overflow

-fwrapv.18 These compilers still might perform various “optimizations” that
are not covered with these flags, but that is as close to turning these com-
pilers into C⋆ compilers as we can get.

-O0 It is often suggested to turn off optimization in order to get a C⋆ compiler.
While this does not work (some gcc versions “optimize” x-1>=x even at -O0),
we tried -O0 to see how much it hurts performance.

16 http://www.complang.tuwien.ac.at/anton/lvas/effizienz/tsp.html
17 With strict aliasing the compiler assumes roughly that pointers to different types do

not point to the same object.
18 For clang I used the subset of the gcc options that clang accepts, because I could

not find documentation on any such options.

123
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Fig. 1. Performance across different compilers of Jon Bentley’s Traveling Sales-
man program variants for visiting 5000 cities

We ran the resulting binaries on a Core i3-3227U (Ivy Bridge), with 5000
cities. We measured the run-time in cycles using CPU performance counters with
perf stat -r 100 -e cycles; this runs the program 100 times and reports
“average” (probably arithmetic mean) and standard deviation; the standard
deviation for our measurements was at most 0.62%.

Figure 1 shows the results. In cases where the binaries where the same with
and without the -fno... options, one line is shown for both, with the label
containing [-fno...].

Source-level optimization speedup: Overall, the source-level optimizations
provide a good speedup (starting at a factor 2.7 between tsp1 and tsp9 for
gcc-5.2.0 -O3) across all compilers and options, with some optimization steps
having little effect on performance, while others have a larger effect. This also
disproves claims that compiler optimizers are now so good that they make source-
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level optimization unnecessary; on the contrary, compilers do not perform most of
these source-level optimizations from a 33-year old book. If compilers performed
these optimizations themselves, we would expect the -O3 lines to be flat, but
in fact the speedups from source-level optimizations provide similar speedups to
the -O3-compiled versions as to the -O0-compiled versions; only the optimization
from tsp4–tsp5 (inlining one function) is performed by the compilers with -O3,
resulting in horizontal line segments for this step. Section 4.4 looks at why source-
level optimization is effective.

“Optimization” speedup: We first compare the binaries generated with and
without the -fno... options. For clang-3.5 -O3, clang-3.5 -O0 and gcc-5.2.0

-O0, all of the programs are compiled to the same binary code without and
with -fno... options. So for these compilers show only one set of results. For
gcc-5.2.0 -O3, there are no differences in the binaries for tsp1...tsp3, but there
are for tsp4...tsp9, so we measure both sets of binaries for gcc-5.2.0 -O3.

For tsp4/5 (and of course for tsp1–3, where there is no difference in the
binaries) the code generated by gcc-5.2.0 -O3 has the same speed as the code
compiled with the -fno... options; for tsp6 it is faster by a factor of 1.04, for
tsp8 it is slower by a factor of 1.05, and for tsp9 it is faster by a factor of 1.02.
So disabling these “optimizations” has only a minor and inconsistent effect on
performance.

-O0 vs. -O3: By contrast disabling both “optimization” and optimization⋆ with
-O0 has a dramatic effect on performance, especially for gcc (factor 5.6 for tsp9).
So using -O0 is not a good suggestion as a C⋆ compiler if you care for perfor-
mance: In addition to still performing some “optimizations”, it also produces
slow code.

Other results: Every compiler has some program for which it is fastest: gcc-
2.7.2.3 is fastest for tsp8, egcs-1.1.2 is fastest for tsp4/5, gcc-5.2.0 is fastest for
tsp1–3, and clang-3.5 is fastest for tsp6 and tsp9. Overall, the performance with
-O3 is remarkably close given the 18 years span the gcc versions; Proebsting’s
law tongue-in-cheekly predicts a factor of 2 between gcc-2.7.2.3 and 5.2.0.

The slow speed of clang-3.5 -O3 for tsp1/2 is probably due to differences in
sqrt() implementation, because tsp1/2 have a large number of calls to sqrt(),
while that number is much smaller for tsp3–tsp9.

4.3 Gforth

Gforth is an implementation of the Forth programming language. Its virtual ma-
chine was implemented as a threaded-code interpreter starting in 1992 [Ert93];
already that version heavily used GNU C extensions to achieve better perfor-
mance than is possible in standard C⋆ (let alone “C”). And while it is extremely
far from being a strictly conforming (and thus portable) program according to
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Fig. 2. Gforth performance with different GCC versions

the C standard, it is pretty portable: e.g., we tested Gforth 0.7.0 on eight dif-
ferent architectures, five operating systems, and up to nine gcc versions per
architecture.

In 2009 we compared the performance of different Gforth versions across
different CPUs and different gcc versions [Ert09], and below we discuss the results
as relevant for the present paper. We measured different Gforth versions, from
Gforth 0.5.0 (2000) to 0.7.0 (2008) compiled with various GCC versions from
2.95 (1999) to 4.4.0 (2009).

We ran five application benchmarks on a 3GHz Xeon E5450, each one three
times per configuration, taking the median of the three runs and the geometric
mean over these inividual benchmark results. The data we present here is the
same as in Figures 8 and 9 of the Gforth performance paper [Ert09], but we
present it differently.

Figure 2 shows 32-bit and 64-bit19 results for different Gforth and GCC
versions. As you can see, the source-level optimizations between Gforth 0.5.0
(2000) and 0.7.0 (2008) provide a speedup by a factor > 2.6 on most compiler
versions. Some compiler versions don’t perform as well as others, either because
a source-level optimization was disabled20, or because of some compiler-specific

19 For AMD64, generic code is used up to 0.6.2, special AMD64 support was added
only in 0.7.0.

20 Gforth checks whether the assumptions used by the optimization hold, and falls back
to older techniques if they do not.
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problem (like bad register allocation: gcc-4.0 and -4.1 on IA32); for details, see
the original paper [Ert09].

We also prototyped an optimization that moves Gforth further into JIT com-
piler territory, with less per-target effort than required by a conventional JIT
compiler [EG04], and this optimization produced a median speedup of 1.32 on
an Athlon, and 1.52 on a PPC 7400.

We had plans to turn this optimization into a production feature, but even-
tually realized that the GCC maintainers only care about certain benchmarks
and treat production programmers as adversaries that deserve getting their code
broken. Given that the Gforth source code is extremely far from “C”, and this
optimization would have taken it even further from “C”, we dropped the plans
for turning this feature into a production feature. So, in this instance, the fo-
cus on “C” and “optimizations” by the C compiler maintainers resulted in less
performance overall.

The current GCC and Clang maintainers suggest that we should convert
programs to “C”. How would that turn out for Gforth?

We could not use explicit register allocation, and therefore lose much of
the performance advantage of gforth-0.7.0. More importantly, we have to drop
dynamic superinstructions, and, since everything else builds on that, that would
throw us back to Gforth-0.5.0 performance. In addition, we would have to drop
threaded code, so we would lose even more performance. We could get back
a little performance by implementing static superinstructions and static stack
caching in a new way (without dynamic superinstructions), but overall I expect
a slowdown by a factor > 3 compared to gforth-0.7.0 from these changes alone.

Gforth is outside “C” in many other respects, in particular in its data and
memory model. It is unclear to me how that part could be turned into efficient
“C” code, but it certainly will not increase performance.

Changing the code to “C” would not just reduce performance by a lot, but
also require a huge effort. Instead of spending that effort to make Gforth slower,
we are considering switching to native code compilation, and getting rid of C as
much as possible. Machine code, while not as portable as C used to be, offers
the needed expressive power, reliability, and stability, that gcc used to give us,
but no longer does.

4.4 Why are programmers effective?

Gcc-5.2.0 does not perform most of the optimizations that Bently performed in
his 33 years old book. Why?

One big advantage that the programmers have is that they have to satisfy the
requirements document (or the specification) of the program, while the compiler
uses the source code as specification and has to keep to that. The source code
overspecifies the program, so the compiler cannot perform the same optimiza-
tions that the programmer can. For example, tsp8 does not produce the same
stdout output as tsp6, so a compiler could not perform that change.

Another advantage that programmers have is that they can have a better
understanding of the design of the program, and therefore can perform trans-
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formations that the compiler cannot perform because it cannot determine that
the transformation is safe or profitable to perform. As an example, in Gforth
we have numbers for the VM instructions in the image file format, and replace
them with code addresses when loading the image file, eliminating the need to
do the code address lookup at run-time; compilers do not do that, because they
cannot prove that the instruction numbers are not used in any other way.

Finally, programmers can apply optimizations for idioms for which compiler
maintainers do not develop optimizations because they do not occur frequently
enough in “relevant” code (i.e., their benchmarks).

Of course, source-level optimization costs in development, and may also cost
in maintenance. However, the recommendation by “optimization” advocates of
“fixing” or “sanitizing” your code (i.e., converting it to “C”) also costs in devel-
opment and in maintenance.

As can be seen here, the optimization by programmers is far more effective
than “optimization” by compilers, so it makes more sense to have a compiler
with only optimization⋆ and invest the development budget for optimization
in source-level optimization rather than “sanitizing”. In particular, in source-
level optimization you can concentrate on the parts of the programs relevant
to performance, and stop when the benefit/cost ratio of further optimizations
becomes too small, while “sanitizing” has to cover the whole program, as any
undefined behavior in the program allows nasal demons, or “optimizations”, to
happen.

5 Perspectives

Given the state of things, what should be done?

5.1 Compilers

Compiler maintainers should change their attitude: Programs that work with
previous versions of the compiler on the same platform are not buggy just be-
cause they exhibit undefined behaviour; after all, they are conforming C pro-
grams. So the compiler should be conservative and disable “optimizations” by
default, in particular new or enhanced “optimizations”. If you really want the
default to be “C”, then at least provide a single, stable option for disabling “op-
timizations”; in this way, a C⋆ program compiled with that option will also work
with the next version of the compiler.

Also, there is still a lot of improvement possible in terms of optimizations⋆,
and it would be a good idea to shift effort from “optimizations” to optimizations⋆.

I do not see a good reason for having “optimizations” at all, but if a compiler
writer wants to implement them, it would be a good idea to be able to warn
when “optimizations” actually have an effect. Contrary to what Chris Lattner
claims21, this is not that hard: Just keep track of both facts⋆ and “facts”. When

21 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
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eventually generating code, if the code generated based on just facts⋆ would be
different from the code generated based on “facts”, provide a warning. Providing
a good explanation for the warning may be hard, but that’s just an indication
of how unintuitive the “optimization” is.

5.2 Standards

The compiler maintainers try to deflect from their responsibility for the situa-
tion by pointing at the C standard. But the C standard actually takes a very
different position from what the compiler maintainers want to make us believe.
In particular, the C99 rationale22 [C03] states:

C code can be non-portable. Although it strove to give program-
mers the opportunity to write truly portable programs, the C89 Commit-
tee did not want to force programmers into writing portably, to preclude
the use of C as a ”high-level assembler”: the ability to write machine-
specific code is one of the strengths of C. It is this principle which largely
motivates drawing the distinction between strictly conforming program
and conforming program (§4).

Keep the spirit of C. The C89 Committee kept as a major goal to
preserve the traditional spirit of C. There are many facets of the spirit of
C, but the essence is a community sentiment of the underlying principles
upon which the C language is based. Some of the facets of the spirit of
C can be summarized in phrases like:

– Trust the programmer.
– Don’t prevent the programmer from doing what needs to be done.
– Keep the language small and simple.
– Provide only one way to do an operation.
– Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient
code generation is one of the most important strengths of C. To help
ensure that no code explosion occurs for what appears to be a very simple
operation, many operations are defined to be how the target machine’s
hardware does it23 rather than by a general abstract rule.

Still, the C standard blesses compilers like GCC and Clang that intentionally
compile only strictly conforming C programs as intended as conforming imple-
mentations. There is the hope that market forces will drive compilers towards
higher quality-of-implementation; unfortunately, that does not seem to work out:
The compiler maintainers’ perception of quality-of-implementation is based on
benchmark results, and this perception has led to the current situation; and since
both GCC and Clang maintainers take the same view of non-“C” programs, and

22 The C11 rationale has not been published yet.
23 By contrast, “what the hardware does” seems to be an insult in GCC circles:

news:<07qdndj_37WIDp7OnZ2dnUVZ_tmdnZ2d@supernews.com> .

129



there is no competition from an optimizing⋆ C⋆ compiler in the free-software
world, there is little that market forces can do in that area.

So, while the standard is not responsible for the current situation (the main-
tainers of these C compilers are), the C standards committee might still tighten
the standard such that it cannot be abused by compiler maintainers in this way.

Instead of not specifying behavior (or explicitly specifying undefined behav-
ior) for many cases where different C⋆ implementations may produce different
results, the standard should enumerate the possible results in enough detail to
discourage “optimizing” compilers.

Pascal Cuoq, Matthew Flat and John Regehr suggested such an approach24:
They want to define a friendly dialect of C by working through the list of unde-
fined behaviours in the C11 standard, and reduce the amount of undefinedness,
e.g., by replacing “has undefined behaviour” with “results in an unspecified
value”. This is definitely going in the right direction. There will still remain a
gap between the way programmers think about the language construct and the
way the friendly C specification describes it, but if the friendly C specification
is tight enough to rule out “optimizations”, the remaining gap may still be a
source of joy for language lawyers, but harmless for practical programmers. “Un-
specified value” may not be quite tight enough, though, because it does not give
a specified result for, e.g., x-x when x is uninitialized.

5.3 Programmers

The attitude of compiler maintainers puts programmers in a tough situation.
The next version of the compiler could break their currently-working program.
The simplest way to deal with that is to stick with the compiler version that
works with your program. You may need to keep the old binaries, or compile the
old sources with a newer compiler (I have built gcc-2.7.2.3 with gcc-4.8 for this
paper).

If you want to make your program work for newer versions of the compiler
(e.g., because you want to port to an architecture that is not supported by the
old version), you can use the flags that define some of the undefined behaviours
(such as those listed for our experiments in Section 4.2). You can also see if
lowering the optimization level helps.

As a long-term perspective, you could also decide to switch to another pro-
gramming language. Unfortunately, there are not that many languages available
that occupy the C⋆ niche: a low-level language that can be used as portable
replacement for assembly language; in particular, C ate all its brethren in the
Algol family (e.g., Bliss, BCPL). Forth is available, but is probably unattrac-
tive to most programmers coming from Algol-like languages. C-- [JRR99] was
intended as a portable assembly language, but seems to have been relegated to
an internal component of the Glasgow Haskell Compiler.

Instead of using a portable assembly language, you can go for real assembly
language; in earlier times C was less cumbersome and therefore more attractive,

24 http://blog.regehr.org/archives/1180
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but that has changed. In contrast to C as currently implemented, assembly
language is rock-solid. The disadvantage of assembly language is that it is not
portable, but the number of different architectures in general-purpose computers
has fallen a lot since the 1990s, so you may be able to make do with just one or
two.

You probably don’t want to write everything in assembly language, but most
code in higher-level languages. There are a number of newer Algol-family lan-
guages that are slightly higher-level than C used to be that may be appropriate
for the higher-level language part, e.g., Rust, D, and Go. I do not have experience
with these languages, nor have I examined the specification and the attitude of
the compiler maintainers, so unfortunately I cannot make any recommendations
here.

Our perspective for Gforth is to use Forth as high-level language and assem-
bly/machine language for the parts that cannot be done in Forth (for these parts
we currently use GNU C).

5.4 Tools and Research Opportunities

Just as the existence of “C” compilers has spawned tools and research papers on
finding undefined behaviors and code that may be “optimized” away although
it should not, a focus on C⋆ compilers and source-level optimization could lead
to tools for finding source-level optimization opportunities.

E.g., consider the source-level optimizations Wang et al. [WCC+12] used on
SPECint: To get rid of sign extensions, a tool could perform run-time checks to
see if using long instead of int produces a different result, and if not, could then
suggest to the programmer to change the type of inner-loop induction variables
accordingly. A tool could also check whether a load in an inner loop always
produces the same result during a run, and, if so, suggest to the programmer to
move the load out of the loop manually; the source-level optimization also works
in cases where “optimization” does not work because there is a store in the loop
to the same type as the load.

The research questions are what other optimizations can be supported by
such tools, and how effective they are. Of course, the possible optimizations
are not limited to those that are possible by converting to “C” and enabling
“optimizations”.

6 Related work

Complications generate interesting research questions, even if they are unneces-
sary complications.

Wang et al. [WCC+12] describe a number of “optimizations” by “C” com-
pilers, and give examples where the “optimizations” were not optimizations, but
led to C⋆ code not being compiled as intended; most of the examples are for secu-
rity vulnerabilities caused by “optimizations”. It also gives performance results
showing that “optimizations” give a very small speedup even for SPECint.
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There is work on finding undefined behavior with run-time checks, e.g., for
integer computations [DLRA12]. Of particular interest for the current work are
the empirical results of applying these checks to various programs, in particular,
how widespread these undefined behaviors are.

Not all undefined behaviors can be exploited by “optimizations”, and another
paper by Wang et al. [WZKSL13] describes a tool for finding code that may be
“optimized” (but not optimized⋆) away. In addition, they describe a number
of security vulnerabilities caused by “optimizations” and also gives empirical
results on how many program fragments are “optimized” away in how many
programs.

7 Conclusion

“Optimizations” based on assuming that undefined behavior does not happen
buy little performance even for SPECint benchmarks (1.7% speedup with Clang-
3.1, 1.1% with GCC-4.7), and incur large costs: Most production programs per-
form undefined behaviors and removing them all requires a lot of effort, and
may cause worse code to be produced for the program. Moreover, a number
of security checks have been “optimized” away, leaving the affected programs
vulnerable.

If you are prepared to invest that much effort in your program for perfor-
mance, it is much better to invest it directly in source-level optimization instead
of in removing undefined behavior. E.g., just two small source-level changes give
the same speedups for SPECint as the “optimizations”; we also presented exam-
ples of source-level optimizations that buy speedup factors > 2.6.

Compiler writers should disable “optimizations” by default, or should at least
give the programmers a single flag to disable them all and that also disables
new “optimizations” in future compiler versions. A focus on optimizations⋆ and
on supporting source-level optimizations better would also be welcome. Finally,
programs that work on a version of your compiler are conforming C programs
and they are not buggy just because they perform undefined behavior.
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Abstract. Dependency injection frameworks such as the Spring frame-
work rely on dynamic language features of Java. Errors arising from
the improper usage of these features bypass the compile-time checks of
the Java compiler. This paper discusses the application of static code
analysis as a means to restore compile-time checking for Spring-related
configuration errors. First, possible errors in the configuration of Spring
are identified and classified. Attributed grammars are applied in order
to formally detect the errors and a prototypical compiler extension is
implemented based on Java’s pluggable annotation processing API.

1 Introduction

The Java programming language is one of the most popular programming lan-
guages in general and especially in the field of enterprise applications1 [Wal14,
p.3]. In addition, dependency injection (DI) is frequently used to support and
simplify the development of Java applications. DI is a creational design pattern
that abstracts away the process of object creation and composition [GHJV95,
p.94]. Typical implementations are generic and make no assumptions about the
objects they manage. Instead, they rely on an external configuration [Pra09,
p.17].

However, the generic implementation requires the use of dynamic language
features such as the Java Reflection API [Ora15]. Despite its necessity and
usefulness, the Java Reflection API has a downside, since errors arising from the
improper application cannot be detected by available Java compilers. Thereby,
the detection of errors is shifted from compile-time to runtime.

Since the errors are not automatically detected at compile-time and the man-
ual detection is tedious, developers have a particular interest in automatic solu-
tions to detect them as early as possible, preferably at compile-time during the
development.

There are quite a few tools for the static analysis of Java programs such
as FindBugs [APM+07], Checkstyle [Bur03], PMD [PMD15], SonarQube

1 See http://www.langpop.com or http://lang-index.sourceforge.net/ as indicators for
Java’s popularity.
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Spring Context
Dependent Independent

Analysis
Level

Above
Method Level

Group I
(13 errors)

Group II
(13 errors)

Below
Method Level

Group III
(8 errors)

Group IV
(4 errors)

Table 1. Classification of Spring Configuration Errors

[Son15], Java Language Extender [VWKBJ06], ESC/Java2 [CK05], Jas-
tAddJ [EH07], JavaCOP [MME+10], JQual [GF07], and the Checker frame-
work [PAC+08]. All these tools are general purpose inspection tools. To the best
of our knowledge, there is no tool for the static detection of Spring configuration
errors.

Our approach is based on attributed grammars [Knu68] and a compiler ex-
tension to detect errors arising from the improper application of the Spring
framework [Piv15] at compile-time. Spring is chosen as a representative for the
multitude of different DI implementations for Java, since it is one of the most
popular implementations. Furthermore, its configuration is based on Java anno-
tations which makes it very suitable for pluggable annotation processing.

This paper is structured as follows. In Section 2, Spring configuration er-
rors are identified and classified. In Section 3, attributed grammars are provided
which formally describe the detection of Spring configuration errors. Using these
attributed grammars, a prototypical compiler extension based on Java’s plug-
gable annotation processing API is described in Section 4. The insights gained
by the development of the prototype are used to evaluate the approach in Section
5. In Section 6, we conclude and point out future work.

2 Spring Configuration Errors

The Spring framework is an open source framework which implements the de-
pendency injection design pattern. At its core, the Spring context component
provides its clients with requested and dependent objects, so-called beans which
can be any kind of simple, Plain Old Java Objects (POJOs) [Wal14, p.4].

Several different context implementations exist which mainly differ in terms
of their configuration format, e.g. Java-based or XML-based configurations. In
general, configurations consist of features referring to the actual Spring context
as well as to a set of Spring bean definitions.2 Besides that, three different ways
of defining Spring beans are supported by Spring: explicit configurations via
Java and XML as well as implicit configurations via Java annotations. For more
information about Spring, please refer to [Wal14], [Pra09] or [Joh15].

A literature review of the Spring framework reference [Joh15] and expert
interviews have been conducted in order to identify different types of errors.
As a result, 38 distinct error types have been identified and classified into four
groups as depicted in Table 1. In the present paper, the core container and the

2 This work focuses only on Java-based configurations.
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data access / integration modules are considered, since they can be used by any
Spring-based Java application. The classification depends on the core features of
the Spring framework and the usage of these features determines the assignment
of an error to a certain dimension. Four groups are formed by two dimensions
each featuring two manifestations. The spring context dimension determines
whether or not the analysis requires information derived from the Spring context.
Analysis level is the second dimension and determines whether or not the analysis
requires information about the control flow that concerns language constructs
below the method-level, e.g. method invocations or variable assignments. In the
following, exemplary errors are described for further illustration of the different
error types.

Group I. Errors belonging to this group depend on the Spring context and an-
other component which uses a related Spring-specific annotation. The errors
occur above the method level, e.g. declarations of classes, methods or member
variables. Viewed in isolation, the Spring context configuration and the compo-
nent may not be erroneous but their interaction is.

As an example, Spring’s transaction infrastructure encapsulates the internals
of specific transaction management APIs and offers a declarative model for the
integration into applications [Joh15, chap.12.3]. A Spring context which defines
a transaction manager as well as a @EnableTransactionManagement annotation
are required to enable the transaction management. Once enabled, the @Trans-
actional annotation can be attached to methods in order to enable transactional
support for the method. Listing 1.1 illustrates the correct usage.

1 @Configuration
2 @EnableTransactionManagement
3 public class Spr ingConf ig {
4 @Bean
5 public PlatformTransactionManager transact ionmanager ( ) {

. . . }
6 }
7

8 @Component
9 public class P r i n t e r S e r v i c e {

10 @Transact ional
11 public void pr in t ( ) {. . . }
12 }

Listing 1.1. Illustration of Spring’s Transaction Management

In this situation, errors occur if transaction management is enabled but not
used because no methods are annotated with @Transactional, i.e. when line 10 is
removed from the listing. Or - the opposite situation - if @Transactional methods
exist but the transaction management is not enabled, i.e. a situation where line
2 is removed from the listing.

Group II. Errors in group II are Spring context-independent and occur above the
method level. They consist of annotated language constructs which - at the same
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time - have some other attributes or other annotations which are incompatible
to that original annotation.

For instance, the Spring framework uses the @Autowired annotation to mark
methods or fields for annotation-based injection [Wal14, p.39]. Sometimes, de-
pendencies are ambiguous and the Spring context finds several bean definitions
that match and then has to choose between them [Wal14, p.75]. The @Qualifier
annotation can be used in conjunction with @Autowired to narrow the result set.
It is an error to use @Qualifier without a corresponding @Autowired annotation.

The @Qualifier annotation can also be used indirectly. There is no difference
between the usage of @Qualifier and the usage of annotation types annotated
with @Qualifier. Both, the error and the indirect usage of @Qualifier are illus-
trated in Listing 1.2.

1 @Qual i f i e r
2 @inte r f a c e DinA4Format {. . . }
3

4 @Component
5 @DinA4Format
6 class DinA4DocumentFormatter implements DocumentFormatter {

. . . }
7

8 @Component
9 class P r i n t e r S e r v i c e {

10 //@Autowired i s miss ing
11 @DinA4Format
12 public P r i n t e r S e r v i c e ( DocFormatter f ) {. . . }
13 }

Listing 1.2. Illustration of @Qualifier Without @Autowired

Group III. Similar to errors in group I, the errors in this group also depend
on specific Spring context configurations. But in contrast, they also depend on
language constructs below the method level. For instance, the lifecycle of a bean
is an important aspect described by its bean definition. The lifecycle of a bean
starts after the corresponding Spring context is initialized and ends right before
the Spring context shuts down. In between that timeframe, the lifecycle of a bean
is defined by its scope [Wal14, p.81]. The singleton scope is the default scope
for beans, where only one shared instance of the bean exists per Spring context
and it exists until the context shuts down [Joh15, chap.5.5.1]. In contrast, beans
defined with the prototype scope are created as new instances every time they
are requested.

One important aspect regarding prototype scope is that the Spring context
does not manage the complete lifecycle of these beans. Even though prototype
and singleton beans are initialized the same way, their destruction is differ-
ent, since the Spring context does not store references to prototyped beans and
therefore cannot initiate their destruction. A Spring bean definition is explicitly
defined by attaching the @Bean annotation to a method or implicitly defined by
adding the @Component annotation to a class declaration.
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Furthermore, Spring allows to define lifecycle callbacks, e.g. methods called
by the Spring context when a bean is constructed or destructed [Wal14, p.33].
Among other ways, they can be defined by annotating a corresponding method
with @PostConstruct or @PreDestroy.

Since the Spring context cannot initiate the destruction process of prototyped
beans, methods that qualify as destruction lifecycle callbacks are considered er-
roneous, if the beans are defined with the prototype scope. Listing 1.3 illustrates
this error where the component contains a close method to cleanup resources
which is never invoked due to the prototype scope.

1 @Configuration
2 public class Spr ingConf ig {
3 @Bean
4 @Scope ( ” prototype ” )
5 public P r i n t e r S e r v i c e p r i n t e r S e r v i c e ( ) {
6 return new P r i n t e r S e r v i c e ( ) ;
7 }
8 }
9

10 public class P r i n t e r S e r v i c e {
11 @PreDestroy
12 public void c l o s e ( ) { // w i l l not be invoked
13 this . usbConnection . c l o s e ( ) ;
14 }
15 }

Listing 1.3. Illustration of Callbacks on Prototyped Beans

Group IV. This group also comprises errors that occur below the method level
and do not depend on the Spring context. An example is related to Spring’s
JdbcTemplate component which provides an abstraction layer covering specific
details of Java’s JDBC API. Here, SQL is used to interact with databases. The
corresponding code is linguistically separated from the surrounding code written
in Java. Therefore, the compiler cannot check whether or not SQL code is com-
pliant to the language definition of SQL. A typical use case in this context is a
developer who creates and tests SQL statements in a database tool. Once the
SQL statement is ready, he copies it into a Java String and uses it. Statements
which are executed in a database tool often require to be terminated with a
semicolon. However, having that semicolon at the end of a SQL String in Java
results in a runtime exception.

These kinds of problems can be detected by applying pluggable type systems
similar to the one for regular expressions by the Checker framework [SDE12].
Therefore, such errors are not further discussed in this paper.

3 Error Detection via Attributed Grammars

Static code analysis is an analytical approach to detect lexical, syntactic, and
also some semantic errors. The source code of software is analyzed in order to
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understand its structure (syntax) and meaning (semantics) [ALSU07, p.21]. The
gained understanding is then used to identify errors within the source code.
Regular expressions and context-free grammars can be used to define the lexical
and syntactic structure of a programming language and errors can be detected
by identifying mismatches between the defined structure and the actual source
code.

Beyond syntactical checks, compilers may also check for the static semantics,
e.g. whether a method is invoked with the right number and types of arguments.
Or, in our case, that Spring configurations and annotations are used in a correct
manner.

In 1968, Knuth introduced attributed grammars as a formal approach to
express and handle semantical aspects of a programming language [Knu68]. At-
tributed grammars are context-free grammars extended with attributes and se-
mantic rules [SK95, pp.66-67]. Each nonterminal of the context-free grammar
may have several attributes. Each attribute can either be synthesized or inher-
ited and it has a value which is defined by a semantic rule associated with a
production of the context-free grammar.

Roughly, if A ::= B1 . . . Bn (for n ∈ IN) is a context-free rule with nontermi-
nals A,B1, . . . , Bn, all of which have a synthesized attribute s and an inherited
attribute i, then corresponding semantic rules can define the values of the at-
tributes A.s,B1.i, . . . , Bn.i as follows:

A.s← f(A.i, B1.s, . . . , Bn.s) (1)

Bj .i← g(A.i, B1.s, . . . , Bj−1.s, Bj+1.s, . . . , Bn.s) (2)

where f and g are functions mapping attribute values to another attribute value
and j ∈ {1, . . . , n}. If the context-free rules contain terminal symbols and / or
nonterminals have several synthesized and inherited attributes, the formulas (1)
and (2) have to be generalized accordingly (see [ALSU07] for a full description
of attributed grammars).

The following notation is used within this paper to represent attributes, se-
mantic rules, and conditions. Semantic rules are enclosed by curly brackets and
are placed behind the body of the corresponding production. $0.a is used to refer
to attribute a of the symbol on the left hand side (lhs) of the production, $1.a
is used to refer to the leftmost symbol of the right hand side (rhs) and so forth.
A reversed arrow ← is used to represent the value assignment from the value
on the rhs of a semantic rule to the attribute on the lhs. For the rhs, we use a
syntax similar to that of C or Java.

After constructing a syntax tree (via lexical and syntactic analysis), the at-
tribute values of the symbols in that tree can be determined by applying the
semantic rules [ALSU07, p.54]. The order in which the attributes can be eval-
uated has to reflect the dependencies of the attributes caused by the semantic
rules. In general, there is no guarantee that an order exists in which all attributes
of all nodes can be evaluated. Though, there are subclasses of attributed gram-
mars which restrict the usage of attributes and semantic rules to guarantee the
existence of an evaluation order [ALSU07, p.313].
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〈root〉 ::= 〈typedecllist〉 | $

〈typedecllist〉 ::= 〈typedecl〉 〈typedecllist〉 | ε

〈typedecl〉 ::= 〈modifiers〉 〈typedecltype〉

〈modifiers〉 ::= ‘public’ 〈modifiers〉 | ‘private’ 〈modifiers〉
| 〈annotation〉 〈modifiers〉 | ε

〈annotation〉 ::= ‘@’ 〈identifier〉 〈annoarguments〉

〈typedecltype〉 ::= 〈annotypedecl〉 | 〈classdecl〉 | 〈interfacedecl〉

〈annotypedecl〉 ::= ‘@interface’ 〈identifier〉 ‘{’ 〈annotypebody〉 ‘}’

〈classdecl〉 ::= ‘class’ 〈identifier〉 〈superclass〉 〈interfaces〉 ‘{’ 〈classbody〉 ‘}’

〈interfacedecl〉 ::= ‘interface’ 〈identifier〉 〈superinterface〉 ‘{’ 〈interfacebody〉 ‘}’

〈classbody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈classbodytype〉 〈classbody〉 | ε

Fig. 1. Java Grammar in BNF Notation (Excerpt).

Two subclasses relevant for this work are S- and L-attributed grammars: S-
attributed grammars are grammars that only contain synthesized attributes and
no inherited attributes [ALSU07, p.313]. They allow a bottom-up evaluation of
attributes. L-attributed grammars also guarantee the existence of an evaluation
order. Roughly, they allow the evaluation of attributes bottom up and left to
right. See [ALSU07] for details.

We use an LL(1)-compliant context-free grammar which describes the subset
of Java language constructs relevant for the detection of Spring configuration
errors. Figure 1 provides an overview of the productions which are relevant for
the succeeding analyses.

The semantic rules used for attributed grammars are based on the following
constants and operations: error is used to indicate that an error has been de-
tected, emptySet creates an empty set, newSet creates a set containing a single
element, intersects returns true if and only if an intersection of two sets is not
empty and union computes the union of two sets. The function value operates
on identifiers and returns the actual value as a string.

In the following, an exemplary attributed grammars is provided which allow
to expose an error explained in of Section 2.

Spring context-dependent errors that occur above the method level can be
generically depend on the presence or absence of annotations. The presence or
absence can be described via two synthesized boolean attributes enabled (1) and
used (2). A boolean expression using the two attributes describes whether an
error is present or not.

Consider again the error introduced in Listing 1.1. It can be exposed as
follows. The attribute enabled is set to true, if a Spring configuration exists and
if this configuration is annotated with @EnableTransactionManagement. The
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Nonterminal Symbols Synthesized Attributes

〈root〉 -

〈typedecllist〉 enabled, used

〈typedecl〉 enabled, used

〈typedecltype〉 used

〈classdecl〉 used

〈classbody〉 used

〈interfacedecl〉 used

〈interfacebody〉 used

〈modifiers〉 names

〈annotation〉 name
Table 2. Overview of Nonterminals and Synthesized Attributes.

attribute used is set to true, if a method annotated with @Transactional exists.
Otherwise, the attributes are set to false. The error occurs if the attribute enabled
is true and at the same time the attribute used is false. The condition can thus
be expressed as the boolean expression enabled ∧ ¬used.

The detection can be described by an S-attributed grammar with four syn-
thesized attributes enabled, used, name and names whereby enabled refers to
occurrences of @EnableTransactionManagement and used refers to occurrences
of @Transactional. name refers to the identifier of an annotation and names is
a set of a names.

In the following, the semantic rules and the synthesis are described in greater
detail. Table 2 provides an overview of the relevant nonterminals and their syn-
thesized attributes. Figure 2 shows a corresponding S-attributed grammar. The
synthesis starts with the collection of 〈annotation〉 names. 〈annotation〉 ele-
ments delegate their name to the enclosing 〈modifiers〉 element which collects
them. For 〈classbody〉 and 〈interfacebody〉, the used attribute is set to true if
the collected set of modifiers contains the @Transactional annotation.

The value of the used attribute is then propagated to the 〈type〉 declara-
tion. The used attribute value for annotation types is always false since they
cannot use the @Transactional semantics. The 〈typedecl〉 propagates the used
value to the enclosing 〈typedecllist〉. In addition, it is checked whether the type
declaration itself uses the @Transactional annotation. Besides that, it is checked
whether the type declaration is the actual Spring context configuration class
and if so, whether the transaction management is enabled or not. The enabled
attribute represents the value of that check.

The semantic rules of 〈typedecllist〉 collect the attributes of each enclosed
type declaration. The attributes are set to true if they are true for at least one
type declaration. The attributes are then validated at the root production. An
error is detected, if the transaction management is enabled but no method uses
the @Transactional annotation.

Consider again Listing 1.1 where an error occurs if the transaction manage-
ment is enabled but not used because no methods are annotated with @Trans-
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〈annotation〉 ::= ‘@’ 〈identifier〉 {$0.name← value($1); }

〈modifiers〉 ::= ‘public’ 〈modifiers〉 {$0.names← $1.names; }
| ‘private’ 〈modifiers〉 {$0.names← $1.names; }
| 〈annotation〉 〈modifiers〉 {$0.names← union(newSet($1.name), $2.names); }
| ε {$0.names← emptySet(); }

〈classbody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈classbodytype〉 〈classbody〉
{$0.used← intersects(newSet(‘Transactional’), $1.names); }

| ε {$0.used← false; }

〈interfacebody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈methoddecl〉 〈interfacebody〉
{$0.used← intersects(newSet(‘Transactional’), $1.names); }

| ε {$0.used← false; }

〈classdecl〉 ::= ‘class’ 〈identifier〉 〈superclass〉 〈interfaces〉 ‘{’ 〈classbody〉 ‘}’
{$0.used← $4.used; }

〈interfacedecl〉 ::= ‘interface’ 〈identifier〉 〈superinterface〉 ‘{’ 〈interfacebody〉 ‘}’
{$0.used← $3.used; }

〈typedecltype〉 ::= 〈annotypedecl〉 {$0.used← false; }
| 〈classdecl〉 {$0.used← $1.used; }
| 〈interfacedecl〉 {$0.used← $1.used; }

〈typedecl〉 ::= 〈modifiers〉 〈typedecltype〉
{$0.used← $2.used ‖ intersects(newSet(‘Transactional’), $1.names);
$0.enabled← intersects(newSet(‘Configuration’), $1.names)

&& intersects(newSet(‘EnableTransactionManagement’), $1.names); }

〈typedecllist〉 ::= 〈typedecl〉 〈typedecllist〉
{$0.enabled← $1.enabled ‖ $2.enabled; $0.used← $1.used ‖ $2.used; }

| ε {$0.enabled← false; $0.used← false; }

〈root〉 ::= 〈typedecllist〉 {if($1.enabled && !$1.used){error(); }} | $

Fig. 2. S-attributed Grammar for detection of Transactional error (excerpt).

actional, i.e. when line 10 is removed from the listing. An excerpt of the abstract
syntax tree (AST) annotated with the results from applying the before-discussed
attributed grammar to Listing 1.1 is provided in Figure 3. The rounded rect-
angles represent attributes and their values belonging to a node and the dotted
lines illustrate the bottom-up flow of the computation. The excerpt depicts the
evaluation of the SpringConfig class declaration where the value of the used at-
tribute is false since the declaration does not contain any methods annotated
with @Transactional. However, the value of the enabled attribute is true because
the class declaration is a Spring configuration and the transaction management
is enabled.

Other errors above the method level can be detected by similar attributed
grammars. For errors in group II, we use L-attributed grammars.
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Fig. 3. Annotated parse tree for SpringConfig (excerpt).

For errors that occur below the method level, we transform the abstract
syntax tree to a control-flow graph (CFG) [ALSU07], which is more suitable for
dealing with the dynamic behavior of the code. On the CFG, we then perform
a reaching definitions analysis [Muc97, p.218].

Using this analysis, we can e.g. detect the error regarding destruction meth-
ods of prototype-scoped beans as presented in Listing 1.3.

4 Prototypical Implementation

Our approach is based on the attributed grammars explained above. Technically,
the corresponding analysis has been implemented using the pluggable annotation
processing API. This API is specified by Java Specification Request (JSR) 269
and enables the processing of annotations at compile-time [Dar06]. It defines a
language model representing the source code of a processed Java project. The
design of the language model can be described by the composite design pattern
([GHJV95, p.183]).

Besides that, the API defines how compiler extensions can be declared and
executed. Figure 4 illustrates the architecture of the Java compiler. It is based on
a pipe and filter architecture as described in [LL12, p.432]. The extension depicts
how our prototype is plugged into the compilation process via the pluggable
annotation processing API. Once the compiler finishes the lexical and syntactical
analysis of the source code, it invokes the prototype through the plugin interface.
The SpringAnnotationProcessor component uses the aforementioned composite
structure provided by the compiler to perform analyses based on the attributed
grammars as described in Section 3.
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Fig. 4. Pipe and Filter Architecture of the Java Compiler

Detected errors are delegated to the Messager component which adds them
to the compilers error messages. Next, the semantic analysis of the compiler
is performed and the resulting decorated AST is passed to the prototypes De-
faultAnnotationTaskListener which then utilizes the data-flow based analysis as
described in Section 3. Again the detected errors are delegated to the compiler.

It has to be noted that the before-mentioned language model only represents a
subset of Java. Language constructs which are embedded within method bodies
such as assignments or method invocations are not included. Another API is
required in order to access language constructs below the method level. Oracle’s
javac compiler provides a compiler-specific API called compiler tree API [Ora14].
This lower-level API provides a composite structure that represents the required
whole AST created by javac.

5 Evaluation

The developed prototype has been used in several Java projects in order to
demonstrate its functionality and to evaluate its performance.

All example applications are based on the Spring framework 3.11: The Spring
Pet Clinic3 is a sample application provided by the Spring framework. It is se-
lected because it demonstrates the usage of all Spring features which are consid-
ered by the annotation processor such as annotation-based dependency injection,
transaction management and caching. Broadleaf Commerce4 is an open-source e-
commerce framework based on Java and Spring, which consists of about 115.000

3 See https://github.com/spring-projects/spring-petclinic
4 See https://github.com/BroadleafCommerce/BroadleafCommerce
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lines of code (LoC). It represents an actual real-world use case in which de-
velopers build modules of comparable size multiple times a day. Besides that,
12 examples5 are considered, each of which includes an instance of one of the
identified Spring-configuration error types. They do not represent practical ap-
plications but are used to ensure that the prototype is actually able to detect
such errors.
Since the prototype has to be integrated into the third party projects (Spring
Pet Clinic, Broadleaf Commerce), it is also possible to evaluate the integration
efforts from the user perspective.

In order to assess the performance of the prototype, the build times of the
projects including and excluding the prototype are compared to each other. Since
all considered projects are based on Maven, the time measured by Maven itself is
used. To ensure the comparability of the measured times, all builds are performed
on the same machine and unchanged configuration. In addition, multiple builds
are performed to minimize the possible influence of external factors of other
processes performed by the operating systems.
Each project is build 41 times whereby the first build fulfills two functions: First,
it is used by Maven to download and manage third party dependencies, which
potentially falsifies the results. Second, the Java virtual machine requires some
time for initialization when started, which also potentially falsifies the results. 40
additional builds are used to actually measure the build times. 20 of these builds
are performed with the prototype and 20 are performed without the prototype.

The conducted tests reveal the following results. No Spring-related errors
have been deteted within the Spring Pet Clinic and Broadleaf Commerce projects,
which is not surprising, since they are sufficiently mature. In contrast, the errors
placed on purpose in the example projects are detected.

The runtimes required to build the projects with and without the annotation
processor differ by an acceptable amount (see Table 3). The time differences
are less than one second for the small projects. Tests with an empty annotation
processor, which performs no checks, show similar results. Hence, it is likely that
a large part of the difference results from locating and initializing the annotation
processor. The largest absolute difference observed at the Broadleaf Commerce
project is ∼2 seconds, a 3% increase, for 115, 000 LoC. However, it has to be
noted that the project consists of seven modular projects and the Java plugin is
invoked individually for each of them. Hence, the annotation processor is seven
times located and initialized.

Up to now, our prototype handles 12 of the identified error types and, as
our experiments have shown, it is able to detect instances of these error types
successfully. The implementation of the detection of remaining error types is still
pending.

In order to improve the acceptance of our tool, the prototype is required to
minimize the occurrences of false reports. The following can be stated w.r.t. the
correctness and completeness of our tool. All errors above the method level are
reported properly and there are no reports of errors which actually don’t occur.

5 See https://github.com/vvhof/DetectingSpringConfigurationErrorsExamples
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Avg. Build Times in ms

Sample Project LoC Disabled Enabled Diff.

Error Type 1 29 2 568 2 971 16%

Error Type 2 156 2 675 2 932 10%

Error Type 3 36 2 544 2 741 8%

Error Type 4 37 2 535 2 825 11%

Error Type 5 37 2 524 2 870 14%

Error Type 6 69 2 524 2 915 15%

Error Type 7 56 2 558 2 756 8%

Error Type 8 53 2 501 2 629 5%

Error Type 9 39 2 463 2 725 11%

Error Type 10 39 2 469 2 668 8%

Error Type 11 54 2 502 2 764 11%

Error Type 12 54 2 516 2 748 9%

Spring PetClinic 1 390 9 912 11 448 15%

Broadleaf Commerce 115 902 55 108 56 970 3%

Table 3. Build Times with enabled and disabled prototype.

Below the method level, we are using a static analysis based on the control-flow
graph in addition to an attributed grammar. Due to the unavoidable loss of
precision in that analysis, it may happen that errors are reported, which can-
not occur thanks to data dependencies which the reaching definitions analysis
ignores. Fortunately, such errors rarely happen in practice, since it is bad pro-
gramming style to let the correctness of the configuration depend on the control
and data flow. One may even argue that such cases should be reported. Our cur-
rent implementation does not yet support inter-method analysis. Thus, errors
which can only be detected with such an analysis are currently not yet covered.

There are two limitations of our approach. As explained above, the limits of
static code analysis are also the limits of our approach. Second, the pluggable
annotation processing API restricts the usage of annotation processors to a Java
compiler. The usage of the compiler tree API also binds the annotation processor
to Oracle’s specific Java compiler javac.

6 Conclusion and Future Work

Dependency injection is an elegant design pattern. However using it, configu-
ration errors may occur which available Java compilers cannot detect. These
erroneous configurations are hence only detected at runtime, which requires dif-
ficult debugging and causes nasty delays during the development of software.
We have developed a compiler-plugin for the javac compiler which is able to find
such configuration errors at compile time. Conceptually, the plugin is based on
attributed grammars and the Java pluggable annotation processing API.

For the popular framework Spring and based on a literature review and expert
interviews, we have first of all collected a set of 38 possible types of configuration
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errors. Then, we have classified these error types into four categories. The clas-
sification depends on two aspects. First, we check whether an error requires an
analysis above or below the method level. Secondly, we check whether the error
is depending on the Spring context or not. For each of these classes of errors,
we have developed a scheme for an S- or L-attributed grammar and instantiated
this scheme for every considered possible error. By combining the attributed
grammars of each error type, we obtain one large L-attributed grammar. For er-
rors which require an analysis of the control flow, a reaching definitions analysis
based on the control-flow graph has been added.

In experiments based on a couple of small and two big applications, we have
evaluated that the compiler plugin produces an acceptable runtime overhead.
Moreover, it was able to find all configuration errors which we have inserted.
Due to the imprecision of the reaching definitions analysis, false positives may
happen in principle. In practice, this did not happen.

Our plugin is a valuable tool for Spring developers and used in practice by
our project partner in industry. It has helped to speedup software development
using Spring considerably.

Our current implementation handles 12 out of 38 identified types of errors.
As future work, we would like to extend the plugin such that the remaining error
types are also covered. For all but 5 error types, this will be straightforward and
we just have to instantiate our general schemes again. The remaining 5 errors
will require some inter-method analysis.
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Abstract

We present and illustrate Kleenex, a language for expressing gen-
eral nondeterministic finite transducers, and its novel compilation to
streaming string transducers with essentially optimal streaming behav-
ior, worst-case linear-time performance and sustained high throughput.
In use cases it achieves consistently high throughput rates around the 1
Gbps range on stock hardware, performing well, especially in complex
use cases, in comparison to both specialized and related tools such as
AWK, sed, grep, RE2, Ragel and regular-expression libraries.

1 Introduction

Imagine you want to implement syntax highlighting. This can be thought of
as parsing the input into its tokens and processing each token according to
its class. For illustration, assume we have one keyword, for, and alphabetic
identifiers as the only tokens. The lexical structure of the input is essentially
described by the regular expression (RE) ((for|[a−z]∗) )∗, where whitespace
is, for simplicity, represented by the single blank between the two closing
parentheses. This scenario highlights the following:

Ambiguity by design. The RE is ambiguous. The intended semantics
is that the left alternative has higher priority than the right. This is
greedy disambiguation: Choose the left alternative if possible, treating
e∗ as its unfolding ee∗|1. Accordingly, in our example for matches the
left alternative, not the right.

Regular expression parsing. Note that the RE has star height 2; in par-
ticular, we need to parse the input under multiple Kleene stars. For

1
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our RE the parse of a string is a list of segments (corresponding to the
outer Kleene star), with each segment represented by a pair, a token
and whitespace (corresponding to concatenation), where each token is
tagged (corresponding to the alternation) to indicate that it is either
the keyword for or an identifier; an identifier, in turn, consists of a
list (corresponding to the inner Kleene star) of characters.

Output actions. We need to output something, the highlighted tokens,
not just accept or reject a string as is done by finite automata. Note
that output actions are not specified in our RE.

We would like to do the highlighting in a streaming fashion, using as little
internal storage as possible and performing output actions as early as they
are determined by the input prefix read so far, at a high sustained input
processing rate, in particular in worst-case linear-time in the length of the
input stream with a low factor depending linearly on the size of the RE. We
would like to accomplish this automatically for arbitrary REs (or similar
input format specification) and output actions, with speeds that in practice
adapt to how much output actually needs to be produced; in particular,
performance should gracefully approach pure acceptance testing as more
and more output actions are removed. How?

It turns out that the set of parses are exactly the elements of the RE
read as a type [?, ?]: Kleene-star is the (finite) list type constructor, concate-
nation the Cartesian product, alternation the sum type and an individual
character the singleton type containing that character. A Thompson au-
tomaton [?] represents an RE in a strong sense: the complete paths—paths
from initial to final state—are in one-to-one correspondence with the parses
[?]. If a string has 4 parses (e.g. “for for ”), then there are exactly 4 complete
paths accepting it. Let us look at bit closer at a Thompson automaton: It is
nondeterministic, with ε-transitions, easily constructed, having O(m) states
and transitions from an RE of size m. It has exactly one initial and one
accepting node. Every state is either nondeterministic: it has two outgoing
ε-transitions (“left” or “right”); or it is deterministic: it has exactly one
outgoing transition labeled by ε or an input symbol, or it is the final state,
which has no outgoing transition. Every complete path is determined by a
sequence of bits used as an oracle [?]. Starting with the initial state, follow
all outgoing transitions from deterministic states; upon arriving at a nonde-
terministic state query the oracle to determine whether to go left or right,
until the final state is reached. The bit sequence of query responses yields a
prefix-free binary code for the string accepted on the designated path. This
bit-code can also be computed directly from the RE underlying the Thomp-
son NFA [?, ?]. Since a bit-code represents a particular parse, a string can
have multiple bit-codes if and only if the RE (and thus Thompson automa-
ton) is ambiguous: The greedy parse of a string, which we are interested in,
corresponds to the lexicographically least amongst its bit-codes [?].

2
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The greedy RE parsing problem is producing this lexicographically least
bit-code for a string matching a given RE. This can be done by an optimally
streaming algorithm, running in time linear in the size of the input string
for fixed RE [?]: The bits in the output are produced as soon as they are
uniquely determined by the input prefix read so far, assuming the input
string will eventually be accepted. The algorithm maintains an ordered path
tree from the initial state to all the automata states reachable by the input
prefix read so far. A branching node represents both sides of an alternation
that are both still viable. The (possibly empty) path segment from the
initial state to the first branching node is what can be output based on
the input prefix processed so far, without knowing which of the presently
reached states will eventually accept the rest of the input. This works for
all REs and all inputs; e.g., it automatically results in constant memory
space consumption for REs that are deterministic modulo finite look-ahead,
e.g. one-unambiguous REs [?].

Let us step back a bit. It is possible to aggressively (“earliest possible”)
and efficiently stream out the bit-code of the greedy parse of an input string
under a given RE as the input is streaming in: worst-case linear time in
the input string size, no backtracking and each input symbol can be pro-
cessed in time O(m), linear in the size of the RE and of its Thompson NFA.
(Here it is critical that Thompson NFAs have ε-transitions since equiva-
lent ε-free automata require Ω(m logm) transitions [?] and standard ε-free
NFA-constructions [?, ?, ?] even Ω(m2).)

Coming back to our syntax highlight problem we can use this algorithm
to parse the input, build the parse tree from the bit-code and recursively
descend it to perform the syntax highlighting. We might (correctly) suspect
that the highlighting can be done by piping the bit-code into a separate
highlighter process, eliding the materialization of the bit-code.1 In this
paper we show we can do better yet: The algorithm can be generalized to
simulating arbitrary nondeterministic finite-state transducers, NFAs with
output actions. Furthermore, we can compile their nondeterminism away
by producing theoretically and practically very efficient streaming string
transducers [?, ?, ?].

1.1 Contributions

This paper makes the following novel contributions:

• An aggressively streaming algorithm for nondeterministic finite state
transducers (NFST) for ordered output alpabets, which emits the lex-
icographically least output sequence generated by all accepting paths

1All Kleenex code in this paper was highlighted with a Kleenex program emitting
LATEX-commands.
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of an input string. It runs in O(mn) time, for automata of size m and
inputs of size n.
• An effective determinization of NFSTs into a subclass of streaming

string transducers (SST) [?], finite state machines with string regis-
ters that are updated linearly when entering the state upon reading
an input symbol. The number of registers required adapts to the
number of output actions in the NFST: The fewer output actions the
fewer registers. In particular, without special-casing, no registers are
generated—yielding a deterministic finite automata (DFA).
• An expressive declarative language, Kleenex, for specifying NFSTs

with full support for and clear semantics of unrestricted nondeter-
minism by greedy disambiguation. A basic Kleenex program is a
context-free grammar with embedded semantic output actions, but
syntactically restricted to ensure that the input is regular.2 Basic
Kleenex programs can be functionally composed into pipelines. The
central technical aspect of Kleenex is its semantic support for unbri-
dled (regular) nondeterminism and its effective determinization and
compilation to SSTs, thus both highlighting and complementing their
significance.
• An implementation, including some empirically evaluated optimiza-

tions, of Kleenex that generates SSTs and sequential machines ren-
dered as standard single-threaded C-code, which is eventually com-
piled to X86 machine code. The optimizations, which are neither
conclusive nor final, illustrate the design robustness obtained by the
underlying theories of ordered NFST’s and SST’s.
• Use cases that illustrate the expressive power of Kleenex, and a perfor-

mance comparison with related tools, including Ragel [?], RE2 [?] and
specialized string processing tools. These document Kleenex’s consis-
tently high performance (typically around 1 Gbps, single core, on stock
hardware) even when compared to expressively more specialized tools
with special-cased algorithms and tools with no or limited support for
nondeterminism.

2 Transducers

The semantics of Kleenex will be given by translation to non-deterministic
finite state transducers, which are finite automata extended with output in
a free monoid. In this section, we will recall the standard definition (see
e.g. Berstel [?]). Since Kleenex is deterministic, we also need to define a
disambiguated semantics which allows us to interpret any non-deterministic
transducer as a partial function, even when it may have more than one

2This facilitates avoiding the Ω(M(n)) lower bound for context-free grammar parsing,
where M(n) is the complexity of multiplying n× n matrices.
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possible output for a given input string.
In the following, an alphabet is understood to be a finite subset {0, 1, ..., n−

1} ⊆ N of consecutive natural numbers with their usual ordering. We fix
two alphabets Σ and Γ called the input and output alphabets, respectively.

Definition 1 (Finite State Transducer). A finite state transducer (FST)
over Σ,Γ is a structure T = (Σ,Γ, Q, q−, qf , E) where

• Q is a finite set of states;
• q−, qf ∈ Q are the initial and final states, respectively;
• E : Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q is the transition relation.

We write q
x|y−−→ q′ whenever (q, x, y, q′) ∈ E. The support of q ∈ Q is

defined as supp(q) = {x ∈ Σ ∪ {ε} | ∃q′, v. q x|v−−→ q′}.
A path in T is a sequence of transitions

q0
x1|y1−−−→ q1

x2|y2−−−→ ...
xn|yn−−−→ qn

It has input label u = x1x2...xn and output label v = y1y2...yn (ε denotes the

empty string). We write q0
u|v−−→ qn if a path from q0 to qn with input label

u and output label v exists.
T is normalized if for every state q ∈ QT , either supp(q) = {ε} or

supp(q) ⊆ Σ; and furthermore supp(qf ) ⊆ Σ. We write q ↓ for q such that
supp(q) ⊆ Σ. The formulation of our simulation algorithm in Section 4
becomes simpler when restricting our attention to normalized transducers,
since we can take advantage of the following separation property:

Proposition 1. If T is normalized, then p
uv|z−−→ r ↓ if and only if there

exists a q such that z = xy and p
u|x−−→ q ↓ v|y−−→ r ↓.

Definition 2 (Relational Semantics). An FST T denotes a relation [[T ]] ⊆
Σ∗ × Γ∗ with (u, v) ∈ [[T ]] iff q−

u|v−−→ qf .

The relations definable as FSTs are the rational relations [?]. In the
special case where for any u ∈ Σ∗ there is at most one v ∈ Γ∗ such that
(u, v) ∈ [[T ]], the transducer computes a partial function. Any FST can be
translated to an equivalent normalized FST.

In the following we give a refined semantics which allows us to inter-
pret any FST as denoting a partial function, using the assumed ordering
on alphabets to disambiguate between outputs. Our semantics requires re-
stricting paths to be nonproblematic [?]: If a path contains a non-empty

loop q′
ε|v′−−→ q′ with empty input label, then the path is said to be problem-

atic, otherwise it is nonproblematic. If there is a nonproblematic path from

q to q′ with labels u, v, then we write a subscript on the arrow: q
u|v−−→np q

′.
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The output words (elements of Γ∗) are lexicographically ordered: w1 ≤
w2 if either w1 is a prefix of w2, or there exist words w′, w′1, w

′
2 and symbols

b1, b2 ∈ Γ such that w1 = w′b1w′1, w2 = w′b2w′2 and b1 < b2. We use the
ordering on output words to choose a single path from a non-empty set of
paths:

Definition 3 (Functional Semantics). Any transducer T denotes a partial
function [[T ]]≤ : Σ∗ → Γ∗ ∪ {∅} where

[[T ]]≤(u) = min{v | q− u|v−−→np q
f}.

Note that a partial function A→ B∪{∅} is considered here to be a map
A → 2

B where the cardinality of every subset in its range is at most two,
and we tacitly identify elements a ∈ A with their singleton sets {a}.3

Why the restriction to nonproblematic paths? Consider the following
transducer T :

q1start q2
a/1

ε/0

Then min{v | q1 a|v−−→ q2} = ∅, as evidenced by the following infinitely
descending chain of outputs: 1 ≥ 01 ≥ 001 ≥ 0001 ≥ .... Operationally,
such a chain corresponds to a non-terminating backtracking search. On the
other hand, the number of nonproblematic paths with a given input label
is always finite, ensuring well-foundedness of the lexicographic order. Every
problematic path has a corresponding nonproblematic path with the same
input label; consequently, dom([[T ]]≤) = dom([[T ]]).

3 Kleenex

The core syntax of Kleenex is essentially that of right regular grammars
extended with output actions and choice operators. Semantically, a Kleenex
program denotes a function which transforms an input string from a regular
language into a sequence of action symbols, with the caveat that if the input
grammar is ambiguous, then the production rules are chosen according to a
greedy leftmost disambiguation strategy.

We will first present the abstract syntax of core Kleenex, which is given
a semantics in terms of the transducers introduced in Section 2.

Definition 4 (Kleenex syntax). Let Σ and Γ be two alphabets. A Kleenex
program is a non-empty list p = d0d1 . . . dn of definitions di, each of the
form Ni:= ti, where ti is a term generated by the grammar:

t ::= 1 | N | a t | "b" t | t0|t1
3In other words, we adjoin an element to model partial functions as total functions to

pointed sets.
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In the above, N is assumed to range over some set of non-terminal identifiers
{N1, ..., Nn}, a ∈ Σ over input symbols and b ∈ Γ over output actions.

We restrict the valid Kleenex programs to those where there is at most
one definition for each non-terminal identifier.

Let p be a Kleenex program over non-terminals {N1, . . . , Nn}. We define
a set of states Qp and two transition relations EA

p , E
C
p as the smallest sets

closed under the following rules:

N1 ∈ Qp
Ni ∈ Qp

ti ∈ Qp (Ni, ε, ε, ti) ∈ EA
p ∩ EC

p

(Ni:= ti)

a t ∈ Qp
t ∈ Qp (a t, a, ε, t) ∈ EC

p (a t, ε, ε, t) ∈ EA
p

"b"t ∈ Qp
t ∈ Qp ("b" t, ε, ε, t) ∈ EC

p ("b" t, ε, b, t) ∈ EA
p

t0|t1 ∈ Qp
{t0, t1} ⊆ Qp (t0|t1, ε, 0, t0), (t0|t1, ε, 1, t1) ∈ EC

p

(t0|t1, 0, ε, t0), (t0|t1, 1, ε, t1) ∈ EA
p

The sets are easily seen to be finite. They define two transducers, an oracle
T C
p = (Σ,2, Qp, N1, 1, E

C
p ) and an action machine T A

p = (2,Γ, Qp, N1, 1, E
A
p ),

where T A
p is easily seen to be deterministic, and T C

p is non-deterministic and
possibly ambiguous. The oracle intuitively translates an input string to a
set of codes for the possible paths through p which reads the given string.
The action machine translates a code to a sequence of actions.

Disambiguating according to the greedy leftmost strategy corresponds
to choosing the lexicographically least code, and we can thus define the
semantics as follows:

Definition 5 (Kleenex semantics). Let p be a Kleenex program and let
T C
p and T A

p be defined as above. The program p denotes a partial function
[[p]] : Σ∗ → Γ∗ ∪ {∅} given by

[[p]] = [[T A
p ]] ◦ [[T C

p ]]≤

3.1 Syntactic sugar

The full syntax of our language is obtained by extending the syntax of core
Kleenex with the following term-level constructors:

t ::= . . . | "v" | /e/ | ~t | t0 · t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}
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main := odd ~/a/

| even ~/a/

odd := ~/aa/ "bb" odd

| "c"

even := ~/a/ "c" even

| "b"

Nmain := Nodd|Neven

Nodd := a a "b" "b" Nodd

|" c " a 1

Neven := a "c" Neven|"b" a 1

Nmain

Nodd

a1 a2

a3

Neven

a4

a5

1

ε/1

ε/0

ε/0

ε/1

a/ε a/ε ε/ε

ε/ε

ε/ε a/ε
ε/ε

ε/0

ε/1

a/ε

ε/ε

ε/ε a/ε

ε/ε

Nmain

Nodd

Neven

1

1/ε

0/ε

0/ε

1/ε

ε/ε ε/ε ε/b

ε/b

ε/c ε/ε
ε/ε

0/ε

1/ε

ε/ε

ε/c

ε/b ε/ε

ε/ε

Figure 1: In the top left is a Kleenex program in the surface syntax and on the
right is the desugared version. Below, the oracle transducer and action machine is
shown, from left to right. The transduction realized by the program maps a2n+1

to b2nc, and a2n+2 to c2nb, respectively.

where v ∈ Γ∗, n,m ∈ N, and e is a regular expression. The term "v" is
just shorthand for a sequence of action symbols. The regular expressions
are special versions of Kleenex terms that do not contain identifiers. They
always desugar to terms that output the matched input string: The sugared
term /e/ adds a default action "α(a)" after every input symbol a in e using
a given default action map α : Σ→ Γ. For example, the regular expression
/a*|b{n,m}|c?/ becomes the term (a"a")*|(b"b"){n,m}|(c"c")?. A sup-
pressed subterm is written ~t, and it desugars into t with all action symbols
removed. Composition t0 · t1 allows general sequential composition instead
of the strict cons-like form of the core syntax. The operators ·*, ·+ and ·?
desugar to their usual meaning as regular operators, as do operators ·{n},
·{n,}, ·{,m}, and ·{n,m}.

By convention, the nonterminal named main is the entry point to a
Kleenex program.

The desugaring can be described more precisely by a desugaring operator
D[[·, ·]]. The result of desugaring a program p = d1 . . . dn with initial term
N1:= t1 is a program with initial term N ′1:= D[[t1, 1]] which furthermore is
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a solution to the following set of equations:

D[[1, k]] = D[[~1, k]] = k

D[["b1 . . . bn", k]] = "b1" . . . "bn" k

D[[~("b" t), k]] = D[[~t, k]]

D[[a t, k]] = a D[[t, k]]

D[[~(a t), k]] = a D[[~t, k]]

D[[~(t0|t1), k]] = D[[~t0, k]]|D[[~t1, k]]

D[[N, k]] = ND[[t,k]] (where N:= t)

D[[~N, k]] = ND[[~t,k]] (where N:= t)

D[[/e/, k]] = D[[te, k]]

D[[t0 · t1, k]] = D[[t0,D[[t1, k]]]]

D[[t0|t1, k]] = D[[t0, k]]|D[[t1, k]]

D[[t*, k]] = D[[t,D[[t*, k]]]]|k

D[[t+, k]] = D[[t,D[[t*, k]]]]

D[[t?, k]] = D[[t, k]]|k

In the above, a non-terminal name Nt on the right-hand side of an equa-
tion implies the presence of a definition Nt:= t, and the term te corresponds
to the regular expression e as described above. The range patterns are just
expanded and then further desugared.

The system does not always have a well-defined solution: The generalized
composition operator of sugared Kleenex allows one to write non-regular
grammars, for example:

A:= (aA) · b|1.
A program that does not have a well-defined desugaring is not considered
to be well-formed, and we will not attempt to give it a semantics.

3.2 Custom register updates

We extend the syntax of Kleenex further with register actions:

t ::= . . . | R @ t | !R
| [R <- (R | "v")? ]

| [R += (R | "v")? ]

where R is a lower-case register name. Intuitively, these constructs allow
one to store actions and perform them later. Writing R @ t redirects all
actions that would have resulted from running t into the register R, which
can be performed later by writing !R. The register R can be either set to a
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sequence of actions (R | "v")? or appended with them, using the <- and +=

construct, respectively.
At first glance it seems like adding custom register updates to Kleenex

significantly alters the language and moves beyond the semantics discussed
so far. However, the only requirement on the output actions is that they
form a monoid, so this is not the case. We simply add actions like “set
register R to v” as output symbols along with the output symbols !v. The
output redirection caused by the · @ · operator can be understood as a push
operation: when R @ t is written it means that in the scope of t the topmost
register is R. If there are other redirection symbols in t, these will come in
and out of scope as they are pushed and popped to the stack.

As an example, the following program swaps two input lines by storing
them in registers a and b and outputting them in reverse order:

main := a@line b@line !b !a

line := /[^\n]*\n/

4 Simulation and determinization

In this section, we specify an algorithm for simulating FSTs under the func-
tional semantics, allowing us to efficiently evaluate the oracle transducer
defined in Section 3. We also show how the simulation algorithm can be
implemented by finite deterministic streaming string transducers [?] whose
states are identified by equivalence classes of simulation states. The lat-
ter construction gives a deterministic machine model for Kleenex programs
which can be compiled to efficient code for executing on hardware.

We note that non-deterministic transducers are strictly more powerful
than their deterministic counterparts, and can thus not always be deter-
minized in general. Determinization procedures exist [?, ?] which result in
a deterministic transducer with an infinite state set in the general case, and
a finite state set if and only if the underlying transduction is subsequen-
tial [?, ?]. The oracle transducers of Kleenex programs are not subsequen-
tial in general. Our simulation algorithm is also different from the existing
methods for determinizing transducers by also taking disambiguation into
account.

In the following we fix a transducer T = (Σ,∆, Q, q−, qf , E). We will
assume that T is normalized, and that it furthermore satisfies the following
property:

Definition 6 (Prefix-free transducer). T is said to be prefix-free if for all

p, q, q′ ∈ QT where supp(q), supp(q′) ⊆ Σ we have that if p
x|y−−→ q and

p
x|y′−−→ q′ then y 6≺ y′.

It is easy to verify that the oracle transducers constructed Section 3 are
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both normalized and prefix-free. Note that they will always have ∆ = 2,
but our construction generalizes to oracle alphabets of all sizes.

4.1 Generalized state set simulation

Let D be a finite and totally ordered set, and write S(D,Q) for the set of
partial functions Q → D∗ ∪ {∅}. Elements A ∈ S(D,Q) can be seen as
generalized subsets of Q where every member q is labeled by some element
A(q) ∈ D∗, and every non-member has A(q) = ∅.

We extend word concatenation in D∗ to the set D∗ ∪ {∅} by setting
x∅ = ∅ = ∅x. For u, v ∈ D∗ ∪ {∅}, write u � v if u is a prefix of v, i.e.
there is a unique w such that v = uw. Write u ≺ v if w has length at least
one. Let u∧ v refer to the longest p such that u = pu′ and v = pv′ for some
u′, v′. Note that in view of this definition, ∅ becomes a neutral element with
u ∧ ∅ = u = ∅ ∧ u.

We define a right action · : S(D,Q)× Σ∗ → S(D ∪∆, Q) on the gener-
alized state sets as follows:

Definition 7 (Right action). Let A ∈ S(D,Q) and u ∈ Σ∗. We define

(A · u)(q) = min{A(p)v | p u|v−−→np q ↓}.

When D = ∆ the right action can be seen as a map S(∆, Q) × Σ∗ →
S(∆, Q). It is easily seen that the right action is related to the functional
semantics in the following way:

Proposition 2. Let A(q) = ε if q = q− and A(q) = ∅ otherwise. Then
(A · u)(qf ) = [[T ]]≤(u).

A generalized subset A ∈ S(D,Q) is said to be prefix-free if A(p) 6≺ A(q)
for all p, q ∈ Q. When T is normalized and prefix-free, the right action
preserves prefix-freeness of generalized subsets and commutes with word
concatenation:

Proposition 3. If T is normalized and prefix-free and A is prefix-free, then
for all u, v ∈ Σ∗,

1. A · u is prefix-free; and
2. (A · u) · v = A · uv.

Proof. The first property follows directly by A and T being prefix-free. For

11

159



the second, we have for r ∈ Q,

((A · u) · v)(r)

= min{(A · u)(q)y | q v|y−−→np r ↓}
= min{min{A(p)x | p u|x−−→np q ↓}y | q v|y−−→np r ↓}
= min{min{A(p)xy | p u|x−−→np q ↓} | q v|y−−→np r ↓}
= min{A(p)xy | p u|x−−→np q ↓ v|y−−→np r ↓}
= min{A(p)z | p uv|z−−→np r ↓} = (A · uv)(r)

The third equality is a consequence of the fact that A and T are prefix-free,
together with the following easily proved fact about lexicographic ordering:
(minX)y = min{xy | x ∈ X) whenever X is a set of pairwise prefix-free
words. The fourth equality is just associativity of minimum, and the last
equality follows by the fact that T is normalized and Proposition 1.

For x ∈ D∗ and A ∈ S(D,Q), define xA ∈ S(D,Q) by (xA)(q) =
x(A(q)). We say that x is a prefix of A if A = xA′ for some A′, which is
equivalent to x being a prefix of every A(q). The right action commutes
with the prefix operation:

Proposition 4. Let x ∈ D∗, then (xA) · u = x(A · u) for all u ∈ Σ∗.

Proof. Follows by the fact that lexicographic ordering satisfies min{xy | y ∈
Y } = xminY .

Streaming simulation algorithm A streaming simulation algorithm on
T processes an input from left to right and may write zero or more symbols
to the output in each step.

Algorithm 1 (Streaming FST Simulation). Let T be a normalized and
prefix-free transducer, and let the input u = a1a2...an be given. Let A0 ∈
S(∆, Q) be defined as in Proposition 2. Reading symbol ai, compute Bi =
Ai · ai+1. Append pi =

∧
q∈QBi(q) to the output stream and set Ai+1 =

B′i, where the equality Bi = piB
′
i defines B′i. When there are no more

input symbols left, append (An · ε)(qf ) to the output and return, or fail if
(An · ε)(qf ) = ∅.

By Proposition 2, Proposition 3 and Proposition 4, the algorithm com-
putes [[T ]]≤(u).

4.2 A deterministic computation model

We wish to translate Kleenex programs to completely deterministic pro-
grams without a simulation overhead.
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Single-valued transducers in general, however, can only be determinized
if the underlying function is subsequential [?, ?], a property which is not
satisfied in general for the oracle transducers constructed from Kleenex pro-
grams.

We turn instead to streaming string transducers [?] (SST), a determin-
istic model of computation which generalizes subsequential transducers by
allowing copy-free updates to a finite set of word registers. It turns out
that every transducer that can be simulated by our generalized state set
algorithm can be expressed as an SST.

Definition 8 (Streaming String Transducer [?]). A deterministic streaming
string transducer (SST) over alphabets Σ,∆ is a structure S = (X,Q, q−, F, δ1, δ2)
where

• X is a finite set of register variables;
• Q is is a finite set of states;
• F is a partial function Q → (∆ ∪X)∗ ∪ {∅} mapping each final state
q ∈ dom(F ) to a word F (q) ∈ (∆ ∪X)∗ such that each x ∈ X occurs
at most once in F (q);
• δ1 is a transition function Q× Σ→ Q;
• δ2 is a register update function Q× Σ×X → (∆ ∪X)∗ such that for

each q ∈ Q, a ∈ Σ and x ∈ X, there is at most one y ∈ X such that x
occurs in δ2(q, a, y).

The semantics are defined as follows. A configuration of an SST S is
a pair (q, ρ) where q ∈ QS is a state, and ρ : XS → ∆∗ is a valuation. A
valuation extends as a monoid homomorphism to a map ρ̂ : (XS∪∆)∗ → ∆∗

by setting ρ(x) = x for x ∈ ∆. The initial configuration is (q−, ρ−) where
ρ−(x) = ε for all x ∈ XS .

A configuration steps to a new configuration given an input symbol:
δS((q, ρ), a) = (δ1S(q, a), ρ′), where ρ′(x) = ρ̂(δ2S(q, a, x)). The transition
function extends to a transition function on words δ∗S by δ∗S((q, ρ), ε) = (q, ρ)
and δ∗S((q, ρ), au) = δ∗S(δS((q, ρ), a), u).

Every SST S denotes a partial function [[S]] : Σ∗ → ∆∗ ∪ {∅} where for
any u ∈ Σ∗, we define

[[S]](u) =





ρ̂′(FS(q′)) if δ∗((q−, ρ−), u) = (q′, ρ′)

and q′ ∈ dom(FS)

undefined otherwise

4.3 Tabulation

We need to come up with a representation of our streaming simulation al-
gorithm as an SST with a designated register used for streaming output.
Our representation needs to satisfy the property of being finite state as well
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as the property that the output register contains the output p1p2...pi of
Algorithm 1 after reading input symbol ai. The latter requirement means
that we must somehow statically encode the prefix structure of all potential
outputs in the states of the SST, since SSTs cannot access the contents of
registers. It turns out that this is possible by letting the states of the SST
be equivalence classes of generalized state sets, where the equivalence relates
state sets that agree on state ordering and prefix structure.

Trees We will call a prefix-free generalized state set A an ordered tree with
node set

NA = {A(p) ∧A(q) | p, q ∈ Q,A(p) ∧A(q) 6= ∅}.
Under this view, the leaves of A seen as a tree is the subset of nodes LA =
{A(q) | q ∈ Q,A(q) 6= ∅} ⊆ NA, and the leaves are labeled by A−1 : LA →
2
Q. Since A is assumed prefix-free, we have for any nodes x, y ∈ NA that
x � y if and only if there is a z ∈ NA such that x = y ∧ z. In this case x is
called an ancestor of y and z, which in turn are called the descendants of x.
Importantly, the root node of any (sub)tree is the longest common prefix of
its descendants.

Example 1. We illustrate the tree interpretation as follows. Consider the
oracle transducer from Figure 1. Let A0 be the generalized state set that
maps Nmain to ε and every other state to ∅. Then the state sets A0 · a and
A0 · aa can be seen as trees in the following way:

A0 · a : A0 · aa :

ε 0 00

01

10 100

101

{a2}
{1}
{a4}
{a5}

(−)·a
=⇒

ε 00 000

001

10 100 1000

1001

101

{a1}
{a3}
{a4}
{a5}
{1}

We will consider two generalized state sets to be equivalent if they are
indistinguishable as ordered trees.

Definition 9 (Ordered tree isomorphism). Let D1, D2 be totally ordered
and let A1 ∈ S(D1, Q) and A2 ∈ S(D2, Q) be trees. An ordered tree iso-
morphism between A1 and A2 is a bijective map h : NA1 → NA2 such that
for all p, q ∈ Q:

1. h(A1(p) ∧A1(q)) = A2(p) ∧A2(q); and
2. A1(p) ≤ A1(q) if and only if A2(p) ≤ A2(q).

We write h : A1 ≡ A2 and say that A1 and A2 are equivalent when
h is an ordered tree isomorphism between A1 and A2. Tree equivalence is
preserved by the right action:
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Proposition 5. If A ∈ (D1, Q), B ∈ (D2, Q) and h : A ≡ B then for all
a ∈ Σ, we have A · a ≡ B · a.

Proof sketch. Since h is an order isomorphism and since A and B are prefix-
free, we have for all q ∈ Q exists pq ∈ Q and yq ∈ ∆∗ such that (A · a)(q) =
A(pq)yq and (B · a)(q) = h(A(pq))yq. Observe that for any n ∈ NA·a there
exists q1, q2 ∈ Q such that

n = (A · a)(q1) ∧ (A · a)(q2)

=

{
A(q1)(yq1 ∧ yq2) if A(q1) = A(q2)

A(q1) ∧A(q2) otherwise

Furthermore, there does not exist q1, q2, r1, r2 ∈ Q such that A(q1)(yq1 ∧
yq2) = A(r1) ∧A(r2), since that would imply that A(q1) is a prefix of A(r1)
and A(r2). We define a map h′ : NA·a → NB·a such that for all q1, q2 ∈ Q,

h′((A · a)(q1) ∧ (A · a)(q2))

=

{
h(A(q1)(yq1 ∧ yq2)) if A(q1) = A(q2)

h(A(q1) ∧A(q2)) otherwise.

This is a well-defined function by the previous observations, and a tree
isomorphism by the fact that h is a tree isomorphism.

Canonical representatives Call a generalized set A ∈ S(D,Q) canonical
if

1. rng(A) is prefix closed: if y ∈ rng(A) and x � y then x ∈ rng(A); and
2. rng(A) is downwards closed: if x b ∈ rng(A) for b′ < b then xb′ ∈

rng(A) (for b, b′ ∈ ∆).

Write S̃(D,Q) for the subset of canonical trees. The set is finite, as every
canonical tree A has a prefix closed node set, so the longest word in NA

is bounded by |dom(A)| − 1 (the maximum depth of a tree with |dom(A)|
leaves).

Any tree has a canonical representative:

Proposition 6. For any set D and tree A ∈ S(D,Q), there is a unique
C ∈ S̃(N, Q) with A ≡ C.

As a consequence, there is a reduction map [·] : S(D,Q) → S̃(N, Q)
such that A ≡ B if and only if [A] = [B], implying that the quotient set
S(D,Q)/≡ must be finite. Any A ∈ S(D,Q) is thus canonically represented
by a homomorphism hA : N[A] → NA such that A = hA ◦ [A].

In view of Proposition 5, this means that we can statically enumerate
all possible trees up to tree isomorphism by computing with the canonical
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representatives. Any concrete tree reachable by the simulation algorithm is
an instance of a canonical tree composed with a suitable homomorphism.
An SST implementing the simulation algorithm can thus take the set of
canonical trees as its states, and will then need to maintain the associated
homomorphism via register updates.

Paths We need to represent tree homomorphisms using SST registers such
that the effect of computing right actions on the underlying tree can be
expressed as SST updates.

For a tree A ∈ S(D,Q), any node x ∈ NA has a unique maximal de-
composition x = x0x1...xn such that each x0x1...xi ∈ NA for all 0 ≤ i ≤ n.
Intuitively, this reflects the full path from the root node to the node x, and
we can define the map

pathA : NA → N∗A
pathA(x) = (x0, x0x1, ..., x0x1...xn),

which maps nodes to their maximal path decomposition (we use the tuple
notation to distinguish between the two levels of monoids). In view of this
and the fact that homomorphisms must preserve descendants, then for any
homomorphism h : A ≡ B there is a unique κh : NA → NB such that

h(x) = κh(t0)κh(t1) · · ·κh(tn), (1)

where pathA(x) = (t0, t1, ..., tn). Intuitively, κ can be seen as a “differential”
representation of h, representing the change of h between a node and its
immediate ancestor. By viewing κh as a map NA → D∗B which extends
uniquely to a monoid homomorphism κ̂h : N∗A → D∗B, we obtain h = κ̂h ◦
pathA. Considering the unique isomorphism hA : [A] ≡ A, write κA for the
associated decomposition satisfying (1), and we thus have

A = κ̂A ◦ path[A] ◦ [A] (2)

The path-operator is easily seen to be a tree isomorphism since it pre-
serves node ordering and prefix structure. That is, for any A ∈ S(D,Q), we
have pathA : A ≡ A] where A] ∈ S(ND, Q) is defined by A] = pathA ◦ A.
Using this notation, (2) becomes

A = κ̂A ◦ [A]], (3)

SST construction We construct an SST implementing the FST simula-
tion algorithm and sketch a proof of its correctness.

Theorem 1. For any normalized prefix-free transducer T = (Σ,∆, Q, q−, qf , E),
there is an SST S such that [[S]] = [[T ]]≤.
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Proof. We define S as follows. Let A0 be defined as in Algorithm 1, and
observe that A0 ∈ S̃(N, Q). The states are the canonical trees labeled by Q:

QS = {[A] | A ∈ S(∆, Q)} ∪ {A0} ⊆ S̃(N, Q),

q−S (q) = A0(q)

The registers will be identified by canonical tree nodes:

XS =
⋃
{NC | C ∈ QS}.

The final output and the transition maps are given as follows:

FS(C) = (C] · ε)(qf ),

δ1S(C, a) = [C · a],

δ2S(C, a, x) =

{
κC]·a(x) if x ∈ N[C]·a]
ε otherwise

We claim that S computes the same function as T under the functional
semantics.

For u ∈ Σ∗ let (Cu, ρu) refer to the value δ∗S((q−S , ρ
−), u) = (Ci, ρi). We

show that for any u ∈ Σ∗, we have ρ̂u ◦ (C]u · ε) = A0 · u.
Suppose that this holds. Then for any u ∈ Σ∗, we have by the above and

Proposition 2 that [[S]](u) = ρ̂u(FS(Cu)) = ρ̂u ◦ (C]u · ε)(qf ) = (A0 · u)(qf ) =
[[T ]]≤(u).

Our claim follows as a special case of the following lemma.

Lemma 1. Let A ∈ S(∆, Q) and ρ : XS → ∆∗ such that A = ρ̂◦ [A]]. Then
for any u ∈ Σ+ with δ∗S(([A], ρ), u) = (C, ρ′) we have ρ̂′ ◦ C] = A · u.

Proof. By induction on u. For u = a we have C = [[A] · a] = [A · a] and
ρ′ = ρ̂ ◦ κ[A]]·a. We can easily verify that ρ̂′ = ρ̂ ◦ κ̂[A]]·a so for any q ∈ Q,

ρ̂′ ◦ [A · a]](q) = ρ̂ ◦ κ̂[A]]·a ◦ [A · a]](q)

= ρ̂ ◦ ([A]] · a)(q)

= ρ̂(min{[A]](p)y | p a|y−−→np q ↓})
= min{ρ̂ ◦ [A]](p)y | p a|y−−→np q ↓}
= min{A(p)y | p a|y−−→np q ↓} = (A · a)(q)

The second equality follows by observing that A ≡ [A] ≡ [A]], so by Propo-
sition 5, we have A · a ≡ [A]] · a and thus [A · a] = [[A]] · a]. Therefore,
κ̂[A]]·a ◦ [A · a]] = κ̂[A]]·a ◦ [[A]] · a]] = [A]] · a by using the identity (3). The

fourth equality is justified by the fact that [A]](p) ≤ [A]](q) if and only if
A(p) ≤ A(q).
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For u = au′ where u′ 6= ε, we have (C, ρ′) = δ∗S(([A · a], ρ̂ ◦ κ[A]]·a).
By the previous argument we can apply the induction hypothesis, and we
obtain C = [(A · a) · u′] and ρ̂′ ◦C] = (A · a) · u′. The result then follows by
Proposition 3.

Example 2. We illustrate how the construction works by showing how
Example 1 is implemented as an SST update between states [A0 · a] and
[A · aa]. The register update is obtained by computing κ[A0·a]]·a. The tree

[A0 · a]] looks as follows:

(ε) (ε, 0) (ε, 0, 00)

(ε, 0, 01)

(ε, 1) (ε, 1, 10)

(ε, 1, 11)

{a2}
{1}
{a4}
{a5}

Recall that each node is a full path in the canonical tree [A0 · a]. The node
names from N[A0·a] are overlined and elements of the path monoid N∗[A0·a] is

written (x1, x2, ...). The tree [A0 · a]] · a looks as follows:

(ε) (ε, 0, 00) (ε, 0, 00, 0)

(ε, 0, 00, 1)

(ε, 1) (ε, 1, 10) (ε, 1, 10, 0)

(ε, 1, 10, 1)

(ε, 1, 11)

{a1}
{a3}
{a4}
{a5}
{1}

Note that symbols that are not overlined are output symbols from ∆. The
map κ′ = κ[A0·a]]·a : N[A0·aa] → (N[A0·a] ∪ ∆)∗ gives us the relevant SST
update strings:

κ′(ε) = (ε) κ′(0) = (0, 00) κ′(00) = 0

κ′(01) = 1 κ′(1) = (1) κ′(10) = (10)

κ′(100) = 0 κ′(101) = 1 κ′(11) = (11)

The full construction of an SST from the oracle transducer in Figure 1
can be seen in Figure 2.

5 Implementation

Our implementation compiles a Kleenex program to machine code by im-
plementing the transducer constructions described in the earlier sections.
We have also implemented several optimizations to decrease the size of the
generated SSTs and improve the performance of the generated code. We
will briefly describe these in the following section, and we note that they are
all orthogonal to the underlying principles behind our compilation.

The possible compilation paths of our implementation can be seen in
Fig. 3.

18

166



[A0]start [A0 · a] (ε)(0)(01)

[A0 · aa] (ε)(1)(11)

a

/ ε 7→ ε
0 7→ 0

00 7→ 0
01 7→ 1
1 7→ 10

10 7→ 0
11 7→ 1

a

/
ε 7→ (ε)
0 7→ (0, 00)

00 7→ 0
01 7→ 1
1 7→ (1)

10 7→ (10)
100 7→ 0
101 7→ 1
11 7→ (11)

a

/ ε 7→ (ε)
0 7→ (0)

00 7→ (00)
01 7→ (01)
1 7→ (1, 10)

10 7→ (100, 0)
11 7→ (101, 1)

Figure 2: Example of SST computing the same function as the oracle transducer
in Figure 1. Each transition is tagged by a register update, and the nodes of the
canonical tree identifying the destination state make up the registers. The wide
arrows exiting the accepting states indicate the final output string. Note that this
always includes the root variable (ε) which thus acts as an interface for streaming
output (although for this particular example, nothing can output until the end of
the input).

Kleenex Symbolic Oracle+Action FSTs

Symbolic SST+Action FSTC codemachine code

translate

constant propagation

pipeline

inline (woACT)
gcc

clang 1-LAk-LA

Figure 3: Compilation paths. 1-LA is symbolic SST construction with single-symbol
transitions; k-LA is construction of SST with up to k symbols of lookahead for some
k determined by the program. The “pipeline” translation path indicates that the
resulting program keeps the oracle SST and action FST separate, with data being
piped from the SST to the FST at runtime. The “inline” path indicates that the
action FST is fused into the oracle SST.

19

167



5.1 Transducer pipeline

It is possible to chain together several Kleenex programs in a pipeline, let-
ting the output of one serve as the input of the next. This can for example
be used to strip unwanted characters before performing a transformation.
By using the optional pipeline pragma, start: t1 >> . . . >> tn, a program-
mer can specify that the entry point is t1 and that the output should be
chained together as specified, with the final output being that of tn. The
implementation does this by spawning a process for each transducer and
setting up UNIX pipes between them.

5.2 Inlining the action transducer

When we have constructed the oracle SST we end up with two deterministic
machines which need to be composed. We can either do this at runtime,
piping the output of the oracle SST into the action FST, or we can apply
a form of deforestation to inline the outuput of the action FST directly
in the SST (this is straightforward since the action FST is deterministic by
construction). The former approach is advantageous if the Kleenex program
produces a lot of output and is highly nondeterministic.

5.3 Constant propagation

The SSTs generated by our construction contains quite a lot of trivial reg-
ister updates which can be eliminated in order to achieve better run-time
efficiency. Consider the SST in Fig. 2, where all registers but (0) and (1)
are easily seen to have a constant known value in each state. Eliminating
the redundant registers means that we only have to maintain two registers
at run-time.

We achieve this by constant propagation: computing reaching definitions
by solving a set of data-flow constraints (see e.g. [?]).

5.4 Symbolic representation

Text transformation programs often contain idioms which have a rather
redundant representation as pure transducers. A program might for example
match against a whole range of characters and proceed in the same way
regardless of which one was matched. This will, however, lead to a transition
for each concrete character in the generated FST, even though all transitions
have the same source and destination states.

A more succinct representation can be obtained by using a symbolic rep-
resentation of the transition relation by introducing transitions whose input
labels are predicates, and whose output labels are terms indexed by input
symbols. Replacing input labels with predicates has been described first
described by Watson [?]. Such symbolic transducers have been developed
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further and have recently received quite a bit of attention, with applications
in verification and verifiable string transformations [?, ?, ?, ?].

Our implementation of Kleenex uses a symbolic representation for basic
ranges of symbols in order to get rid of most redundancies. The simulation
algorithm and the SST construction can be generalized to the symbolic case
without altering the fundamental structure, so we have elided the details of
this optimization. We refer the reader to the cited literature for the technical
details of symbolic transducers.

5.5 Finite lookahead

A common pattern in Kleenex programs are definitions of the form

token := ~/abcd/ commonCase | ~/[a-z]+/ fallback

that is, a specific pattern appearing with higher priority than a more gen-
eral fallback pattern. Patterns of this form will result in (symbolic) SSTs
containing the following kind of structure:

...

... ... ... ...

a/... b/... c/... d/...

[^a]/... [^b]/... [^c]/... [^d]/...

The primary case and the fallback pattern are simulated in lockstep, and in
each state there is a transition for when the common case fails after reading
0, 1, 2, etc. symbols.

If the SST was able to look more than one symbol ahead before deter-
mining the next state, we would be able to tabulate a much coarser set of
simulation states and do away with the fine-grained interleaving. For the
above example, we would like a transition structure like the following:

...

...

abcd/...

[a-z]/...

If the first four symbols of the input are abcd, the upper transition is taken.
If this is not the case, but the first symbol is a, then the lower transition
is taken. The idea is that any string successfully matched by the primary
case will satisfy the test abcd, so if the transition with [a-z] is taken, then
the FST states corresponding to the primary case can be removed from the
generalized state set and tabulation can continue with a simpler simulation
state.

The semantics of SSTs with lookahead are still deterministic despite the
seeming overlap of patterns, as the model requires that any pair of tests
are either disjoint (no string will satisfy both at the same time), or one
test is completely contained in another (if a string satisfies the first test, it
also satisfies the second). This restriction gives a total order between tests,
specifying their priority—the most specific test must be tried first.
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6 Benchmarks

We have run comparisons with different combinations of the following tools:

RE2, Google’s automata-based regular expression C++ library [?].
RE2J, a recent re-implementation of RE2 in Java [?].
GNU AWK, GNU grep, and GNU sed, programming languages and tools

for text processing and extraction [?].
Oniglib, a regular expression library written in C++ with support for dif-

ferent character encodings [?].
Ragel, a finite state machine compiler with multiple language backends [?].

In addition, we implemented test programs using the standard regu-
lar expression libraries in the scripting languages Perl [?], Python [?], and
Tcl [?].

Meaning of plot labels Kleenex plot labels indicate the compilation
path, and follow the format [<0|3>[-la] | woACT] [clang|gcc]. 0/3 in-
dicates whether constant propagation was disabled/enabled. la indicates
whether lookahead was enabled. clang/gcc indicates which C compiler was
used. The last part indicates that custom register updates are disabled, in
which case we generate a single fused SST as described in 6.3. These are
only run with constant propagation and lookahead enabled.

Experimental setup The benchmark machine runs Linux, has 32 GB
RAM and an eight-core Intel Xeon E3-1276 3.6 GHz CPU with 256 KB L2
cache and 8 MB L3 cache. Each benchmark program was run 15 times,
after first doing two warm-up rounds. Version numbers of libraries, etc. are
included in the appendix. All C and C++ files have been compiled with
-O3.

Difference between Kleenex and the other implementations Un-
less otherwise stated, the structure of all the non-Kleenex implementations
is a loop that reads input line by line and applies an action to the line.
Hence, in these implementations there is an interplay between the regular
expression library used and the external language, e.g., RE2 and C++. In
Kleenex, line breaks do not carry any special significance, so the multi-line
programs can be formulated entirely within Kleenex.

Ragel optimization levels Ragel is compiled with three different opti-
mization levels: T1, F1, and G2. “T1” and “F1” means that the generated
C code should be based on a lookup-table, and “G2” means that it should
be based on C goto statements.
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Kleenex compilation timeout On some plots, some versions of the
Kleenex programs are not included. This is because the C compiler has
timed out (after 30 seconds). As we fully determinize the transducers, the
resulting C code can explode in some cases. This is a an area for future
research.

6.1 Baseline

The following three programs are intended to give a baseline impression of
the performance of Kleenex programs.

flip ab The program flip ab swaps “a”s and “b”s on all its input lines.
In Kleenex it looks like this:

main := ("b" ~/a/ | "a" ~/b/ | /\n/)*

We made a corresponding implementation with Ragel, using a while-
loop in C to get each new input line and feed it to the automaton code
generated by Ragel.

Implementing this functionality with regular expression libraries in the
other tools would be an unnatural use of them, so we have not measured
those.

The performance of the two implementations run on input with an av-
erage line length of 1000 characters is shown in Figs. 4.

patho2 The program patho2 forces Kleenex to wait until the very last
character of each line has been read before it can produce any output:

main := ((~/[a-z]*a/ | /[a-z]*b/)? /\n/)+

In this benchmark, the constant propagation makes a big difference, as
Fig. 5 shows. Due to the high degree of interleaving and the lack of keywords,
in this program the look-ahead optimization reduces overall performance.

This benchmark was not run with Ragel because Ragel requires the
programmer to do all disambiguation manually when writing the program;
the C code that Ragel generates does not handle ambiguity in a predictable
way.

6.2 Rewriting

Thousand separators The following Kleenex program inserts thousand
separators in a sequence of digits:

main := (num /\n/)*

num := digit{1,3} ("," digit{3})*

digit := /[0-9]/
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Figure 4: flip ab run on lines with average length 1000.

We evaluated the Kleenex implementation along with three other imple-
mentations using Perl, and Python. The performance can be seen in Fig. 6.
Both Perl and Python are significantly slower than all of the Kleenex imple-
mentations; this is a problem that is tricky to formulate with normal regular
expressions (unless one reads the input right-to-left).

CSV rewriting The program csv project3 deletes columns two and five
from a CSV file:

main := (row /\n/)*

col := /[^,\n]*/

row := ~(col /,/) col "\t" ~/,/ ~(col /,/)

~(col /,/) col ~/,/ ~col

Various specialized tools exist that can handle this transformation are
included in Fig. 7; GNU cut is a command that splits its input on certain
characters, and GNU AWK has built-in support for this type of transforma-
tion.

Apart from cut, which is really fast for its own use-case, the Kleenex
implementation is the fastest. The performance of Ragel is slightly lower,
but this is likely due to the way the implementation produces output: In a
Kleenex program, output strings are automatically put in an output buffer
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Figure 5: patho2 run on lines with average length 1000.

which is flushed routinely, whereas a programmer has to manually handle
buffering when writing a Ragel program.

IRC protocol handling The following Kleenex program parses the IRC
protocol as specified in RFC 2812.4 It follows roughly the output style
described in part 2.3.1. Note that the Kleenex source code and the BNF
grammar in the RFC are almost identical. Fig. 8 shows the throughput on
250 MiB data.

main := (message | "Malformed line: " /[^\r\n]*\r?\n/)*

message := (~/:/ "Prefix: " prefix "\n" ~/ /)?

"Command: " command "\n"

"Parameters: " params? "\n"

~crlf

command := letter+ | digit{3}

prefix := servername

| nickname ((/!/ user)? /@/ host )?

user := /[^\n\r @]/+ // Missing \x00

middle := nospcrlfcl ( /:/ | nospcrlfcl )*

params := (~/ / middle ", "){,14} ( ~/ :/ trailing )?

| ( ~/ / middle ){14} ( / / /:/? trailing )?

4https://tools.ietf.org/html/rfc2812
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Figure 6: Inserting thousand separators on random numbers with average length
1000.

trailing := (/:/ | / / | nospcrlfcl)*

nickname := (letter | special)

(letter | special | digit){,10}

host := hostname | hostaddr

servername := hostname

hostname := shortname ( /\./ shortname)*

hostaddr := ip4addr

shortname := (letter | digit) (letter | digit | /-/)*

(letter | digit)*

ip4addr := (digit{1,3} /\./ ){3} digit{1,3}

6.3 With or without action-separation

One can choose to use the machine resulting in combining the oracle and
the action machine when compiling Kleenex. Doing so results in only one
process doing both the disambiguation and outputting, which in some cases
is faster and in other slower. Figs. 7, 9, and 11 illustrate both situations. It
depends on the structure of the problem whether it pays off to split up the
work in two processes; if all the work happens in the oracle and the action
machine nearly does not do anything, then the added overhead incurred by
the process context switches becomes noticeable. On the other hand, in
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Figure 7: csv project3 reads in a CSV file with six columns and outputs columns
two and five. “gawk” is GNU AWK that uses the native AWK way of splitting up lines.
“cut” is a command from GNU coreutils that splits up lines.

cases where both machines do much work, the fact that two CPU cores can
be utilized speeds up the program. This would be more likely if Kleenex
had support for actions which could perform arbitrary computation, e.g. in
the form of embedded C code.

7 Use cases

In this section we will briefly touch upon various interesting use cases for
Kleenex.

JSON logs to SQL We have implemented a Kleenex program (code in
Appendix) that transforms a JSON log file into an SQL insert statement.
The program works on the logs provided by Issuu.5

The Ragel version we implemented outperforms Kleenex by about 50%
(Fig. 9), indicating that further optimizations of our SST construction should
be possible.

5The line-based data set consists of 30 compressed parts and part one is available from
http://labs.issuu.com/anodataset/2014-03-1.json.xz
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Figure 8: Throughput when parsing 250 MiB random IRC data.

Apache CLF to JSON The Kleenex program below rewrites Apache
CLF6 log files into a list of JSON records:

main := "[" loglines? "]\n"

loglines := (logline "," /\n/)* logline /\n/

logline := "{" host ~sep ~userid ~sep ~authuser sep

timestamp sep request sep code sep

bytes sep referer sep useragent "}"

host := "\"host\":\"" ip "\""

userid := "\"user\":\"" rfc1413 "\""

authuser := "\"authuser\":\"" /[^ \n]+/ "\""

timestamp := "\"date\":\"" ~/\[/ /[^\n\]]+/ ~/]/ "\""

request := "\"request\":" quotedString

code := "\"status\":\"" integer "\""

bytes := "\"size\":\"" (integer | /-/) "\""

referer := "\"url\":" quotedString

useragent := "\"agent\":" quotedString

ws := /[\t ]+/

sep := "," ~ws

quotedString := /"([^"\n]|\\")*"/

integer := /[0-9]+/

ip := integer (/\./ integer){3}

6https://httpd.apache.org/docs/trunk/logs.html#common
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Figure 9: The speeds of transforming JSON objects to SQL INSERT statements
using Ragel and Kleenex.

rfc1413 := /-/

This is a re-implementation of a Ragel program.7 Fig. 10 shows the bench-
mark results. The versions compiled with clang are not included, as the com-
pilation timed out after 30 seconds. Curiously, the non-optimized Kleenex
program is the fastest in this case.

ISO date/time objects to JSON Inspired by an example in [?], the
program iso datetime to json (code in Appendix) converts date and time
stamps in an ISO standard format to a JSON object. Fig. 11 shows the
performance.

URL parsing Kleenex allows one to naturally follow the URL specifica-
tion given in RFC1738.8 We implemented a URL parser by directly following
the BNF-grammar in the RFC; its code can be found in the Appendix.

Syntax highlighting Kleenex can used to write syntax highlighters; in
fact, the Kleenex syntax in this paper was highlighted with a Kleenex pro-

7https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel
8http://www.ietf.org/rfc/rfc1738.txt
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Figure 10: Speed of the conversion from the Apache Common Log Format to JSON.

gram. The code for a version that emits ANSI color codes is included in the
Appendix.

HTML comments The following Kleenex program finds HTML com-
ments with basic formatting commands and renders them in HTML af-
ter the comment. For example, <!-- doc: *Hello* world --> becomes
<!-- doc: *Hello* world --><div> <b>Hello</b> world </div>.

main := (comment | /./)*

comment := /<!-- doc:/ clear doc* !orig /-->/

"<div>" !render "</div>"

doc := ~/\*/ t@/[^*]*/ ~/\*/

[ orig += "*" t "*" ] [ render += "<b>" t "</b>" ]

| t@/./ [ orig += t ] [ render += t ]

clear := [ orig <- "" ] [ render <- "" ]

8 Related Work

We discuss related work in the context of current and future work.
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Figure 11: The performance of the conversion of ISO time stamps into JSON
format.

8.1 Regular expression matching

Regular expression matching has different meanings in the literature.
For acceptance testing, which corresponds to classical automata the-

ory, Bille and Thorup [?] improve on Myers’ [?] log-factor improved RE-
membership testing of classical NFA-simulation, based on tabling. They
design an O(kn) algorithm [?] with word-level parallelism, where k ≤ m is
number of strings occurring in an RE. The tabling technique may be promis-
ing in practice; the algorithms have not been implemented and evaluated
empirically, though.

In subgroup matching as in PCRE [?], an input is not only classified
as accepting or not, but a substring is returned for each sub-RE in an RE
designated to be of interest. Subgroup matching is often implemented by
backtracking over alternatives, which yields the greedy match.9 It may
result in exponential-time behavior, however. Consequently, considerable
human effort is expended to engineer REs to perform well. REs resulting
in exponential run-time behavior are used in algorithmic attacks, leading
to proposals for countermeasures to such attacks by classifying REs with

9Committing to the left alternative before checking that the remainder of the input is
accepted is the essence of parsing expression grammars [?].
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slow backtracking performance [?, ?], where the countermeasures in turn
appear to be attackable. Even in the absence of inherently hard match-
ing with backreferences [?], backtracking implementations with avoidable
performance blow-ups are amazingly wide-spread. This may be due to a
combination of their good best-case performance and PCRE-embellishments
driven by use cases. Some submatch libraries with guaranteed worst-case
linear-time performance, notably RE2 [?], are making inroads, however.
Myers, Oliva and Guimaraes [?] and Okui, Suzuki [?] describe a O(mn), re-
spectively O(m2n) POSIX-disambiguated matching algorithms. Sulzmann
and Lu [?] use Brzozowski [?] and Antimirov derivatives [?] for Perl-style
subgroup matching for greedy and POSIX disambiguation.

Full RE parsing generalizes submatching: it returns a list of matches for
each Kleene-star, also for nested ones. Kearns [?], Frisch and Cardelli [?]
devise 3-pass linear-time greedy RE parsing; they require 2 passes over the
input, the first consisting of reversing the entire input, before generating
output in the third pass. Grathwohl, Henglein, Nielsen, Rasmussen devise
a two-pass [?] and an optimally streaming [?] greedy regular expression
parsing algorithm. Streaming guarantees that line-by-line RE matching can
be coded as a single RE matching problem. Sulzman and Lu [?] remark that
POSIX is notoriously difficult to implement correctly and show how to use
Brzozowski derivatives [?] for POSIX RE parsing;

There are specialized RE matching tools and techniques too numerous
to review comprehensively. We mention a few employing automaton opti-
mization techniques applicable to Kleenex, but presently unexplored. Yang,
Manadhata, Horne, Rao, Ganapathy [?] propose an OBDD representation
for subgroup matching and apply it to intrusion detection REs; the cycle
counts per byte appear a bit high, but are reported to be competitive with
RE2. Sidhu and Prasanna [?] implement NFAs directly on an FPGA, es-
sentially performing NFA-simulation in parallel; it outperforms GNU grep.
Brodie, Taylor, Cytron [?] construct a multistride DFA, which processes
multiple input symbols in parallel, and devise a compressed implementation
on stock FPGA, also achieving very high throughput rates. Likewise, Ziria
employs tabled multistriding to achieve high throughput [?]. Navarro and
Raffinot [?], show how to code DFAs compactly for efficient simulation.

8.2 Ambiguity

REs may be ambiguous, which is irrelevant for acceptance testing, but prob-
lematic for submatching and parsing since the output depends on which
amongst possibly multiple matches is to be returned. Brüggemann-Klein [?]
provides an efficient O(m2) RE ambiguity testing algorithm. Vansummeren
[?] illustrates differences between POSIX, first/longest and greedy matches.
Colcombet [?] analyzes notions of (non)determinism of automata.
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8.3 Transducers

From RE parsing it is a surprisingly short distance to the implementation of
arbitrary nondeterministic finite state transducers (NFSTs) [?, ?]. In con-
trast to the situation for automata, nondeterministic transducers are strictly
more powerful than deterministic transducers; this, together with observable
ambiguity, highlights why RE parsing is more challenging than RE accep-
tance testing.

As we have seen, efficient RE parsing algorithms operate on arbitrary
NFAs, not only those corresponding to REs. Indeed, REs are not a par-
ticularly convenient or compact way of specifying regular languages: they
can be represented by certain small NFAs with low tree-width, but may
be inherently quadratically bigger even for DFAs [?, Theorem 23]. This
is why Kleenex employs context-free grammars restricted to denote regular
languages, with embedded output actions, to denote NFSTs.

We have shown that NFSTs, in particular unambiguous NFSTs, can be
implemented by a subclass of streaming string transducers (SSTs). SSTs ex-
tensionally correspond to regular transductions, functions implementable by
2-way deterministic finite-state transducers [?], MSO-definable string trans-
ductions [?] and a combinator language analogous to regular expressions
[?]. The implementation techniques used in Kleenex appear to be directly
applicable to all SSTs, not just the ones corresponding to NFSTs.

Allender and Mertz [?] show that the functions computable by regis-
ter automata, which generalize output strings to arbitrary monoids, are in
NC and thus inherently parallelizable. This is achievable by performing
relational NFST-composition by matrix multiplication on the matrix rep-
resentation of NFSTs [?], which can be performed by parallel reduction.
This is tantamount to running an NFST from all states, not just the input
state, on input string fragments. Mytkowicz, Musuvathi, Schulte [?] observe
that there is often a small set of cut states sufficient to run each NFST. This
promises to be an interesting parallel harness for a suitably adapted Kleenex
implementation running on fragments of very large inputs.

Veanes, Molnar, Mytkowics [?] employ symbolic transducers [?, ?, ?]
and a data-parallel intermediate language in the implementation of BEK
for multicore execution.

9 Conclusions

We have presented Kleenex, a convenient language for specifying nonde-
terministic finite state transducers; and its compilation to machine code
representations of streaming state transducers, which emit the output

Kleenex is comparatively expressive and performs consistently well—
for complex regular expressions with nontrivial amounts of output almost
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always better in the evaluated use cases—vis-à-vis text processing tools such
as RE2, Ragel, grep, AWK, sed and RE-libraries of Perl, Python and Tcl.

We believe Kleenex’s clean semantics, streaming optimality, algorithmic
generality, worst-case guarantees and absence of tricky code and special
casing provide a useful basis for

• extensions to deterministic visible push-down automata, restricted ver-
sions of backreferences and approximate/probabilistic matching;
• known, but so far unexplored optimizations, such as multicharacter

input processing, automata minimization and symbolic representa-
tion, hybrid NFST-simulation/SST-construction (analogous to NFA-
simulation with NFA-state set memoization to implement on-demand
DFA-construction);
• massively parallel (log-depth, linear work) input processing.
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Abstract. Malleable applications are programs that can, in principle,
run with varying numbers of threads and thus on varying numbers of
cores of a mult-core parallel system. Malleability is characteristic for
many programming models from data-parallel to divide-and-conquer and
streaming data flow where the actual amount of concurrency is applica-
tion and data dependent and varies over time while the runtime system
maps the actual concurrency to fixed number of kernel threads / cores.
We argue that such a fixed choice of kernel threads is suboptimal in two
scenarios. Firstly, an application may temporarily expose less concur-
rency than the underlying hardware offers. In this case the cores waste
energy. Secondly, the number of hardware cores effectively available to an
application may dynamically change in multi-application and/or multi-
user environments. This leads to an over-subscription of the available
hardware by individual applications, costly time scheduling by the oper-
ating system and, as a consequence, to both waste of energy and loss of
performance.
We propose an active resource management service developed in the con-
text of the data parallel array language SAC and the streaming macro
data flow coordination language S-Net. Both languages are examples of
malleable runtime systems where the set of resources could be changed
dynamically without affecting the consistency of a running application.
A system-wide resource management service controls the computing re-
sources and assigns them to applications on the basis of dynamically
changing intra-application requirements as well as on dynamically chang-
ing inter-application scenarios in a near-optimal way.

1 Introduction

Malleable applications are programs that can, in principle, run with varying
numbers of threads and thus on varying numbers of cores of a mult-core parallel
system. Malleability is a characteristic feature of many parallel runtime systems.
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For example, in data-parallel applications the number of iterations of a paral-
lelised loop and thus the available concurrency typically exceeds the total number
of cores in a system by several if not many orders of magnitude. Consequently,
data-parallel applications typically scale down the structurally available con-
currency in the application to the actually available concurrency of the execu-
tion platform. This is done by applying one of several available loop scheduling
techniques, such as block scheduling, cyclic scheduling, block-cyclic scheduling,
(guided) self scheduling or data locality aware variations of them.

The same even compiled binary application can in principle and within cer-
tain limits run on any number of cores. Typically, however, the number of
cores/threads used is provided at application start through a command line
parameter or an environment variable and then remains as set throughout the
entire application life time. Dynamic malleability is usually not exploited. Com-
mon examples of such data-parallel runtime systems are OpenMP[1] or our own
functional data-parallel array programming language Single Assignment C [2, 3].

The principle of malleable applications that do not exploit this property dy-
namically is not at all limited to the data-parallel scenario. In divide-and-conquer
style applications written for instance in modern versions of OpenMP[4] using
explicit task parallelism or in Cilk[5]. In either case the divide-and-conquer style
parallelism, in beneficial scenarios, just like the data parallel approach exposes
much higher levels of concurrency than general-purpose multi-core systems can
exploit. The solution here in one way or another is to employ a fixed number
of worker threads and work stealing techniques to balance the intra-application
workload.

As a last example we mention streaming applications as for instance writ-
ten in the declarative coordination language S-Net [6, 7]. S-Net defines the
coordination behaviour of networks of asynchronous, stateless components and
their orderly interconnection via typed streams. S-Net achieves a near-complete
separation of concerns between the engineering of sequential application build-
ing blocks (i.e. application engineering) and the composition or orchestration of
these building blocks to form a parallel application (i.e. concurrency engineer-
ing). S-Net effectively implements a macro data flow model where components
represent non-trivial computations. Again the level of concurrency is not de-
termined by the S-Net streaming application, but instead by characteristics of
individual program runs. The S-Net runtime system [8] effectively maps the
available concurrency to a number of threads that is determined upon program
startup by the user and then remains fixed throughout the application’s runtime.

To summarise, it is common across a wide range of concurrent programming
models to expose concurrency to the underlying compiler and runtime system
tool chain on a certain level of granularity that typically is finer-grained than
what the execution platform effectively offers. Among others this choice is moti-
vated by the fact that in many scenarios the exact properties and characteristics
of the to be used execution platform are not known at compile time. The com-
mon solution is to map down the finer-grained concurrency exposed by some
application to a fixed set of kernel worker threads launched at program startup
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and mapped to the actual computing resources such as processors (sockets),
cores and hyperthreads (hardware execution contexts) by the operating system.

This immediately raises the question as to how many such worker threads to
use. In practice, two solutions prevail: either an application determines the actual
execution machinery it runs on and launches as many worker threads as it finds
hardware execution units (the greedy approach) or an application simply asks the
user (the clueless approach). The latter, of course, provides ample opportunity
for exprimentation, but in this work we focus on the non-expert user who simply
aims at making good use of available resources without extra effort.

We argue that both approaches are undesirable for a number of reasons. As
soon as the user of an application is not its programmer at the same time, he
or she may not be able to make an educated choice, in particular as the number
of cores continues to rise and, thus, the design space. Furthermore, any fixed
number of worker threads used throughout a program run is suboptimal for two
reasons.

Firstly, we waste energy for operating all computing resources initially chosen
as soon as the application effectively exposes less concurrency in certain phases
of the program execution. Both the divide-and-conquer as well as the streaming
model of parallel program organisation are characterised by ramp-up and fade-
out phases of concurrency. In non-trivial applications it is fairly common that
such phases occur repeatedly. Even in the data-parallel model non-trivial phases
of low-concurrency execution appear in multi-scale method implementations.

Secondly, in typical multi-application or even multi-user environments we
cannot expect any single application to have exclusive access to the hardware
resources. Consequently, applications compete for resources in an uncontrolled
and non-cooperative way as multiple applications start and stop at unpredictable
and unforeseeable times. The operating system layer organises the resulting re-
source oversubscription in a correct but not in an efficient way, as we discuss in
the following section.

2 Resource administration vs resource management

The operating system is the canonical layer that administrates computing re-
sources and makes them available to running applications, as illustrated in Fig. 1.
However, the operating system does not have any understanding of the inter-
nal organisation of concurrent applications. Neither does the operating system
know the user’s preferences regarding the placement of compute tasks with re-
spect to the hierarchical memory organisation and the resulting opportunities
for performance and energy saving.

In an undersubscribed system the operating system could follow essentially
one of two policies. Compute tasks could be spread out as much as possible over
the system. For instance, four tasks could be run on one core of each processor.
As a consequence, each task would benefit from the entire cache memory and
the whole memory bandwidth of the socket. Alternatively, the operating system
could choose to concentrate all four tasks on a single socket. In this case the
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Fig. 1. Architectural model of a cache-coherent shared memory system with four sock-
ets, each equipped with a quad-core processor, and a hierarchical memory organisation
with shared L3 caches per processor and individual L2 and L1 (instruction and data)
caches for each core

tasks must share the limited cache capacity and memory bandwidth, but on the
other hand, the tasks could very efficiently communicate via the shared L3 cache
and the other three sockets could be shut down for maximum energy savings in
the absence of sufficient useful computing tasks.

In an oversubscribed system the situation changes profoundly. Now, all cores
would be busy computing all the time, but in order to ensure fair progress of all
tasks, despite the limited computing resources, the operating system resorts to
pre-emptive scheduling and time slicing, i.e., an executable task is assigned to a
core for execution for a bounded time interval only at whose end it is replaced by
another task waiting for execution. This solution stems from the times when uni-
processor systems were mimicking parallel systems where multiple interactive
applications were supposed to all make progress and remain responsive. In our
scenario of compute-bound applications time-slicing has a rather negative effect
on performance.

With multiple compute-bound tasks time-slicing mainly causes overhead for
stopping one task, saving its execution state and re-installing another task from
the ready queue for execution. In addition to executing the necessary instructions
we need to switch from user mode execution to kernel mode execution, which
is particularly expensive. Moreover, a task over time is typically scheduled to
different cores for execution. This has a detrimental effect on data locality as
the task’s data may still partially by available in core- or socket-local cache
elsewhere, but after a context switch needs to be reloaded into a different part
of the memory hierarchy.

To avoid costly over-subscription of resources we need runtime systems that
specific to a certain concurrent execution model (e.g. streaming, divide-and-
conquer or data-parallel) map the concurrency effectively exposed by an appli-
cation to a fixed set of worker kernel threads as the common software abstraction
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of shared memory parallel systems. Fig. 2 illustrates the resulting system archi-
tecture. In this model the runtime system cooperates with the operating system
such that the runtime system makes the educated decisions while it employs the
runtime system to actully implement the descisions.
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Fig. 2. Architectural model of a cache-coherent shared memory system, as in Fig. 1,
with two layers of system software between applications and hardware: operating sys-
tem and concurrency-model specific runtime system

A resource management server dynamically allocates execution resources to
a running S-Net program. The (fine-grained) tasks managed by the runtime sys-
tem are automatically mapped to the dynamically varying number of effectively
available kernel threads. Their number is continuously adapted to the effective
level of concurrency exposed by the running S-Net streaming network.

In this way, we actively control the energy consumption of a system and
reduce the energy footprint of a resource management enabled application com-
pared to greedy resource utilisation, assuming that the underlying operating
system automatically reduces the clock frequency and potentially the voltage of
underutilised processors and cores or switches them off entirely. Furthermore,
we create the means to simultaneously run multiple independent and mutually
unaware resource management enabled applications on the same set of resources
by continuously negotiating resource distribution proportional to demands.

In contrast to an application-unaware operating system our approach has
the advantage that the resource management server understands both sides:
the available resources in the computing system and the parallel behaviour of
the resource management aware running applications. This is why we expect to
achieve better performance and less energy consumption compared to today’s
multi-core operating systems.
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3 Managing resource under-subscription

With resource over-subscription effectively solved by a system of worker threads
we now come back to a question raised earlier: how many worker threads to
actually use in practice. Obviously, using more worker threads than cores leads
to resource over-subscription and thus is undesirable. However, as argued earlier
any fixed number of worker threads throughout the entire application live time
is likely not to be ideal either as soon as applications expose varying levels of
exploitable concurrency. If an application at certain times cannot make effective
use of all resources, it would be very desirable to either shut down surplus re-
sources for energy saving or, alternatively, make the resources available to other
applications.

Active resource management is a runtime system service that dynamically
allocates execution resources on demand. A dedicated resource server (thread)
is responsible for dynamically spawning and terminating worker threads as well
as for binding worker threads to execution resources like processor cores, hy-
perthreads or hardware thread contexts, depending on the architecture being
used.

Upon program startup only the resource server thread is active; this is the
master thread of the process. The resource server thread identifies the hardware
architecture the process is running on. Next, the resource server sets up the
static property graph, which is to be shared by all worker threads. Once the set
up is completed, the resource server launches the first worker thread.

Creation (and termination) of worker threads is controlled by the resource
service making use of two resource level indicators. The first one is the obvious
number of currently active worker threads. This is initially zero. The second
resource level indicator is a measure of demand for compute power. This reflects
the number of work queues in the runtime system. The demand indicator is
initially set to one. Both resource level indicators are restricted to the range
between zero and the total number of hardware execution resources found in the
system.

If the demand for computing resources is greater than the number of work-
ers (i.e. the number of currently employed computing resources), the resource
server spawns an additional worker thread. Initially, this condition holds trivially.
The creation of an additional worker thread temporarily brings the (numerical)
demand for resources into an equilibrium with the number of actively used re-
sources. Before increasing the demand the new worker thread must actually find
some work to do. Once doing productive work, the worker signals this to the
resource server, and the resource server increments the demand level indicator,
unless demand (and hence resource use) has already reached the maximum for
the given architecture. This procedure guarantees a smooth and efficient organ-
isation of the ramp up phase.

If an application exposes less concurrency work queues of workers may run
empty. The worker signals this state to the resource server, which in turn re-
duces the demand level indicator by one. The worker thread does not imme-
diately terminate because we would like to avoid costly repeated termination
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and re-creation of worker threads in not uncommon scenarios of oscillating re-
source demand. The worker thread, however, does effectively terminate with a
configurable delay following an extended period of inactivity.

4 Multiple independent applications

The next step in advancing the concept of active resource management is to
address multiple independent and mutually unaware applications (or instances
thereof) that run at overlapping intervals of time on the same set of execution
resources. Fig. 3 illustrates our approach with two applications. We effectively
split our resource management service into two parts: a local resource service
manages the worker threads within an application, whereas a system-wide re-
source service is in charge of the computing resources as a whole and effectively
mediates these resources between multiple competing applications. This system
resource service is started prior to any resource management enabled application
process.

Whenever an application has reason to spawn one more worker thread, it first
must contact the system resource service to obtain another execution resource.
The system resource service either replies with a concrete core identifier or it
does not reply at all. In the former case the aplication resource service spawns
another worker thread and binds it to the given core. In the latter case the
number of execution resources currently occupied by this application remains as
is.

Fig. 3 illustrates the simulation of two malleable applications on an 8-core
system. For simplicity we ignore any hierarchy in system architecture here. We
begin with the start of application 1 on an idle system. Application 1 incre-
mentally allocates all 8 cores via the system resource service. As application 1
apparently exposes sufficient concurrency internally that the application-level
resource service actually decides to go this way. At some point application 1
runs concurrently on all 8 cores of the system.

Now we start application 2. Initially, there are no resources whatsoever to
run application 2. Thus, application 2 merely requests one core from the system
resource service. The system resource service currently has no resources to allo-
cate, but it requests from application 1, more precisely from that application’s
resource service, to vacate one core. The runtime system of application 1 reacts
to this request in an appropriate way and vacates one core at the earliest possi-
ble time. Once returned to the system resource service, the latter immediately
assigns that core to application 2, which only now effectively begins to run.

Assuming both applications expose ample concurrency, the procedure re-
peats 3 times until both applications share the 8 cores in a fair way. At times
applications run through phases of less concurrency. At some time application 1
deliberately returns a core to the system resource service, which is immediately
given to application 2. In a later stage both applications can only make effective
use of 3 cores each, and, thus, 2 cores remain empty and could be powered down
if the hardware allows.
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Fig. 3. Simulation of a fictive example with two independent applications

Eventually, application 1 approaches termination and its concurrency fades
out. The vacant resources are immediately transferred to application 2 by the
system resource service before also application 2 begins to fade out and step-by-
step returns cores to the system resource service.

5 Related work

The work closest to our’s is the concept of invasive computing, advocated by
Teich et al [9, 10]. Here, application programs execute a cycle of four steps:

1. explore resources,
2. invade resources,
3. compute,
4. retreat / vacate resources.

Whereas these steps in one way or another can also be found in our proposal, the
fundamental difference between their work and our’s is the following: Teich et al
demand every application to explicitly implement the above steps and provide
an API to do so. In contrast, we develop a runtime system that automatically
mediates between malleable but otherwise resource-unaware applications and a
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set of hardware resources that only become known at application start and are
typically shared by multiple applications.

Other related work can be found in the general area of operating system
process/thread scheduling. Operating systems have long had the ability to map
dynamically changing numbers of processes (or kernel threads) to a fixed set
of computing resources. However, operating systems do this in an application-
agnostic way as they cannot affect the number of processes or threads created.
They can merely admister them. As long as the number of processes is less than
the number of resources, various mapping policies can be thought of like in our
solution. As soon as the number of processes exceeds the number of resources,
an operating system resorts to preemptive time slicing.

This all makes sense as long as one takes the resource demands of applications
as fixed, but exactly that assumption does not hold for malleable applications.
More precisely, malleable applications do have the freedom to adjust resources
internally. Trouble is that the application programmer effectively can hardly
make use of this opportunity as she or he has no indication of what a good policy
could be at application runtime. The operating system, on the other hand, can
only react on applications’ demands, but not control or affect them in any way.
This is exactly where our runtime system support kicks in.

6 Conclusion and future work

We presented active resource management for malleable applications. Instead
of running an application on all available resources (or some explicitly defined
subset thereof), our runtime system service dynamically adjusts the actually
employed resources to the continuously varying demand of the application as well
as the continuously varying system-wide demand for resources in the presence
of multiple independent applications running on the same system.

Our motivation for this extension is essentially twofold. Firstly, we aim at
reducing the energy footprint of streaming applications by shutting down system
resources that at times we cannot make effective use of due to limitations in the
concurrency exposed. Secondly, we aim at efficiently mediating the available
resources among several S-Net streaming applications, that are independent
and unaware of each other.

We are currently busy implementing the proposed runtime system techniques
within the Front runtime system of S-Net, which is one of many variants of
the model runtime system described earlier in the paper. As future work we
plan to run extensive experiments demonstrating the positive effect on system-
level performance of multiple applications as well as their accumulated energy
footprint.
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Abstract. Many dynamic languages such as Ruby offer functionality for
writing parts of applications in a lower-level language such as C. These C
extension modules are usually written against the API of an interpreter,
which provides access to the higher-level language’s internal data struc-
tures. Alternative implementations of the high-level languages often do
not support such C extensions because implementing the same API as
in the original implementations is complicated and limits performance.
In this paper we describe a novel approach for modular composition
of languages that allows dynamic languages to support C extensions
through interpretation. We propose a flexible and reusable cross-language
mechanism that allows composing multiple language interpreters. This
mechanism allows us to efficiently exchange runtime data across different
interpreters and also enables the dynamic compiler of the host VM to
inline and optimize programs across multiple language boundaries.
We evaluate our approach by composing a Ruby interpreter with a C
interpreter. We run existing Ruby C extensions and show how our system
executes combined Ruby and C modules on average over 3× faster than
the conventional implementation of Ruby with native C extensions.

1 Introduction

Most programming languages offer functionality for calling routines in modules
that are written in another language. There are multiple reasons why program-
mers want to do this, including to run modules already written in another lan-
guage, to achieve higher performance than is normally possible in the primary
language, or generally to allow different parts of the system to be written in the
most appropriate language.

Dynamically typed and interpreted languages such as Perl, Python and Ruby
often provide support for running extension modules written in the lower-level
language C, known as C extensions. C extensions are written in C or a language,
which can meet the same ABI such as C++, and are dynamically loaded and
linked into the interpreter as a program runs. The APIs that these extensions are
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written against often simply provide direct access to the internal data structures
of the primary implementation of the language. For example, C extensions for
Ruby are written against the API of the original implementation of Ruby, known
as MRI3. This API contains functions that allow C code to manipulate Ruby
objects at a high level and to add C implementations of functions.

This model for C extensions worked well for the original implementations of
these languages. As the API directly accesses the implementation’s internal data
structures, the interface is powerful, has low overhead, and was simple for the
original implementations to add: all they had to do was make their header files
public and support dynamic loading of native modules. However, as popularity
of these languages has grown, alternative projects have increasingly attempted
to re-implement them using modern virtual machine technology such as dynamic
or just-in-time (JIT) compilation or advanced garbage collection. Such projects
typically use significantly different internal data structures to achieve better
performance, so the question therefore is how to provide the same API that the
C extensions expect.

For these reasons, modern implementations of dynamic languages often have
limited support for C extensions. For example, the JRuby [17] implementation
of Ruby on top of the Java Virtual Machine (JVM) [4] had limited experimental
support for C extensions until this was removed after the work proved to be too
complicated to maintain and the performance too limited [2,6]. Lack of support
for C extensions is often given as one of the major reasons for the slow adoption
of modern implementations of such languages.

We would like to enable modern implementations of languages to support
C extensions with minimal cost for implementing the existing APIs, and with-
out preventing any advanced optimizations that these implementations use to
improve the performance.

Our goal is to run multi-language applications on separate language inter-
preters, but within the same virtual machine and based on a common frame-
work and using the same kind of intermediate representation. We propose a
novel mechanism that allows composing these interpreters, rather than access-
ing foreign functions and objects via an FFI. Foreign objects and functions are
accessed by sending language-independent messages. We resolve these messages
at their first execution with language-specific IR snippets that implement effi-
cient accesses to foreign objects and functions. This approach allows composing
interpreters at their AST level and makes language boundaries completely trans-
parent to VM performance optimizations.

To evaluate our approach we composed a Ruby interpreter with a C inter-
preter to support C extensions for Ruby. In our C interpreter, we substitute
all invocations to the Ruby API at runtime with language-independent mes-
sages that use our cross-language mechanism. Our system is able to run existing
unmodified C extensions for Ruby written by companies and used today in pro-

3 MRI stands for Matz’ Ruby Interpreter, after the creator of Ruby, Yukihiro Mat-
sumoto.
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duction. Our evaluation shows that it outperforms MRI running the same C
extensions compiled to native code by a factor of over 3.

In summary, this paper contributes the following:

– We present a novel language interoperability mechanism that allows pro-
grammers to compose interpreters in a modular way. It allows exchanging
data between different interpreters without marshaling or conversion.

– We describe how our interoperability mechanism avoids compilation bar-
riers between languages that would normally prevent optimizations across
different languages.

– We describe how we use this mechanism to seamlessly compose our Ruby and
C interpreters, producing a system that can run existing Ruby C extensions

– We provide an evaluation, which shows that our approach works for real C
extensions and runs faster than all existing Ruby engines.

2 System Overview

We base our work on Truffle [26], a framework for building high-performance
language implementations in Java. Truffle language implementations are AST
interpreters. This means that the input program is represented as an AST, which
can be evaluated by performing an execution action on nodes recursively. All
nodes of this AST, whatever language they are implementing, extend a common
Node class.

An important characteristic of a Truffle AST is that it is self-optimizing [27].
Nodes or subtrees of a Truffle AST can replace themselves with specialized ver-
sions at runtime. For example, Truffle trees self-optimize as a reaction to type
feedback, replacing an add operation node that receives two integers with a node
that only performs integer addition and so is simpler. The Truffle framework en-
courages the optimistic specialization of trees where nodes can be replaced with
a more specialized node that applies given some assumption about the running
program. If an assumption turns out to be wrong as the program continues
to run, a specialized tree can undo the optimization and transition to a more
generic version that provides the functionality for all required cases. This self-
optimization via tree rewriting is a general mechanism of Truffle for dynamically
optimizing code at runtime.

When a Truffle AST has arrived at a stable state with no more node re-
placements occurring, and when execution count of a tree exceeds a predefined
threshold, the Truffle framework partially evaluates [26] the trees and uses the
Graal compiler [18] to dynamically-compile the AST to highly optimized ma-
chine code. Graal is an implementation of a dynamic compiler for the JVM that
is written in Java. This allows it to be used as a library by a running Java
program, including the Truffle framework.

In this research we have composed two existing languages implemented in
Truffle, Ruby and C.
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OS
HotSpot Runtime

Interpreter GC …
Truffle

JRuby+Truffle TruffleC

Ruby Application C Extension

Graal 
Compiler

Fig. 1: The layered approach of Truffle: The Truffle framework on top of the
Graal VM hosts JRuby+Truffle and TruffleC.

JRuby+Truffle: The Truffle implementation of Ruby [20]. JRuby is the foun-
dation, on which our implementation is built, but beyond the parser and
some utilities, little of the two systems are currently shared and JRuby+Truffle
should be considered entirely separate from JRuby for this discussion.

TruffleC: TruffleC [9] is the C language implementation on top of Truffle and
can dynamically execute C code on top of a JVM.

Figure 1 summarizes the layered approach of hosting language implemen-
tations with Truffle. The Truffle framework provides reusable services for lan-
guage implementations, such as dynamic compilation, automatic memory man-
agement, threads, synchronization primitives and a well-defined memory man-
agement. Truffle runs on top of the Graal VM [18,21], a modification of the
Oracle HotSpotTM VM. The Graal VM adds the Graal compiler but reuses all
other parts, including the garbage collector, the interpreter, the class loader and
so on, from HotSpot.

3 Language Interoperability on Top of Truffle

The goal of our work is to retain the modular way of implementing languages
on top of Truffle but make them composable by implementing a cross-language
interface. Given this interface, composing two languages, such as C and Ruby,
requires very little effort. We do not want to introduce a new object model that
all Truffle guest languages have to share, which is based on memory layouts and
calling conventions. We introduce a common interface for objects that is based
on code generation via ASTs. Our approach allows sharing language specific
objects (with different memory representations and calling conventions) across
languages. Finally, we want to make the language boundaries completely trans-
parent to Truffle’s dynamic compiler, in that a cross-language call should have
exactly the same representation as an intra-language call. This transparency
allows the JIT compiler to inline and apply advanced optimizations across lan-
guage boundaries without modifications.

We use the mechanism to access Ruby objects from C and to forward Ruby
API calls from the TruffleC interpreter back to the JRuby+Truffle interpreter.
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(c) Accessing a Ruby ob-
ject after message resolu-
tion.

Fig. 2: Language independent object access via messages.

Using ASTs as an internal representation of a user program already abstracts
away syntactic differences of object accesses and function calls in different lan-
guages. However, each language uses its own representation of runtime data such
as objects, and therefore the access operations differ. Our research therefore fo-
cused on how we can share such objects with different representations across
different interpreters.

In this paper we call every non-primitive entity of a program an object. This
includes Ruby objects, classes, modules and methods, and C immediate values
and pointers. An object that is being accessed by a different language than the
language of its origin is called a foreign object. A Ruby object used by a C
extension is therefore considered foreign in that context. If an object is accessed
in the language of its origin, we call it a regular object. A Ruby object, used by
a Ruby program is therefore considered regular. Object accesses are operations
that can be performed on objects, e.g. method calls or property accesses.

3.1 Language-independent Object Accesses

In order to make objects (objects that implement TruffleObject) shareable
across languages, we require them to support a common interface. We implement
this as a set of messages:

Read: We use the Read message to read a member of an object denoted by the
member’s identity. For example, we use the Read message to get properties
of an object such as a field or a method, and to read elements of an array.

Write: We use the Write message to write a member of an object denoted
by its identity. Analogous to the Read message, we use it to write object
properties.

Execute: The Execute message, which can have arguments, is used to evaluate
an object. For example, it can evaluate a Ruby method or invoke the target
of a C function pointer.

Unbox: If the object represents a boxed numeric value and receives an Unbox
message, this message unwraps the boxed value and returns it. For example,
if an Unbox message is sent to a Ruby Fixnum, the object returns its value
as a 4 byte integer value.
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We call an object shareable if we can access it via these language-independent
messages. Truffle guest-language implementations can insert language-independent
message nodes into the AST of a program and send these messages in order to
access a foreign object. Figure 2a shows an AST that accesses a Ruby array via
messages in order to store value at index 0. This interpreter first sends a Read
message to get the array setter function []= from the array object (in Ruby
writing to an element in an array is performed via a method call). Afterwards
it sends an Execute message to evaluate this setter function. In Figure 2a, the
color blue denotes language-independent nodes, such as message nodes.

3.2 Message Resolution

The receiver of a cross-language message does not return a value that can be
further processed. Instead, the receiver returns an AST snippet — a small tree
of nodes designed for insertion into a larger tree. This AST snippet contains
language-specific nodes for executing the message on the receiver. Message reso-
lution replaces the AST node that sent a language-independent message with a
language-specific AST snippet that directly accesses the receiver. After message
resolution an object is accessed directly by a receiver-specific AST snippet rather
than by a message.

During the execution of a program the receiver of an access can change,
and so the target language of an object access can change as well. Therefore
we need to check the receiver’s language before we directly access it. If the
foreign receiver object originates from a different language than the one seen
so far we access it again via messages and do the message resolution again. If
an object access site has varying receivers, originating from different languages,
we call the access language polymorphic. To avoid a loss in performance, caused
by a language polymorphic object access, we embed AST snippets for different
receiver languages in an inline cache [12].

Figure 2b illustrates the process of message resolution and Figure 2c shows
the AST of Figure 2a after message resolution. Message resolution replaced the
Read message by a Ruby-specific node that accesses the getter function []=. The
Execute method is replaced by a Ruby-specific node that evaluates this getter
method. Message resolution also places other nodes into this AST, which check
whether the receiver is really a Ruby object.

Message resolution and building object accesses at runtime has the following
benefits:

Language independence: Messages can be sent to any shareable object. The
receiver’s language of origin does not matter and messages resolve themselves
to language-specific operations at runtime.

No performance overhead: Message resolution only affects the application’s
performance upon the first execution of an object access for a given language.
Once a message is resolved and as long as the languages used remain stable,
the application runs at full speed.
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Cross-language inlining: Message resolution allows the dynamic compiler to
inline methods even across language boundaries. By generating AST snippets
for accessing foreign objects we avoid the barriers from one language to
another that would normally prevent inlining.

3.3 Shared Primitive Values

In order to exchange primitive values across different languages we define a set
of shared primitive types. We refer to values with such a primitive type as shared
primitives. The primitive types include signed and unsigned integer types (8, 16,
32 and 64 bit versions) as well as floating point types (32 and 64 bit versions)
that follow the IEEE floating point 754 standard.

3.4 JRuby+Truffle: Foreign Object Accesses and Shareable Ruby
Objects

In Ruby’s semantics there are no non-reference primitive types and every value
is logically represented as an object, as in the tradition of languages such as
Smalltalk. Also, in contrast to other languages such as Java, Ruby array ele-
ments, hash elements, or object attributes cannot be accessed directly but only
via getter and setter calls on the receiver object. For example, a write access to
a Ruby array element is performed by calling the []= method of the array and
providing the index and the value as arguments.

In our Ruby implementation all runtime data objects as well as all Ruby
methods are shareable in the sense that they implement our message-based in-
terface.

Ruby objects that represent numbers, such as Fixnum and Float that can be
simply represented as primitives common to many languages, and also support
the Unbox message. This message maps the boxed value to the relative shared
primitive.

3.5 TruffleC: Foreign Object Accesses and shareable C Pointers

TruffleC can share primitive C values, mapped to shared primitive values, as
well as pointers to C runtime data with other languages. In our implementation,
pointers are objects that implement the message interface, which allows them
to be shared across all Truffle guest language implementations. TruffleC repre-
sents all pointers (so including pointers to values, arrays, structs or functions)
as CAddress Java objects that wrap a 64-bit value [11]. This value represents
the actual referenced address on the native heap. Besides the address value, a
CAddress object also stores type information about the referenced object. De-
pending on the type of the referenced object, CAddress objects can resolve the
following messages: A pointer to a C struct/array can resolve Read/Write mes-
sages, which access members of the referenced struct/a certain array element.
Finally, CAddress objects that reference a C function can be executed using the
Execute message.
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!1!!typedef!VALUE!void*;!
!2!!typedef!ID!void*;!
!3!!!
!4!!//!Define!a!C!function!as!a!Ruby!method!
!5!!void!rb_define_method-
!6!!(VALUE!class,!const!char*!name,!!
!7!!VALUE(*func)(),!int!argc);!
!8!!!
!9!!//!Store!an!array!element!into!a!Ruby!array!
10!!void!rb_ary_store-
11!!!!!!!(VALUE!ary,!long!idx,!VALUE!val);!
12!!!
13!!//!Invoke!a!Ruby!method!from!C!
14!!VALUE!rb_funcall(VALUE!receiver!ID!method_id,!
15!!!!!!int!argc,!...);!
16!!!
17!!//!Convert!a!Ruby!Fixnum!to!C!long!
18!!long!FIX2INT(VALUE!value);!

Fig. 3: Excerpt of the ruby.h implementation.

!1!!VALUE!array!=!…!;!//!Ruby!array!of!Fixnums!
!2!!VALUE!value!=!…!;!//!Ruby!Fixnum!
!3!!!
!4!!rb_ary_store(array,!0,!value);!

Fig. 4: Calling rb ary store from C.

TruffleC allows binding foreign objects to pointer variables declared in C.
Hence, pointer variables can be bound to CAdress objects as well as shared
foreign objects.

4 C Extensions for Ruby

Developers of a C extension for Ruby access the API by including the ruby.h

header file. We want to provide the same API as Ruby does for C extensions,
i.e., we want to provide all functions that are available when including ruby.h.
To do so we created our own source-compatible implementation of ruby.h. This
file contains the function signatures of all of the Ruby API functions that were
required for the modules we evaluated, as described in the next section. We
believe it is tractable to continue the implementation of API routines so that
the set available is reasonably complete.

Figure 3 shows an excerpt of this header file.
We do not provide an implementation for these functions in C code. Instead,

we implement the API by substituting every invocation of one of the functions at
runtime with a language-independent message send or directly access the Ruby
runtime.

We can distinguish between local and global functions in the Ruby API:
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Local Functions: The Ruby API offers a wide variety of functions that are used
to access and manipulate Ruby objects from within C. Consider the function
rb ary store (Figure 4): Instead of a call, TruffleC inserts message nodes into
the AST that are sent to the Ruby array (array). The AST of the C program
(Figure 4) now contains two message nodes (namely a Read message to get
the array setter method []= and an Execute message to eventually execute the
setter method, see Figure 2a). Upon first execution these messages are resolved
(Figure 2b), which results in a TruffleC AST that embeds a Ruby array access
(Figure 2c).

Global Functions: The Ruby API offers various different functions that allow
developers to manipulate the global object class of a Ruby application from C
or to access the Ruby engine.

The API includes functions to define global variables, modules, or global
functions (e.g., rb define method) etc. In order to substitute invocations of
these API functions, TruffleC accesses the global object of the Ruby application
using messages or directly accesses the Ruby engine.

Given this implementation of the API we can run C extensions without
modification and are therefore compatible with the Ruby MRI API.

5 Evaluation

We evaluated the performance in terms of running time for our implementation
of Ruby and C extensions against other existing implementations of Ruby and
its C extension API. Ruby is primarily used as a server-side language, so we
are interested in peak performance of long running applications after an initial
warm-up.

5.1 Benchmarks

We wanted to evaluate our approach on real-world Ruby code and C extensions
that have been developed to meet a real business need. Therefore we use the
existing modules chunky png [23] and psd.rb [19], which are both open source
and freely available on the RubyGems website. chunky png is a module that
includes routines for resampling, PNG encoding and decoding, color channel
manipulation, and image composition. psd.rb is a module that includes color
space conversion, clipping, layer masking, implementations of Photoshop’s color
blend modes, and some other utilities.

Both modules have separately available C extension modules to replace key
routines with C code, known as oily png [24] and psd-native [14], which allows
us to compare the C extension against the pure Ruby code. There are 43 routines
in the two gems for which a C extension equivalent is provided.
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5.2 Compared Implementations

The standard implementation of Ruby is known as MRI, or CRuby. It is a
bytecode interpreter, with some simple optimizations such as inline caches for
method dispatch. MRI has excellent support for C extensions, as the API directly
interfaces with the internal data structures of MRI. We evaluated version 2.1.2.

Rubinius is an alternative implementation of Ruby using a significant VM
core written in C++ and using LLVM to implement a simple JIT compiler, but
much of the Ruby specific functionality in Rubinius is implemented in Ruby. To
implement the C extension API, Rubinius has a bridging layer. We evaluated
version 2.2.10.

JRuby is an implementation of Ruby on the Java Virtual Machine. JRuby
used to have experimental support for running C extensions, but after initial
development it became unmaintained and has since been removed. We evaluated
the last major version where we found that the code still worked, version 1.6.0.

JRuby+Truffle is our system, using Truffle and Graal. It interfaces to Truf-
fleC to provide support for C extensions. To explore the performance impact of
cross-language dynamic inlining, which is only possible in our system, we also
evaluated JRuby+Truffle with this optimization disabled.

5.3 Experimental Setup

All experiments were run on a system with 2 Intel Xeon E5345 processors with
4 cores each at 2.33 GHz and 64 GB of RAM, running 64bit Ubuntu Linux
14.04. Where an unmodified Java VM was required, we used the 64bit JDK
1.8.0u5 with default settings. For JRuby+Truffle we used the Graal VM version
0.3. Native versions of Ruby and C extensions were compiled with the system
standard GCC 4.8.2.

We ran 100 iterations of each benchmark to allow the different VMs to warm
up and reach a steady state so that subsequent iterations are identically and
independently distributed. This was verified informally using lag plots [13]. We
then sampled the final 20 iterations and took a mean of their runtime as the
reported time. We summarize across different benchmarks and report a geometric
mean [1].

5.4 Results

Figure 5 shows a summary of our results. We show the geometric mean speedup
of each evaluated implementation over all benchmarks, relative to the speed at
which MRI ran the Ruby code without the C extension. When using MRI the
average speedup of using the C extension (MRI With C Extension, Figure 5)
over pure Ruby code is around 11×. Rubinius (Rubinius With C Extensions,
Figure 5) only achieves around one third of this speedup. Although Rubinius
generally achieves better performance than MRI for Ruby code [20], its perfor-
mance for C extensions is limited by having to meet MRI’s API, which requires
a bridging layer. Rubinius failed to make any progress with 3 of the benchmarks
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Fig. 5: Summary of speedup across all benchmarks.

in a reasonable time frame so they were considered to have timed out. The per-
formance of JRuby (JRuby With C Extensions, Figure 5) is 2.5× faster than
MRI running the pure Ruby version of the benchmarks without the C exten-
sions. JRuby uses JNI [15] to access the C extensions from Java, which causes
a significant overhead. Hence it can only achieve 25% of the MRI With C Ex-
tension performance. JRuby failed to run one benchmark with an error about
an incomplete feature. As with Rubinius, 17 of the benchmarks did not make
progress in reasonable time. Despite a 8GB maximum heap, which is extremely
generous for the problems sizes, some benchmarks in JRuby were spending the
majority of their time in GC or were running out of heap.

When running the C extension version of the benchmarks on top of our
system (JRuby+Truffle With C Extension, Figure 5) the performance is over
32× better than MRI without C extensions and over 3× better than MRI With
C Extension. When compared to the other alternative implementations of C
extensions, we are over 8× faster than Rubinius, and over 20× faster than JRuby,
the previous attempt to support C extensions for Ruby on the JVM. We also
run all the extensions methods correctly, unlike both JRuby and Rubinius.

We can explain this speedup as follows:

In a conventional implementation of C extensions, where the Ruby code runs
in a dedicated Ruby VM and the C code is compiled and run natively, the call
from one language to another is a barrier that prevents the implementation from
performing almost any optimizations. In our system the barrier between C and
Ruby is no different to the barrier between one Ruby method and another. We
found that allowing inlining between languages is a key optimization, as it per-
mits many other advanced optimizations in the Graal compiler. For example,
partial escape analysis [22] can trace objects, allocated in one language but con-
sumed in another, and eventually apply scalar replacement [22] to remove the
allocation. Other optimizations that benefit from cross language inlining include
constant propagation and folding, global value numbering and strength reduc-
tion. When disabling cross-language inlining (JRuby+Truffle With C Extension
(No Inline), Figure 5) the speedup over MRI is roughly halved, although it is
still around 15× faster, which is around 39% faster than MRI With C Extension.
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In this configuration the compiler cannot widen its compilation units across the
Ruby and C boundaries, which results in performance that is similar to MRI.

If we just consider the contribution of a high performance reimplementation
of Ruby and its support for C extensions, then we should compare ourselves
against JRuby. In that case our implementation is highly successful at on average
over 20× faster. However we also evaluate against MRI directly running native C
and find our system to be on average over 3× faster, indicating that our system
might be preferable even when it is possible to run the original native code.

6 Related Work

We can compare our work against other projects that seek to compose two
languages, and against existing support for C extensions or alternatives in Ruby
implementations.

6.1 Unipycation

The work that is closest to our interoperability mechanism is that of Barret et
al. [8], in which the authors describe a novel combination of Python and Prolog
called Unipycation. We share the same goals, namely to retain the performance
of different language parts when composing them and to find an approach that
is applicable for any language composition.

However, our approach is quite different both in application and technique.
We are concerned in this research in running existing C extensions, so there is
immediate utility.

In contrast, Unipycation is a novel combination with no immediate industrial
application. Unipycation composes Python and Prolog by combining their inter-
preters using glue code (which is specific to Python and Prolog) and compiles
code using a meta-tracing JIT compiler. In contrast, we do not write glue code
for a specific pair of interpreters but rather create this glue code at runtime for
any pair of interpreters. Since the IR nodes themselves implement interpretation
we can combine IR nodes of different origin without needing glue code.

6.2 Common Language Infrastructure

The Microsoft Common Language Infrastructure (CLI) supports writing lan-
guage implementations that compile different languages to a common IR and
execute it on top of the Common Language Runtime (CLR) [16]. The Common
Language Specification (CLS) describes how language implementations can ex-
change objects across different languages. This standard defines a fixed set of
data types and operations that all language implementations have to use. CLS-
compliant language implementations generate metadata to describe user-defined
types. This metadata contains enough information to enable cross-language oper-
ations and foreign object accesses. Also, the CLS specifies a set of basic language
features that every implementation has to provide and therefore developers can
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rely on their availability in a wide variety of languages. This approach is differ-
ent from ours because it forces CLS-compliant languages to use the same object
model. Our approach, on the other hand, allows every language to have its own
object model.

6.3 Interface Description Language

Interface Description Languages (IDLs) are also widely used to implement cross-
language interoperability. To compose software components, written in different
languages, programmers use an IDL to describe the interface of each component.
Such IDL interfaces are then compiled to stubs in the host language and in
the foreign language. Cross-language communication is done via these stubs [7].
However, an IDL is much more heavyweight. It is mainly targeted to remote
procedure calls and often not only aims at bridging different languages but also at
calling code on remote computers. Our approach is different because we neither
require new interfaces nor a mapping between languages. Foreign objects can
be accessed via messages without needing any boilerplate code that converts or
marshals an object.

6.4 Language-neutral Object Model

Another approach towards cross-language interoperability are language-neutral
object models. Wegiel and Krintz [25] propose a language-neutral object model,
which allows different programming languages to exchange runtime data. In their
system, the language-neutral objects are stored on an independent shared heap.
Each language implementation then transparently translates a shared object to
a private object. We argue that sharing objects between different languages and
VMs does not require a special object model. Instead, objects should be shared
between languages directly. Also, a shared object model would not solve the
performance problems that Ruby engines, other than MRI, have when running
C extensions.

6.5 Foreign Function Interfaces

Low-level APIs allow developers to integrate C code into another high-level lan-
guage. Java developers can use a wide variety of different FFIs to integrate C
code into Java, for example the Java Native Interface [15], Java Native Access [5],
or the Compiled Native Interface [3]. VM engineers that implement new inter-
preters for dynamic languages in Java, e.g. the original JRuby without Truffle,
could use these FFIs to support C extensions. However, the experience of JRuby,
described below, shows that this approach is cumbersome and also has limited
performance.

Rather than accessing precompiled C extensions via FFIs we follow a com-
pletely different approach. We use TruffleC to run these C extensions within
a Truffle interpreter and use an efficient cross-language mechanism to compose
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the JRuby+Truffle and TruffleC interpreter. Our approach hoists optimizations
such as cross-language inlining and performs extremely well compared to existing
solutions.

6.6 Ruby C Extensions

MRI should have very straightforward support for C extensions as its implemen-
tation defines the API. However this does not mean that it poses no problems
for MRI. As the interface is well established, MRI is now bound by it as much
as any other implementation.

Rubinius supports C extensions through a compatibility layer. This means
that in addition to problems that MRI has with meeting a fixed API, Rubinius
must also add another layer that converts routines from the MRI API to calls
on Rubinius’ C++ implementation objects. The mechanism Rubinius uses to
optimize Ruby code, an LLVM-based JIT compiler, cannot optimize through
the initial native call to the conversion layer.

JRuby uses the JVM’s FFI mechanism, JNI, to call C extensions. This tech-
nique is almost the same as used in Rubinius, also using a conversion layer,
except that now the interface between the VM and the conversion layer is even
more complex. In order to exchange data between the JVM and native code,
JRuby must copy the data from the JVM onto the native heap. When the na-
tive data is then modified, JRuby must copy it back into the JVM. To keep both
sides of the divide synchronized, JRuby must keep performing this copy each
time the interface is passed.

7 Conclusion

We have presented a new approach to composing implementations of differ-
ent language interpreters. The cross-language mechanism composes interpreters
without additional infrastructure or glue code. We introduce an interface for
shareable objects, which allows different language implementations to exchange
objects. Language implementations access shared objects via object- and language-
independent messages. Our resolving approach transforms these messages to an
object- and language-specific access at runtime. The mechanism therefore re-
frains from converting objects, instead we adapt the IR of a program to deal
with the foreign objects. The resolved IR of a program completely obliterates
the language boundaries, which enables a JIT compiler to perform its optimiza-
tions across any language boundaries.

We use our mechanism to compose the JRuby+Truffle interpreter and the
TruffleC interpreter to support C extensions for Ruby. Our evaluation demon-
strates that this novel approach exhibits excellent performance. The peak per-
formance of our system is over 3× faster compared to Ruby MRI when running
benchmarks which stress interoperability between Ruby code and C extensions.
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Abstract. Systems that comprise accelerators (e.g., GPUs) promise high perfor-
mance, but their programming is still a challenge, mainly because of two rea-
sons: 1) two distinct programming models have to be used within an application:
one for the host CPU (e.g., C++), and one for the accelerator (e.g., OpenCL or
CUDA); 2) using Just-In-Time (JIT) compilation and its optimization opportuni-
ties in both OpenCL and CUDA requires a cumbersome preparation of the source
code. These two aspects currently lead to long, poorly structured, and error-prone
GPU codes. Our PACXX programming approach addresses both aspects: 1) par-
allel programs are written using exclusively the C++ programming language, with
modern C++14 features including variadic templates, generic lambda expres-
sions, as well as STL containers and algorithms; 2) a simple yet powerful API
(PACXX-Reflect) is offered for enabling JIT in GPU kernels; it uses lightweight
runtime reflection to modify the kernel’s behaviour during runtime. We show
that PACXX codes using the PACXX-Reflect are about 60% shorter than their
OpenCL and CUDA Toolkit equivalents and outperform them by 5% on average.

1 Introduction

Accelerators such as Graphics Processing Units (GPUs) are increasingly used in today’s
high-performance systems. However, programming such systems remains complicated,
because it requires the use of two distinct programming models: one for the host CPU
(e.g., C or C++) and one for the GPU (e.g., OpenCL or CUDA). The codes for GPUs
(so-called kernels) are written using limited subsets of the C/C++ language which miss
many advanced features of the current standards like C++14 [1]. Furthermore, specific
language constructs of CUDA and OpenCL for parallelization and synchronization have
to be additionally mastered by the GPU software developers. Last but not least, the Just-
In-Time (JIT) compilation which is a proven technique of simplifying and optimizing
the programming process is provided for GPUs on a very restricted scale.

This paper aims at simplifying and improving the programming process for systems
with GPUs and other accelerators by making two main contributions:

1. We present and implement PACXX (Programming Accelerators with C++) - a uni-
fied programming model based on the newest C++14 standard that uniformly cov-
ers both host and kernel programming without any language extensions.
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2. We develop PACXX-Reflect – a simple yet powerful API to enable lightweight JIT
compilation of PACXX programs in order to optimize the kernel code during pro-
gram execution by using values that become known at runtime.

We evaluate our programming approach for GPUs with C++14 and JIT compilation
using two case studies – matrix multiplication and Black-Scholes model for the option
market – and demonstrate that PACXX codes are about 60% shorter than their man-
ually optimized OpenCL and CUDA Toolkit equivalents and outperform them 5% on
average.

The structure of the paper is as follows. Section 2 provides an overview of the state
of the art and related work in programming systems with accelerators in general and
the JIT compilation approaches for such systems in particular. In Section 3, we explain
the PACXX programming approach and compare it to CUDA by way of example. We
present our approach to JIT compilation using the PACXX-Reflect API in Section 4.

In Section 5, we briefly describe the implementation of PACXX and we evaluate our
approach on two case studies by comparing the size and performance of PACXX codes
to the corresponding CUDA and OpenCL programs. Finally, we conclude in Section 6.

2 State of the Art and Related Work

In current programming approaches like CUDA and OpenCL, the code for a GPU (so-
called kernel) is written using a limited subset of the C/C++ language, e.g., CUDA
C++ [3] which misses many advanced features of the current standards like C++14 [1].
Memory management for the GPU memory has to be performed by the developer ex-
plicitly, because C++ has no language support for distinct memories. Memory is ex-
plicitly allocated twice - first in the host memory and then again in the GPU’s memory.
The developer is also responsible for performing explicit synchronization (copying) be-
tween the two distinct memories. This implies a significantly longer boilerplate (host-
)code for memory management as compared to C++ where allocation and initialization
are performed together through the RAII (Resource Acquisition Is Initialization) idiom
[4].

Although CUDA and OpenCL (in a provisional version of the OpenCL 2.1 stan-
dard [5]) have been recently extended with static C++11 language features, these C++
extensions define new, for C++ developer unfamiliar, language elements (e.g., cast oper-
ators), while dynamic language features of C++ such as the Standard Template Library
are still not provided by neither CUDA nor OpenCL.

Several recent approaches aim at integrating the accelerator programming into C++.
The C++ AMP approach [6] extends C++ by an explicit data-parallel language con-
struct (parallel for each), and so-called array views provide functions for mem-
ory transfers. The developer still needs to use a wrapper (i.e., write an additional line of
code) for each memory allocation and use the C++ AMP views instead of the original
C++ data types in order to achieve that memory synchronization is done transparently
by the system. SYCL [7] is a high-level interface that integrates the OpenCL program-
ming model into C++ by using the lambda features of the C++11 standard, but it still
demands multiple memory allocations for so-called Buffers both in the host and kernel
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code. Nvidia Thrust [8] and AMD Bolt [9] are libraries implementing the functional-
ity of the C++ Standard Template Library (STL) in a data-parallel way, but they are
restricted to accelerators from the corresponding vendor and do not support modern
C++14 language features. Annotation-based approaches OpenMP [10] and OpenACC
[11] expect the user to use parallelism-specifying directives in addition to C++. STAPL
[12] offers STL functionality which is executed in parallel by the underlying runtime
system, but it targets distributed-memory systems rather than systems with GPUs.

None of the described programming models offers the possibility to transform and
optimize the kernel code during execution, i.e., in a Just-In-Time (JIT) manner. For
example, writing a kernel for a particular size of input data provides usually better
performance than a generic kernel, due to additional optimizations performed by the
compiler. However, writing separate kernels for different data sizes would lead to a
poorly structured, hardly maintainable codes. Just-in-time compilation can be used to
optimize code by taking into account values which become known during the execution
of the program: thereby, compilers can additionally optimize code when performance-
critical variables (e.g., exit conditions of loops) are resolved.

OpenCL and the newest releases of CUDA support JIT compilation of kernel code.
However, both approaches demand that the kernel code is provided as human-readable
code which has a security drawback: the source code may be disclosed to non-authorized
parties. The NVRTC [13] library supports all C++ features available in CUDA for JIT
compilation. Unfortunately, a complicated problem arises using NVRTC: to allow func-
tion overloading and template functions as kernels, CUDA C++ follows the C++ stan-
dard regarding function name mangling while kernel names are machine generated and
unknown to the developer. Without knowing the mangled name of a kernel, the func-
tion pointer for invoking the kernel cannot be retrieved and the kernel cannot be called.
Additionally, template kernels must be explicitly instantiated prior to their use by the de-
veloper. The current solution is to enforce the C naming policy using extern "C", but
this completely disables function overloading and templates for kernels, because func-
tion names are no longer unique and the right kernel cannot be resolved by its name.
Another solution could be an additional library providing function name de-mangling,
but this would introduce more development overhead and unnecessary boilerplate code,
because function names would have to be combined with the actual data types used in
the templates. Another recent JIT approach is LambdaJIT [14] that automatically par-
allelizes the lambda functions used in STL algorithms. Through different back-ends,
LambdaJIT is capable of offloading computations to a GPU.

This paper describes a novel approach to programming systems with GPUs and
other accelerators: our PACXX model relies exclusively on the newest C++14 standard
without any extensions, and we use lightweight runtime reflection to provide JIT com-
pilation and optimization of PACXX programs. PACXX provides the programmer with
all advanced features of C++14, e.g., variadic templates, generic lambda expressions,
as well as STL containers and algorithms. Reflection enables a program to modify its
behaviour and is well known in languages like Java and Scala [15] but is unavailable in
C++. In contrast to other approaches like Reflex [16] and XCppRefl [17] which aim to
integrate full runtime reflection of the type system into C++, PACXX-Reflect follows a
lightweight approach: we do not perform any type analysis or introspection.
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3 The PACXX Programming Model

To explain our C++-based approach to GPU programming, we consider a popular ex-
ample in parallel computing: vector addition. We start with a C++ program and then
compare how this program is parallelized for GPU using CUDA vs. our PACXX ap-
proach.

1 int main (){

2 vector <int > a{N}, b{N}, c{N};

3 for (int i = 0; i < N; ++i)

4 c[i] = a[i] + b[i];

5 }

Listing 1.1: Sequential vector addition in C++.

Listing 1.1 shows the sequential C++ source code for the vector addition. The mem-
ory is allocated and initialized with the default constructor of the vector’s element type,
here with 0 – following the RAII (Resource Acquisition Is Initialization) idiom – dur-
ing the construction of the three STL containers of type std::vector in line 2. The
calculation is performed by the for-loop in line 3.

1 __global__ void vadd (int* a,

2 int* b, int* c, size_t size){

3 auto i = threadIdx.x

4 + blockIdx.x * blockDim.x;

5 if (i < size)

6 c[i] = a[i] + b{i];

7 }

8 int main (){

9 vector <int > a{N}, b{N}, c{N};

10 int* da, db, dc;

11 cudaMalloc(da, N*sizeof(int));

12 cudaMemcpy(da ,&a[0], sizeof(int)

13 * N, cudaMemcpyHostToDevice );

14
... // 5 additional lines

15 // for vectors b and c

16 vadd <<<N/1024 + 1, 1024>>>

17 (da , db , dc, N);

18 cudaDeviceSynchronice ();

19 }

int main (){

vector <int > a{N}, b{N}, c{n};

auto vadd = kernel([](

const auto& a, const auto& b

auto& c){

auto i = Thread ::get(). global;

if (i < a.size ())

c[i.x] = a[i.x] + b[i.x];

}, {{N/1024 + 1}, {1024}} );

auto F = async(launch ::kernel ,

vadd , a, b);

F.wait ();

}

Listing 1.2: Two versions of parallel vector addition: in CUDA (left) and PACXX (right).

Listing 1.2 (left) shows how the vector addition is parallelized using CUDA. The
CUDA kernel replaces the sequential for-loop of the C++ version with an implicitly
data-parallel version of the vector addition. The vadd kernel is annotated with the
global keyword (line 1) and is, according to the CUDA standard, a free function with
void as return type. In CUDA, functions called by a kernel have to be annotated with
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the device keyword to explicitly mark them as GPU functions. This restriction pro-
hibits the use of the C++ Standard Template Library (STL) in the kernel code because
the functions provided in the STL are not annotated and, therefore, callable only from
the host code. The parameters of the vadd kernel are raw integer pointers. Memory
accessed by the kernel must be managed by the developer explicitly (line 11). To use
the kernel, memory is allocated on the GPU and the data is synchronized between both
memories (line 12). On the host side, three instances of std::vector are used for the
computation. Since STL features cannot be used in CUDA, three raw integer pointers
are defined in line 10 to represent the memory of the GPU. Memory is allocated using
the CUDA Runtime API; for brevity, the calls to this API are only shown for one vector.
For each allocation and synchronization, an additional line of code is necessary (e.g.,
line 11). Passing arguments to a kernel by reference which is common in C++, is not
possible in CUDA, so we have to use the pointers defined in line 10 and pass them by
value. To launch the kernel, a launch configuration must be specified within <<< >>>

in each kernel call (line 16), i.e., a CUDA-specific, non-C++ syntax is used. CUDA
threads are organized in a grid of blocks with up to three dimensions. In our example,
1024 threads are the maximal number of threads in one block, and N/1024+1 blocks
(N is the size of the vectors) form the so-called launch grid. While all threads execute the
same kernel code, the work is partitioned using the index ranges; in our example, each
thread computes a single addition depending on its absolute index in the x-dimension
(line 3). The identifier of the thread within the grid and the block are obtained using
variables threadIdx, blockIdx, blockDim and gridDim (not shown in the code). To
prevent an out-of-bounds access of threads with i >= N, a so-called if guard (line 5) is
used. However, the size of the vector has to be known in the kernel code and is passed
as additional parameter to the kernel (line 2). The GPU works asynchronously to the
host, therefore, the host execution must be explicitly synchronized with the GPU using
the CUDA Runtime API (line 18).

Summarizing, the CUDA code is very different from the original C++ version. A
complete restructuring and new language constructes are necessary, and the size of code
increases significantly.

Listing 1.2 (right) shows the PACXX source code that performs the same compu-
tation. It is a pure C++14 code without any extensions (e.g., new keywords or spe-
cial syntax), with the kernel code inside of the host code, that uses std::async and
std::future from the STL concurrency library [1] to express parallelism on the GPU.
In PACXX, there are no restrictions which functions can be called from kernel code,
however, the code must be available at runtime, i.e., functions from pre-compiled li-
braries cannot be called. As in CUDA, a PACXX kernel is implicitly data parallel: it
is defined with a C++ lambda function (lines 5-9). PACXX provides the C++ template
class kernel (line 4) to identify kernels: instances of kernel will be executed in par-
allel on the GPU. The launch configuration (the second parameter in line 9) is defined
analogous to CUDA. As in CUDA, threads are identified with up to three-dimensional
index ranges which are used to partition the work amongst the GPU’s threads. The
thread’s index can be obtained through the Thread class (line 6). To retrieve values from
the thread’s block, the class Block is available. The kernel instance created in line 3 is
passed to the STL-function std::async (line 10) that invokes the kernel’s execution
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on the GPU. PACXX provides an STL implementation based on libc++ [18] where an
additional launch policy (launch::kernel) for std::async is defined to identify ker-
nel launches besides the standard policies of the C++ standard (launch::async and
launch::deferred). Passing the launch::kernel policy to std::async (line 10)
implies that the kernel should be executed on the GPU, rather than by another host
thread. The additional parameters passed to std::async (line 11) are forwarded to the
kernel. As a significant advantage over CUDA, parameters of a kernel in PACXX can
be passed by reference, as with any other C++ function. PACXX manages the GPU
memory implicitly [2], i.e., no additional API for memory management (as in CUDA
and OpenCL) has to be used by the developer. Non-array parameters passed by refer-
ence are copied to the GPU prior to the kernel launch and are automatically synchro-
nized back to the host when the kernel has finished. For arrays, the std::vector and
std::array classes are used. As in the original C++ version, memory is allocated us-
ing the std::vector class (line 2). PACXX extends the STL containers std::vector
and std::array with the lazy copying strategy: synchronization of the two distinct
memories happens only when a data access really occurs, either on the GPU or on the
host. This happens transparently for the developer and reduces the programming effort
significantly. As compared, to the CUDA version, the PACXX code only needs 13 LoC,
i.e., it is almost 50% shorter. The PACXX kernel also requires an if guard to prevent
out-of-bounds access, but there is no need to pass the size of the vectors to the kernel as
an additional parameter, because each instance of std::vector knows the number of
contained elements which can be obtained by the vector’s size function (line 7). The
std::async function used to execute the kernel on the GPU returns an std::future

object associated with the kernel launch (line 10); this object is used to synchronize the
host execution with the asynchronous kernel more flexibly than in CUDA: the wait

member function (line 12) blocks the host execution if the associated kernel has not
finished yet.

Due to the exclusive usage of the C++14 syntax and implicit memory management
of kernel parameters and STL containers, GPU programming using PACXX is shorter
and easier for C++ developers than when using CUDA.

4 The PACXX-Reflect API

To exploit JIT compilation in CUDA or OpenCL, the source code must be prepared
manually by the developer; it is commonly represented as a string, either in the exe-
cutable itself or loaded from a source file.

Listing 1.3 compares the JIT-compilable version of vector addition in CUDA (left)
and PACXX (right). In CUDA, a placeholder ("#VSIZE#") is introduced into the ker-
nel code. During program execution this placeholder is replaced by the string with the
actual size of vector a (line 12– 19). However, changing the kernel code at runtime
requires additional programming effort in the host code and, therefore, increases the
program length. Furthermore, during the JIT compilation the kernel code passes all
compiler stages including parsing, lexing and the generation of an abstract syntax tree
(AST). Since the AST for the kernel code is created at runtime of the program, errors
in the kernel code are found first at program execution which makes debugging more
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1 vector <int > a{N}, b{N}, c{N};

2 string str{ R"(

3 extern "C"

4 __global__ void vadd(int* a,

5 int* b, int* c){

6 auto i = threadIdx.x

7 + blockIdx.x * blockDim.x;

8 int size = #VSIZE #;

9 if (i < size)

10 c[i] = a[i] + b[i];

11 })" };

12 string v{to_string(a.size ())};

13 string p{"#VSIZE#"};

14 string vadd{str};

15 auto npos = string ::npos;

16 for(size_t i = 0;

17 (i = vadd.find(p, i))!= npos;

18 i += v.size ())

19 vadd.replace(i, p.size(), v);

vector <int > a{N}, b{N}, c{N};

auto vadd = []( const auto& a,

const auto& b,

auto& c){

auto i = Thread ::get(). global.x;

auto size =

reflect ([&]{ return a.size ();});

if (i < size)

c[i] = a[i] + b[i];

};

Listing 1.3: JIT-compilable vector addition in CUDA (left) and PACXX (right).

difficult. With the vector’s size hard-coded into the kernel code, the additional param-
eter for the vector size as in Listing 1.2 becomes unnecessary, but this is only a minor
optimization since kernel parameters are stored in the very fast constant memory of the
GPU.

On the right-hand side of Listing 1.3, the same modification to the if guard is made
using PACXX-Reflect: the dynamic part of the if guard condition is replaced by a con-
stant value using the Reflect API. This is accomplished using the reflect function
which is defined as a variadic template function that takes a lambda expression and an
arbitrary number of additional parameters. The reflect function forwards the return
value of the lambda expression passed to it (line 8); the expression is evaluated in the
host’s context, i.e., the instances of the reflect template function are JIT-compiled for
the host architecture and executed on the host prior to the kernel’s launch. Only con-
stant values and kernel parameters are allowed as arguments or captured values by the
lambda expression, because they are, from the kernel’s point of view, compile-time con-
stant values. In Listing 1.3 (right), a direct call to the size function of the std::vector
requires two loads (of the begin and the end iterator) from the GPUs memory which
might introduce overhead on some architectures. To avoid this, a lambda expression
which wraps the call to the size function of vector a is passed to the reflect func-
tion; the returned value from reflect is considered static for the kernel execution and
the function call is replaced by the computed value, such that no loads are necessary
to retrieve the vector’s size. Summarizing, the replacement of the function call with the
constant value happens transparently for the developer.
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5 Implementation and Evaluation

PACXX is implemented using LLVM [19] and uses its code generation libraries to gen-
erate PTX code [20] for Nvidia GPUs and SPIR code [21] for other architectures (e.g.,
Intel Xeon Phi accelerators). PACXX-Reflect operates on the LLVM IR (intermediate
representation) generated by the PACXX offline compiler (implemented in Clang [22]),
rather than on the source code itself, thus reducing the overhead of JIT compilation as
compared to the current solutions for OpenCL and CUDA and avoids the name man-
gling problem by design.

For evaluation, two case studies programmed in C++14 and implemented using
PACXX are compared to the reference implementations from the CUDA Toolkit [23]:
1) Black-Scholes computation [24] used in high-frequency stock trading, and 2) matrix
multiplication [25].

To evaluate the performance of PACXX codes on other architectures than GPUs,
the programs from the CUDA Toolkit were also manually re-written in OpenCL. The
PACXX and CUDA implementations are compiled at runtime for CUDA Compute Ca-
pability 3.5 with standard optimizations enabled (no additional floating point optimiza-
tions), using the latest CUDA Toolkit (release 7.0). The CUDA PTX code is generated
by the Nvidia NVRTC library; the host code is compiled by Clang 3.6 with standard O3

optimizations.
For evaluation we use the state-of-the-art accelerator hardware: an Nvidia Tesla

K20c GPU controlled by an Intel Xeon E5-1620 v2 at 3.7 GHz, and an Intel Xeon
Phi 5110p hosted in a dual-socket HPC-node equipped with two Intel Xeon E5-2695
v2 CPUs at 2.4 GHz. For the Intel Xeon Phi and Intel Xeon, we used the Intel OpenCL
SDK 2014. We employed the Nvidia profiler (nvprof) and the OpenCL internal facilities
for performance measurements.

5.1 Black-Scholes computation

Our first example is the Black-Scholes (BS) model which describes the financial option
market and its price evolution. Both programs, from CUDA Toolkit and the PACXX
implementation, compute the Black-Scholes equation on randomly generated input data
seeded with the same value to achieve reproducible and comparable results. Input data
are generated for 81.92 ·106 options.

Figure 1 shows the measured runtime and the program size in Lines of Code (LoC);
the latter is calculated for the source codes formatted by the Clang-format tool using the
LLVM coding style. We observe that the OpenCL version (273 LoC) is about 3 times
longer and the CUDA version (217 LoC) about 2 times longer than the PACXX code in
pure C++ (107 LoC). The advantages of PACXX regarding the code size arise from the
tasks performed transparently by the PACXX runtime: device initialization, memory
management and JIT compilation, whereas in CUDA and OpenCL these tasks have to
be performed explicitly.

The PACXX code has also advantages regarding runtime on the Nvidia K20c GPU
(about 4.3%) and on the dual socket cluster node (about 6.7%). On the Intel Xeon Phi,
the PACXX code is only about 0.1% slower than the OpenCL version. On the Nvidia
Tesla K20c, since the OpenCL implementation from Nvidia is still for the OpenCL 1.1
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Fig. 1: Evaluation results for the Black-Scholes application.

standard where floating point division are not IEEE 754 compliant, the higher speed of
the OpenCL version (16.1% faster than PACXX) is achieved for the lower accuracy.

5.2 Matrix Multiplication

Our second case study is the multiplication of dense, square matrices. The PACXX
code uses the Reflect API to compute the sizes of the matrices: the reflect function
retrieves the input vector’s size and computes its square root to get the number of rows/-
columns in the matrix. The reflect call is evaluated during the runtime compilation
and the value (our matrices are of size 4096×4096) is automatically embedded into the
kernel’s intermediate representation. For the OpenCL and CUDA codes, the values are
introduced into the kernel code by string replacement before it is JIT compiled.
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Fig. 2: Evaluation results for matrix multiplication.

Figure 2 (left) shows the runtime and size of the PACXX code as compared to the
CUDA code (compiled with NVRTC) and the OpenCL code on the three evaluation
platforms. The PACXX program is again much shorter than its CUDA and OpenCL
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counterparts. We observe that the kernel becomes 2.7% faster on the K20c GPU when
using PACXX-Reflect and its JIT capabilities. The PACXX code is about 0.2% slower
on the Intel architectures as compared to the OpenCL implementation. On the Nvidia
Tesla K20c, PACXX code outperforms CUDA NVRTC and OpenCL codes by 2.6%
and 3.3%, correspondingly.

6 Conclusion

We presented PACXX – a programming model for GPU-based systems using C++14
and JIT compilation. We demonstrated that on modern accelerators (GPUs and Intel
Xeon Phi) PACXX provides competitive performance and reduces the programming
effort by more than 60% of LoCs as compared to CUDA or OpenCL. The code size
reduction is achieved through JIT compilation and memory management tasks per-
formed by PACXX implicitly in contrast to CUDA and OpenCL where they must be
programmed explicitly. Additionally, PACXX enables application developers to pro-
gram OpenCL and CUDA capable accelerators (e.g., Nvidia GPU and Intel Xeon Phi)
in a modern object-oriented way using all advanced features of C++14 and the STL.
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Abstract. Static program analysis is in general more precise if it is sensitive to
execution contexts (execution paths). In this paper we propose χ-terms as a mean
to capture and manipulate context-sensitive program information in a data-flow
analysis. We introduce finite k-approximation and loop approximation that limit
the size of the context-sensitive information. These approximated χ-terms form
a lattice with a finite depth, thus guaranteeing every data-flow analysis to reach a
fixed point.

1 Introduction

Static program analysis is an important part of optimizing compilers and software en-
gineering tools. These analyses predict properties of any execution of a given program,
referred to as program information, by abstracting from its concrete execution seman-
tics and its potential input values. Analyses can be context-sensitive or -insensitive, i.e.,
an analysis may or may not distinguish program information for different execution
paths, i.e. for different contexts, e.g., the call contexts of a method. Context-sensitive
analyses are, in general, more precise than their context-insensitive counterparts but
also more expensive in terms of time and memory consumption.

In an iterative program, there are countably (infinitely) many contexts. Hence, merg-
ing the program information of some contexts is needed for the analysis to terminate.
This, however, makes the analysis less context-sensitive, hence, less precise.

In Trapp et al. [THLL15], we focussed on capturing context-sensitive analysis in-
formation, i.e. contexts and program information for each program point, in a memory
efficient way. In other words, we strived to delay merging the program information
of different context for keeping analysis precision high. In the present paper, we dis-
cuss how to handle the approximations that sacrifies precision for memory. We propose
two solutions: finite k-approximation and loop approximation, and we prove that any
context-insensitive data-flow analysis problem have a k-approximated context-sensitive
counterpart that is guaranteed to reach a fixed point.

The remainder of the paper is structured as follows: Section 2 summarise the no-
tions of χ-terms and some of its fundamental operations. Sections 3 and 4 presents some
theoretical results that will be useful later on. Section 5 presents two types of χ-term
approximations and discusses how they relate to loop handling and analysis termina-
tion. Section 5.5 presents an approximative approach that is a normalized combination
of these two χ-term approximations. Section 6 discusses related work, and section 7
concludes the paper and discusses future work.
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2 Background

This section summarise the notions of χ-terms and some of its fundamental operations.
It is basically a brief summary of [THLL15] included for the completness and under-
standability of this paper.

2.1 SSA Representation

We assume the analysis to be based on a Static Single Assignment (SSA) graph repre-
sentation [CFR+91] of a program. Nodes in the SSA graph represent program points;
special φ-nodes represent merge points of the execution paths, i.e., contexts. Here we
distinguish the program information of incoming paths by creating a χ-term connected
to sub-terms, each representing the program information analyzed for the respective
incoming execution path.

Figure 1 shows an example code with corresponding basic block and SSA-graph
representations.

if (...)
x = 1;

else
x = 2

if (...){
y = x;
b = 3;

}
else {
y = 2;
b = 4;

}
if (...)
a = x;

else
a = y;

return a+b;

Phi

Phi

Phi

Phi

entry

4

x = 2

y = 2
b = 4

a = x a = y

a +b

return

1 2

2 3

+

return

1

 3

6

b = 3
y = x

 2
x = 1

5

7

 8  9

10

11

10

10

7 7

4
4

Fig. 1. A source code example with corresponding basic block and SSA graph structures.

In the figure the source code is transfered into numbered basic blocks (middle), and
based on this a φ-node based SSA-graph have been generated (right). The φ-nodes will
there be the merging point for different definitions of values for a given variable.

2.2 χ-terms

A χ-function is a representation of how different control-flow options affect the value
of a variable. For example, we can write down the value of variable b in block 7 in
Figure 1 using χ-functions as b = χ7(3, 4). Interpretation: variable b has the value 3 if
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1 2

χ41 2
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χ7
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χ4

χ7

χ10

Fig. 2. Tree view of χ10(χ4(1, 2), χ7(χ4(1, 2), 2)) and its graph representation.

it was reached from the first predecessor to block 7 in the control-flow graph, and the
value 4 if it was reached from the second predecessor block. That is, a value expressed
using χ-functions (a so-called χ-term) does not only contain all possible values, it also
contains which control-flow options that generated each of these values.

The construction of the χ-term values and the numbering of the χ-functions is a part
of a context-sensitive analysis. Every φ-node in an SSA graph represents a join point
for several possible definitions of a single variable, say x. When the analysis reaches
a block b containing a φ-node for x it “asks” all the predecessor blocks to give their
definition of x and constructs a new χ-term χb(x1, . . . , xn) where xi is the χ-term
value for x given by the i:th predecessor. If the i:th predecessor block does not define x
by itself, it “asks” its predecessor for the value. This process continues recursively until
each predecessor has presented a χ-term value for x. The process will terminate if any
use of a value also has a corresponding definition.

Iteration in the code will generate loops in the control-flow and this need to be
handled in the χ-term. Loop handling will be elaborated in section 5.4.

In summary, a χ-term is a composition of χ-functions and analysis values a, b, . . . ∈
V . Each program p has a (possibly infinite) set of χ-functionsX (p) and each χ-function
χb
j ∈ X (p) is identified by a pair (b, j) where the block number b indicates in what

basic block its generating φ-node is contained, and the iteration index j indicates on
what analysis iteration over block b the χ-function was generated.

Two χ-terms χb
i (x1, . . . , xn) and χb

j(y1, . . . , yn) from the same block b have the
same switching behavior if they have the same iteration index (i.e. i = j). That is, for
any execution of the program it holds that

branch xk is selected ⇔ branch yk is selected

Thus, the switching behavior of a χ-function is determined by a pair (b, i) where b is
the block number and i is the iteration index. In what follows, we will often skip the
iteration index to simplify the notations. In these cases we assume that all involved
χ-function have the same iteration index.
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public int m(int a, int b) {
if ( ... ) {
a = a+1;
b = b-1;

}
else {
a = a-1;
b = b+1;

}
return a + b;

}

φi

+ 

φi

ret

b-1 b+1a+1 a-1

Fig. 3. An method with the corresponding SSA graph of the basic block containing the return-
statement.

2.3 Tree and Graph Representation of χ-terms

Every χ- term can be naturally viewed as a tree. This is illustrated in Figure 2 (left)
where we show the tree representation of the χ-term χ10(χ4(1, 2), χ7(χ4(1, 2), 2)).
Each edge represents a particular control flow option in this view and each path from
the root node to a leaf value contains the sequence of control flow decisions required for
that particular leaf value to come into play. The tree representation of a χ-term is easy
to understand and important from theoretical point of view: many of the notations to be
presented are easiest to understand in terms of operations on the tree representation.

To actually represent each χ-term as a tree is in practice much to costly. A more
compact graph representation can easily be found by reusing identical subtrees, cf. Fig-
ure 2 (right), thus avoiding redundancies. This is the approach we recommend for any
χ-term implementation and it is similar to how OBDDs are handled in [Bry92], and
how classifier information is handled in [DLL14].

2.4 Operations on χ-terms and Shannon Expansions

The code fragment on the left-hand side of Figure 3 assigns different values to variables
a and b in the two different branches of the if-statement and then returns the sum a+b.
Using χ-terms, we can express the values of a and b as χ(a+1, a−1) and χ(b−1, b+1)
respectively, and the sum a+ b as

+(χ(a+ 1, a− 1), χ(b− 1, b+ 1)).

Furthermore, we know that any execution takes either the first or the second branch
of the if-statement (but we do not know which). This observation leads us to the fol-
lowing rewriting:

+(χ(a+ 1, a− 1), χ(b− 1, b+ 1)) = χ( first branch +, second branch +)
= χ(+(a+ 1, b− 1),+(a− 1, b+ 1))
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That is, we can make use of the fact that both χ-terms have the same switching behavior
and apply the + operator on each of the two branches separately before we merge the
result. This rewriting can be seen as that we are pushing the + operator one step closer
to the leaf values.

Finally, we are now in a position where we can apply + on a set of leaf values. In
this case + is well defined and we can fall back on ordinary integer arithmetics. This
manipulation, where we also use the redundancy rule χ(t, t) = t, can symbolically be
written as:

χ(+(a+ 1, b− 1),+(a− 1, b+ 1)) = χ((a+ 1) + (b− 1), (a− 1) + (b+ 1))

= χ(a+ b, a+ b) = a+ b

The result indicates that no matter what branch of the if-statement we use, we will
always get the result a+ b. This simple example illustrates one of the strengths of using
χ-terms, we can by using a few simple rewrite-rules make use of having stored flow-
path information and "compute" more precise results than would have been possible in
a context-insensitive approach.

That we can rewrite the addition of two χ-terms as a χ-term over the addition of
a and b for each individual branch is in this case quite obvious. This rewrite rule for
χ-term expressions is called a Shannon expansion 3. It does not change the information
represented by that term and leads therefore to an equivalent (≡) term. It may, however,
change the size needed for representing a χ-term. For example,

ta = χ10(χ4(1, 2), χ7(χ4(1, 2), 2))

≡ χ4(χ10(1, χ7(1, 2)), χ10(2, χ7(2, 2))) (expansion over χ4)
≡ χ7(χ4(1, 2), χ10(χ4(1, 2), 2)) (expansion over χ7)

The Shannon expansion is also used to define the result of applying an operation to
χ-terms. For instance, assume ta = χ10(χ4(1, 2), χ7(χ4(1, 2), 2)) and tb = χ7(3, 4),
and assume further that apply(+, i, j) = i+ j for any two integers i and j. Then

apply(+, ta, tb) = apply(+, χ10(χ4(1, 2), χ7(χ4(1, 2), 2)), χ7(3, 4))

= χ10(apply(+, χ4(1, 2), χ7(3, 4)),

apply(+, χ7(χ4(1, 2), 2), χ7(3, 4)))

= χ10(χ7(apply(+, χ4(1, 2), 3), apply(+, χ4(1, 2), 4)),

χ7(apply(+, χ4(1, 2), 3), apply(+, 2, 4)))

= χ10(χ7(χ4(apply(+, 1, 3), apply(+, 2, 3)),

χ4(apply(+, 1, 4), apply(+, 2, 4))),

χ7(χ4(apply(+, 1, 3), apply(+, 2, 3)), 6))

= χ10(χ7(χ4(4, 5), χ4(5, 6)), χ7(χ4(4, 5), 6))

3 The word "Shannon expansion" is taken from the OBDD literature [Bry92] where a similar
procedure is used to rewrite boolean functions represented as OBDDs.
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The first step above, expansion over χ10, can be seen as if we push the operator +
one step towards the leaf values by computing + for each one of the branches of χ10

individually, and then merge these values using χ10. This process can be repeated until
we reach the leaf values where the context-insensitive version of + can be applied.

This idea generalizes to any operator implementing a context-insensitive transfer
function. For each context-insensitive operator τ : A × B × . . . × N 7→ V their is
a corresponding χ-induced operator τ̃ : XA × XB × . . . × XN 7→ XV defined as
τ̃(ta, . . . , tn) = apply(τ, ta, . . . , tn).

3 Structural Induction on χ-terms

Many basic properties such as commutativity and associativity of a context-insensitive
operator τ are directly mapped to the χ-induced counterpart τ̃ . In what follows, we will
often want to proof statements like: Assume that statement S(v1, . . . , vn) is true for all
abstract values vi ∈ V . Then S̃(t1, . . . , tn) (the χ-induced counterpart to S) is true for
all χ-terms ti ∈ XV . A typical example of such a statement is:

Theorem 1. Let τ : V ×V 7→ V be a commutative operation and let τ̃ : XV ×XV 7→
XV be the corresponding χ-induced operator. It then holds that

τ̃(ta, tb) = τ̃(tb, ta) ∀ta, tb ∈ XV .

This type of statement can in many cases be proved by something called structural
induction on χ-terms. This type of induction is similar in spirit to ordinary structural
induction as presented in most text books (e.g. [AU95]). That is, we do an induction on
the depth of χ-terms. The following is an outline for such induction proofs:

1. The Base Case: We show that S̃(va, . . . , vn) is true when va, . . . , vn ∈ V ⊆ XV .
This step can in most cases be done by applying the property S(va, . . . , vn).

2. The Inductive Hypothesis: Let

ta = χa(a1, . . . , ap), . . . , tn = χn(n1, . . . , nq)

and assume that

S̃(ai, . . . , nj) is true ∀(ai, . . . , nj) ∈ children(ta)× . . .× children(tn).

3. The Inductive Step: Prove that S̃(ta, . . . , tn) is true using the assumptions in the
inductive hypothesis and the definition of operations on χ-terms including Shannon
expansion.

If we do so, then we can conclude that S̃(ta, . . . , tn) is true for all χ-terms ta, . . . , tn ∈
XV . In order to exemplify this type of proof by structural induction we prove Theo-
rem 1.

1. The Base Case: We are given that τ is commutative and we know that for every
χ-induced operator it holds that

τ̃(va, . . . , vn) = τ(va, . . . , vn),∀vi ∈ V ⊆ XV .
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Thus, let ta = va, tb = vb

τ̃(ta, tb) = τ(va, vb) = τ(vb, va) = τ̃(tb, ta), ∀va, vb ∈ V ⊆ XV .

This completes the base case.
2. The Inductive Hypothesis: Let ta = χa(a1, . . . , ap) and tb = χb(b1, . . . , bq) and

assume that

τ̃(ai, bj) = τ̃(bj , ai) ∀(ai, bj) ∈ children(ta)× children(tb).
3. The Inductive Step: Prove that τ̃(ta, tb) = τ̃(tb, ta) is true using the assumptions in

the inductive hypothesis. We start with the left-hand side:

τ̃(ta, tb) = τ̃(χa(a1, . . . , ap), χ
b(b1, . . . , bq))

= χa(τ̃(a1, χ
b(b1, . . . , bq)), . . . , τ̃(ap, χ

b(b1, . . . , bq))

= χb(χa(τ̃(a1, b1)), τ̃(a2, b1)), . . . , τ̃(ap, b1)),

. . . ,

χa(τ̃(a1, bq)), τ̃(a2, bq)), . . . , τ̃(ap, bq)))

= χb(χa(τ̃(b1, a1)), τ̃(b1, a2)), . . . , τ̃(b1, ap)),

. . . ,

χa(τ̃(bq, a1)), τ̃(bq, a2)), . . . , τ̃(bq, ap)))

The first two rewritings are Shannon expansions in χa and χb, respectively. In the
final rewriting we have used the inductive hypothesis τ̃(ai, bj) = τ̃(bj , ai). At-
tacking the right-hand side with a similar approach (but no use of the inductive
hypothesis) we find that:

τ̃(tb, ta) = τ̃(χb(b1, . . . , bq), χ
a(a1, . . . , ap))

= χa(τ̃(χb(b1, . . . , bq), a1), . . . , τ̃(χ
b(b1, . . . , bq), ap)

= χb(χa(τ̃(b1, a1)), τ̃(b1, a2)), . . . , τ̃(b1, ap)),

. . . ,

χa(τ̃(bq, a1)), τ̃(bq, a2)), . . . , τ̃(bq, ap)))

Thus, τ̃(ta, tb) = τ̃(tb, ta) and we have completed the proof of Theorem 1.
In what follows, we will not show any proofs that are straight forward applications

of this type of structural induction since they pretty much look the same. For example,
it is straight forward to show that properties like associativity, distributivity, and closure
are conserved for any χ-induced operator τ̃ : XV × XV 7→ XV by using a similar
approach as in the previous proof.

4 The χ-term lattice

In Section 2, we learned that every context-insensitive operator τ has a χ-induced coun-
terpart τ̃ . This also holds for the abstract value lattice operators u and t. The interesting
point here is that these operators can be used to define a χ-induced χ-term lattice L̃V

over the elements inXV , the set of all χ-terms. This χ-induced lattice is important since
it will be the value lattice in a χ-term based context-insensitive analysis.
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Theorem 2. For each lattice of abstract values LV = {V,u,t,>,⊥} there is a corre-
sponding χ-induced lattice L̃V = {XV , ũ, t̃,>,⊥} where ũ and t̃ are the χ-induced
versions of u and t.

Showing that ũ and t̃ have the properties commutative, associative, and closure, is a
straight forward exercise in structural induction as presented in Section 3. The same
holds for t ũ ⊥ = ⊥, t t̃ > = > for all t ∈ XV . We will not show it here.

Furthermore, we can use the χ-induced lattice operator t̃ to define a partial ordering
relation between χ-terms. The Connecting Theorem in [DP02] implies that

Theorem 3. Let L̃V = {XV , ũ, t̃,>,⊥} be a χ-induced lattice for some abstract
values V and let ṽ : L̃V × L̃V 7→ {true, false} be an operator defined as:

t1 ṽ t2 ⇐⇒ t1 t̃ t2 = t2, ∀t1, t2 ∈ XV .

Then P̃V = {ṽ, XV } is a (χ-induced) partial ordering over XV .

Due to the iteration indicis the χ-induced lattice L̃V has an infinite height. Thus im-
plying that a data-flow analysis based on this lattice will not be guaranted to terminate.
Further approximations are needed (cf. Section 5).

Theorem 4. Let τ : LA 7→ LB be a monotone function and let τ̃ : L̃A 7→ L̃B be the
corresponding χ-induced operator. It then holds that

t1 ṽ t2 ⇒ τ̃(t1) ṽ τ̃(t2), ∀t1, t2 ∈ L̃A

Once again, the proof of this theorem is a straight forward exercise in structural induc-
tion as presented in Section 3. The only tricky part is the final induction step where we
must show that ta ṽ tb ⇒ τ̃(ta) ṽ τ̃(tb) for two arbitrary χ-terms ta = χa(a1, . . . , ap),
tb = χb(b1, . . . , bq) given the induction hypothesis

ai ṽ bj ⇔ τ̃(ai) ṽ τ̃(bj), ∀(ai, bj) ∈ children(ta)× children(tb).

This can be done in two steps:

1. Show that

ta t̃ tb = tb ⇒ ai t̃ bj = bj ∀(ai, bj) ∈ children(ta)× children(tb).

which corresponds to ta ṽ tb ⇒ ai @̃ bj ,∀(ai, bj). This can be done by comparing
ta t̃ tb with tb after both has been Shannon expanded over both χa and χb.

2. Show that

τ̃(ai) t̃ τ̃(bj) = τ̃(bj),∀(ai, bj) ∈ children(ta)× children(tb)
⇒ τ̃(ta) t̃ τ̃(tb) = τ̃(tb).

which corresponds to τ̃(ai) ṽ τ̃(bj),∀(ai, bj) ⇒ τ̃(ta) ṽ τ̃(tb). This can be done
by a Shannon expansion of τ̃(ta) t̃ τ̃(tb) over both χa and χb followed by repeated
use of the identities τ̃(ai) t̃ τ̃(bj) = τ̃(bj).

These two steps, together with induction hypothesis, prove the inductive step.
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5 χ-term Approximations

In this section, we present two different approximations to the fully context-sensitive
approach outlined above. We refer to these two approximations as the finite k-approxi-
mation and the loop approximation. In the end of this section (Section 5.4), we show
how these two approximations can be used to handle loops. These two approximations
will in Section 5.5 be merged to something we refer to as a k-approximated analysis.
This type of analysis is parametrized by a single precision parameter k. However, we
start by introducing the concept of t̃-approximations.

5.1 t̃-Approximations

The aim of this section is to show that we always can replace any subterm χb
j(t1, . . . , tn)

in a χ-term t with t̃(t1, . . . , tn). Hence, given that we interpret the χ-terms as values
in a data-flow analysis, we still maintain a conservative approach. We refer to this type
of χ-term manipulations as t̃-approximations.

Theorem 5. For any χ-term χ(t1, . . . , tn) ∈ L̃V it holds that

χ(t1, . . . , tn) ṽ t̃(t1, . . . , tn)

Proof: Using Theorem 3 as a definition for ṽ, it is sufficient to verify that

t̃(χ(t1, . . . , tn), t̃(t1, . . . , tn)) = t̃(t1, . . . , tn).

This can be done in a few steps starting with a Shannon expansion over χ and ending
by applying the redundancy rule

t̃(χ(t1, . . . , tn), t̃(t1, . . . , tn)) = χ(t̃(t1, t̃(t1, . . . , tn)), . . . ,
t̃(tn, t̃(t1, . . . , tn)))

= χ(t̃(t1, . . . , tn), . . . , t̃(t1, . . . , tn))
= t̃(t1, . . . , tn)

Theorem 6. Let ta = χb
j(a1, . . . , an) and tb = χb

j(b1, . . . , bn) be two χ-terms with the
same switching behavior where ai ṽ bi,∀i ∈ [1, n]. It then holds that taṽtb.

Proof outline: Start with a Shannon expansion of ta t̃ tb over χb
j and use ai t̃ bi =

bi,∀i ∈ [1, n] to verify that ta t̃ tb = tb.

Definition 1 (t̃-approximation). Let t ∈ XV be a χ-term and let a = χb
j(a1, . . . , an)

be a subterm of t. The t̃-approximation of t with respect to a, denoted t∗a, is a new term
where a in t is replaced by t̃(a1, . . . , an).

This definition is easy to understand using the tree representation of t. It simply means
that we have replaced the subtree rooted by the node χb

j(a1, . . . , an) with t̃(a1, . . . , an).

Theorem 7. Let t ∈ XV be a χ-term and let a be a subterm of t then t ṽ t∗a.
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Proof outline: This follows directly from the Theorems 5 and 6. Theorem 5 says that
the replaced subterm is less then (or equal to) the new subterm. Theorem 6 says that
this property is propagated to the root.

Theorem 7 is important since it tells us how to make conservative approximations
of χ-terms. That is, we can in any phase of the analysis replace a χ-term χ(t1, . . . , tn)
with t̃(t1, . . . , tn) and still maintain a conservative approach.

5.2 The Finite k-Approximation

The construction of new χ-terms is a part of the context-sensitive analysis. When the
analysis reaches a φ-node in block b for a variable x, it constructs a new χ-term by
composing χb with all possible values for x. The newly constructed χ-term embodies
all control-flow options that might influence the value of x at that point. The size of
the χ-term representing x grows larger (without upper limit) as the analysis proceeds
and more and more control-flow options influences the value of x. This represents a
fully context-sensitive analysis where the effect of every control-flow option for every
variable is kept at all times. In this section, we will present an approximation of the fully
context-sensitive analysis where we only keep track of the last k control-flow options
that might influence the value of a variable4. More “remote" control-flow options are
merged using the ordinary context-insensitive merge operator t.

The finite k-approximation of χ-terms is easy to understand using the tree represen-
tation Gt = {N,E, r}. Whenever a new χ-term t is generated we replace all χ-terms
tsub = χb

i (t1, . . . , tn) in subterms(t) that has depth(tsub, t) ≥ k with t(t1, . . . , tn).
The process starts in the leafs and proceeds towards the root node. The result is a new
χ-term t(k) with depth(t(k)) ≤ k. The process is outlined in Algorithm 1 where we
define a recursive function kApprox(k, t) that transforms an input χ-term t into a k-
approximated χ-term t(k).

Algorithm 1 kApprox(k, t = χb
j(t1, . . . tn)) 7→ t(k)

if k = 0 then
t(k) = collapse(t)

else
for all ti ∈ children(t) do
t∗i = kApprox(k − 1, ti)

end for
t(k) = χbj(t

∗
1, . . . , t

∗
n)

end if
return t(k)

The post-order traversal in kApprox guarantees that our approximation starts from
the leafs and proceeds towards the root. Parts of the tree that has a depth greater than

4 Other approaches to limit the size of the χ-terms are possible. We could, for example, limit
the tree size (i.e. number of nodes) rather than the depth.
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a = χ3(χ1(1, 2), χ2(χ1(3, 4), 2))

a(2) = χ3(χ1(1, 2), χ2({3, 4}, 2))

a(1) = χ3({1, 2}, {2, 3, 4})

χ3

3 4

χ11 2

χ1

2

χ2

χ3

{2,3,4}

1 2

χ1

2

χ2

χ3

{3,4}

{1,2}

a(2) a(1)a

Fig. 4. Two different finite k approximations of the same χ-term a.

k is collapsed into leaf values by a process named collapse (see Algorithm 2). The
process of merging leaf values proceeds until we have reached depth k of the input χ-
term t. The result is a new χ-term t(k) that only embodies the last k control-flow options
that might influence the value. Notice also that in the case k = 0 all context-sensitive
information is lost and we have a context-insensitive analysis.

Algorithm 2 collapse(t) 7→ v

if t ∈ V then
v = t

else
let v = ⊥
for all ti ∈ children(t) do
v = v t collapse(ti)

end for
end if
return v

Figure 4 shows the result of two different finite k approximations of the same χ-
term a. On the left-hand side we have the result in print and on the right-hand side we
have the same result depicted as an original tree and two trees where the depth have
been reduced and the leaf values have been merged.

5.3 The Loop Approximation

According to Trapp at al. [THLL15] we know that the analysis of a loop will generate
χ-terms like xbn = χb

n(. . . χ
b
n−1(. . .) . . .). That is, the newly created χ-term will have

a subterm with the same block number and a lower iteration index. This pattern will
probably occur over and over again since each loop iteration results in a new composi-
tion of χb with itself. This will result in χ-terms of infinite depth and a non-terminating
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analysis if no measure is taken to stop the iterations. In this section we will show one ap-
proximation that is a first step in that process. Informally, a χ-term t = χb

i (t1, ..., tn) is
loop-approximated if every subterm of t that has the same block number as t is replaced
by its t̃- approximation.

Definition 2 (Loop-approximated χ-term). A χ-term t is loop approximated if

tsub ∈ subterms(t) ∧ block(tsub) = block(t) ⇒ t→ t∗tsub

where t∗tsub
is the t̃-approximation of t with respect to tsub. An analysis where every

newly created χ-term is immediately loop approximated is said to be a loop approxi-
mated analysis.

This approximation is easy to understand as a tree manipulation. We make a post order
traversal of the tree and replace each χ-term having the same block number as the
root node with their context-insensitive approximation. This approach is outlined in
Algorithm 3 where we define a recursive function loopApprox(t, b) that recursively
visits all children before any merging takes place.

Algorithm 3 loopApprox(t, b) 7→ t∗

for all ti ∈ children(t) do {Visit all children}
t∗i = loopApprox(ti, b)

end for
if block(t) = b then

let t∗ = apply(t, t∗1, . . . , t∗n)
return t∗

else
return χb(t∗1, . . . , t∗n)

end if

The loop approximated analysis comes with a number of important observations:

1. Each χ-term will have a finite depth limited by the number of basic blocks that
contain φb-nodes.

2. We can now drop the iteration index since only control-flow options from the last
visit to any given block b will be recordered. Control-flow options from earlier
visits have all been conservatively merged by t̃- approximations. Thus, we will
never have two χ-terms generated from the same block with different switching
behavior.

3. If we drop the iteration index then the number of χ-functions at use will reduce to
the number of basic blocks that contains a φ-node (a finite number).

4. A finite number of χ-functions and a finite depth of all χ-terms implies that we
have a finite number of possible χ-terms. (Obvious if we think in terms of possible
tree representations).

A consequence of the final observation is the following theorem:
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Theorem 8. The χ-induced lattice L̃V associated with a loop approximated analysis
is a finite lattice with a finite height.

One implication of this theorem is that every loop approximated analysis has a value
lattice satisfying the ascending chain condition (see [DP02]) and that every analysis
involving monotone transfer functions eventually will terminate (see [NNH99]). An
example related to these properties is presented in the next section.

5.4 Analysis Loop Handling

The relation between the loop approximation and the loop handling is best illustrated
with an example. In Figure 5, we show a hypothetical situation that illustrates a general
case. On the left-hand side we have a piece of code that contains two variables x and
y which values will be updated within the loop body. On the right-hand side we have
the same situation depicted as an SSA graph. The two variable values entering the loop
are represented as a tuple ti and the updates within the loop body are represented by
a mapping f : L̃T 7→ L̃T . The loop approximated values generated by the φ-node in

x = ...
y = ...
while ( ... ) {

...
x = ...
y = ...

}
...

φb

tf
f: LT #LT

~~

ti

Fig. 5. A piece of source code and the corresponding graph. The mapping f : L̃T 7→ L̃T sym-
bolizes the effect of the loop body on the variable tuple [x, y].

block b can then be written as

t0 = χb(ti,⊥)
t1 = χb(ti, f(ti))

t2 = χb(ti, t̃(f(ti), f2(ti)))
. . .

tn = χb(ti, t̃(f(ti), f2(ti), . . . , fn(ti)))

where fk is the composition of f with itself k times. Here ti denotes the (loop approx-
imated) value that tf would get if we terminated the loop analysis after i iterations. We
have derived these expressions by repeated use of tn = χb(ti, f(tn−1)) followed by
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Shannon expansion of the “inner” χb, and a loop approximation. We have also assumed
that f(⊥) = ⊥. For example, t1 was derived as

t1 = χb(ti, f(t0)) = χb(ti, f(χ
b(ti,⊥)))

= χb(ti, χ
b(f(ti),⊥)) ≈ χb(ti, t̃(f(ti),⊥)))

= χb(ti, f(ti)))

Notice also that we have dropped all iteration indices. This is possible in a loop approx-
imated analysis where control-flow options from previous visits to a block b have all
been merged by a t̃-approximation.

This example shows that the effect of using a loop approximated analysis is that the
analysis of loops (or any other cycle in the dependency graph) will generate a sequence
of χ-terms all following a similar pattern:

tn = χb(ti, Tn) where Tn = t̃(f(ti), f2(ti), . . . , fn(ti)).
The term Tn clearly represents a conservative approximation of the contribution from
n loop iterations and tn = χb

n(ti, Tn) can be interpreted as: we go into the loop (Tn) or
we do not (ti).

Another consequence of using a loop approximated analysis is that

ti, f(ti), f
2(ti), . . . , f

n(ti)

forms an ascending chain that will eventually get stabilized if f is a monotone function.
Thus, after a finite number of loop iterations we will have fn(ti) = fn−1(ti) and as
result that tn = tn−1. This signals that the loop analysis can be terminated.

To gain a more concrete understanding of how the loop approximation can be used
to terminate the analysis of a loop let us look into an intuitive example. If we have a
while-loop that enclosed an if-statement that assigns a new value to a variable x.
This situation is depicted in Figure 6 (SSA-graph left) where we also show the first
three x values that might escape the loop (top right). The non-approximated values are
given at the top of the figure and illustrates the problem of growth. That is, the set of
control-flow options that might influence the value is growing larger and larger for each
iteration. Furthermore, the values xwn and xwn−1 returned from two consecutive iterations
are not comparable (i.e. xwn ˜6v xwn−1 and xwn−1 ˜6v xwn ). This implies that we will never
reach a stable situation where xwn = xwn−1 where we can terminate the loop analysis.

The situation is quite different in the loop approximated analysis of the loop where
we after the second iteration get a result xw2 = χw(1,>) that is not changed in the
following iterations. (We have used a so-called “flat” lattice for integers where nt⊥ =
n and n t m = > for any two lattice elements n and m, n 6= m. Moreover, we
assume the following transfer functions for the + + (−−) operations: n + +(−−) =
n + 1(n − 1) for integers n, > + +(−−) = > and ⊥ + +(−−) = ⊥. We have also
removed redundant subterms.) The stable situation will get recognized by the analysis
after the third iteration and the loop analysis will terminate.

5.5 The k-Approximated Analysis

In the previous section, we introduced two different approximations that make sense in
almost any type of analysis. The loop approximation is necessary to guarantee analysis
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φi

++ --

1

φw

y

No Approximations

xw0 = χw0 (1,⊥)

xw1 = χw1 (1, χi0(χw0 (2,⊥), χw0 (0,⊥)))

xw2 = χw2 (1, χi1(χw1 (2, χi0(χw0 (3,⊥), χw0 (1,⊥))),

χw1 (0, χi0(χw0 (1,⊥), χw0 (−1,⊥)))))

Loop Approximated

xw0 = χw(1,⊥)

xw1 = χw(1, χi(2, 0))

xw2 = χw(1,>)

xw3 = χw(1,>) (Loop analysis terminated)

Fig. 6. A loop approximated version of the given example . It illustrates how the loop approxima-
tion can be used to terminate the analysis of a loop.

termination and k in the finite k approximation is a precision parameter that can be seen
as the size of “context memory” which decides how many previous control-flow options
that each χ-term should try to remember.

In this section, we present notations and results that are valid for χ-terms, and anal-
yses, that are both loop and finite k approximated. We will for simplicity refer to such
χ-terms as k-approximated and an analysis that uses this approach will be called a
k-approximated analysis.

In what follows, we will present results and notations related to a k-approximated
analysis. This will be a rather brief presentation since many of the concepts has earlier
on been introduced in a non-approximated version. However, this is the approach we
intend to use in the rest of this section and the results presented here can be seen as the
"final" results of this rather lengthy section.

The Normalized Set X(k)
V The set of all k-approximated χ-terms forms a subset of

all χ-terms. We will here introduce a normalized form of this subset where we require
increasing block numbers of the subterms along all leaf-to-root paths in a χ-term. (We
assume that all leaf values v ∈ V has been assigned the block number 0.) We refer to
χ-terms having this specific structure as normalized. This approach of describing X(k)

V

has the advantage that all χ-term values now has a unique χ-term (tree) representation.
In what follows will take great care in maintaining this ordering.

Furthermore, we will assume that we have a control-flow numbering of the basic
blocks in the flow-graph. That is, when numbering the basic blocks, we try to assign
each basic block a higher number than their control-flow predecessors. More precisely,
for any two blocks B1 and B2 we try to assign block numbers b1 and b2 such that:

B2 always executed after B1 ⇒ b2 > b1.

We have here emphasized the word try since this type of block numbering is, although
possible within a method, not possible for a whole program. However, it serves as a
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guide line for how to number the basic blocks in a program. The advantage of this ap-
proach is that subterms with a large depth can be considered as more "remote" than
those closer to the root and that the finite k approximation can be defined more accu-
rately.

φ-node Semantics A new χb-term is created whenever the analysis reaches a φb-node.
The four steps involved in this process in case of k-approximated analysis are out-
lined in Algorithm 4. The first step is to remove every occurrence of χb in the input

Algorithm 4 φbop(t
(k)
1 , . . . , t

(k)
n ) 7→ t(k)

for all t(k)i ∈ {t(k)1 , . . . , t
(k)
n } do

ti = loopApprox(t
(k)
i , b)

end for
t = χb(t1, . . . , tn)
t = normalize(t)
t(k) = kApprox(t, k)

operands. This is done in loopApprox by replacing all subterms with block number b
with their t̃-approximation. Next, we construct a new χ-term that is now guaranteed to
be loop approximated but neither normalized nor finite k approximated. The algorithm
normalize takes care of the normalization (see Algorithm 5). It is a recursive pro-
cess where we make repeated Shannon expansions over the χ-function with the highest
block number. This process continues until we reach subterms having a block number
that is less then b. Once normalize is applied we have a χ-term that is both loop ap-

Algorithm 5 normalize(t) 7→ t∗

b = block(t)
max = maxBlock(children(t))
if max > b then

for all i ∈ [1, arity(χmax)] do
t∗i = normalize(t|max:i)

end for
t∗ = χmax(t∗1, . . . , t

∗
arity(χmax))

return t∗

else
return t

end if

proximated and normalized. We complete the φ-node handling by applying kApprox
to make sure that the resulting χ-term has a maximum depth of k.
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χ(k)-induced operators We have previously shown that for each context-insensitive
operator τ : A × B × . . . × N 7→ V their is a corresponding χ-induced operator
τ̃ : XA ×XB × . . .×XN 7→ XV . In the definition of τ̃ , we used an algorithm apply
that performed repeated Shannon expansions until it reaches the leaf values where the
context-insensitive operator can be applied.

The definition of a χ(k)-induced operator can be seen as apply followed by a
normalization procedure and a finite k-approximation. Using this approach, it is obvious
that algebraic properties of a context-insensitive operator τ , like commutativity and
associativity, are preserved for χ(k)-induced operators since we showed in Section 3
that they where preserved for any non-approximated χ-induced operator.

In Algorithm 6, we present a recursive algorithm kPush that performs all three
activities (apply, normalization, and finite k cut-off) in a single traversal of the input
operands.

Algorithm 6 kPush(k, τ, t1, . . . , tn) 7→ t(k)

b = max(block(t1), . . . , block(tn))
if k = 0 then

for all i ∈ [1, n] do
vi = collapse(ti)

end for
t(k) = τ(v1, . . . , vn)

else if b = 0 then
t(k) = τ(t1, . . . , tn)

else
for all i ∈ [1, arity(χb)] do
ci = kPush(k − 1, τ, t1|b:i, . . . , tn|b:i)

end for
t(k) = χb(c1, . . . , carity(χb))

end if
return t(k)

The default handling in this algorithm is to push the operator τ towards the leaf
values by making a Shannon expansion over the root χ-function in the operands that
has the highest block number. This process guarantees that the result is normalized if
all the input χ-terms are normalized.

The test k = 0 identifies the cut-off case where we have reached the maximum
depth k of the resulting χ-term. In this case, we use collapse to make a conservative
approximation of the remaining subtrees and apply the context-insensitive operator τ
on the results. The case b = 0 identifies the case where all input operands are leaf values
and the context-insensitive operator τ can be applied.

Finally, by using kPush, we can properly define the χ(k)-induced operators.

Definition 3. For each context-insensitive operator τ : A×B × . . .×N 7→ V their is
a corresponding χ(k)-induced operator τ̃k : X

(k)
A ×X

(k)
B × . . .×X

(k)
N 7→ X

(k)
V defined
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as

τ̃(ta, . . . , tn) = kPush(k, τ, ta, . . . , tn) ∀ta, . . . , tn ∈ X(k)
V .

We noted in Section 5.2 that Shannon expansions in combination with finite k-
approximations are a bit problematic. The basic observation was that the interpreta-
tion of finite k approximations as an approach "where we only keep track of the last
k control-flow options" was disturbed when Shannon expansions was used since they
rewrite the structure of the χ-term. In this section, we have tried to minimize this prob-
lem by introducing a heuristic control-flow numbering of the basic blocks and intro-
duced algorithms (normalize and kPush) that uses this block ordering to minimize
the mixing of "remote" and "recent" control-flow options due to Shannon expansion.

The Lattice L̃(k)
V In Section 4, we introduced a χ-induced lattice L̃V that in general

has an infinite height. In this section, we present the χ(k)-induced lattice L̃(k)
V which in

contrast has a finite height. The finite height result follows from the fact that we always
have a finite number of χ-terms in any loop approximated analysis. (see Section 5.3).

Theorem 9. For each lattice of abstract values LV = {V,u,t,>,⊥} there is a cor-
responding χ(k)-induced lattice L̃(k)

V = {X(k)
V , ũ(k), t̃(k),>,⊥} where ũ(k) and t̃(k)

are the χ(k)-induced versions of u and t defined in terms of the algorithm kPush as:

t̃(k)(t1, . . . , tn) = kPush(k,t, t1, . . . , tn)
ũ(k)(t1, . . . , tn) = kPush(k,u, t1, . . . , tn).

That ũ(k) and t̃(k) are both commutative and associative follows from the preserva-
tion of algebraic identities previously discussed. The same holds for t ũ(k) ⊥ = ⊥,
t t̃(k) > = > for all t ∈ X(k)

V . Finally, closure follows from the design of kPush that
guarantees to generate a new k-approximated χ-term.

We can use the χ(k)-induced lattice operators ũ(k) and t̃(k) to define a partial order-
ing relation between k-approximated χ-terms. The Connecting Theorem (see [DP02],
page 39) implies that

Theorem 10. Let L̃(k)
V = {X(k)

V , ũ(k), t̃(k),>,⊥} be a χ-induced lattice for some

abstract values V and let ṽ(k)
: L̃(k)

V ×L̃
(k)
V 7→ {true, false} be an operator defined

as:

t1 ṽ
(k)

t2 ⇐⇒ t1 t̃(k) t2 = t2, ∀t1, t2 ∈ X(k)
V

Then P̃(k)
V = {ṽ(k)

, X
(k)
V } is a (χ(k)-induced) partial ordering over X(k)

V .

To motivate the following result we can use the same line of arguments that we
used when discussing the preservation of algebraic identities. That is, a χ(k)-induced
operator τ̃ (k) is just a finite k approximated χ-induced operator τ̃ . From this it follows
that

τ̃(t1) ṽ τ̃(t2) ⇒ τ̃ (k)(t1) ṽ
(k)

τ̃ (k)(t2), ∀t1, t2 ∈ L̃(k)
A

and consequently that
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Theorem 11. Let τ : LA 7→ LB be a monotone function and let τ̃ : L̃(k)
A 7→ L̃(k)

B be
the corresponding χ(k)-induced operator. It then holds that

t1 ṽ t2 ⇒ τ̃ (k)(t1) ṽ
(k)

τ̃ (k)(t2), ∀t1, t2 ∈ L̃(k)
A .

Thus, for any context-insensitive data-flow problem with value lattice LV and trans-
fer function τ (k), we have χ(k)-induced counter parts L̃V and τ̃ (k) that, since L̃V has a
finite hight, is guaranteed to reach a fixed point.

Finally we know from the fundamental theory of data-flow frameworks [NNH99]
that the time complexity for an analysis is proportional to the lattice height hk. A rough
estimate of hk can be motivated as follows: let p be a program, let a be the maximum
arity in any χ-function in X (p), and let hv be the height of the context-insensitive value
lattice LV . Furthermore, the tree representation of an arbitrary χ-term with depth k
has about ak leafs and the same number of subterms. Each leaf has a height of hv .
Thus, just by choosing different leaf values for this particular tree structure we can
construct an ascending chain x1, . . . , xn that has length O(ak · hv). Furthermore, each
element xi in this chain can be further divided into an ascending subchain xi1, . . . , xiN
by replacing each one of the ak subterms by their t̃-approximation. This gives this
subchain a length of about ak. Thus, a rough estimate of the maximum ascending chain
length, and therefore the height hk of the lattice L̃(k)

V , is O(ak · ak · hv) = O(a2k · hv).

6 Relation to Previous Work

As mentioned before, this paper is very much inspired by the ideas first presented by
Martin Trapp in his dissertation [Tra99]. In that work, he presents an approach that is
very similar to the k-approximated analysis. The major difference is that he presents his
loop and finite k approximated approach as a monolithic construct without discussing
the non-approximated case. To put it very short, he presents the set of normalized χ-
termsX(k)

V together with rules for how to compute t̃-approximations and χ(k)-induced
operators τ̃ (k). Furthermore, he states that χ(t1, . . . , tn) ṽ t̃(t1, . . . , tn) and that we,
in any phase of the analysis, can replace a χ-term χ(t1, . . . , tn) with t̃(t1, . . . , tn)
and still maintain a conservative approach. The additional work that we have done is
decribed in next section.

In [RKS99] and [KR00] Rütting et al. demonstrate an efficient and powerful ap-
proach by the usage of value graphs, which have initial similarities to our χ-terms
representations. Both representations are based on a SSA representation of a program,
and are using a graph representing the control flow in the program. The focus of their
usage of value graphs is to find a solution for Constant propagation problem, while in
our case we focus on value propagation for any data-flow analysis problem. Another
difference is that we are using Shannon expansion to force our operators out to the
leaves, where the operation can be evaluated. This is not the case in the value graphs,
the operator nodes are scattered out in the value graph-representation, and therefore the
evaluation of the result has another approach.

Lundberg and Löwe have in [LL13] been looking into the possibility of saving more
information for doing a more precise points-to analysis. Their approach was to increase
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the call-depth (k ≥ 1) for each new context. Their result of not getting any substantial
precision improvement when the depth was increased (k > 1) implicates that increasing
k in our k-approximation is not a sure way to get a significant precision improvement.

7 Summary and Future Work

Taken all together, our presentation of χ-terms is an attempt to verify many of the
results that was presented, hinted, and implicitly assumed by Martin Trapp. It is also
an attempt to verify (and understand) many of his “stated” results and definitions. In
addition to this we have focused on the non-approximated χ-term expressions that we
think is missing, and the reason for this is:

1. In order to properly motivate the introduction of the t̃-approximation as a "conser-
vative" approximation satisfying t ṽ t∗a, for any t̃-approximation t∗a of a χ-term
t, we need to introduce the non-approximated χ-term lattice L̃V , and the corre-
sponding partial ordering ṽ. It is only in this context that we can verify that t ṽ t∗a
(Theorem 7) and properly interpret a t̃-approximation as "conservative".

2. We have been able to prove that many basic properties, such as commutativity and
associativity, of a context-insensitive operator τ are directly mapped to the χ(k)-
induced counterpart τ̃ (k). We did this in two steps: i) We proved that it holds in the
non-approximated case using structural induction, ii) We concluded that any iden-
tity that holds in the non-approximated case also must hold in the k-approximated
case since the k-approximation is just a simple tree manipulation.

3. The two most important results are that any abstract value lattice LV has a χ(k)-
induced counterpart L̃(k)

V , and that τ : LA 7→ LB is monotone implies that τ̃ (k) :

L̃(k)
A 7→ L̃(k)

B is monotone. These results make it possible to say that any context-
insensitive data-flow framework has a χ(k)-induced context-sensitive counterpart.

The ideas from this paper will be used in future work to explore details about con-
crete context-sensitive dataflow problems such as constant folding and points-to analy-
sis.
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Abstract. Static program analysis is in general more precise if it is sensitive to
execution contexts (execution paths). In this paper we propose χ-terms as a mean
to capture and manipulate context-sensitive program information in a data-flow
analysis. We introduce finite k-approximation and loop approximation that limit
the size of the context-sensitive information. These approximated χ-terms form
a lattice with a finite depth, thus guaranteeing every data-flow analysis to reach a
fixed point.

1 Introduction

Static program analysis is an important part of optimizing compilers and software en-
gineering tools. These analyses predict properties of any execution of a given program,
referred to as program information, by abstracting from its concrete execution seman-
tics and its potential input values. Analyses can be context-sensitive or -insensitive, i.e.,
an analysis may or may not distinguish program information for different execution
paths, i.e. for different contexts, e.g., the call contexts of a method. Context-sensitive
analyses are, in general, more precise than their context-insensitive counterparts but
also more expensive in terms of time and memory consumption.

In an iterative program, there are countably (infinitely) many contexts. Hence, merg-
ing the program information of some contexts is needed for the analysis to terminate.
This, however, makes the analysis less context-sensitive, hence, less precise.

In Trapp et al. [THLL15], we focussed on capturing context-sensitive analysis in-
formation, i.e. contexts and program information for each program point, in a memory
efficient way. In other words, we strived to delay merging the program information of
different contexts for keeping analysis precision high. In the present paper, we discuss
approximations that sacrifies precision for memory.

2 Background

This section introduces the notions and construction of χ-terms as components in static
program analysis. Details are given in [THLL15].

2.1 SSA Representation

We assume the analysis to be based on a Static Single Assignment (SSA) graph repre-
sentation [CFR+91] of a program. Nodes in the SSA graph represent program points;
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special φ-nodes represent merge points of the execution paths, i.e., contexts. Here we
distinguish the program information of incoming paths by creating a χ-term connected
to sub-terms, each representing the program information analyzed for the respective
incoming execution path.

Figure 1 shows an example code with corresponding basic block and SSA-graph
representations.

if (...)
x = 1;

else
x = 2

if (...){
y = x;
b = 3;

}
else {
y = 2;
b = 4;

}
if (...)
a = x;

else
a = y;

return a+b;

Phi

Phi

Phi

Phi

entry

4

x = 2

y = 2
b = 4

a = x a = y

a +b

return

1 2

2 3

+

return

1

 3

6

b = 3
y = x

 2
x = 1

5

7

 8  9

10

11

10

10

7 7

4
4

Fig. 1. A source code example with corresponding basic block and SSA graph structures.

In the figure the source code is transfered into numbered basic blocks (middle), and
based on this a φ-node based SSA-graph have been generated (right). The φ-nodes will
there be the merging point for different definitions of values for a given variable.

2.2 χ-terms

A χ-function is a representation of how different control-flow options affect the value
of a variable. For example, we can write down the value of variable b in block 7 in
Figure 1 using χ-functions as b = χ7(3, 4). Interpretation: variable b has the value 3 if
it was reached from the first predecessor to block 7 in the control-flow graph, and the
value 4 if it was reached from the second predecessor block. That is, a value expressed
using χ-functions (a so-called χ-term) does not only contain all possible values, it also
contains which control-flow options that generated each of these values.

The construction of the χ-term values and the numbering of the χ-functions is a part
of a context-sensitive analysis. Every φ-node in an SSA graph represents a join point
for several possible definitions of a single variable, say x. When the analysis reaches
a block b containing a φ-node for x it “asks” all the predecessor blocks to give their
definition of x and constructs a new χ-term χb(x1, . . . , xn) where xi is the χ-term
value for x given by the i:th predecessor. If the i:th predecessor block does not define x
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Fig. 2. Tree view of χ10(χ4(1, 2), χ7(χ4(1, 2), 2)) and its graph representation.

by itself, it “asks” its predecessor for the value. This process continues recursively until
each predecessor has presented a χ-term value for x. The process will terminate if any
use of a value also has a corresponding definition.

In summary, a χ-term is a composition of χ-functions and analysis values a, b, . . . ∈
V . Each program p has a (possibly infinite) set of χ-functionsX (p) and each χ-function
χb
j ∈ X (p) is identified by a pair (b, j) where the block number b indicates in what

basic block its generating φ-node is contained, and the iteration index j indicates on
what analysis iteration over block b the χ-function was generated.

2.3 Tree and Graph Representation of χ-terms

Every χ-term can be naturally viewed as a tree. This is illustrated in Figure 2 (left)
where we show the tree representation of the χ-term χ10(χ4(1, 2), χ7(χ4(1, 2), 2)).
Each edge represents a particular control flow option in this view and each path from
the root node to a leaf value contains the sequence of control flow decisions required for
that particular leaf value to come into play. A more compact graph representation (DAG)
can easily be found by reusing identical subtrees, cf. Figure 2 (right), thus avoiding
redundancies.

3 χ-term Approximations

In this section, we present two different approximations to the context-sensitive ap-
proach outlined above. We refer to these two approximations as the finite k-approxima-
tion and the loop approximation.

3.1 The Finite k-Approximation

The construction of new χ-terms is a part of the context-sensitive analysis. When
the analysis reaches a φ-node in block b for a variable x, it constructs a new χ-term
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by composing χb with all possible values for x. The newly constructed χ-term em-
bodies all control-flow options that might influence the value of x at that point. The
size of the χ-term representing x grows larger (without upper limit) as the analysis
proceeds and more and more control-flow options influences the value of x. The fi-
nite k-approximation of χ-terms can be seen as on operation on the tree representa-
tion Gt = {N,E, r}. Whenever a new χ-term t is generated we replace all χ-terms
tsub = χb

i (t1, . . . , tn) in subterms(t) that has depth(tsub, t) ≥ k with t(t1, . . . , tn),
where t is the union operator on the realted value lattice. The use of k means that
the last k analysis steps have had influences on the current value. The process starts
in the leafs and proceeds towards the root node. The result is a new χ-term t(k) with
depth(t(k)) ≤ k.

3.2 The Loop Approximation

According to Trapp at al. [THLL15] we know that the analysis of a loop will generate
χ-terms like xbn = χb

n(. . . χ
b
n−1(. . .) . . .). That is, the newly created χ-term will have a

subterm with the same block number and a lower iteration index. This pattern will prob-
ably occur over and over again since each loop iteration results in a new composition of
χb with itself. This will result in χ-terms of infinite depth and a non-terminating analy-
sis if no measure is taken to stop the iterations. Informally, a χ-term t = χb

i (t1, ..., tn) is
loop-approximated if every subterm of t that has the same block number as t is replaced
by its context-insensitive approximation.

4 Result

In the previous section, we introduced two different approximations that make sense in
almost any type of analysis. The loop approximation is necessary to guarantee analysis
termination and k in the finite k-approximation is a precision parameter that can be
seen as the size of “context memory” which decides how many previous control-flow
options that each χ-term should try to remember.

By using both these approaches in the analysis phase we can handle the need of
extra information to meet the demands for context sensitivity and the precision in the
result of the program analysis.

In the full paper we present: a) formal definitions of both k- and loop-approximations,
b) efficient algorithms for both, c) proofs showing that approximated χ-terms forms a
finite value lattice (depth k) guaranteeing each analysis to reach a fixed point.
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Abstract. MOSTflexiPL (Modular, Statically Typed, Flexibly Extensible Pro-
gramming Language, vgl. http://flexipl.info) ist eine statisch typisierte Program-
miersprache, deren Syntax vom Anwender nahezu beliebig erweitert und ange-
passt werden kann. Aufbauend auf einer kleinen Menge vordefinierter Grund-
operatoren, können nach Belieben weitere Operatoren für unterschiedlichste
Zwecke definiert werden. Da Operatoren beliebig viele Namen besitzen und auf
beliebig viele Operanden angewandt werden können, decken sie neben den üb-
lichen Präfix-, Infix- und Postfix-Operatoren auch Mixfix-Operatoren, Kontroll-
strukturen, Typkonstruktoren und Deklarationsformen ab. Die Menge der vorde-
finierten Grundkonstrukte ist zwar klein, aber sehr ausdrucksstark. Um dies zu
belegen, wird in diesem Beitrag gezeigt, wie man eine vollwertige objektorien-
tierte Programmiersprache mit Vererbung, Untertyp-Polymorphie und dynami-
schem Binden in Form von MOSTflexiPL-Syntaxerweiterungen definieren
kann. Tatsächlich geht das Spektrum der Möglichkeiten sogar weit über gängige
Sprachen hinaus: Neben einfacher Vererbung und dem üblichen „single
dispatch“, lassen sich auch mehrfache Vererbung in unterschiedlichen „Spielar-
ten“ sowie „multiple dispatch“ und „predicate dispatch“ realisieren. Außerdem
sind Typen ohne besondere Anstrengung „offen“, d. h. sie können problemlos
nachträglich und modular um weitere Obertypen, Attribute und Operationen er-
weitert werden.

1 Einleitung

MOSTflexiPL (Modular, Statically Typed, Flexibly Extensible Programming Lan-
guage) ist eine statisch typisierte Programmiersprache, die vom Anwender nahezu be-
liebig erweitert und angepasst werden kann [He12, He14]. Basierend auf einer kleinen
Menge vordefinierter Grundoperationen (z. B. für Arithmetik, Logik und elementare
Kontrollstrukturen), können in der Sprache selbst nach Belieben neue Operatoren,
Operatorkombinationen, Kontrollstrukturen, Typkonstruktoren und Deklarationsfor-
men definiert werden. Die Grundidee besteht darin, jedes dieser syntaktischen Kon-
strukte als Operator aufzufassen, der beliebig viele Namen (Operatorsymbole) und
Operanden in beliebiger Reihenfolge besitzen kann. Beispielsweise besitzt der Addi-
tionsoperator •+• zwei Operanden (symbolisiert durch •) und einen Namen +, der bei
einer Anwendung des Operators zwischen den Operanden (infix) steht, z. B. 2 +  3.
Der aus der Mathematik bekannte Betragsoperator |•| hingegen besitzt einen Ope-
randen und zwei (zufällig gleiche) Namen, die um den Operanden herum (zirkumfix)
stehen, z. B. |−5|. Eine Fallunterscheidung kann z. B. als Operator if•then•else•
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end mit drei Operanden und vier Namen oder auch als Operator •?•:• mit drei Ope-
randen und zwei Namen (Fragezeichen und Doppelpunkt) definiert werden. Der Typ-
konstruktor •[•] zur Definition von Arraytypen besteht aus zwei Namen (öffnende
und schließende eckige Klammer) und zwei Operanden, von denen der erste ein Typ
und der zweite eine ganze Zahl sein muss, z. B. int [10]. Aber auch Prozeduren und
Funktionen lassen sich als Operatoren definieren, z. B. max (•,•) (mit klassischer
imperativer Syntax, bei der die Klammern und das Komma einfach weitere Namen
des Operators sind) oder print• (mit moderner funktionaler Syntax).

Tatsächlich erfolgt die Definition von Operatoren sehr ähnlich wie die Definition
von Funktionen in anderen Sprachen. Und da mit jedem neuen Operator „nebenbei“
auch ein neues syntaktisches Konstrukt definiert wird, werden Syntaxerweiterungen
auf die gleiche Art und Weise erstellt wie gewöhnliche Programme, d. h. es gibt hier-
für keinen separaten Spezialmechanismus mit eigenen Ausdrucksmitteln und Regeln.

Da jedes syntaktische Konstrukt durch einen Operator repräsentiert wird, stellt jede
Verwendung eines Konstrukts eine Operatoranwendung, d. h. einen Ausdruck dar.
Hierbei werden auch Konstanten und Variablen sowie Literale wie z. B. 0 oder "abc"
als nullstellige Operatoren aufgefasst, deren Anwendung einfach den jeweiligen Wert
liefert. Beispielsweise ist der Ausdruck if x >= 0 then x else −x end eine Anwen-
dung des Operators if•then•else•end auf die Operanden x >= 0 sowie x und −x.
Der Teilausdruck x >= 0 ist wiederum eine Anwendung des Operators •>=• auf die
Operanden x und 0, bei denen es sich um Anwendungen der nullstelligen Operato-
ren x (eine Konstante oder Variable) und 0 (ein Literal) handelt. Ebenso ist −x eine
Anwendung des Operators −• auf den Operanden x.

Die Anwendungsmöglichkeiten von MOSTflexiPL sind vielfältig. In erster Linie ist
es als Allzwecksprache (general purpose language) gedacht, mit der man je nach per-
sönlicher Präferenz sowohl imperativ als auch funktional programmieren kann. Der
entscheidende Unterschied und Vorteil gegenüber anderen Sprachen besteht darin,
dass man bei Bedarf jederzeit syntaktische Erweiterungen vornehmen kann, um be-
stimmte Dinge einfacher, kürzer, „natürlicher“ oder verständlicher ausdrücken zu kön-
nen. Derartige Erweiterungen können entweder ad hoc für ein einzelnes Programm
definiert werden oder aber in wiederverwendbaren Operatorbibliotheken zusammen-
gefasst werden, die auch anderen Benutzern zur Verfügung gestellt werden können.
Da sich Spracherweiterungen sehr leicht definieren und auch wieder ändern lassen,
kann MOSTflexiPL auch als Experimentierplattform für neue Sprachkonstrukte ver-
wendet werden, beispielsweise für objektorientierte Programmierung wie in diesem
Beitrag. Weil sich die Syntax der Sprache nicht nur erweitern, sondern auch beliebig
verändern und einschränken lässt, kann MOSTflexiPL schließlich auch als Hilfsmittel
zur Definition und Implementierung anwendungsspezifischer Sprachen (DSLs) ver-
wendet werden.

Die vordefinierten Grundkonstrukte und -konzepte der Sprache (die zum Teil aus
dem Vorgängerprojekt APPLEs [He07] stammen), insbesondere auch das vorhandene
Typsystem mit beschränkter parametrischer Polymorphie sowie benutzerdefinierbaren
impliziten Typumwandlungen, sind so allgemein und ausdrucksstark, dass nicht nur
„syntaktischer Zucker“, sondern auch weitreichende „paradigmatische“ Erweiterun-
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gen definiert werden können, was im folgenden demonstriert werden soll. Die Tatsa-
che, dass sich Benutzer der Sprache bei Bedarf nahezu alles Gewünschte selbst defi-
nieren (oder aus Bibliotheken importieren) können, ist auch der Grund, warum be-
stimmte, aus anderen Sprachen gewohnte „Bequemlichkeiten“ a priori nicht vorhan-
den sind.

Im nachfolgenden Abschnitt 2 werden einige typische Beispiele für Syntaxerweite-
rungen durch neue Operatoren vorgestellt und damit nebenbei wichtige Grundkon-
strukte von MOSTflexiPL vorgestellt und erläutert. Abschnitt 3 zeigt dann exempla-
risch einige wichtige Syntaxerweiterungen für objektorientierte Programmierung. Ab-
schnitt 4 enthält eine kurze Diskussion der entwickelten Sprachkonstrukte, während
Abschnitt 5 mit Zusammenfassung und Ausblick schließt. Weiterführende Informatio-
nen zu MOSTflexiPL sowie viele weitere Beispiele findet man auf http://flexipl.info.

2 Beispiele für Syntaxerweiterungen durch Operatoren

2.1 Einfache Operatordeklarationen

Die folgenden Zeilen zeigen eine einfache Operatordeklaration in MOSTflexiPL:

["n" : int] Parameterliste

n "
2
" : int Signatur und Resultattyp

{ n * n } Implementierung

Sie besteht aus einer Parameterliste in eckigen Klammern, einer Signatur vor dem
Doppelpunkt, einem Resultattyp danach sowie einer Implementierung in geschweif-
ten Klammern. Die Signatur besteht ihrerseits aus Parametern und Zeichenketten in
Anführungszeichen und definiert die Syntax des Operators, d. h. die syntaktische
Form seiner Anwendungen: Jeder Parameter ist ein Platzhalter für einen Operanden,
d. h. für einen Teilausdruck mit entsprechendem Typ, während eine Folge beliebiger
Zeichen in Anführungszeichen einen Namen des Operators darstellt, der bei Anwen-
dungen des Operators genau so (allerdings ohne die Anführungszeichen) hingeschrie-
ben werden muss. Demnach ist z. B. (2+3)2 eine korrekte Anwendung des gerade de-
finierten Operators, weil (2+3) ein Teilausdruck mit Typ int und 2 der Name des
Operators ist.

Die Parameterliste besteht aus Parameterdeklarationen (ggf. durch Strichpunkte
getrennt), bei denen es sich ebenfalls um einfache Operatordeklarationen handelt, die
(bei den hier betrachteten einfachen Beispielen) lediglich aus einer Signatur und ei-
nem Resultattyp bestehen. Daher ist jedes Auftreten des Parameters n in Wirklichkeit
eine Anwendung des nullstelligen Operators mit Signatur "n" und Resultattyp int.

Die Implementierung schließlich ist ein beliebiger Ausdruck, dessen Typ mit dem
Resultattyp übereinstimmen muss und durch dessen Auswertung das Ergebnis einer
Operatoranwendung entsteht. Beispielsweise entsteht der Wert des Ausdrucks
(2+3)

2, indem zunächst der Parameter n mit dem Wert des zugehörigen Operanden
(2+3) (also 5) initialisiert wird und anschließend die Implementierung n * n ausge-
wertet wird, die in diesem Fall den Wert 25 liefert.
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Ein weiterer Operator |•|, der den absoluten Betrag seines Operanden als Ergebnis
liefert, kann wie folgt definiert werden:

["x" : int]

"|" x "|" : int

{ if x >= 0 then x else −x end }

Hier besteht die Implementierung aus einer Anwendung des vordefinierten Verzwei-
gungsoperators if•then•else•end, der, abhängig vom Wahrheitswert seines ersten
Operanden, entweder den Wert seines zweiten oder den seines dritten Operanden als
Ergebnis liefert. Da die Signatur aus einem senkrechten Strich in Anführungszeichen,
dem int-Parameter x und einem weiteren senkrechten Strich in Anführungszeichen
besteht, sind |0| und |2−5| exemplarische Anwendungen des Operators.

Um mehrere Ausdrücke nacheinander auszuwerten, kann man sie mit dem vordefi-
nierten Operator •;• verknüpfen, bei dessen Anwendung −− wie bei jeder Operatoran-
wendung −− zunächst seine beiden Operanden (von links nach rechts) ausgewertet
werden und der als Ergebnis einfach den Wert seines rechten Operanden liefert.

2.2 Konstanten, Typen und Variablen

Für einen beliebigen Typ T definiert eine Deklaration der Gestalt "x" : T eine eindeu-

tige Konstante des Typs T, d. h. einen nullstelligen Operator x, der bei jeder Anwen-
dung denselben eindeutigen Wert liefert und daher auch als statischer Operator be-
zeichnet wird. (Operatoren mit Implementierung, wie z. B. "random" : int

{ ...... }, die prinzipiell bei jeder Anwendung einen anderen Wert liefern können,
werden zur Unterscheidung als dynamische Operatoren bezeichnet.)

Wenn man für T den vordefinierten Metatyp type verwendet, z. B. "Person" :
type, erhält man einen neuen Typ Person, der verschieden von allen anderen Typen
ist. (Dementsprechend sind vordefinierte Typen wie z. B. int auch nichts anderes als
solche typwertigen Konstanten.) Anschließend kann man eindeutige Werte des Typs
wie z. B. "p" : Person definieren, die vergleichbar mit Objekten in anderen Spra-
chen sind.

Wenn eine Deklaration eines statischen Operators Parameter besitzt, z. B. ["T" :
type] "List" T : type, so liefert der dadurch definierte Operator List• für jeden
Wert seines Parameters T einen anderen eindeutigen Wert, sodass z. B. List int und
List Person verschiedene Werte des Typs type, d. h. verschiedene Typen sind. Um-
gekehrt bezeichnet List int natürlich jedesmal den gleichen Typ.

Allgemein liefert ein statischer Operator bei Anwendung auf die gleichen Parame-
terwerte also immer das gleiche Ergebnis (was für einen dynamischen Operator mit
Implementierung wiederum nicht garantiert werden kann) und bei Anwendung auf
unterschiedliche Werte unterschiedliche Ergebnisse. Daraus folgt, dass zwei statische

Ausdrücke, d. h. Ausdrücke, die nur statische Operatoren enthalten, den gleichen Wert
liefern, wenn sie strukturgleich sind, d. h. wenn es sich um Anwendungen desselben
(statischen) Operators auf paarweise strukturgleiche Operanden handelt.

Aufgrund dieser für den Compiler wichtigen Eigenschaft, dürfen statische Operato-
ren als Typkonstruktoren verwendet werden, während dynamische Operatoren in Typ-

248



ausdrücken verboten sind. Tatsächlich sind Typen in MOSTflexiPL einfach als stati-
sche Ausdrücke mit Typ type definiert.

Der vordefinierte Typkonstruktor •? liefert zu jedem Typ T den zugehörigen Varia-

blentyp T?, dessen Werte jeweils eindeutige Variablen mit Inhaltstyp T sind. Bei-
spielsweise deklariert "i" : int? eine Variable mit Inhaltstyp int, d. h. eine eindeu-
tige Speicherzelle zur Speicherung von int-Werten, deren Inhalt durch eine Zuwei-
sung wie z. B. i = i + 1 verändert werden kann.

Eine parametrisierte Variablendeklaration wie z. B.

["p" : Person]

p "." "name" : string?

liefert für jeden Wert des Parameters p eine andere eindeutige Variable p.name, d. h.
sie ordnet jeder Person eine Variable mit Inhaltstyp string zu, in der der Name der
Person gespeichert werden kann:

p.name = "Heinlein";

print p.name

Auf diese Weise lassen sich indirekt Datenstrukturen definieren, die bei Bedarf
modular um neue „Attribute“ erweitert werden können (sog. offene Typen [He07]).

Mit den folgenden Operatoren •−>• und •.• wird die Definition und Verwendung
solcher Attribute noch weiter erleichtert:

["X" : type; "Y" : type]

X "−>" Y : type;

["X" : type; "Y" : type; "x" : X; "a" : X −> Y]

x "." a : Y?

Für zwei beliebige Typen X und Y liefert der statische Operator •−>• jeweils einen
eindeutigen Typ X −> Y, der zur Repräsentation von Attributen des Typs X mit Ziel-
typ Y verwendet werden kann, z. B.:

"Date" : type;

"day" : Date −> int;

"month" : Date −> int;

"year" : Date −> int;

"dob" : Person −> Date

Für ein Objekt x eines beliebigen Typs X und ein Attribut a eines zugehörigen Attri-
buttyps X −> Y liefert der statische Operator •.• jeweils eine eindeutige Variable x.a
mit Inhaltstyp Y, die zur Speicherung des entsprechenden Attributwerts verwendet
werden kann, z. B.:

"d" : Date;

d.day = 8; d.month = 2; d.year = 1965;

p.dob = d

Variablen, denen noch kein Wert zugewiesen wurde, enthalten den Sonderwert nil, der
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die Abwesenheit eines echten Werts anzeigt. Dementsprechend liefern Zugriffe auf
Attribute, denen noch kein Wert zugewiesen wurde, ebenfalls nil.

2.3 Implizite Typumwandlungen

Wenn ein Operator genau einen Operanden und keinen Namen besitzt, definiert er in
natürlicher Weise eine implizite Typumwandlung vom Typ seines Operanden in sei-
nen Resultattyp, z. B.:

["d" : Date]

d : string

{ d.day ++ "." ++ d.month ++ "." d.year }

Aufgrund seiner besonderen syntaktischen Struktur kann dieser Operator −− ohne wei-
tere Eingabesymbole zu verbrauchen −− auf jeden Teilausdruck mit Typ Date ange-
wandt werden und liefert als Resultat einen Wert des Typs string (konkret z. B.
"8.2.1965"). Da der Compiler grundsätzlich jeden anwendbaren Operator „auspro-
biert“ und Ausdrücke, die nicht typkorrekt sind, wieder „aussortiert“, wird er diesen
Operator letztlich immer genau dann verwenden, wenn an einer bestimmten Stelle ei-
ne Umwandlung von Date nach string erforderlich ist, z. B.:

"s" : string?;

s = p.dob

2.4 Virtuelle Operatoren

Wenn man var T als Synonym für Variablentypen T? (vgl. Abschnitt 2.2) verwenden
möchte, kann man versuchen, den Operator var• wie folgt zu definieren:

["T" : type]

"var" T : type

{ T? }

Da Typen vollwertige Werte sind, wird man zur Laufzeit tatsächlich feststellen, dass
Vergleiche wie var int == int? als Resultat true liefern. Trotzdem ist diese Defi-
nition von var• relativ nutzlos, weil der Compiler dynamische Operatoren mit Imple-
mentierung in Typausdrücken nicht akzeptiert (vgl. Abschnitt 2.2) und eine Deklara-
tion der Art "i" : var int daher fehlerhaft wäre.

Damit der Operator var• wirklich nützlich ist, muss er wie folgt als virtueller Ope-

rator definiert werden:

["T" : type]

"var" T = T?

Allgemein besitzt die Deklaration eines virtuellen Operators ebenfalls eine Parameter-
liste in eckigen Klammern sowie eine anschließende Signatur (im Beispiel "var" T).
Anstelle von Resultattyp und Implementierung folgt dann jedoch eine sog. Realisie-

rung nach einem Gleichheitszeichen (im Beispiel T?). Der Resultattyp des Operators
ergibt sich implizit aus dem Typ der Realisierung (im Beispiel lautet er type).
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Die Anwendung eines virtuellen Operators unterscheidet sich syntaktisch nicht von
der Anwendung eines anderen Operators. Beispielsweise sind var int und var List

int korrekte Anwendungen des Operators var•, während var 2 fehlerhaft ist, weil
der Operand 2 nicht den geforderten Typ type besitzt.

Die einzige Besonderheit besteht darin, dass eine Anwendung eines virtuellen Ope-
rators, nachdem sie erfolgreich auf Typkorrektheit überprüft wurde, vom Compiler so-
fort durch die Realisierung des Operators ersetzt wird, in der die Parameter des Ope-
rators wiederum durch die entsprechenden Operanden ersetzt werden. Demnach wird
ein Ausdruck wie var int sofort durch die Realisierung T? ersetzt, in der der Para-
meter T wiederum durch den Operanden int ersetzt wird, d. h. der endgültige Aus-
druck lautet int?.

Da diese Ersetzung bereits zur Übersetzungszeit stattfindet, wird eine Deklaration
der Art "i" : var int jetzt vom Compiler akzeptiert, weil der Teilausdruck var int

sofort durch int? ersetzt wird und die Deklaration daher vollkommen gleichbedeu-
tend mit "i" : int? ist.

Da var int „in Wirklichkeit“ also int? bedeutet und nur „scheinbar“ etwas anderes
darstellt, wird var• als „virtueller“ Operator und T? als seine „Realisierung“ bezeich-
net.

2.5 Benutzerdefinierte Deklarationsoperatoren

Eine weitere Kategorie von Operatoren, die virtuell definiert werden müssen, damit
sie den gewünschten Effekt haben, sind Deklarationsoperatoren, d. h. Operatoren, bei
deren Anwendung andere Operatoren deklariert werden.

Wenn man beispielsweise Variablen (ähnlich wie in C, C++ und Java) in der Form
int "i" anstelle von "i" : int? deklarieren möchte, kann man hierfür den folgen-
den virtuellen Operator •• verwenden:

["T" : type; "name" : string]

T name =

name : T?

Eine Anwendung wie z. B. int "i" (die nur aus Operanden besteht, weil der Opera-
tor keine Namen besitzt) wird wiederum durch die Realisierung des Operators, d. h.
durch den Ausdruck name : T? ersetzt, in dem die Parameter name und T durch die
Operanden "i" bzw. int ersetzt werden, sodass schließlich der Ausdruck "i" :

int? entsteht.

3 Syntaxerweiterungen für objektorientierte Programmierung

Im folgenden werden exemplarisch einige Spracherweiterungen vorgestellt, die es er-
lauben, mit MOSTflexiPL objektorientiert zu programmieren. Aus Platzgründen müs-
sen zwar zahlreiche Details weggelassen werden, aber anhand der gezeigten Beispiele
kann man trotzdem einen guten Eindruck von den Möglichkeiten der Sprache gewin-
nen.
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3.1 Hilfsoperatoren

Für zwei beliebige Typen X und Y stellt <X,Y> ein eindeutiges Attribut mit Typ
X −> Y dar (vgl. §2.2), das verwendet werden kann, um für jedes Objekt des Typs X
einen Verweis auf ein Objekt des Typs Y zu speichern:

["X" : type; "Y" : type]

"<" X "," Y ">" : X −> Y

Für Objekte x und y mit beliebigen Typen X bzw. Y stellt x <−> y unter Verwendung
der Attribute <X,Y> und <Y,X> eine bidirektionale Verbindung zwischen diesen bei-
den Objekten her:

["X" : type; "Y" : type; "x" : X; "y" : Y]

x "<−>" y : bool

{

x.<X,Y> = y;

y.<Y,X> = x;

true

}

Der Resultattyp bool und der Resultatwert true haben keine weitere Bedeutung. Sie
werden nur gebraucht, weil ein Operator immer einen Resultattyp besitzen und einen
Resultatwert liefern muss.

3.2 Offene Typen

Mit den in §2.2 definierten Operatoren •−>• und •.• können Datentypen sehr be-
quem −− und nachträglich erweiterbar −− definiert und verwendet werden, z. B.:

"Person" : type;

"name" : Person −> string;

"Date" : type;

"day" : Date −> int;

"month" : Date −> int;

"year" : Date −> int;

"dob" : Person −> Date;

"p" : Person;

p.name = "Heinlein";

"d" : Date;

d.day = 8; d.month = 2; d.year = 1965;

p.dob = d
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3.3 Untertypen

Wenn in einer objektorientierten Sprache ein Typ (z. B. Citizen) als Untertyp eines
anderen (z. B. Person) definiert wird, hat dies u. a. folgende Auswirkungen:

1. Ein Objekt des Untertyps kann implizit in den Obertyp umgewandelt werden (im-
plizite Aufwärtsumwandlung).

2. Damit kann ein Objekt des Untertyps überall verwendet werden, wo ein Objekt des
Obertyps erwartet wird (Ersetzbarkeit).

3. Insbesondere können alle Attribute des Obertyps auch für Objekte des Untertyps
verwendet werden (Vererbung).

4. Für ein Objekt des Obertyps kann überprüft werden, ob es sich eigentlich um ein
Objekt des Untertyps handelt (dynamischer Typtest). Wenn dies der Fall ist, kann
das Objekt explizit in den Untertyp umgewandelt werden (explizite Abwärtsum-
wandlung).

Die erste dieser vier Eigenschaften, aus der die nächsten beiden automatisch folgen,
kann in MOSTflexiPL wie folgt durch eine implizite Typumwandlung nachgebildet
werden (vgl. §2.3):

"Citizen" : type;

"state" : Citizen −> string;

"idno" : Citizen −> string;

["c" : Citizen]

c : Person

{

if c.<Citizen,Person> then

c.<Citizen,Person>

else

"p" : Person;

p <−> c;

p

end

}

Hier wird Citizen zunächst als normaler offener Typ mit Attributen state und
idno definiert. Der anschließend definierte Operator ermöglicht eine implizite Auf-
wärtsumwandlung eines Citizen-Objekts c in ein „assoziiertes“ Person-Objekt
c.<Citizen,Person>. Falls dieses noch nicht existiert, wird es als neues Objekt p
erzeugt und mit dem Objekt c verbunden. Damit kann ein Citizen-Objekt z. B. wie
folgt erstellt werden:

"c" : Citizen

c.name = "Heinlein";

c.state = "Germany"
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Der folgende Operator realisiert die vierte Eigenschaft, indem er zu einem Person-
Objekt p entweder das assoziierte Citizen-Objekt p.<Person,Citizen> liefert,
sofern dieses existiert, oder den Sonderwert nil (vgl. §2.2):

["p" : Person]

p "?" "Citizen" : Citizen

{

p.<Person,Citizen>

}

Damit kann dieser Operator sowohl für dynamische Typtests als auch für Abwärtsum-
wandlungen verwendet werden, z. B.:

if p?Citizen then

print p?Citizen.state

end

Da die Definition einer Vererbungsbeziehung immer nach dem gleichen Schema er-
folgt, ist es zweckmäßig, sie wiederum syntaktisch zu „verpacken“, z. B. mit Hilfe ei-
nes virtuellen Operators •=>•, dessen Definition hier aus Platzgründen weggelassen
wird und der dann einfach wie folgt verwendet werden kann:

"Man" : type;

"bearded" : Man −> bool;

Man => Person

Da die impliziten Umwandlungen, die durch den Operator •=>• definiert werden, bei
Bedarf auch transitiv angewandt werden, funktionieren mehrstufige Untertypbezie-
hungen ganz genauso.

3.4 Mehrfachvererbung

Durch mehrfache Verwendung des Operators •=>• kann ein Typ auch mehrere Ober-
typen besitzen, z. B.:

"User" : type;

"username" : User −> string;

"password" : User −> string;

"Employee" : type;

Employee => Person;

Employee => User

Damit kann ein Objekt des Typs Employee je nach Bedarf sowohl in Person als
auch in User umgewandelt und entsprechend verwendet werden:

"e" : Employee;

e.name = "Heinlein";

e.username = "cheinl"
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Da die Typen Man und Citizen beide Untertypen von Person sind und damit so-
wohl Man- als auch Citizen-Objekte jeweils ein assoziiertes Person-Objekt besit-
zen, entsteht im folgenden Beispiel durch Mehrfachvererbung die unerwünschte Si-
tuation, dass ein MaleCitizen-Objekt zwei verschiedene (indirekt) assoziierte
Person-Objekte besitzt und deshalb die Umwandlung von MaleCitizen nach
Person mehrdeutig ist (vgl. Abb. 1 links):

"MaleCitizen" : type;

MaleCitizen => Man;

MaleCitizen => Citizen

Abb. 1 rechts zeigt die eigentlich gewünschte Rautenstruktur, bei der es zu einem
MaleCitizen-Objekt nur ein assoziiertes Person-Objekt gibt und die Umwandlung
von MaleCitizen nach Person dementsprechend eindeutig ist. Um dies zu errei-
chen, sind mehrere Maßnahmen erforderlich:

• Die beiden indirekten Umwandlungen von MaleCitizen über Man bzw. Citizen
nach Person müssen verboten werden, was sich mit Hilfe von Ausschlussdeklara-

tionen realisieren lässt.1

• Stattdessen muss eine direkte Umwandlung von MaleCitizen nach Person defi-
niert werden (gestrichelter Pfeil in der Abbildung).

• Bei der Erzeugung der assoziierten Objekte zu einem MaleCitizen-Objekt muss
darauf geachtet werden, dass das Man- und das Citizen-Objekt auf dasselbe
Person-Objekt verweisen.

Die entsprechenden Definitionen, die im Detail etwas „verzwickt“ sind, können wie-
derum hinter einem Operator mit „schöner“ Syntax versteckt werden, der dann z. B.
wie folgt verwendet werden kann:

MaleCitizen => { Man | Citizen } => Person

MaleCitizen

Man

Person

Citizen

Person

MaleCitizen

Man

Person

Citizen

Abbildung 1: Mehrfachvererbung in V- bzw. Rautenform

1 Ausschlussdeklarationen verbieten grundsätzlich bestimmte Verschachtelungen von Operatoranwendun-
gen und werden primär zur Definition von Operatorvorrang eingesetzt. Um beispielsweise die bekannte
Punkt-vor-Strich-Regel für arithmetische Operatoren zu implementieren, werden direkte Anwendungen der
multiplikativen Operatoren •*• und •/• auf Anwendungen der additiven Operatoren •+• und •−• ausge-
schlossen. Damit kann ein prinzipiell mehrdeutiger Ausdruck wie z. B. a + b * c nur noch als a + (b * c)

interpretiert werden, weil die Interpretation als (a + b) * c ausgeschlossen ist.
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Mit einer naheliegenden Verallgemeinerung dieses Operators lassen sich dann auch
noch komplexere Vererbungsbeziehungen modellieren, z. B. Doppelstaatsbürger, die
zwar zwei verschiedene Citizen-Teilobjekte, aber nur ein gemeinsames Person-
Teilobjekt besitzen sollen (vgl. Abb. 2):

"Citizen1" : type;

"Citizen2" : type;

"DualCitizen" : type;

DualCitizen =>

{ Citizen1 => Citizen | Citizen2 => Citizen } => Person

Die Hilfstypen Citizen1 und Citizen2 werden gebraucht, um die beiden
Citizen-Teilobjekte unterscheiden und ansprechen zu können, z. B.:

"dc" : DualCitizen;

"c1" : Citizen1 = dc; c1.state = "Germany";

"c2" : Citizen2 = dc; c2.state = "USA";

DualCitizen

Citizen1 Citizen

Citizen2 Citizen

Person

Abbildung 2: Doppelstaatsbürger

Durch mehrfache Anwendung dieser Operatoren lassen sich schließlich auch hoch-
komplexe Strukturen wie z. B. männliche oder weibliche Doppelstaatsbürger model-
lieren, die mehrere verschränkte Rauten enthalten.

3.5 Weiterführende Möglichkeiten

Ebenso wie man Attribute auch nachträglich zu offenen Typen hinzufügen kann, kann
man mit den zuvor beschriebenen Operatoren auch Vererbungsbeziehungen nachträg-
lich definieren −− eine Möglichkeit, die objektorientierte Programmiersprachen norma-
lerweise nicht bieten. Insbesondere ist es möglich, nachträglich Obertypen zu einem
Typ hinzuzufügen.

Außerdem kann die Tatsache, dass ein Objekt eines Untertyps in Wirklichkeit aus
mehreren miteinander verbundenen Teilobjekten besteht, ausgenutzt werden, um auf
einfache Weise dynamische Objektevolution zu implementieren −− eine Möglichkeit,
die man in gängigen objektorientierten Programmiersprachen ebenfalls schmerzlich
vermisst. Um beispielsweise nachträglich aus einer gewöhnlichen Person einen Mann
oder einen Staatsbürger zu machen, genügt es, ein entsprechendes Man- oder
Citizen-Objekt zu erzeugen und mit dem bereits vorhandenen Person-Objekt zu
verbinden. Mit einer geeigneten syntaktischen Verpackung kann man dann als An-
wender z. B. schreiben:
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"p" : Person;

p.name = "Heinlein";

"c" : Citizen = p!Citizen;

c.state = "Germany"

3.6 Dynamisch gebundene Operationen

Dynamisch gebundene Operationen, die abhängig vom tatsächlichen Typ des Aufruf-
objekts unterschiedliche Implementierungen ausführen, werden von Compilern übli-
cherweise durch „virtual function tables“ implementiert. Wenn eine Programmierspra-
che Funktionszeiger o. ä. unterstützt, d. h. die Möglichkeit bietet, Funktionen o. ä. in
Variablen zu speichern, können derartige Tabellen aber auch auf Anwendungsebene
realisiert werden. Da Operatoren in MOSTflexiPL als Werte verwendet werden kön-
nen, ist diese Möglichkeit gegeben, d. h. dynamisches Binden lässt sich prinzipiell auf
Anwendungsebene implementieren.

Um nicht nur das gebräuchliche „single dispatch“, sondern das wesentlich flexible-
re „multiple dispatch“ anbieten zu können, bei dem die dynamischen Typen aller

Aufrufparameter bei der Auswahl der passenden Implementierung berücksichtigt wer-
den können, sind komplexere Tabellenstrukturen erforderlich, die sich aber ebenfalls
auf Anwendungsebene implementieren lassen.

Eine ansprechende syntaktische Verpackung könnte dann z. B. wie folgt aussehen:

"equal" ("p1" : Person; "p2" : Person) : bool

{

p1.name == p2.name

};

"equal" ("c1" : Person?Citizen; "c2" : Person?Citizen) : bool

{

c1.name == c2.name &

c1.state == c2.state &

c1.idno == c2.idno

}

Die erste Implementierung der Methode equal ist die allgemeinste, die für beliebige
Personen p1 und p2 aufgerufen werden kann. Die zweite Implementierung stellt eine
Spezialisierung dar, die nur ausgewählt wird, wenn beide Parameter den dynamischen
Typ Citizen besitzen, d. h. Person-Objekte mit assoziierten Citizen-Objekten
sind.

Wenn bei der Auswahl der passenden Methodenimplementierung nicht nur die Typen,
sondern beliebige Eigenschaften der Aufrufparameter berücksichtigt werden können,
spricht man von „predicate dispatching“ [Er98]. Auch dieses Konzept lässt sich mit
MOSTflexiPL prinzipiell umsetzen.

257



4 Diskussion

Das primäre Ziel dieses Beitrags ist es, die vielfältigen Möglichkeiten von MOST-
flexiPL anhand einer praxisrelevanten „Aufgabenstellung“ −− Unterstützung für ob-
jektorientierte Programmierung −− zu demonstrieren. Da die konkrete „Lösung“ dieser
Aufgabe, d. h. die exakte Syntax und Semantik der hierfür definierten Operatoren, für
dieses Ziel sekundär ist, sollen weder die konkret gewählte Lösung noch mögliche Al-
ternativen an dieser Stelle ausführlich diskutiert werden, sondern lediglich einige we-
sentliche Unterschiede zu „gängigen“ Ansätzen aufgezählt werden. Eine ausführliche-
re Diskussion findet sich in [He07], wo viele der hier vorgestellten Ideen bereits im
Zusammenhang mit der Programmiersprache C+++ vorgestellt wurden.

• Auf das Konzept einer Klasse als feste Zusammenfassung einer Datenstruktur und
der zugehörigen Operationen, wurde bewusst verzichtet.

• Stattdessen können Datentypen in beliebiger Reihenfolge definiert, mit Attributen
versehen und in Vererbungsbeziehungen zueinander gesetzt werden. Damit sind
nachträgliche Erweiterungen und Anpassungen viel leichter möglich als mit „star-
ren“ Klassen.

• (Multi-)Methoden werden prinzipiell unabhängig von Klassen bzw. Typen definiert
(ähnlich wie „generic functions“ in CLOS) und können daher ebenfalls problemlos
nachträglich hinzugefügt werden. Damit existiert das für normale objektorientierte
Sprachen schwerwiegende „expression problem“ [To04] in dieser Art schlicht und
einfach nicht.

• Mehrfachvererbung wird ohne Einschränkungen unterstützt, weil sie für viele An-
wendungen nützlich ist und das Prinzip von Vererbung und Untertyp-Polymorphie
konsequent fortsetzt.

• Das dadurch unvermeidliche „diamond inheritance problem“ wird einfach, elegant
und umfassend gelöst. Im Gegensatz zu anderen Sprachen mit Mehrfachvererbung
(namentlich CLOS, Eiffel und C++), lassen sich beliebig komplexe Vererbungs-
strukturen (wie z. B. männliche und weibliche Doppelstaatsbürger) ohne große Mü-
he modellieren.

• Ganz „nebenbei“ wird mit dynamischer Objektevolution auch noch ein Konzept un-
terstützt, das in statisch typisierten Programmiersprachen üblicherweise komplett
fehlt.

Aus Platzgründen wurde das Prinzip des „information hiding“ [Pa72] komplett ausge-
klammert. Aber auch hierfür bietet MOSTflexiPL mit sogenannten Sichtbarkeitsde-
klarationen [He12] adäquate Unterstützung.
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5 Zusammenfassung und Ausblick

In diesem Beitrag wurde gezeigt, wie man in MOSTflexiPL Operatoren zur Unterstüt-
zung objektorientierter Programmierung definieren und verwenden kann. Neben der
hier vorgestellten „Lösung“ dieser „Aufgabe“, sind natürlich auch vielfältige alternati-
ve Lösungsansätze denkbar.

Ein essentielles Kernkonzept der Sprache, das zur Lösung der Aufgabe eingesetzt
wird, sind benutzerdefinierbare implizite Typumwandlungen. Dieses muss im Detail
noch etwas weiterentwickelt und verbessert werden, um beispielsweise unerwartete
und unerwünschte Mehrdeutigkeiten aufgrund impliziter Umwandlungen zu eliminie-
ren.

Eine weitere große „Baustelle“ von MOSTflexiPL ist nach wie vor die Ausgabe sinn-
voller und hilfreicher Fehlermeldungen zur Übersetzungszeit sowie die Fortsetzung
des Übersetzungsvorgangs nach einem Fehler. Außerdem muss für einen produktiven
Einsatz von MOSTflexiPL einerseits die Effizienz des Compilers noch deutlich ver-
bessert werden und andererseits das im Namen der Sprache bereits verankerte, aber
momentan noch nicht verfügbare Modulkonzept implementiert werden.
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1 Einführung und Motivation

Statisch typisierte Sprachen wie Java erleichtern die Programmierung durch
die Möglichkeit, Programmierfehler bereits zur Übersetzungszeit aufzufinden,
zu beheben und für die eigentliche Programmausführung weitestgehend auszu-
schließen. Zudem unterstützen die im Programm enthaltenen Typinformationen
die Umsetzung hilfreicher Programmierwerkzeuge, wie beispielsweise Autover-
vollständigung und automatische Programmrestrukturierung. Gleichzeitig las-
sen sich die Typinformationen auch für die Übersetzung selbst, insbesondere zur
Laufzeitoptimierung ausnutzen. Diesen Vorteilen statisch typisierter Sprachen
stehen jedoch Einschränkungen hinsichtlich der Flexibilität der Programmie-
rung gegenüber. Im Gegensatz dazu bieten die häufig zur Webprogrammierung
genutzten dynamisch typisierten Programmiersprachen, namentlich JavaScript,
eine höhere Flexibilität. Verbunden mit dieser ist nun aber das mögliche Auftre-
ten von Typverletzungen zur Programmlaufzeit, sowie eine nur eingeschränkte
Unterstützung von Programmierwerkzeugen und Programmoptimierungen.

Mit der Zunahme der Komplexität von Webanwendungen ergibt sich für die
Webprogrammierung mit dynamischen Sprachen der Wunsch, auf die Vorteile
statischer Typen zurückzugreifen, ohne dabei jedoch auf die Flexibilität der dy-
namischen Sprachen zu verzichten. Als ein Ansatz zur Verbindung der Vorteile
von statischer und dynamischer Typisierung wurde die optionale Typisierung
vorgeschlagen [2]. Diese erlaubt dem Programmierer selbst zu entscheiden, wel-
che Teile eines Programms mit Typinformationen versehen werden, also statisch
typisiert sind, und für welche Programmteile die Typen erst zur Laufzeit be-
stimmt werden sollen. Eine Umsetzung für ein solch optionales Typsystem bietet
die Programmiersprache Dart [3]. In einem Dart-Programm kann einer Varia-
blen entweder ein statischer Typ annotiert werden, oder aber die Variable wird
als dynamisch typisiert ausgezeichnet und damit auch als zuweisungskompati-
bel zu jeder anderen Variablen, unabhängig von deren Typ. Verbunden mit der
Möglichkeit zur selektiven Typisierung ist somit auch eine Lockerung der Typsi-
cherheit eines Programms, da sich für die dynamisch typisierten Programmteile
entsprechende Garantien nicht ohne Weiteres angeben lassen. Im Unterschied zu
dem vergleichbaren Ansatz der graduellen Typisierung werden ferner auch kei-
nerlei Garantien (etwa das Blame-Theorem [6]) zur Typsicherheit für die statisch
typisierten Programmteile allein gegeben.
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class Pair<E> {

E left, right;

void apply(Function f) {

f(right); f(left);

}

}

...

Pair<String> p =

new Pair<String>();

// new Pair<dynamic>();

Pair<Object> a = p;

a.left = 1;

print(p.left.length);

a) Kovarianz generischer Typen

class Type {}

class Subtype extends Type {

bool field;

}

...

Pair<Type> p = new Pair<Type>();

p.right = new Subtype();

p.right.field = true;

p.left = new Subtype();

p.left.field = false;

p.apply((var e) {

print(e.field);

});

b) Inkonsistente Typannotation

Abb. 1. Zwei Beispiele zur Verwendung generischer Typen in Dart: Sowohl in a) als
auch in b) wird von der bestehenden Typprüfung kein Fehler angezeigt.

Um dennoch bereits während der Übersetzungszeit Aussagen zur Typsicher-
heit eines Dart-Programms treffen zu können, schlagen wir die Anwendung einer
statischen Programmanalyse zur Typinferenz vor. Mit Hilfe einer solchen Ana-
lyse können sichere Abschätzungen zu den möglichen Typen in den dynamisch
typisierten Programmteilen abgeleitet werden, die anschließend die Grundlage
zur Prüfung der Typsicherheit bilden. Die Spracheigenschaften von Dart stellen
dabei jedoch verschiedene Herausforderungen an Entwurf und Konzeption der
Analyse, insbesondere im Hinblick auf die notwendigerweise sichere Ableitung
der Typen, auf die im Folgenden überblicksweise eingegangen werden soll.

2 Optionale Typisierung in Dart

Die objektorientierte Programmiersprache Dart [3] wurde als Alternative zu
JavaScript eingeführt, mit dem Ziel die Programmierung von Webanwendun-
gen durch den optionalen Einsatz statischer Typen zu unterstützen. Dart weist
Ähnlichkeiten mit statisch typisierten Sprachen auf, so erinnern Syntax und
Klassenkonzept an Java. Im Gegenzug erlaubt der auch als Vorgabe verwendete
Typ dynamic eine dynamische Programmierung analog JavaScript.

Dart-Programme lassen sich auf einer virtuellen Maschine ausführen oder
werden nach JavaScript übersetzt. In Übereinstimmung mit dem Konzept der op-
tionalen Typisierung wird dabei zwischen zwei verschiedenen Ausführungsmodi
unterschieden. Im ersten Produktionsmodus (Production Mode) erfolgt die Pro-
grammausführung vollständig dynamisch und somit unabhängig von den im
Programm deklarierten Typen. Im zweiten Entwicklungsmodus (Checked Mode)
erfolgen hingegen eine Reihe von Typprüfungen auf Grundlage der vorhande-
nen Typannotationen. Zwischen zwei typbezogenen Laufzeitfehlern kann unter-
schieden werden. Einerseits führt der Zugriff auf eine nicht vorhandene Metho-
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de beziehungsweise auf ein nicht vorhandenes Feld zu einem Fehler (Message
Not Understood). Andererseits liegt eine Typverletzung (Subtype Violation) vor,
falls beispielsweise einem statisch typisierten Feld ein Wert außerhalb von des-
sen Definitionsbereich zugewiesen wird. Können erstgenannte Fehler in beiden
Ausführungsmodi auftreten, beruhen letztgenannte Fehler auf den annotierten
statischen Typen und sind somit auf den Entwicklungsmodus begrenzt.

Das Typsystem von Dart ist dabei bewusst als nicht korrekt entworfen wor-
den [3]. So können etwa generische Klassen kovariant sein (vergleiche Reihungs-
typen in Java). In Abbildung 1 ist auf der linken Seite ein Programm mit einer
Zuweisung zwischen kovarianten generischen Typen (Pair<Object> a = p) dar-
gestellt. Offenbar führt die Programmausführung zu einem Laufzeitfehler, der
aber von der bestehenden statischen Typprüfung trotz vollständig deklarierter
statischer Typen nicht identifiziert wird. Im Produktionsmodus kommt es zum
Fehler beim Zugriff auf das Feld length in der letzten Anweisung (Message Not
Understood), im Entwicklungsmodus wird als Ursache dafür zumindest eine Ty-
pverletzung in Zuweisung a.left = 1 signalisiert. Wird das Programm wie im
Kommentar angegeben modifiziert, indem der dynamische Typ als Typargument
verwendet wird, ist selbst das nicht mehr möglich.

3 Statische Typableitung für Dart

Eine Analyse zur statischen Typableitung muss diese Eigenschaften der Sprache
Dart berücksichtigen. Insbesondere stellt sich die grundlegende Frage nach dem
Umgang mit Typannotationen. Werden diese ignoriert, ergibt sich eine Typ-
ableitung in Übereinstimmung mit der Ausführung eines Programms im Pro-
duktionsmodus. Voraussetzung dafür ist jedoch das Vorliegen des vollständigen
Programms. Sonst kann beispielsweise für die Parameter einer öffentlichen Me-
thode keine Aussage zu den möglichen Typen getroffen werden. Entsprechend
schwer gestaltet sich in diesem Fall die Analyse von Bibliotheken oder Pro-
grammteilstücken (siehe auch [1,4]). Im anderen Fall führt die Berücksichtigung
von Typannotationen zu einer modularen Analyse. Anhand der für die Pro-
grammschnittstelle deklarierten statischen Typen sind nun Aussagen zu den
einlaufenden Typen möglich – unter Annahme der Ausführung im Entwicklungs-
modus, um die Korrektheit der Typannotationen zu gewährleisten. Gleichzeitig
ist auch eine Reduktion des Analyseaufwands in Abhängigkeit vom Vorhanden-
sein statischer Typannotationen zu erwarten, da zur Abschätzung des Typs eines
Elements nun nicht mehr aufwändig der Objektfluss nachvollzogen werden muss,
sondern direkt auf den deklarierten Typ zurückgegriffen werden kann.

Die von uns vorgeschlagene statische Analyse zur Typinferenz für Dart un-
terstützt beide Ansätze und damit sowohl den Produktions- als auch den Ent-
wicklungsmodus. Die Typableitung beruht auf dem Verfahren der Zeigeranaly-
se [5], nur dass anstatt einer Überabschätzung für die Ziele von Zeigern eine
Überabschätzung für die möglichen Typen abgeleitet wird. Zu diesem Zweck
werden den Ausdrücken und Elementen eines Dart-Programms Typvariablen
zugeordnet, die auf Mengen von Typen verweisen (vergleiche Funktion [[]] in
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Type = (ConcreteType ∪DeclaredType ∪ ExternType) \ {dynamic}
[[]]: Expression ∪ Element → P(Type)

type: Element → DeclaredType ∪ ExternType

Zuweisung x=e: type(x) 6= dynamic ⇒ {type(x)} ⊆ [[x]]

type(x) = dynamic ⇒ [[e]] ⊆ [[x]]

t ∈ [[e]] ∧ t ∈ ExternType ⇒ {t} ⊆ [[x]]

Instanz new T(): {T} ⊆ [[new T()]]

literal vom Typ T : {T} ⊆ [[literal]]

Feldzugriff x.f: t ∈ [[x]] ∧ t′ ≤: t ∧ type(t′.f) = dynamic ⇒ [[t′.f]] ⊆ [[x.f]]

t ∈ [[x]] ∧ t′ ≤: t ∧ type(t′.f) 6= dynamic ⇒ {type(t′.f)} ⊆ [[x.f]]

t ∈ [[x]] ∧ t′ ≤: t ∧ s ∈ [[t′.f]] ∧ s ∈ ExternType ⇒ {s} ⊆ [[x.f]]

t ∈ [[x]] ∧ t ∈ ExternType ⇒ {ObjectE} ⊆ [[x.f]]

Feldzugriff x.f=e: t ∈ [[x]] ∧ t′ ≤: t ∧ type(t′.f) = dynamic ⇒ [[e]] ⊆ [[t′.f]]

t ∈ [[x]] ∧ t′ ≤: t ∧ s ∈ [[e]] ∧ s ∈ ExternType ⇒ {s} ⊆ [[t′.f]]

Abb. 2. Auswahl von (vereinfachten) Regeln zur statischen Typableitung

Abbildung 2). Weiterhin werden Regeln zwischen den Typvariablen in Form
von Teilmengenbeziehungen definiert. Als Lösung des dadurch charakterisierten
Regelsystems ergibt sich eine konservative Abschätzung zu den Typen im Pro-
gramm. Wie in Abbildung 2 ersichtlich, wird dabei zwischen konkreten Typen
t ∈ ConcreteType und Deklarationstypen t ∈ DeclaredType unterschieden, da
letztere auch alle im analysierten Programm deklarierten Untertypen t′ <: t
umfassen. Eine dritte Kategorie bilden die externen Typen, wobei ein externer
Typ t ∈ ExternType ebenfalls seine Untertypen t′ <: t umfasst, nur das im
Gegensatz zu den Deklarationstypen auch unbekannte Untertypen dazu zählen.
Auf diese Weise sollen die von außerhalb einlaufenden Typen repräsentiert sein.
Dies ist insofern wichtig, als dass die Methoden und Felder eines Typs in den
von ihm abgeleiteten Untertypen überschrieben werden können. Da sich für die
überschriebenen Felder und Methoden der dynamische Typ deklarieren lässt,
folgt, dass etwa für den Feldzugriff über einen externen und damit unbekannten
Typ keine Aussagen mehr zum Feldtyp möglich sind. Dies wird in Abbildung 2
durch gesonderte Regeln für den Fluss externer Typen modelliert.

Zur Unterstützung beider Ausführungsmodi sind die Regeln zur Typablei-
tung in Abbildung 2 durch die Funktion type parametrisiert. Diese Funktion
bildet für ein Programmelement, in Abhängigkeit von dessen deklariertem Typ,
auf einen Deklarationstyp oder einen externen Typ ab. Grundlegende Idee ist
nun, im Fall des Produktionsmodus für jedes Programmelement e unabhängig
von dessen tatsächlich deklarierten Typ type(e) = dynamic zu setzen. Im Fall
des Entwicklungsmodus wird hingegen type(e) auf den tatsächlich deklarierten
Typ, oder für ein öffentliches Element auf den diesem entsprechenden externen
Typ gesetzt. Grundsätzlich sind weitere Parametrisierungen möglich, etwa eine
in der Typannotationen nur für öffentliche Elemente berücksichtigt werden.
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Die Regeln entsprechen für den Produktionsmodus den Erwartungen (es gilt
überall type(e) = dynamic). Im Wesentlichen werden die für Instanziierungsaus-
drücke und Literale erzeugten Typen, analog einer Zeigeranalyse, entlang des
Datenflusses propagiert. Angewendet auf das Programmbeispiel auf der linken
Seite von Abbildung 1 ergibt sich unter anderem: [[new Pair<String>()]] ⊆ [[p]],
{PairC} ⊆ [[new Pair<String>()]], t ∈ [[a]] ⇒ [[1]] ⊆ [[t.left]], [[p]] ⊆ [[a]],
{intC} ⊆ [[1]], t ∈ [[p]] ⇒ [[t.left]] ⊆ [[p.left]]. Die Lösung [[p.left]] = {intC}
erlaubt der folgenden Typprüfung für print(p.left.length) einen Fehler zu
identifizieren, da der konkrete Typ intC kein Feld length definiert (zur besseren
Unterscheidung der Typkategorien verwenden wir Hochstellungen C ,D ,E).

Interessanter ist die Betrachtung der Typableitung für den Entwicklungs-
modus. Vereinfachend soll für das Beispiel aus Abbildung 1 im Folgenden an-
genommen werden, dass keine öffentlichen Elemente definiert, und damit keine
externen Typen abzuleiten sind. Wird, wie oben bereits angesprochen, in einem
ersten Ansatz für jedes definierte Element e die Funktion type(e) auf den je-
weiligen deklarierten Typ gesetzt, ergibt sich für das Beispielprogramm unter
anderem: {Pair<ObjectD>D} ⊆ [[a]], {ObjectD} ⊆ [[a.left]]. Mit dieser Lösung
kann der sich für das Beispiel im Entwicklungsmodus ergebende Fehler (Subtype
Violation) jedoch nicht nachvollzogen werden. Grund hierfür ist in der Kova-
rianz generischer Typen zu suchen (siehe auch Abschnitt 2), die für die Typ-
annotation Pair<Object> von a berücksichtigt werden muss. Gleiches gilt, falls
das modifizierte Beispiel betrachtet wird, indem dynamic an Stelle von String

als Typargument auftritt. Auch dann kann der Typannotation, in diesem Fall
Pair<String> von p, nicht vertraut werden, wobei der Grund nun nicht in der
Kovarianz generischer Typen sondern im dynamischen Typargument liegt.

Um sichere Ergebnisse auch unter Berücksichtigung der optionalen Typisie-
rung und des inkorrekten Typsystems von Dart zu ermöglichen, erfolgt eine Ver-
feinerung mit Hilfe einer weiteren Parametrisierungsfunktion sound . Anstatt für
ein Programmelement e mit deklariertem statischen Typ (type(e) 6= dynamic)
einfach nur diesen Typ zu nutzen, werden für “unsichere” Typen zusätzlich auch
die entlang des Datenfluss propagierten Typen berücksichtigt, analog dem Vorge-
hen für den dynamischen Typ. Als Bedingung für die entsprechenden Regeln er-
gibt sich somit type(e) = dynamic∨¬sound(type(e)). Für das Beispielprogramm
ergibt sich dieses Mal: {Pair<StringD>C} ⊆ [[new Pair<String>()]], [[p]] ⊆ [[a]],
[[new Pair<String>()]] ⊆ [[p]], {Pair<ObjectD>D} ⊆ [[a]], {StringD} ⊆ [[a.left]]
{ObjectD} ⊆ [[a.left]], {Pair<StringD>D} ⊆ [[p]]. Auf Grundlage dieser Typ-
abschätzung kann die Typverletzung in a.left = 1 identifiziert werden und
analog auch der sich für das modifizierte Beispiel ergebende Laufzeitfehler.

Denkbar wäre hier ebenfalls gewesen, auf die für den Produktionsmodus
abgeleiteten Typen zurückzugreifen, da diese zum gleichen Ergebnis der Typ-
prüfung geführt hätten. Jedoch ist das nicht immer der Fall. Auf der rechten Seite
von Abbildung 1 ist ein weiteres Dart-Programm angegeben. Betrachtet werden
soll darin der Feldzugriff e.field, dabei handelt es sich bei e um einen dyna-
misch typisierten Parameter einer anonymen Funktion, die der Methode apply

übergeben wird. Für dieses Beispiel tritt sowohl im Entwicklungs- als auch im
Produktionsmodus kein Laufzeitfehler auf, da der Parameter e jeweils auf eine
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Instanz der Klasse Subtype verweist. Der betrachtete Feldzugriff e.field er-
folgt somit auf definierten Feldern. Allerdings wirft die gewählte Typannotation
im Beispiel Fragen auf. Zwar entspricht der konkrete Typ der Felder left und
right dem Typ Subtype, als deklarierter Typ ergibt sich aber über das Typar-
gument der Instanz Pair<Type> der Typ Type. Da für diesen das Feld field

nicht definiert ist, liegt eine zumindest im statischen Sinn inkonsistente Typ-
deklaration vor, die lediglich durch Verwendung des dynamischen Typs für den
Parameter e geheilt wird. Situationen wie diese stellen keine unmittelbaren Feh-
ler dar, können aber auf Entwurfsschwächen in einem Programm hinweisen und
sollten sich daher ebenfalls identifizieren lassen. Dies ist aber nur möglich, falls
die deklarierten Typen in die Typableitung mit einbezogen werden.

4 Zusammenfassung

Der vorliegende Beitrag beschreibt überblicksweise eine Analyse zur statischen
Typableitung für die Sprache Dart. Die Eigenschaften von Dart, insbesondere
die Möglichkeit zur optionalen Typisierung und das bewusst inkorrekt definier-
te Typsystem müssen bei Entwurf und Konzeption berücksichtigt werden und
führen für die beschriebene Analyse zu einem parametrisierten Entwurf. Dieser
gestattet sowohl die sichere Typableitung für ein vollständig vorliegendes Dart-
Programm unter Annahme der Programmausführung im Produktionsmodus, als
auch eine modulare Typableitung bei Berücksichtigung der in einem Programm
enthaltenen Typannotationen analog des Entwicklungsmodus.
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Abstract. We present the Symbolic Execution Debugger (SED), an ex-
tension of the Eclipse debug platform for interactive symbolic execution.
Being based on symbolic execution, its functionality goes beyond that of
traditional interactive debuggers. For instance, debugging can start di-
rectly at any method or statement and all program execution paths are
explored simultaneously. To support program comprehension, execution
paths as well as intermediate states are visualized.
Using KeY as underlying symbolic execution engine, SED supports se-
quential Java programs and the inspection of verification proofs.

Keywords: Symbolic Execution, Debugging, Program Execution Visu-
alization

1 Introduction

This updated and extended version of [7] presents the Symbolic Execution De-
bugger1 (SED), a language independent extension of the Eclipse debug platform
for symbolic execution. Symbolic execution [3,4,10,11] is a program analysis tech-
nique based on the interpretation of a program with symbolic values. This makes
it possible to explore all concrete execution paths (up to a finite depth). We de-
scribe an SED implementation that uses KeY [2] as the underlying symbolic exe-
cution engine, supporting sequential Java without floats, garbage collection and
dynamic class loading. Our main contributions are the SED platform, interac-
tive symbolic execution of Java and visualization of program behavior including
unbounded loops and method calls.

The SED supports traditional debugger functionality like step-wise execution
or breakpoints, and enhances it as follows: Debugging can begin at any method
or any other statement in a program, no fixture is required. The initial state
can be specified partially or not at all. During symbolic execution all feasible
execution paths are discovered, thus it is not necessary to set up a concrete initial
program state leading to an execution where a targeted bug occurs. At any time
each intermediate state can be inspected using the SED. Intermediate states
1 The website www.key-project.org/eclipse/SED contains an Installation and User

Guide (including instructions on how to use API classes), as well as a screencast and
theoretical foundations.
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tend to be small and simple, because symbolic execution can be started close to
the suspected location of a bug and the symbolic states contain only program
variables accessed during execution. This makes it easy for the bug hunter to
comprehend intermediate states and the actions performed on them to find the
origin of a bug. Heisenbugs [5], a class of program errors that disappear while
debugging, are avoided as the behavior of a program is correctly reflected in its
symbolic execution. Besides debugging the SED platform allows to visualize and
explore results of static analysis based on symbolic execution.

2 Symbolic Execution

Symbolic execution (SE) means to execute a program with symbolic values in
lieu of concrete values. We explain SE and how it is used interactively in the
SED by example: method eq shown in the listing in Fig. 1 compares the given
Number instance with the current one.

For a Java method to be executed it must be called explicitly. For instance,
the expression new Number().eq(new Number()); invokes eq on a fresh in-
stance with a different instance as argument. This results in a single execution
path: first the guard in line 5 is evaluated to true, as fields of integer type are ini-
tialized with 0 by default. Finally, true is returned as result. To inspect another
execution path the method has to be called in a different state.

Let us execute method eq symbolically, i.e., without a concrete argument,
but a reference to a symbolic value n which can represent any object or null. In
our SE tree notation we use different icons to underscore the semantics of nodes.
As Fig. 1 shows, the root is a Start Node representing the initial state and the
program fragment (any method or any block of statements) to execute. Here a
call to eq is represented by its Method Call child node.

The if-guard, represented as a Branch Statement node, splits execution when
the field value is accessed on the symbolic object n. Because nothing is known
about n, it could be null. The Branch Condition children nodes show the con-
dition under which each path is taken. On the left, where n is not null, the
comparison in the if-guard splits execution again. If both values are the same,
the return statement is executed, indicated by a Statement node. Now the sym-
bolic path of the method is fully executed and returns true in the Method Return
child node. This SE path ends in the Termination node. The branch where the
values are different looks similar, but false is returned instead. In the rightmost
branch the parameter n has the value null and SE ends with an uncaught
NullPointerException, visualized as an Exceptional Termination node.2

In contrast to concrete execution, SE does not require fixture code and dis-
covers all feasible execution paths (up to its execution depth). Each SE path
through an SE tree may represent infinitely many concrete executions and is
characterized by its path condition (the conjunction of all branch conditions on
2 The instantiation of the thrown exception is not visualized since we do not include

execution of Java API methods for simplicity.
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1 public class Number {
2 private int value;
3

4 public boolean eq(Number n) {
5 if (value == n.value) { return true; }
6 else { return false; }
7 }
8

9 // ...
10 }

<start>

self.eq(n);

if (this.value==n.value)

!n = null

self.value = n.value

return true;

<return TRUE as result of self.eq(n);>

<end>

!self.value = n.value

return false;

<return FALSE as result of self.eq(n);>

<end>

n = null

<uncaught java.lang.NullPointerException>

Fig. 1: Source code of class Number and SE tree of method eq

it). SE may not terminate in presence of loops and recursive methods which can
be avoided by applying loop invariants or method contracts, see Section 4.

3 Basic Usage of the Symbolic Execution Debugger

The SED is realized as an Eclipse plugin. SE of a selected method or selected
statements in a method can be started via the Eclipse context menu item Debug
As, Symbolic Execution Debugger (SED). The user is then offered to switch to
the Symbolic Debug perspective, which provides all relevant views for interactive
symbolic execution (see Fig. 2).

The Debug view allows, as usual, to switch between debug sessions and to
control program execution. Instead of the current stack trace of active threads,
the view shows the traversed SE tree. An alternative and more sophisticated vi-
sualization of the SE tree is shown in the Symbolic Execution Tree view. To ease
navigation within large SE trees a thumbnail view called Symbolic Execution
Tree (Thumbnail) is provided. The SE tree of the screenshot (Fig. 2) is iden-
tical to the tree in Fig. 1. The additional frames (blue rectangles) displayed in
view Symbolic Execution Tree represent the bounds of code blocks. Such frames
can be independently collapsed and expanded to abstract away from the inner
structure of code blocks, thus achieving a cleaner representation of the overall
code structure by providing only as much detail as required for the task at hand.
A collapsed frame contains only one branch condition node per path (namely
the conjunction of all branch condition of that particular path), displaying the
constraint under which the end of the corresponding code block is reached.
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Fig. 2: Symbolic Execution Debugger: interactive symbolic execution

The symbolic program state of a node consists of variables and their symbolic
values. It can be inspected in the Variables view. The details of a selected variable
(e.g. additional constraints) or node (path condition, call stack, etc.) are available
in the Properties view. The source code line corresponding to the selected SE tree
node is highlighted in the editor. Additionally, the editor highlights statements
and code members reached during symbolic execution.

The Symbolic Execution Settings view lets one customize SE, e.g., one can
choose between method inlining and method contract application. Breakpoints
suspend the execution and are managed in the Breakpoints view.

In Fig. 2 the SE tree node return true; is selected. In the Variables view
we can see that the symbolic values of field value are identical for the objects
referenced by self (the current instance) and parameter n. This is exactly what
is enforced by the path condition. A fallacy and source of bugs is to implicitly
assume that self and n refer to different instances as they are named differently
and here also because that an object is passed to itself as a method argument.
But the path condition is also satisfied if n and self reference the same object.
The SED helps to detect and locate unintended aliasing by determining and
visualizing all possible memory layouts w.r.t. the current path condition.

Selecting context menu item Visualize Memory Layouts of an SE tree node
creates a visualization of possible memory layouts as a symbolic object diagram
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Fig. 3: Symbolic Execution Debugger: different memory layouts

(see Fig. 3). It resembles a UML object diagram and shows the dependencies
between objects, the values of object fields and the local variables of the current
state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Fig. 3, the local
variables n and self refer to objects visualized as rectangles. The content of
the instance field value is shown in the lower compartment of each object. The
local variable exc is used by KeY to distinguish among normal and exceptional
termination.

The toolbar (near the origin of the callout) allows to select different possible
layouts and to switch between the current and the initial state of each layout. The
initial state shows how the memory layout looked before the execution started
resulting in the current state. Fig. 3 shows both possible layouts of the selected
node return true; in the current state. The second memory layout (inside the
callout) represents the situation, where n and self are aliased.

4 Usage Scenarios

Like a traditional debugger, the SED helps the user to control execution and to
comprehend each performed step. It is helpful to focus on a single branch where
a buggy state is suspected. (To change the focus to a different branch, no new
debugging session or new input values are needed). It is always possible to revisit
previous steps, because each node in the SE tree provides the full state.

Finding the Origin of Bugs The explicit rendering of different control flow
branches in the SE tree constitutes a major advantage over traditional debug-
gers. Unexpected or missing expected branches are good candidates for possible
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sources of bugs. Fig. 4a shows a buggy part of a Quicksort implementation for
sorting array numbers. Within a concrete execution of a large application a
StackOverflowError was thrown. It indicates that method sortHelper calls
itself infinitely often. Using SED we start debugging close to the suspected lo-
cation of the bug, namely, at method sort. Executing the method stepwise,
exhibits execution paths taken when invoking the method in an illegal state. Ex-
ploration of such cases can be avoided by providing a precondition which limits
the initial symbolic state. In this example, we exclude empty arrays by specify-
ing the precondition numbers != null && numbers.length >= 1 in the debug
configuration. After a few steps, the SE tree produced by SED (see Fig. 4b)
shows that the if statement is not branching. This is suspicious and deserves
closer attention. Inspecting the if guard shows that the comparison should have
been low < high and the source of the bug is found.3

1 public class QuickSort {
2 private int[] numbers;
3

4 public void sort() {
5 sortHelper(0, numbers.length - 1);
6 }
7

8 private void sortHelper(int low, int high) {
9 if (low <= high) {

10 int middle = partition(low, high);
11 sortHelper(low, middle);
12 sortHelper(middle + 1, high);
13 }
14 }
15

16 private int partition(int low,
17 int high) {
18 // ...
19 }
20 }

(a) Buggy Quicksort implementation (from [6])

<start>

self.sort();

sortHelper(0,this.numbers.length-1);

self.sortHelper(low,high);

if (low<=high)

int middle = partition(low,high);

(b) SE tree

Fig. 4: Quicksort example

Program and Specification Understanding SE trees show control and data flow
at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews or
in early prototyping phases, where the full implementation is not yet available. It
works best, when partial method contracts and invariants are available to achieve
3 Without the precondition the bug can be observed as well, but a little later.
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compact and finite SE trees. However, useful specifications can be much weaker
than what would be required for verification. The listing in Fig. 5 shows a buggy
implementation of method indexOf with a very simple loop invariant written in
the Java Modeling Language (JML) [12]. We configured the symbolic execution
engine to apply loop invariants instead of unrolling loops, which guarantees a
finite SE tree. The resulting SE tree under precondition a != null is also shown
in Fig. 5. Application of the loop invariant splits execution into two branches.
Body Preserves Invariant represents all loop iterations and Use Case continues
execution after the loop (full branch conditions are not shown for brevity).

Even without checking any further details, it is already indicated by the icon
crossed out in red that the leftmost branch terminates in a state where the
loop invariant is not preserved. Now, closer inspection shows the reason to be
that, when the array element is found, the variable i is not increased, hence
the decreasing clause (a.length - i) of the invariant is violated. The two
branches below the Use Case branch correspond to the code after the loop has
terminated. In one case an element was found, in the other not. Looking at the
return node, however, we find that in both cases instead of the index computed
in the loop, the value of i is returned.

1 public static int indexOf(int[] a,
2 int s) {
3 int index = -1;
4 int i = 0;
5 /*@ loop_invariant i >= 0 && i <= a.length;
6 @ decreasing a.length - i;
7 @ assignable index, i;
8 @*/
9 while (index < 0 && i < a.length) {

10 if (s == a[i]) { index = i; }
11 else { i++; }
12 }
13 return i;
14 }

<start>

Arrays.indexOf(a,s);

int index = -1;

int i = 0;

invariant: i >= 0 & i <= a.length; 
variant: javaSubInt(a.length, i) 
assignable: index, i

Body Preserves Invariant

if (s==a[i])

a[i_0] = s

index_1=i;

<loop body end>

!a[i_0] = s

i++;

<loop body end>

Use Case

return i;

index_1_0 >  -1

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

index_1_0 < 0

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

Fig. 5: Buggy and partially specified implementation of indexOf and its SE Tree
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Our examples demonstrate that SE trees can be used to answer questions
about thrown exceptions or returned values. In SED the full state of each node
is available and can be visualized. Thus it is easily possible to see whether and
where new objects are created and which fields are changed when (comparison
between initial and current memory layout).

Using breakpoints, symbolic execution is continued until a breakpoint is hit
on any branch. Breakpoints can be attached to a line of code with or without
a condition or they may consist only of a condition. Thus they can be used to
find execution paths that (i) throw a specified exception, (ii) access or modify
a specified field, (iii) invoke or return from a specified method. Breakpoints can
also be used to (iv) control loop unwinding and recursive method invocation and
(v) to stop at an intermediate state that has a specified property.

5 Verification with SED and KeY

The SED platform allows to perform SE interactively, to visualize the resulting
symbolic execution tree, and to inspect symbolic states. Together, this results
in a powerful debugging tool that in addition can be used to control SE and to
present results of an SE-based analysis.

Going beyond mere SE, the SED can also verify that a Java program satisfies
a given specification written in JML, because it uses KeY as its underlying
symbolic execution engine.4 A program is correct with respect to its specification
if and only if each branch in the SE tree ends with a termination node and no
icons are crossed out in red are displayed in the whole tree. In this case all
branches terminate in a state where the given postcondition (i.e., JML ensures
clause) is fulfilled. If a method call was approximated by a method contract,
the precondition- and caller-no-null checks must have been successful, too. In
addition, all loop invariants present were valid at the start of their loop and
were preserved by the loop body.

An SE tree produced by the SED displays considerably less information than
a full proof tree in KeY [2]: while the former contains only nodes that correspond
to reachable program states, the latter shows all intermediate SE steps performed
during proof construction, including the proof steps for pure first-order verifica-
tion conditions. Hence, the SED provides a software developer’s view on a KeY
proof, hiding intermediate and non-SE related steps. Program states are visu-
alized in a user-friendly way and are not encoded as formulas often distributed
and hidden within large proof goals. A major limitation of the SED compared
to the KeY prover is that it is currently not possible in SED to continue a proof
interactively in case KeY’s proof strategy was not powerful enough to close some
goal automatically. But it provides still the means to interact with the prover
by adapting or inserting additional JML assertions and thus to use KeY with an
auto-active flavor [16,13].
4 The debug configuration allows to select a method contract alternatively to a pre-

condition.
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6 Architecture

The SED extends Eclipse and can be added to existing Eclipse-based products.
In particular, SED is compatible with Eclipse’s Java Development Tools (JDT).
To ensure compatibility and to obtain a seamless integration with the Eclipse
user interface, SED uses and extends the Eclipse platform as shown in Fig. 6.

Workspace

Debug CoreJDT Core/Debug

Symbolic Debug Core

KeY Debug Core

Workbench

Debug UI JDT UI

Visualization UI

Symbolic Debug UI

KeY Debug UI

Fig. 6: Architecture of the Symbolic Execution Debugger (SED). Eclipse compo-
nents are shaded in grey, our extensions have a white background.

The core of Eclipse is the Workspace which manages the projects and the
user interface (Workbench) with its editors, views and perspectives. The Debug
Platform extends these with language independent facilities for debugging (De-
bug Core and Debug UI). Finally, JDT offers functionality to edit and debug
Java programs (JDT Core/Debug and JDT UI).

The Symbolic Debug Core component extends the debug model of the Debug
Platform for symbolic execution, independently from specific target languages
and symbolic execution engines. Additional UI extensions (Symbolic Debug UI)
and visualization capabilities (Visualization UI) are available.

The KeY Debug Core component implements the extended debug model for
symbolic execution based on KeY’s symbolic execution engine (available as pure
Java API). The user interface extensions required to launch Java methods and
to execute statements symbolically are provided by the KeY Debug UI.

The architecture of the SED platform allows us to integrate different symbolic
execution engines for the purpose of debugging, program understanding, and to
control analyses based on symbolic execution. In order to integrate a new SE
engine, it suffices to implement the extended debug model for symbolic execution
and to create the user interface extensions to start and control the symbolic
execution. 5

5 The website www.key-project.org/eclipse/SED provides additional documentation
and an example SED implementation as a starting point.
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7 Related and Future Work

A number of recent tools implement SE for program verification [9] or test gener-
ation [1,15], which are complementary to SED. In fact, SED could be employed
to control or visualize these tools. As far as we know, EFFIGY [11] was the
first system that allowed to interactively execute a program symbolically in the
context of debugging. It did not support specifications or visualization.

The Eclipse plugin of Java Path Finder (JPF) [14] prints the analysis results
obtained from SE as a text report, but does neither provide graphical visualiza-
tion nor interactive control of SE. JPF is prototypically supported by SED as
an alternative SE engine.

The SE engine and its Eclipse integration described in [8] features non-
interactive graphic visualization of the SE tree. SED allows to interact with
the visualization as a means to control SE and to inspect symbolic states.

A prototypic symbolic state debugger that could not make use of method
contracts and loop invariants was presented in [6]. However, that tool was not
very stable and its architecture was tightly integrated into the KeY system.
As a consequence, the SED was developed from scratch as a completely new
application featuring significant extended and new functionality. It is realized as
a reusable Eclipse extension which allows to integrate different SE engines.

We plan to extend the verification capabilities of the SED to create a full-
fledged alternative GUI of the KeY verification system [2]. The visualization
capabilities and a debugger-like interface will flatten the learning curve to use a
verification system. On the other hand, exploiting verification results during SE
allows to classify execution paths automatically as correct or wrong.
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Abstract. The construction of safety-critical real-time applications re-
quires predictable computer platforms that enable a safe and tight static
analysis of those systems. The worst-case performance and the availabil-
ity of tight bounds on the worst-case execution time (WCET) of the
tasks of the applications are of central importance in such systems.
The compiler tool-chain plays an integral part in a real-time platform
infrastructure. Not only is the compiler responsible for relating source
code level annotations such as flow facts to the generated machine code
– a task necessary to achieve high-quality bounds on optimised code.
Also, the analysis tools profit from program information that is read-
ily available in the compiler but difficult to retrieve from the generated
binary alone. Therefore, the compiler should export internal knowledge
about the program to the analysis. Furthermore, compilation for hard
real-time systems requires optimisations that specifically aim at reduc-
ing the worst-case execution path instead of reducing the average case
performance. This requires feedback from the worst-case analysis back
to the compiler.
In this paper we describe the our approach to the compiler tool integra-
tion that has been realised in the platin tool kit, developed in the EU
FP7 T-CREST project. The platin tool kit is a portable glue tool that
interfaces our LLVM-based T-CREST compiler with several research and
industrial strength analysis tools. Our approach is transferable to other
compiler tool-chains and minimises the effort for adapting them for the
requirements of real-time platforms.

1 Introduction

Embedded computer systems are playing an increasingly important role in appli-
cations that are time-critical, e.g., in fly-by-wire applications, in medical equip-
ment, and in control systems of nuclear power plants. To ensure safety, the com-
puter systems controlling the actuators in these applications have to respond
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to changes in the environment within strict time bounds. It is thus important
to design and implement these systems to meet their timing constraints and to
show that the implementation indeed fulfils all timing requirements. Despite the
stringent timing requirements of these time-critical applications, the importance
of time as a first-order property of embedded systems behaviour is not adequately
reflected by the platforms and methods/tools widely used for the construction
of the embedded computer systems for these applications.

Within the T-Crest project a new embedded multi-core platform was de-
veloped [14], which emphasised time-predictability in all design decisions. The
T-Crest platform consists of a novel processor core called Patmos [13], a time-
predictable network-on-chip (NoC) that connects the cores to each other and to
a predictable memory controller, and a tool chain centred around LLVM [9] for
compiling and analysing applications written in C code [11].

The primary task of the compiler tool chain in such a platform is to gen-
erate machine code for the target architecture. However, the compiler should
also to try to minimise the worst-case execution time (WCET) of the applica-
tion tasks, and support the worst-case analysis tools in finding tight and safe
WCET bounds. This requires interaction of the compiler with the WCET anal-
ysis tools. In the T-Crest project we implemented common routines for tool
integration and analysis in a separate tool kit called platin that requires only
small adoptions of the compiler and can be reused for other target architec-
tures as well. The platin tool kit is centred around its native PML file format
that stores information about the program structure and meta-information such
as flow facts and analysis results in a target-machine agnostic form. The tool
kit not only contains tools to interface with external analysis tools such as the
industry-standard AbsInt aiT WCET analyser, it also provides tools for tasks
such as flow fact transformation, WCET analysis, graph visualisation and tool
configuration.

In this paper we give an overview of the T-Crest platform, its compiler
tool chain and the platin tool kit. We present how the platin tool kit binds the
compiler and the WCET analysis tools together, show how to use use the platin
tool kit, and briefly discuss the steps required to adapt platin for a new target
architecture. The rest of the paper is structured as follows. Section 2 introduces
the T-Crest platform, while Section 3 overviews the Patmos compiler tool
chain. Section 4 presents the platin tool kit its interaction with the compiler and
analysis tools, and overviews the tools provided by platin. Section 5 demonstrates
the use of platin by means of an example. We discuss related work in Section 6
and conclude this paper with Section 7.

2 The T-CREST Platform

The goal of the T-Crest project3 was to develop a fully time-predictable multi-
core platform. The T-Crest platform consists not only of a novel processor

3 Results and publications of the T-Crest project are available from the project
website http://www.t-crest.org/
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Fig. 1: The T-CREST platform and its compiler and analysis software ecosystem.

core, but also includes a time-predictable memory system, a compiler, analysis
tools and runtime libraries. All of them are designed to play together to achieve
a highly predictable platform for embedded systems.

The hardware side of the T-Crest platform consists of the T-Crest multi-
core chip. It contains a configurable number of processor cores. Each core contains
a Patmos processor and several local memories. The Patmos processor [13] uses a
fully-predicated 32-bit RISC-style instruction-set architecture (ISA) and a five-
stage in-order pipeline. Each core features a data cache, a stack cache [1], a
method cache [2] and a local scratchpad. The cores are connected to each other
by a time-predictable network-on-chip [7] called Argo, which can be used for
message passing. A separate time-predictable memory interconnect [4] called
Bluetree connects the cores to the memory controller [5] for the shared RAM.

Figure 1 gives a software-centric overview of the T-CREST platform. The
LLVM-based Patmos compiler tool chain uses the clang C frontend to parse
C code into LLVM bitcode, which is then optimised by LLVM bitcode passes.
The LLVM backend for Patmos patmos-llc generates machine code for the
Patmos processor. The platin tool kit [11] is a key component in the T-Crest
platform for tool integration and WCET analysis. It is tightly coupled with
the compiler tool chain and serves three main tasks. First, it provides tools for
flow fact transformation and for program analysis. Second, it interfaces with
existing analysis tools in order to bring their analysis functionality to the T-
Crest platform. Among the supported tools are the SWEET flow analyser and
the industry-standard AbsInt aiT WCET analyser. Platin can also be used to
analyse execution traces generated by the Patmos simulator pasim. Third, platin
provides utility tools for result visualisation and tool configuration, as well as
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driver tools that chain multiple analysis and transformation steps into single,
easy to use commands.

We will overview the Patmos compiler tool chain in the next section, while
the rest of this paper presents the platin tool kit in more detail.

3 The Patmos Compiler

The Patmos processor developed within T-Crest is designed for high time pre-
dictability [13]. The architectural features of this processor are designed to im-
prove performance yet remain inherently timing analysable. This is achieved
by using static (compile-time) alternatives for commonly used performance-
enhancing features at runtime in order to reduce hard-to-analyse dynamic be-
haviour. A worst-case timing analysis tool can then be used to derive tight
WCET bounds for the real-time tasks of the embedded application.

The task of the Patmos compiler is thus twofold. First, the compiler must
generate code that targets the Patmos ISA and exerts control over the com-
ponents of the processor core so that the generated program exhibits a low
WCET [2,1]. Second, the compiler must support the WCET analysis by provid-
ing information available in the compiler that usually is discarded but is valuable
for automated and precise timing analysis. This includes preserving information
about the control-flow structure, but also flow annotations provided by the user
that constrain the possible flow of control, e.g., bounds on the maximum num-
ber of loop iterations (loop bounds). The compiler in turn can profit from static
analysis results from the timing analysis to guide optimisations towards a good
worst-case performance. This requires an integration of the compiler and the
WCET analysis tools.

Figure 2 gives an overview of the compiler tool chain. The compiler is based
on the LLVM compiler framework [9]. At the beginning of the compilation pro-
cess, each C source code file is translated to LLVM intermediate representation
(bitcode) by the C frontend clang. The user application code as well as standard
C libraries and runtime support libraries are linked on this intermediate level by
the llvm-link tool, presenting subsequent analysis and optimisation passes as
well as the code generation backend a complete view of the whole program. This
control-flow graph (CFG) oriented intermediate representation is particularly
suitable for generic target independent optimisations, such as common subex-
pression elimination, which are readily available through the LLVM opt tool.
The llc tool constitutes the compiler backend. It translates LLVM bitcode into
machine code for the Patmos ISA, addressing the target-specific features for time
predictability. The backend produces a relocatable ELF binary containing sym-
bolic address information, which is processed by gold,4 defining the final data
and memory layout, and resolving symbol relocations. An important property of
this compilation flow stems from the fact that the application is already linked
at intermediate level: Optimisations and the code generator have a complete

4 gold is part of the GNU binutils, see http://sourceware.org/binutils/
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Fig. 2: Overview of the Patmos compiler tool chain

view of the program, which is necessary for optimisations that need to balance
the use of a shared resource across the whole program execution. For example,
Patmos’ specialised software-controlled caches require the compiler to be aware
of all cache accesses along the worst-case path for it to be able to generate code
that exhibits lowest possible WCET.

In addition to the machine code, the backend exports complete information
about the control-flow structure of both bitcode and machine code as well as in-
formation about the program obtained by the compiler in the Program Metainfo
Language (PML) format, as detailed in the following section. The platin tool
kit uses these PML files to perform analysis tasks and to transform flow facts. It
is also able to export program information to analysis tools such as the AbsInt
WCET analysis tool aiT. Analysis results are imported back into the PML file,
which can in turn be passed back to the compiler for iterative WCET driven
optimisation.

The platform, including the processor, a simulator, the compiler tool chain
including the platin tool kit as well as a set of benchmarks is available as open-
source from the T-Crest organisation at github.5 The Patmos handbook [12]
provides detailed information about the installation, a description of the proces-
sor core and its instruction set architecture (ISA) and documents the use of the
compiler tool chain.
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Fig. 3: The platin tool interacts with the compiler with its native PML file,
while it communicates with other tools using exporters and importers for their
file formats.

4 The Platin Tool Kit

The main task of the platin tool kit is the tool integration in the T-Crest plat-
form. It uses a YAML6 based file format called PML as its native file format,
which stores control flow information, flow facts and value facts, analysis results,
information to relate different code representations and a hardware description.
Apart from performing tool integration tasks, the platin tool kit has been ex-
tended to provide tools not only for visualisation and inspection of information
stored in PML files but also to include its own set of cache and path analyses to
perform a WCET analysis. Section 4.2 overviews platin’s main tools.

Platin’s interaction with other tools is shown in Figure 3. It gathers infor-
mation from a number of sources. The LLVM backend provides the control-flow
and call targets on both bitcode and machine-code level. The LLVM PML ex-
porter also retrieves value facts about data pointers as well as flow facts from
LLVM-internal analysis passes and adds them to the generated PML file. The
platin tool kit also contains several analysis drivers for external analysis tools.
The trace analysis tool derives execution timings and flow facts from a simula-
tor’s execution trace (pasim for Patmos). Platin can also use the abstract inter-
pretation based analyser SWEET [10] to find additional flow facts. An LLVM
plugin exports the LLVM bitcode representation of the program to the Artist

5 http://www.github.com/t-crest
6 A “human friendly data serialization standard for all programming languages”, see
http://yaml.org/
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Flow Analysis Language (ALF) that SWEET uses as input language. Flow facts
found by SWEET are then imported by platin and mapped back to bitcode.

Using the information provided by the compiler, platin is able to transform
the gathered information from bitcode level to the machine code level. The com-
bined set of flow facts and value facts is then passed on the AbsInt WCET
analyser aiT in aiT’s native AIS format, or used in the internal WCET analysis
tool called WCA. A flow fact simplification step ensures that the flow facts are
expressed in a form that is understood by the used WCET analysis tool.

4.1 Flow Fact Transformation

LLVM splits the task of compiling source code to machine code into two major
steps: compiling to and optimising on a machine-independent intermediate rep-
resentation called bitcode (clang) and lowering bitcode down to machine code
using machine specific optimisations in the backend (llc). The LLVM backend
does not change the control flow in a major way since optimisations such as
loop transformations and inlining are performed at bitcode level. This enables
platin to map bitcode and machine code across the backend automatically using
relation graphs [6] with almost no adaption of the backend. Using these relation
graphs, platin is able to transform linear flow facts from bitcode to machine code
without further user assistance.

Maintaining flow facts across high-level optimisations is inherently more dif-
ficult and requires at least some compiler support. There are various approaches
to that problem. Transforming the flow facts along with the optimisation trans-
formations can be done either by the compiler itself as implemented in the WCC
compiler [3], or by an external tool that requires a log of all compiler transfor-
mations as proposed by Kirner et al˙ [8]. Platin leaves the task of high-level
flow fact transformation to the compiler. The Patmos compiler must therefore
ensure that flow facts that are exported to PML match the exported optimised
bitcode. Flow facts that are derived directly from LLVM analyses do not need
to be co-transformed since the LLVM framework itself either updates or reruns
analyses after optimisation passes as required. For manual source code annota-
tion, the Patmos compiler currently supports constant loop bound flow facts as
source code pragmas. The compiler disables transformations that might inval-
idate these loop bounds for functions containing such source annotations. The
preserved source code pragmas can thus be directly exported to PML.

For the future we plan to support arbitrary linear flow facts in the Patmos
compiler by using source code markers. In contrast to other techniques, using
flow markers requires only minimal changes to the compiler. In particular, opti-
misations do not need to update flow facts as long as the code transformations
preserve the sequence of markers on any program path. This makes integrating
and maintaining flow fact support in a large existing and constantly evolving
compiler such as LLVM much more feasible. Support for source code markers is
still under development in the Patmos compiler though.
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4.2 Platin Tools

The core of platin is a Ruby framework for working with PML data. It pro-
vides common functionality such as reading and writing PML files, accessing and
traversing PML data structures, merging and modifying PML data, constructing
various graph representations and working with context-sensitive information.
The tools and analyses in platin are built on top of that framework. The tools
typically accept one or more PML input files and a number of options, and will
generate a new PML output file. The tools can be chained together by passing
the output PML file of any tool as input of another platin tool. Platin tools can
also invoke other platin tools internally in order to implement complex function-
ality. In this case, PML data is passed between the tools in-memory. The Ruby
scripting language enables rapid development of tools and analyses and allows
the developer to focus on the task at hand, which is especially essential in a
research environment. While a Ruby implementation implies some performance
drawbacks compared to other languages, we did not find the performance of the
platin tools to be an issue in our experiments.

Platin provides several tools to work with its native PML file format. The
platin pml tool can merge and validate PML files or print out flow facts, value
facts and timing analysis results in a condensed form. The visualize tool can
be used to visualise control flow graphs and relation graphs.

Platin can also be used for for tool configuration. It uses PML files to config-
ure parameters of the hardware model, such as cache parameters and memory
latencies. The platin pml-config tool can be used to generate or modify such
a PML hardware model, while the tool-config tool generates command line
options for tools like the compiler and the simulator to configure them consis-
tent with the hardware model. Other tools like the WCET analysis tool and the
aiT export also use the PML hardware model configuration to setup the timing
parameters.

For tool integration, platin provides tools such as sweet, analyze-trace

and pml2ais. The sweet tool invokes SWEET to find flow facts. The results are
parsed and added to the PML file. The analyze-trace tool generates flow facts
from simulation runs, which are only valid for the inputs used in the simulation
but are useful for testing the correctness and precision of WCET analyses. Flow
facts are attached either at bitcode or at machine code level, depending on their
source. The transform tool converts flow facts between different levels. The
pml2ais tool in turn exports flow facts to the AbsInt aiT AIS file format and
generates an analysis project file for aiT based on the platin configuration.

The platin wcet tool is a driver tool for the WCET analysis tools. It invokes
either AbsInt aiT using the pml2ais exporter or platin’s internal WCET analysis
wca. The wcet tool can optionally use many of the above tools to find and
transform additional flow facts. It also sets up the analysis tools according to
the PML hardware model and provides options to configure specific analysis
modes such as always-hit or always-miss cache analyses.
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4.3 Integrating platin Into Other Compiler Tool Chains

The platin tool kit has been designed to support multiple architectures with a
minimal effort for adapting platin and the compiler tool chain. The PML file for-
mat and most of the functionality of platin is architecture independent. Memory
latencies and caches are configured in a generic hardware model. Support for
analysis tools like aiT and SWEET that support multiple target platforms is
implemented in generic platin tools. Architecture dependent analysis and tool
integration code is encapsulated in architecture modules in platin. Adapting
platin to a new architecture thus only requires the implementation of a new ar-
chitecture module for that platform, which invokes platform-specific tools such
as a simulator and performs basic analysis tasks such as deriving the WCET of
a basic block.

Platin requires a compiler backend that generates PML files. For LLVM back-
ends, the PML export machine-function pass can be reused, as it also has been
implemented in a generic way. This is possible due to the generic representation
of machine code in LLVM backends. The PML export pass creates PML files,
exports the structure of machine code, bitcode and relation graphs. Only the
classes that retrieve target-specific information such as call or jump targets and
interface with backend analysis passes need to be specialised. Work on high-
level support for flow-fact transformation in the clang frontend and on bitcode
level can be reused directly from the Patmos compiler, since the frontend and
middle-end is platform independent.

Platin fully supports the Patmos platform and has some initial support for
an ARM tool chain support. We do believe that basic support for other LLVM
based compiler tool chains can be achieved comparatively quickly, as only a few
key components in the LLVM backend and in platin need to be implemented or
adapted. As a result and due to platin’s open source nature, the platin tool kit
can be useful for other projects in the domain of embedded real-time systems as
well.

5 Example

In this section we demonstrate some of the tools of platin. We show a typical
workflow by compiling and analysing a small demo application on Patmos. A
quick start guide for installing the Patmos tool chain can be found in the Readme
file of the Patmos repository7 or in the Patmos handbook [12].

Listing 1 shows the content of sort.c. It contains a simple insertion sort
implementation in function sort. Our target function for analysis is gen sort,
which fills an array with N pseudo-random numbers and then sorts the array.
In order to prevent the compiler from inlining and removing our analysis target
function, we mark the function as noinline. The code contains loop bound
annotations for the WCET analysis in the form of pragmas.

7 https://github.com/t-crest/patmos
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Listing 1: Demo application that initialises and sorts an array.

#include <s t d l i b . h>

#define MAX SIZE 100

void s o r t ( int ∗arr , s i z e t N) {
#pragma loopbound min 0 max 99
for ( int j = 1 ; j < N; j++) {

int i = j − 1 ;
int v = arr [ j ] ;
#pragma loopbound min 0 max 99
while ( i >= 0 && arr [ i ] >= v) {

ar r [ i +1] = ar r [ i ] ;
i = i − 1 ;

}
ar r [ i +1] = v ;

}
}
void gen so r t ( int ∗arr , s i z e t N) a t t r i b u t e ( ( n o i n l i n e ) ) ;
void gen so r t ( int ∗arr , s i z e t N) {

#pragma loopbound min 1 max MAX SIZE
for ( s i z e t i = 0 ; i < N; i++) {

ar r [ i ] = rand ( ) % N;
}
s o r t ( arr , N) ;

}
int main ( int argc , char∗∗ argv ) {

srand (0) ;
int ar r [MAX SIZE ] ;
s i z e t N = rand ( ) % (MAX SIZE / 2) + (MAX SIZE / 2) ;

g en so r t ( arr , N) ;

return 0 ;
}

All tools in the Patmos tool chain are configured to use the default Patmos
hardware configuration if no further options are given. In this example we show
how to use platin to configure a different hardware setup. For this, we use
pml-config to generate a modified hardware model:

platin pml-config --target patmos-unknown-unknown-elf \

-o config.pml -m 2k -M fifo8

This command generates a new config.pml file containing a description of
the default hardware model, except that we use a method cache of only half the
size (2 KB size with a tag memory of 8 entries).

In the next step, we compile our program using the patmos-clang com-
piler driver. We also use the platin tool-config tool to setup the compiler
according to our modified hardware model. tool-config can be used in a simi-
lar manner to setup pasim, the Patmos simulator. We need to explicitly enable
optimisations with -O2, as the default optimisation level is -O0.

patmos-clang ‘platin tool-config -i config.pml -t clang‘ \

-O2 -o sort -mserialize=sort.pml sort.c
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Listing 2: Analysis report for the sort application

---
- analysis -entry: gen_sort

source: trace
cycles: 49089

- analysis -entry: gen_sort
source: platin
cycles: 644867
cache -max -cycles -instr: 651
cache -min -hits -instr: 398
cache -max -misses -instr: 3
cache -max -cycles -stack: 0
cache -max -misses -stack: 0
cache -max -cycles -data: 436779
cache -min -hits -data: 0
cache -max -misses -data: 10599
cache -max -stores -data: 10200
cache -unknown -address -data: 20799
cache -max -cycles: 437430

The driver calls all commands necessary to compile the source code, link and
optimise the bitcode and generate and link the final binary sort. The option
-mserialize causes the compiler to generate the PML file sort.pml. It contains
a description of the application control flow at bitcode level (after the bitcode
optimisations) and of the final machine code. It also contains value facts and flow
facts such as loop bounds as found by the compiler as well as our source-code
loop annotations, and relation graphs relating the bitcode and machine code
control flow graphs.

Now we are ready to analyse our target function. We use the platin wcet

driver tool to run all necessary commands, including the trace analysis and the
platin WCET analysis tool WCA. The driver tool will automatically try to run
the AbsInt aiT analysis tool if it is installed.

platin wcet -i config.pml --enable-trace-analysis --enable-wca \

-b sort -e gen_sort -i sort.pml --outdir tmp \

-o wcet.pml --report report.txt

We need to pass the name of the binary file (-b) and both the compiler gen-
erated PML file and the hardware model PML file (-i) to platin. The -e option
tells platin the name of the analysis target function. The optional --outdir

option causes platin to keep temporary files and store them in the given direc-
tory, mainly the generated project files for the AbsInt analyser tool a3patmos.
The optional -o option stores detailed analysis results such as the found WCET
bounds for the target function, execution timings of basic blocks and execution
frequencies of blocks on the worst-case path along with the program informa-
tion from the input files in a PML file for further analysis or for WCET-driven
optimisations.

The --report option causes platin to store the result summaries of the anal-
yses in report.txt. Listing 2 shows the content of that file. In this example the
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Listing 3: Flow facts from LLVM and user annotations as reported by platin

=== flowfacts generated by llvm.bc ===
--- loop -bound ---
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: gen_sort/for.cond >:

↪→ [1 gen_sort/for.cond] less -equal (1 + %N)>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less -equal (1 umax %N)>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>
=== flowfacts generated by user.bc ===
--- loop -bound ---
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/for.cond >:

↪→ [1 gen_sort/for.cond] less -equal 101>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less -equal 100>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/while.cond.i>:

↪→ [1 gen_sort/while.cond.i] less -equal 100>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>

platin WCET analysis derives a lower WCET bound than aiT. aiT is able to
find better loop bounds and thus finds fewer data cache misses for the sort loop,
but it assumes higher costs for instruction cache misses than platin.

Both analyses seem to highly over-approximate the actual WCET when com-
pared to the trace results of the execution. However, while we assume that in
the worst case the whole array is used, the actual execution only fills and sorts a
fraction of the array. Hence the measured execution time is not a good indicator
for the worst-case performance.

The inner loop of the sort function is a triangle loop. Our annotated global
loop bound of (N − 1)2 is thus about a factor of two too large. For loops with
constant bounds, LLVM is capable of detecting such triangle loops and deriving
the correct bounds automatically. Our PML export uses the LLVM analysis
results to generate additional flow facts. platin provides a tool to print all flow
facts in a PML file in a compact form.

platin pml -i sort.pml --print-flowfacts

Listing 3 shows the output of that command. We find our manual loop an-
notations in the user.bc origin section. Note that LLVM inlined the sort()

function, therefore our loops are now in function gen sort.8 The loop bounds
are expressed as flow constraints on the loop header blocks.9 We can also see
that LLVM managed to find parametric loop bounds for two loops, but failed
to find a loop bound for the inner triangle loop since in our case the size of the

8 Function umodsi3 implements the modulo operator, as Patmos does not provide a
modulo instruction in hardware.

9 The right-hand side of the constraint is larger than our loop bound by one because
the loop header is executed one additional time more than the loop body to jump
out of the loop when the loop condition becomes false.
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array to sort is not fixed but parametric. It is thus necessary to annotate the
inner loop manually. Platin supports arbitrary linear flow constraints in PML. It
is possible to manually supply additional flow constraints in PML format. Sup-
port for source code flow annotations beyond local loop bounds in the Patmos
compiler is planned for future development.

We can also use platin to visualise control-flow graphs, call-graphs and rela-
tion graphs:

platin visualize -i wcet.pml -o out -f gen_sort \

--show-timings=platin

This command generates all graphs for function gen sort and stores them
in the output directory out. Figure 4 shows the generated control-flow graphs
at bitcode level (after optimisation) and of the final machine code. The latter
graph is the same graph that is used for WCET analysis by platin. Square boxes
correspond to basic blocks or basic block slices, while round boxes are virtual
nodes inserted by platin. The block node labels in the machine code graph show
the address and the number of the basic block, as well as the name of the
corresponding bitcode block (in brackets) and the range of the instructions in
the basic block slice (in square brackets). The --show-timings option causes
platin to highlight blocks and edges that are on the worst-case path found by
the given analysis tool in the machine-code graph. Edges between basic blocks
are annotated with their worst-case execution frequency and their associated
WCET contribution.

6 Related Work

The WCET-aware C Compiler (WCC) [3] is a custom developed C compiler that
focuses on WCET optimisation, targeting Infineon TriCore microcontrollers. It
uses a machine-independent high-level intermediate representation called ICD-C
for high-level optimisations, and a retargetable low-level intermediate represen-
tation called ICD-LLIR for machine optimisations and code generation. WCET
analysis is performed by the AbsInt aiT tool at ICD-LLIR level and adds analy-
sis results such as basic block execution times and encountered instruction cache
misses, as well as information about the found worst-case path to the ICD-LLIR.
The compiler maintains a mapping between the blocks of the ICD-C and ICD-
LLIR representations, so that WCET analysis results can be used by high-level
optimisations on ICD-C as well. Flow facts are transformed and updated by
compiler and its optimisation passes itself.

Kirner et al. transform flow information in parallel to high-level optimisations
such as loop interchange [8]. Their transformation technique requires control-
flow update rules for optimisations that modify the control-flow graph or change
loop bounds or other flow constraints. These update rules specify the relation
between edge-execution frequencies before and after the optimisation, and are
used to consistently transform all flow constraints affected by the optimisation.
The method was implemented for source-to-source transformations but should
be applicable to bitcode as well.
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CFG for gen_sort

entry |1|

for.cond |4|

for.body |28| for.cond.i |4|

for.body.i |3| sort.exit |1|

while.cond.i |5|

land.rhs.i |5|

while.end.i |4|while.body.i |3|

(a) Bitcode CFG

CFG for 7/gen_sort

START

0x20624: 0(entry) [0..21]

END

LOOP enter 1

 f = 1
 max = 22 cycles
 sum = 22 cycles

0x20694: 1(for.cond) [0..1]

0x2069c: 1(for.cond) [2..2] 0x20754: 9(for.body) [0..39]

 f = 100
 max = 257 cycles
 sum = 752 cycles

LOOP exit 

 f = 1
 max = 5 cycles
 sum = 5 cycles

0x206a0: 2(while.body.i) [0..2]

LOOP cont 5

 f = 9801
 max = 24 cycles
 sum = 235224 cycles

0x206ac: 3(while.end.i) [0..3]

LOOP cont 7

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206bc: 4(land.rhs.i) [0..5]

 f = 9801
 max = 29 cycles
 sum = 284229 cycles

0x206d4: 4(land.rhs.i) [6..6]

LOOP exit 

 f = 99
 max = 30 cycles
 sum = 2970 cycles

0x206d8: 5(while.cond.i) [0..1]

0x206e0: 5(while.cond.i) [2..2]

LOOP exit 
 f = 9900
 max = 5 cycles
 sum = 49500 cycles

0x206e4: 6(for.body.i) [0..3]

LOOP enter 5

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206f4: 7(for.cond.i) [0..1]

0x206fc: 7(for.cond.i) [2..2]

LOOP exit 

 f = 1
 max = 4 cycles
 sum = 4 cycles

 f = 99
 max = 5 cycles
 sum = 495 cycles

LOOP exit 

 f = 1
 max = 4 cycles
 sum = 4 cycles

0x20700: 8(sort.exit) [0..16]

 f = 1
 max = 17 cycles
 sum = 17 cycles

CALL __umodsi3()

0x20804: 9(for.body) [40..44]

LOOP cont 1

 f = 100
 max = 507 cycles
 sum = 23673 cycles

LOOP enter 7

(b) Machine-code CFG with platin WCET results

Fig. 4: Bitcode and machine-code control-flow graphs for gen sort.
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7 Conclusion

In this paper we presented an overview of the Patmos compiler tool chain and
the platin tool kit. The platin tool kit combines several tools for compiler and
WCET analysis integration, tool configuration and flow fact transformation. We
demonstrated the platin tool kit on a sample application and showed how to
perform a WCET analysis using platin. Due to its design, it should be possible
to adapt and integrate platin into other LLVM based compilers with a low effort.
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Abstract. It is increasingly important to analyze system security quan-
titatively using concepts such as trust, reputation, cost, and risk. This
requires a thorough understanding of how such concepts should interact
so that we can validate the assessment of threats, the choice of adopted
risk management, and so forth. To this end, we propose a declarative
language Peal+ in which the interaction of such concepts can be rig-
orously described and analyzed. Peal+ has been implemented in tool
PEALT using the SMT solver Z3 as the analysis back-end. PEALT ’s
code generators target complex back-ends and evolve with optimizations
or new back-ends. Thus we can neither trust the tool chain nor feasi-
bly prove correctness of all involved artefacts. We eliminate this need
for trust by independently certifying scenarios found by back-ends in a
manner agnostic of code generation and choice of back-end. This sce-
nario validation is compositional, courtesy of Kleene’s 3-valued logic and
potential refinement of scenarios. We prove the correctness of this vali-
dation, discuss how PEALT presents scenarios to further users’ under-
standing, and demonstrate the utility of this approach by showing how it
can express attack-countermeasure trees so that the interaction of attack
success probability, attack cost, and attack impact can be analyzed.

1 Introduction

It is well recognized that the analysis of threats to system security goes beyond
the exposure and fixing of vulnerabilities and that it has to take account of
contextual influences such as risks, trust assumptions, the reputation of domains,
and so forth. However, it is often not clear how such different concepts interact
in the threat space (which the attacker controls) or how they should interact in a
system design space (which the designer thinks he controls). For example, when
the Heartbleed vulnerability became known even security experts could not agree
on whether users should immediately change their passwords on web accounts
that used versions of OpenSSL vulnerable to this attack [20]. In particular, it
was difficult to know whether the account was compromised, and renewing a
password in a compromised account might leak that password to an attacker.

In general, threat analysts have a host of techniques and models at their dis-
posal that allow them to assess security threats, let us mention here attack trees
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[19, 13, 12] and Stackelberg games for security (see e.g. [10]) as two prominent
examples. Also, probabilistic risk analysis [2] offers a rich set of tools that threat
analysts may use to study the interaction of factors that influence security. Alas,
tools from risk analysis view attackers as passive environments (e.g. modeling
mean time between failures of a hard disk) and not as active agents (e.g. a cy-
ber terrorist who seeks access to programmable logic controllers in a SCADA
system). We therefore would like support for modeling the interaction of con-
cepts such as protection cost, impact of successful attacks, perception of risk,
reputation of agents, and so forth, in a system exposed to active attacks. The
active nature of attackers suggests to model action and reaction with AND/OR
structures, e.g. as present in two-person games or first-order logic. The desire to
study interaction of quantitative concepts suggests use of an expressive logical
language with appropriate theories for reals; expressiveness means we can easily
extend studies to new concepts or interaction modes, and theories enable us to
do correct quantitative reasoning. We cannot assume, though, that threat ana-
lysts are trained logicians, so we require automated reasoning support for such
logics to build auto-interactive verifiers. SMT solvers, e.g. Z3 [14], thus look like
apt vehicles for expressing and analyzing such interaction in this manner.

Choosing an SMT solver as the back-end also poses problems. Its input
language is too complex and universal, but security analysts prefer languages
specific to their modeling domain. For code generators from domain-specific lan-
guages into SMT back-ends we need assurance that results computed by back-
ends are correct and sensible in modeled domains. Security analysts want results
communicated in forms appreciable to them. Finally, users may formulate con-
ditions that are vacuously true, or vacuously false in the modeled domain. This
may identify a specification error or may instead validate that an analyst has
realized an important invariant – e.g. that the risk is always below an acceptable
threshold. Our paper presents results that directly address these problems.

Figure 1 shows how our contributions reported in this paper are realized in
the tool PEALT . Users specify Peal+ conditions to be analyzed, and domain-
specific knowledge or assumptions; PEALT converts these specifications into Z3
code which the SMT solver Z3 solves; the raw output of Z3 results is then post-
processed and analyzed over the Peal+ conditions; and feedback is reported so
that all scenarios are certified. The user may then inspect that feedback and
either be satisfied or edit conditions or domain specifics for further analysis.

Outline of paper. In Section 2, we present language Peal+ in which threats
can be modeled and analyzed when quantitative information contains non-
deterministic uncertainty; and we discuss automated vacuity checking. In Sec-
tion 3, we discuss how the implementation of Peal+, its analyses, and certifica-
tion are supported by the use of partial evaluation to render certified scenarios to
users in compact ways that should facilitate users’ comprehension. In Section 4,
we present our algorithm that independently certifies that scenarios computed
from analyses by back-ends such as Z3 are correct for the modeled problem –
eliminating the need to trust our code generation methods or back-ends. In
Section 5, we show Peal+’s utility as an intermediate language for analyzing
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Fig. 1. Overview of our approach of auto-interactive verification with tool PEALT ,
showing activities done by users, by PEALT or by its back-end SMT solver Z3

the interaction of threat concepts in tree-like models. In Section 6, we further
discuss and evaluate language Peal+ and its implementation in tool PEALT .
Section 7 features related work, and Section 8 concludes the paper.

2 Domain-specific language and its vacuity checks

Figure 2 shows a formal grammar for our language Peal+ that can express
interaction of security aspects as well as the logical/quantitative analysis of such
interaction. Peal+ shares the coarse structure of its predecessor Peal [4, 7]: rules
condition a score on a predicate, policies are built from rules, policy sets are built
out of policies, conditions are formed out of policy set comparisons; and analyses
have conditions as arguments. The meaning of analysis types is the intuitive one
of their names seen in Figure 2. The meaning of conditions is given by that
of propositional logic and of comparison operators over reals. Thus it suffices to
define how policy sets evaluate to reals in an environment in which all predicates
have truth values, all real variables have a real value, and all non-deterministic
uncertainties are resolved – so all scores evaluate to a real number.

We state this semantics informally here, and formally in Figure 3. A rule rule
returns its declared score when its declared predicate is true; otherwise, it has
no effect. The meaning of a policy is then given as follows: if none of its rules has
a true predicate, its meaning is that of its default score; otherwise, its meaning
is obtained by first computing the meaning of all scores from its rules with true
predicates, and then applying operator op to that set of computed reals.

The grammar for scores allows us to write expressions such as 0.45, −124.5,
0.67 ∗ x, 0.5 ∗ p.sc, 0.4 ∗ x [−0.1, 0.1], or 0.5 ∗ p.sc [−0.05, 0.05] where x is a
real-valued identifier and p is a policy set. In a given environment, the meaning
of scores without intervals [l, u] is that of normal arithmetic with variable values
given by the environment. The meaning of expressions s [l, u] is x+ y where x is
the meaning of s in the environment, and y from [l, u] is the non-deterministic
choice of the environment from interval [l, u]. The latter may, e.g., express the
level of confidence that an expert has in choosing a subjective probability s. To
ensure consistency, we require l ≤ 0.0 ≤ u. For example, u < l would be logically
inconsistent and l > 0 would suggest to change s [l, u] to the equivalent but
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alys ::= satisfiable? cond | always true? cond | always false? cond

equivalent? cond cond | different? cond cond | implies? cond cond

cond ::= q | ¬cond | cond || cond | cond&& cond | pSet ≤ pSet | pSet < pSet

op ::= min | max | + | ∗
pSet ::= pol | op (pSet, pSet)

pol ::= op (rule∗) default score

rule ::= (q score)

score ::= rawScore | rawScore [realConst , realConst]

rawScore ::= realConst | realV ar | realConst ∗ realV ar

realV ar ::= identifier | pSet.sc

Fig. 2. Syntax of Peal+ where q ranges over some language of predicates; con-
stants and variables occurring in score expressions range over real numbers, and
[realConst , realConst] ranges over closed real intervals. For sake of clarity, keywords
of Peal+ are written in boldface here, e.g., pSet.sc denotes the score of pSet

Ee(op(pS1, pS2)) = op(Ee(pS1), Ee(pS2))

Ee(op((q1 s1) . . . (qn sn)) default s) = op(Z) (if Z 6= ∅)
Ee(op((q1 s1) . . . (qn sn)) default s) = Ee(s) (if Z = ∅)

Ee(a) = a (constant a)

Ee(x) = e(x) (x not of form p.sc)

Ee(a ∗ x) = a · e(x) (x not of form p.sc)

Ee(p.sc) = Ee(p) (evaluate policy p)

Ee(a ∗ p.sc) = a · Ee(p) (evaluate policy p)

Ee(r [l, u]) = Ee(r) + e(p, qi, [l, u]) ([l, u] declared in p for predicate qi)

Ee(r [l, u]) = Ee(r) + e(p, default, [l, u]) ([l, u] declared in default score s of p)

Fig. 3. Semantics Ee(pSet) of policy sets (acyclic as in Def. 1), given an environment
e that maps predicates to truth values, scores to reals, and resolves non-deterministic
choice of uncertainty intervals. Scores r range over raw scores, a over constants, x over
variables, and p.sc over policy scores. Set Z equals {Ee(si) | 1 ≤ i ≤ n, e(qi) = true}
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more comprehensible (s + l) [0.0, u − l] when l ≤ u. The meaning of variable
pSet.sc is that of pSet computed by the operational semantics just described.
For this to be well-defined, the set of declared policy sets must not create cyclic
dependencies in Peal+:

Definition 1. Let p1 and p2 be in a set P of Peal+ policy sets. Then p1 depends
on p2 (written p2 ≺ p1) if there is a score s in p1 that contains or equals variable
p2.sc. Set P is acyclic if the transitive closure of ≺ over P × P is acyclic.

Peal+ extends Peal in important ways: scores may have variables and non-
deterministic uncertainty, policy sets have the same composition operators as
policies, conditions subsume propositional logic and may compare policy sets,
and the result of a policy set can be referred to as variable within a score ex-
pression. With these extensions, Peal+ is expressive enough to capture metrics,
tree-like models, cost functions, and basic probabilistic computations.

Let us illustrate the use of Peal+ with an example modeling risks that a
car rental company may face when renting out cars to clients. Figure 4 shows
how rules, policies, policy sets, and conditions for this example are declared in
the input language of our tool PEALT . Declarations are divided into blocks by
keywords such as POLICIES and lines that begin with % are used for comments.

A notable feature of the tool input language is the declaration block
DOMAIN SPECIFICS in which specifiers can enter code from the input language
of the SMT solver Z3 [14] to further constrain the model. This would typically
be used to express assumptions or knowledge of the modeled domain, and uses
Z3 syntax since Z3 is the current back-end of our tool. For example, the second
assertion in Figure 4 uses this to express that luxury cars must not be rented
out for off-road driving. It represents risk and trust as values in [0, 1], and uses
f(x) = 1 − x to convert one into the other. More sophisticated relationships
between trust and risk may be captured in Peal+ as well. This Peal+ model
is conceptually similar to the use of score cards that assess risks in mortgage
applications [17]. Next, we discuss vacuity checking and how we support this.

Vacuity checking. The analyses always true? and always false? reduce to
satisfiability checks but their intent is to check for so called vacuities [11]: a
condition that is always true or always false may be a specification error (as in
temporal logic verification of hardware [11]), evidence for a desired invariant,
or may require further scrutiny of the specifier. Our tool automatically enforces
both types of vacuity check on all declared conditions. The reason is that de-
clared conditions are likely to contribute to input of a declared analysis, and so
we want to alert users to those conditions that are vacuously true, resp. false.

For example, condition c1 of the Car Rental Risks example in Figure 4 is
reported to be always true, so the “insurance risk” which multiplies monetary loss
with its associated risk is never above 50,000. If Z3 can’t decide a vacuity check
(output UNKNOWN), PEALT reports checked conditions as “may be” vacuities.
PEALT only reports names of vacuously true or false conditions. Users who
want more detailed feedback as described below need to “promote” such a vacuity
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POLICIES

% policy capturing risk of financial loss dependent on type of rented car

b1 = max ((isLuxuryCar 150000) (isSedan 60000) (isCompact 30000)) default 50000

% policy capturing trust in rentee dependent on type of his or her driving license

b2 = min ((hasUSLicense 0.9) (hasUKLicense 0.6) (hasEULicense 0.7)

(hasOtherLicense 0.4 [-0.1,0.1])) default 0

% policy that captures potential risk dependent on type of intended car usage

% this policy happens not to be used in the conditions below

b3 = max ((someOffRoadDriving 0.8) (onlyCityUsage 0.4) (onlyLongDistanceUsage 0.2)

(mixedUsage 0.25)) default 0.3

% policy that accumulates some signals that may serve as additional trust indicators

b4 = + ((accidentFreeForYears 0.05*x) (speaksEnglish 0.05) (travelsAlone -0.2)

(femaleDriver 0.1)) default 0

% convert trust b2 into risk b2 using f(x) = 1-x

b2_risk = +((True 1.0) (True -1*b2_score)) default 0.0

POLICY_SETS

% casting b2_risk into policy set

pSet0 = b2_risk

% policy set that multiplies risk with potential financial loss

pSet1 = *(b1,pSet0)

% casting policy p4 into a policy set

pSet_b4 = b4

CONDITIONS

% condition that the risk aware potential financial loss is below a certain bound

c1 = pSet1 <= 50000

% condition that the accumulated trust is above a certain threshold

c2 = 0.4 < pSet_b4

% condition that insists that two previous conditions have to hold

c3 = c1 && c2

DOMAIN_SPECIFICS

% real x models accident-free years of driving, ’truncated’ at value 10

(assert (and (<= 0 x) (<= x 10)))

% capturing a company policy: luxury cars must not be used for off road driving

(assert (implies (isLuxuryCar (not someOffRoadDriving))))

% capturing that the different types of rental cars are mutually exclusive

(assert (and (implies isLuxuryCar (and (not isSedan) (not isCompact)))

(implies isSedan (and (not isLuxuryCar) (not isCompact)))

(implies isCompact (and (not isSedan) (not isLuxuryCar)))))

% capturing that cars that are only used in cities are not used in a mixed sense

(assert (implies onlyCityUsage (not mixedUsage)))

% capturing that cars used only for longdistance driving are not used in a mixed sense

(assert (implies onlyLongDistanceUsage (not mixedUsage)))

% capturing domain constraints (or company policy?) that city driving cannot happen off road

(assert (implies onlyCityUsage (not someOffRoadDriving)))

% capturing that cars used only for longdistance driving must drive off road

(assert (implies onlyLongDistanceUsage (not someOffRoadDriving)))

ANALYSES

% is condition c1 always true? this would suggest an invariant

name1 = always_true? c1

% is condition c3 always true? this would suggest a specification error

name2 = always_true? c3

Fig. 4. Peal+ model of Car Rental Risks
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analysis into the ANALYSES section, where more detailed feedback is provided.
Users may turn automated vacuity checking on or off under “Settings”. We
recommend vacuity checks to be done at least once for model validation.

3 Feedback for users

As described in [7], we extract raw Z3 output and render it in pretty printed
form, as seen in the initial part of Figure 5. But for larger case studies, it be-
comes hard to digest even pretty printed information: one often cannot see the
forest for all the trees. So we now also output for each analysis a summary of
the scenario, its certification (detailed in Section 4), and supporting information.
Figure 5 shows typical such output for the Car Rental Risks example. Scenar-
ios also report any non-deterministic choices of uncertainty as seen for variable
b2 hasOtherLicense U – which functions as t2 in eval(0.4 [−0.1, 0.1], env) as de-
tailed in Figure 7 – in that figure. PEALT reports the certification outcome and

Result of analysis [name2 = always_true? c3]

c3 is (pSet1 <= 50000.0) && (pSet_b4 > 0.4)

c3 is NOT always true, for example, in the scenario in which:

accidentFreeForYears is True, femaleDriver is True, isLuxuryCar is True,

mixedUsage is True, speaksEnglish is True, travelsAlone is True, ...

hasEULicense is False, hasOtherLicense is False, hasUKLicense is False, ...,

b1_score is 150000, b2_hasOtherLicense_U is 0, b2_risk_score is 1, ...

Certification of analysis [name2] succeeded.

Additional predicates set to false for certification: Set(hasUSLicense, hasEULicense)

Policy scores statically inferred in this certification process:

b1 has score 150000, b2 has score 0.6, b2_risk has score 0.4,

b3 has score 0.25, b4 has score 0.55

Policies in analysis [name2] partially evaluated in certified scenario:

b1 = max (([isLuxuryCar] 150000)) default 50000 ...

b4 = + (([accidentFreeForYears speaksEnglish] 0.55)) default 0

Fig. 5. Output format of analyses (hand-edited to save space): scenario (if applicable),
certification status and possible refinements, policy scores inferred during certification,
and policies partially evaluated in certified scenario.

refinements of predicates and real variables that certification may have brought
about (when applicable), lists scores of all policies that certification could stati-
cally infer, and then partially evaluates only relevant policies (not for b3 in Fig-
ure 5) over the successfully certified scenario to then display them in this more
compact and meaningful manner. For the latter, true predicates are grouped
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within square brackets and reported with aggregated score in red (colors not
shown in figure), as this is the score for the policy as well. Rules with false pred-
icates aren’t shown; in particular, if all predicates are false, an empty policy with
red default score is shown. Rules whose predicates have unspecified truth values
are shown individually (in green) where “?” marks them as don’t care rules.

PEALT uses Z3’s push and pop constructs for incremental solving of more
than one analysis. The efficiency may also raise usability issues: the output in
Figure 5 was obtained after all other analyses were commented out. If we run
all these analyses in their declared sequence, however, the scenario reported for
name2 will be different. Similar effects may happen when automated vacuity
checking changes its OFF/ON status. On the other hand, this seems at worst to
make the user temporarily confused and so we don’t think this issue is serious
enough to give up the efficiency gains of using the push and pop constructs.

4 Scenario certification

Users from high-assurance domains need compelling evidence that scenarios com-
puted by back-ends from code PEALT generates are valid for analyzed Peal+
conditions, and they want to be able to relate scenarios to conditions in a com-
prehensible manner. We report additional support for the latter below. As for
the former, what if our Z3 code generation method contains logical mistakes?
What if we make wrong assumptions about the operation of the tool Z3? What
if some Z3 features we use contain implementation flaws? We think these ques-
tions make a compelling case for independently proving the validity of a scenario
discovered for a Peal+ condition; we refer to such independent proof as certifica-
tion. Back-ends such as Z3 compute scenarios that are very compact in that they
don’t define values for some variables. Certification is therefore non-trivial as it
has to reason that these are indeed “don’t care” variables. Such a certification
should be comprehensible to non-experts and efficient – giving it the flavor of
an NP problem although the underlying decision problems may be undecidable.
We propose a compositional certification of don’t care variables that may lose
precision and so may have an inconclusive output. In the latter case, one of the
predicates of the scenario may not have a specified truth value. We then set that
value to false and repeat the certification algorithm on this refined scenario.
This process is efficient as it examines conditions compositionally and greedily
refines scenarios until it succeeds or not. Refined predicates are set to false and
not to true: users want to see as few trees in the forest as possible, and false
predicates only have an effect in a policy when all its predicates are false.

This certification process represents a scenario, a model returned by Z3, as a
function I that maps real variables to real numbers or ⊥, and predicates to true,
false or ⊥. Symbol ⊥ models that the scenario did not specify a value for the
variable in question. For predicates, ⊥ (“unknown”) is also the third truth value
of Kleene’s 3-valued logic [9]. Figure 5 shows how PEALT reports a scenario
for analysis name2 from Figure 4. To explain our certification, we need to define
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the refinement of environments, which are all well typed in that they map any
variable either to value ⊥ or a value of its declared data type – Real or Boolean.

Definition 2. Let env1, env2 be environments over a set of variables V. Then
env2 refines env1 if for all x in V, env1(x) 6= ⊥ implies env1(x) = env2(x).

This means that refinements can change ⊥ values of variables to any value of
their declared data type Real or Boolean, but they cannot change non ⊥ values.

The function recursivelyCertify, depicted in Figure 6, is first called as
recursivelyCertify(c, I, v, ∅) which checks whether condition c has claimed truth
value v in the scenario/Z3 model I. It outputs true if this claim could be certi-
fied, false if a logical flaw in the claim was detected, and outputs ⊥ otherwise.
Wrapper function certifyWrapper(c, I, v) in Figure 6 converts true, false and
⊥ into certification success, failure, and inconclusive, respectively.

certifyWrapper(c, I, v) { % condition c, scenario I, and v in {false, true}
if (recursivelyCertify(c, I, v, ∅) == true) { return success; }
if (recursivelyCertify(c, I, v, ∅) == false) { return failure; }
elseif { return inconclusive; }

}

recursivelyCertify(c, env, v, cp) { % returns true, false or ⊥
cp′ = collectCertifiablePolicyScores(env);
env′ = env + cp′; % program point L1: extend env with bindings of cp′

o = certCond(c, env′, v);
if (o == ⊥) {

if (cp 6= cp′) {
return recursivelyCertify(c, env′, v, cp′);

} elsif (∃q: env′(q) = ⊥) {
pick one q with env′(q) = ⊥;
env′ = env′ + [q 7→ false];
return recursivelyCertify(c, env′, v, cp′);

} else {return o; } % triggers exception upstream (not shown here)
} else { % program point L2

return o; % output true means success, false means failure
}

}

Fig. 6. Function recursivelyCertify(c, I, v, ∅) checks whether condition c has claimed
truth value v in empty hash map cp (written ∅) and scenario I where it may refine the
latter. Function certifyWrapper wraps this into success, failure, or inconclusive result

The truth value v used in recursivelyCertify(c, I, v, ∅) is determined by the
type of analysis. For example, if always false? c returns SAT, it means the found
scenario should be evidence for c being true, and so v equals true. The treatment
of analyses with two arguments is similar. For example, for a SAT outcome of
implies? c1 c2, the scenario should be evidence for c1 being true and c2 being
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false. So we need to achieve two certifications, recursivelyCertify(c1, I, true, ∅)
and recursivelyCertify(c2, I, false, ∅) for this.

Function recursivelyCertify refines I into an environment env′ by set-
ting predicates to false or adding a statically inferred score to a policy. The
latter means that environments are not only defined on predicates and real
variables but may also map policy names to their inferred scores. At pro-
gram point l2, such static inference of policy scores is delegated to function
collectCertifiablePolicyScores in Figure 7. In this extended environment env′,
function certCond, shown in Figure 8, determines the truth value of the condi-
tion in that environment under Kleene’s 3-valued logic [9]. If that value is ⊥, we
call recursivelyCertify again but with a refined environment that either inferred
at least one new policy score or set a predicate to false. If the truth value of the
condition is 6= ⊥, function recursivelyCertify outputs that value.

Parameter cp is a hash map that has policies as keys and their stati-
cally inferred scores as values. We check “progress” of cp since static infer-
ence of a policy score may then enable more such inferences for other poli-
cies. Function collectCertifiablePolicyScores(env) initializes in cp an empty
hash map. For each declared policy pol it stores in score the output of func-
tion certPolicy(pol, env) depicted in Figure 7. Thus we statically infer the score
of pol (rather than consulting env(p score) if that were 6= ⊥), so that policy
scores are certified before their use in certification of policy scores they depend
on. Then either an equality check of certPolicy(pol, env) and env(p score) is
performed – whose failure will fail certification – or we check whether the static
analysis returns a real value (i.e. not ⊥), in which case we extend the hash map
so that key pol has value score. Finally, the hash map is returned.

Function certPolicy(pol, env) first checks whether some predicate q within
policy pol has unspecified truth value in environment env. If so, it returns ⊥
since the score of pol cannot be determined. Otherwise, if all predicates in pol
are false in environment env, the default case applies and the evaluation of the
default score s in environment env is returned. Finally, if some predicates in
pol are true (and none are then false), we return the application of op to the
evaluation eval(si, env) of all “true” score expressions si in environment env.

Function eval(s, env) has two types of input for s depending on whether s
is a raw score t1 or contains an uncertainty interval [l, u] that we translate into
Z3 code as a real variable t2. This function does a static analysis that consults
env(p) when evaluating variables of form p.sc and consults env(x) for all other
variables x. This consults env(p) and not env(p.sc) so that policy scores get
certified based on certified scores of policies that they depend upon. Although ⊥
is strict for +, we relax its strictness for ∗ in expressions a ∗ x when a evaluates
to 0.0, in which case a ∗ x also evaluates to 0.0.

Last, but not least, we turn to function certCond(c, env, v) in Figure 8. It
compositionally evaluates over the structure of c whether this condition com-
putes to truth value v in environment env. This makes use of 3-valued propo-
sitional logic of Kleene [9], where for example ⊥ ∨ x = x and ¬⊥ = ⊥. The
intuition is that ⊥ stands for either true or false and that equations are valid
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collectCertifiablePolicyScores(env) {
% returns hash map of some policies, with their statically inferred scores as keys

cp = ∅;
for (all declared policies pol) {

score = certPolicy(pol, env);
if (env(pol score) 6= ⊥){

if (score 6= env(pol score)){
report certification exception; break;

}
}
if (score 6= ⊥) {cp = cp + [pol 7→ score]; }

}
return cp;

}

certPolicy(pol, env) { % returns statically inferred policy score or ⊥
if (∃(qi si) ∈ pol: env(qi) = ⊥) { return ⊥; }
elseif (Xpol

env == ∅) { return eval(s, env); }
else { return op(Xpol

env); }
}

eval(s, env) {
% s = t1 or s = t1 + t2 with t1 being constant a, variable x or product a ∗ x
% and t2 being variable x not of form p.sc (modeling uncertainty)

if (t1 of form a) {acc = a; }
elseif (t1 of form p.sc) {if (env(p) 6= ⊥) {acc = env(p); } else {return ⊥; }}
elseif (t1 of form x) {if (env(x) 6= ⊥) {acc = env(x); } else {return ⊥; }}
elseif (t1 of form a ∗ p.sc) {

if (a == 0.0) {acc = 0.0; }
elseif (env(p) 6= ⊥) {acc = a ∗ env(p); }
else {return ⊥; } % here a non-zero but env(p) equals ⊥

}
elseif (t1 of form a ∗ x) { % here x is not of form p.sc

if (a == 0.0) {acc = 0.0; }
elseif (env(x) 6= ⊥) {acc = a ∗ env(x); }
else {return ⊥; } % here a non-zero but env(x) equals ⊥

}
if (s of form t1 + t2) {

if (env(t2) 6= ⊥) {acc = acc + env(t2); }
else {return ⊥; } % here env(t2) equals ⊥, strict for +

}
return acc;

}

Fig. 7. Function collectCertifiablePolicyScores(env) returns hash map for policies
pol with values score statically inferred as result of pol in env. Function certPolicy
certifies whether the score of policy pol of the form op ((q1 s1) . . . (qn sn)) default s
or op () default s in environment env is inferable. Set Xpol

env denotes {eval(si, env) |
env(qi) = true} and function eval(s, env) statically infers the value of score s in envi-
ronment env
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certCond(c, env, v) { % returns true, false or ⊥; comparisons to ⊥ return ⊥
if (c of form q) { return (v == env(q)); }
elseif (c of form ¬c1) { return certCond(c1, env,¬v); }
elseif (c of form (c1 ∧ c2)) { if (v == true) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (c1 ∨ c2)) { { if (v == false) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (pS1 ≤ pS2)) {

if(v == true) { return certPSet(pS1, env) ≤ certPSet(pS2, env); }
else { return certPSet(pS2, env) < certPSet(pS1, env); }

} elseif (c of form (pS1 < pS2)) {
if(v == true) { return certPSet(pS1, env) < certPSet(pS2, env); }
else { return certPSet(pS2, env) ≤ certPSet(pS1, env); }

}
}

certPSet(pSet, env) { % returns true, false or ⊥; if env(pol) not found, returns ⊥
if (pSet of form pol) {return env(pol); }
} elseif (pSet of form op(pS1, pS2)) { return op(certPSet(pS1, env), certPSet(pS2, env)); }

}

Fig. 8. Function certCond(c, env, v) decides whether condition c has truth value v in
environment env, and certPSet(pSet, env) covers this for policies and their composition

under this interpretation. This is an abstraction as q ∨¬q evaluates to ⊥ in this
logic whenever q has value ⊥. We note that ⊥ is strict for comparison operators
==, ≤, and < in function certCond. If the condition c is atomic q, we check
whether claimed truth value v matches what the environment says about q. If c
is ¬c1, we reduce this to the certification that c1 has the negated truth value ¬v
in the same environment. The cases of conjunction and disjunction are dual and
need to consider whether v equals true or false. This structure is also seen in
comparing policy sets in a condition, which compares their scores as computed
by the environment in function certPSet (⊥ indicates no score is present).

The correctness theorem for certification refers to the meaning of Peal+ in
environments where all variables have a value from their declared data type Real
or Boolean. This operational semantics was given in Section 2 and Figure 3.

Theorem 1. Let c be a Peal+ condition such that the set of policy sets oc-
curring in c is acyclic. Let v be a truth value true or false. Let I be a scenario
produced for c from a back-end. Let function recursivelyCertify(c, I, v, ∅) return
true and let env′ be the value of this environment at program point L2. Let env′′

refine env′ such that env′′ maps no variable to ⊥. Then condition c evaluates to
v in environment env′′ under the operational semantics of Peal+.

Proof (Sketch). We only have to show the claim for function certCond, given
the code structure of recursivelyCertify. The claim is proved using structural
induction over the condition c, noting that sub-conditions also have acyclic sets of
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policy sets. The cases rely on that fact that ⊥ is strict for all algebraic operators
with the noted exception of eval(0.0 ∗ ⊥, env) = 0.0.

The cases that compare two policy sets require proof of an auxiliary lemma:
“Whenever the output of certPSet(pS, env′) is not equal to ⊥, then that output
is the score of policy set pS in all environments that refine environment env′.”
This is shown for policies and composed policy sets by structural induction.

For the first case of a policy set being a policy, we require a second auxiliary
lemma: “Let pol be a policy and env′ an environment such that env′(pol) is not
equal to ⊥. Then env′(pol) is the score of policy pol in all environments that
refine environment env′.” The proof of this lemma appeals to the linear order in
which statically inferred scores of policies are added as hash values, where env′

is of form env+ cp′ as seen at program point L1 in function recursivelyCertify.
Since the set of policies occurring in condition c is acyclic, this order is indeed
well founded and so we can use well founded induction to prove this lemma. ut

The above theorem says that successful certification of the computed envi-
ronment env′ means that all “completions” of env′ that resolve ⊥ values with
any legal value of the respective data type will compute the claimed truth value
for the condition in question. In particular, variables x with env′(x) = ⊥ are
genuine “don’t care” variables for this successful certification.

Our certification runs in polynomial time in its input: the number of recur-
sions is bounded by m + n, with m the number of declared policies and n the
number of predicates occurring in rules. The static analysis of conditions evalu-
ates their parsetree over 3-valued logic; truth values of leaves are computed by
static analyses that are linear in the size of the respective policy sets.

5 Case study: attack-countermeasure trees

Peal+ and its tool PEALT can be used as an intermediate language into which
domain-specific languages can be translated and analyzed. Such use has two
benefits: analysis results can be certified, and PEALT may perform analyses
that are not supported within the frameworks of those domain-specific languages.
All scenarios found in this case study certified without refining any predicates.

We illustrate these benefits for attack-countermeasure trees (ACTs) [18] by
means of an example ACT for a BGP reset of a session as discussed in [18].
The PEALT input code for this example would not really be meant for human
consumption, as it would just be an intermediate syntax for facilitating analy-
ses. Our translation extends the semantics of ACTs in that we may turn attack
leaves, detection mechanisms, and mitigation mechanisms “on” or “off” – with-
out compromising the computation of attack success probabilities, attack impact
or attack cost. This, combined with the expressive conditions in PEALT , gives
us richer analysis capabilities, discussed in detail below. The full PEALT code
for this case study is built into the PEALT tool as an example case study.

Figure 9 shows the ACT taken from [18] where we merely annotated some of
its nodes with policy names that we will use in our translation. This tree contains
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AND and OR nodes as familiar from attack trees [12]. But it also contains three
NOT nodes that all feed into parent AND nodes the possible effects of a pair of
detection and mitigation mechanisms. Qualitatively, this means that such a pair
of working detection and mitigation mechanisms will feed false into the parent
AND node. The probabilistic interpretation in [18] is that both mechanisms have
a probability of working, and so NOT nodes take as probability the complement
of the product of these two probabilities of working mechanisms [18].

Goal: reset a BGP session

Or1

a1: Send 
message to 

router causing 
reset

 
Not1

And1
And2

And3

Or2

a111: Send 
RST message 
to TCP stack 
0.08, 50, 200

a112: Send 
BGP message

Or3

a1121:  Notify 
0.1, 60, 130

a1122: Open 
0.15, 70, 100

a1123: Keep alive 
0.2,100, 300

And4

d1: Trace-route 
check 0.5

m1: Randomize 
Seq. Num. 0.6

And6

a12: TCP seq. 
num. attack  
0.1, 150, 250

 
Not3

And7

d12: TCP seq. 
num. check 0.8

m12: MD5 
authentication 

0.5

a2: Alter conf. via 
compromised 

router 
 0.4, 190, 275

d2: Router 
firewall alert 0.7

 
Not2

And5

m2: Secure 
router 0.5

Fig. 9. ACT from [18] for reset of a BGP session, with detection/mitigation leaves’
probability of working and attack leaves’ success probability, cost, and impact (resp.)

The probability of attack success and impact cost are computed over the
structure of the ACT [18], whereas attack cost is computed by first producing
the set of all min-cuts (as used in fault tree analysis [2]) of the ACT [18]. This
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makes it hard to reason about the interaction of success probabilities, impact,
and cost. Also, it faces scalability issues as the number of min-cuts may be
exponential in the size of the ACT. We here want to demonstrate that the use of
SMT solvers, facilitated with Peal+ and PEALT as the intermediate language
and tool, allows us to reason about such interactions and avoids the need to
enumerate all min-cuts.

The declaration of policies for the probability of attack success, the result of
policy goal, is shown in Figure 10. A predicate True, asserted to always be true,
is used to compose results of children in the ACT. The probability at an OR
node with n children xi is 1−∏n

k=1(1−prob(xk)), and we expand this arithmetic
term in stages using policy scores for stage composition, as seen for policy or1.
The probability at an AND node with m children yj is

∏m
k=1 prob(xk), and we

similarly encode this arithmetic expression, as seen for policy and1.

For the encoding of attack leaves, their success probability is the score of
a sole rule that captures that attack event. Since attack leaves are not under
the scope of a NOT node, their default score is 0.0. The encoding of a NOT
node is simply 1− x where x is the result of its child AND node. For that AND
node, the staged computation checks whether both detection and mitigation
are present, in which case it computes the product of the probabilities of both
mechanisms working; otherwise, it returns 0.0. This default score is sound as it
makes the NOT node default to 1.0 which has no effect on its predecessors in
the ACT (there is no NOT node in the scope of another NOT node). Thus this
translation works for ACTs since they don’t have nested NOT nodes.

In Figure 11, cost of attacks to an attacker and overall attack cost are spec-
ified. Default scores capture cost in the absence of attacks and so equal 0.0.
In contrast to [18], overall cost is here the sum of all occurring, i.e. true, at-
tacks since analyses ask whether attacks succeed within cost budgets and Z3
will search for such solutions by turning attack leaves “on” or “off” as desired.
The specification of attack impact (now shown in this paper) reflects that the
impact of an OR node is the maximum of the impact of all its children – mod-
eling a worst-case scenario for the system [18]; and that the impact of an AND
node is the sum of the impact of all its children. As in [18], NOT nodes don’t
contribute to impact of attack success, although it is noted in [18] that detection
and mitigation mechanisms can reduce risk.

Finally, we may specify questions about this ACT in Peal+. Using basic
conditions such as 549.0 < impact overall and binary conjunction, we express
condition c6 which asks whether the attack impact can be strictly above 549.0,
the attack cost can be less than or equal to 440.0, and the probability of attack
success can be strictly above 0.41199 – all in the same scenario. PEALT reports
that this is possible in a scenario in which attacks a1123, a2, and a12 occur (i.e.
are true), as well as detection mechanisms d1 and mitigation mechanism m2.
The latter two may be unexpected. But in the scenario neither the mitigation
mechanism m1 of d1 nor the detection mechanism d2 of m2 occur (i.e. are false).
Therefore, none of the two respective NOT nodes contribute to the probability
of attack success; and NOT nodes contribute neither to impact nor to cost.

307



goal = +((True or1_score)) default 1.0

or1 = +((True 1.0) (True -1.0*or1_aux_score)) default 1.0

or1_aux = *((True or1_aux1_score) (True or1_aux2_score)) default 1.0

or1_aux1 = +((True 1.0) (True -1.0*and1_score)) default 1.0

or1_aux2 = +((True 1.0) (True -1.0*and2_score)) default 1.0

and1 = *((True and3_score) (True not1_score)) default 1.0

and3 = *((True or2_score) (True and6_score)) default 1.0

or2 = +((True 1.0) (True -1.0*or2_aux_score)) default 1.0

or2_aux = *((True or2_aux1_score) (True or2_aux2_score)) default 1.0

or2_aux1 = +((True 1.0) (True -1.0*a111_score)) default 1.0

or2_aux2 = +((True 1.0) (True -1.0*or3_score)) default 1.0

a111 = +((sendRSTmessageToTCPStack 0.08)) default 0.0

or3 = +((True 1.0) (True -1.0*or3_aux_score)) default 1.0

or3_aux = *((True or3_aux1_score) (True or3_aux2_score)

(True or3_aux3_score)) default 1.0

or3_aux1 = +((True 1.0) (True -1.0*a1121_score)) default 1.0

or3_aux2 = +((True 1.0) (True -1.0*a1122_score)) default 1.0

or3_aux3 = +((True 1.0) (True -1.0*a1123_score)) default 1.0

a1121 = +((notify 0.1)) default 0.0

a1122 = +((open 0.15)) default 0.0

a1123 = +((keepAlive 0.2)) default 0.0

not1 = +((True 1.0) (True -1.0*and4_score)) default 1.0

and4 = +((traceRouteCheck and4_aux1_score)) default 0.0

and4_aux1 = +((randomizeSequenceNumbers and4_aux2_score)) default 0.0

and4_aux2 = *((True 0.5) (True 0.6)) default 1.0

Fig. 10. Policies that compute probability of attack success, even when certain attacks,
detection mechanisms or mitigation mechanisms may be absent. Policies for sub-ACTs
And2, And5, And6 and And7 are similar and not shown

cost_a111 = +((sendRSTmessageToTCPStack 50.0)) default 0.0

cost_a1121 = +((notify 60.0)) default 0.0

cost_a1122 = +((open 70.0)) default 0.0

cost_a1123 = +((keepAlive 100.0)) default 0.0

cost_a12 = +((TCPsequenceNumberAttack 150.0)) default 0.0

cost_a2 = +((alterConfigurationViaCompromisedRouter 190.0)) default 0.0

cost_overall = +((True cost_a111_score) (True cost_a1121_score)

(True cost_a1122_score) (True cost_a1123_score)

(True cost_a2_score) (True cost_a12_score)) default 0.0

Fig. 11. Computing cost of attack leaves and overall cost of occurring attacks
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Threshold values chosen in condition c6 are co-dependent: we can’t decrease
440.0 by 1 or more, increase 549.0 by 1 or more, or increase 0.41199 by 0.00001 or
more without making condition c6 unsatisfiable. These values were determined
by repeated analysis that adjusted values with bisection search using SAT and
UNSAT results to drive the bisection method. If we add to condition c6 a con-
junct, saying that the detection/mitigation pair d2 and m2 also has to occur,
PEALT informs us that this is now impossible.

We can approximate maxima of security metrics, e.g., a measure of expected
system damage f(p, i, c) = p · max (0, 2i − c) for attack success probability p,
attack cost c, and attack impact i where we exploit that p, i, and c are ex-
pressed as policies. For example, 271.919999999999 < f(p, i, c) is satisfiable for
the ACT in Figure 9 whereas 271.92 < f(p, i, c) is not. In PEALT , we have
also implemented a bisection-based non-linear optimization for global maxima
within specified accuracy – which can determine approximate maxima such as
the one for the above security metric.

6 Discussion and Evaluation

We analyzed and tried to certify about 20, 000 random Peal+ conditions with
uncertainties but a few of these conditions failed to certify. We isolated the source
of these failures to be an anomaly of the Z3 push command. With help of Arie
Gurfinkel, Nikolaj Bjorner was able to attribute this to Z3 work item 108 (see
http://z3.codeplex.com/workitem/108): if some constraints are non-linear, the
use of push invokes a legacy solver that may report incorrect models for SAT
outcomes. Since PEALT won’t use push when a sole analysis executes, we can
eliminate this Z3 bug as the source of certification failure by turning off vacuity
checking and commenting out all other analyses. We think PEALT therefore
strikes a good balance between performance (which the use of push on more
than one analysis greatly improves) and correctness (since failed certifications
are rare and mostly caused by typos as discussed next).

If a user declares a policy p but also writes p in a score instead of p score,
the SMT solver may find a real value for real variable p (implicitly declared
in that rule!) and so env(p) would have that value. If this is not the value
one would statically infer for policy p, such aliasing will fail certification. Also,
spelling mistakes in variable names may declare new variables that can result
in inconclusive certification. Anecdotal evidence suggests that almost all failed
or inconclusive certifications are results of such typos, which incidentally won’t
occur whenever PEALT is used as intermediate language by code generators.

The certification process in PEALT only works for scenarios (whose reported
values for policy scores are ignored in certification), not for a claim that no
scenario exists. We first focused our efforts on scenarios as they are likely to
be more useful to specifiers, and since certification of non-existence of scenarios
involves formal proofs extracted from back-ends (e.g. [3]), but general specifiers
cannot be expected to understand complex proofs.
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The scope of certification does not expand into section DOMAIN SPECIFICS.
For example, assume that a predicate occurs in no rule but is cast to a condition
and declared in section DOMAIN SPECIFICS, which also defines its meaning. Our
certification will not inspect this definition of meaning as it is expressed outside of
Peal+ in an expressive logic. We did not find this to be limiting when writing and
certifying PEALT models, but it means that certification is a relative notion in
PEALT . On the other hand, it seems feasible to extend our 3-valued certification
to cover DOMAIN SPECIFICS as well for certain fragments of Z3’s input language.

Our implementation of Peal+ requires that policies be cast into policy sets
(when needed), predicates be cast into conditions (when needed), and operators
for policies, policy sets, and conditions be unary or binary (not n-ary). The latter
is a good thing, since it means that all sub-conditions of conditions are explicitly
declared and so subject to vacuity checking. PEALT does not check whether
predicates within a policy occur more than once. The latter is an issue when
two or more such occurrences have scores with uncertainty as this “binds” the
non-deterministic choice made for these expressions to the same value. A variant
of our BGP case study with uncertainties, built into tool PEALT , addresses this
be using True1, True2, and so forth to disambiguate this.

PEALT has no explicit ability to model state spaces and their transition;
one may see this as a weakness and opportunity for future work, or as a strength
as it avoids state space explosions.

7 Related work

For model checking, Namjoshi developed deductive techniques in [15] that can
independently verify the results of model checks for formulas of the modal mu-
calculus and where these proofs can be extracted from an (instrumented) model
checking run. For theorem proving, Gonthier [5] simplified the proof of the fa-
mous 4-color theorem, and proved it in the theorem prover Coq in such a manner
that the proof itself could be certified as well. In [16], Necula devised a proof as
a claim of certain program behavior, e.g. memory safety; it is efficient to verify
the correctness of the proof (though producing the proof may have been hard)
and one can check whether its claim is consistent with one’s own security policy.

Jha et al. [8] use model checking to automatically generate attack graphs
with nodes representing network states, develop techniques for choosing minimal
number of security measures and for trading off attack likelihood and attack
probability. Attack graphs that express dependencies of vulnerabilities instead,
such as those of Albanese et al. [1], have more scalable analyses than state-
based ones. Attack graph models in the literature appear to have a fixed model
signature, whereas PEALT can extend modeling domains as and when needed.

Peal+ extends Peal [4] and the PEALT tool over its version in [7]: PEALT
now supports the richer language Peal+, automated vacuity checking of all
declared analyses, the automated certification of all scenarios generated by Z3
for analyses, and the partial evaluation of policies over scenarios so that users
can comprehend scenario information directly on relevant policies.
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In [6], we sketched Peal+ and illustrated it with mock-up syntax for a “score
card” model very similar to that from Figure 4. Although that paper discussed
usability issues, it focussed on the design of Peal+ and did not cover usability
issues of a supporting tool and its user feedback.

8 Conclusions and future work

We presented a domain-specific language Peal+ in which the interaction of con-
cepts that inform security and threat analysis can be formally expressed and
analyzed. We reported its implementation in the PEALT tool that statically
analyzes such conditions with two principal aims: to determine whether speci-
fied conditions meet expectations of how security-related concepts influence de-
cision making; and to validate that the expectations that users have do not have
unintended consequences when expressed and enforced in such conditions.

PEALT reflects the methodology of auto-interactive verification (see Fig. 1).
This means users can rely on automated verification tools that provide easily
comprehended feedback which may trigger subsequent modeling and automated
verification. And this process would be repeated until users are satisfied to have
captured conditions as desired. This paper realized this methodology via a lan-
guage Peal+, its implementation in the PEALT tool, and use of the SMT solver
Z3 as the back-end for automated reasoning and scenario generation.

We illustrated the utility of Peal+ and these support mechanisms by first
discussing a Car Rental Risks example and then attack-countermeasure trees.
We showed how ACTs can be translated into Peal+ so that we can reason about
interaction of the probability of attack success, attack cost, and attack impact
whilst at the same time allow the model to turn attack, detection, and mitigation
leaves “on” or “off” at will. Therefore, our ACTs actually represent an entire set
of ACTs and we can verify invariants of such interaction over that set of ACTs.

We created support for validating scenarios computed for conditions ex-
pressed in Peal+: an independent certification of the correctness of scenarios
with respect to the domain and policies in which they should be interpreted. We
stress that our certification is agnostic to the manner in which code for analy-
sis in back-ends is generated (since certification operates on Peal+ expressions
directly) and agnostic to the choice of back-end (apart from an interface for
the scenario to be certified and for variables modelling uncertainty). PEALT
partially evaluates all policies that certification seems to rely upon, with respect
to the certified scenario and provides this as auxiliary feedback, so that mod-
elers may more easily assess the impact of policies certified in possibly refined
scenarios.

We could extend Peal+ with judicious support for integer variables (a poten-
tial performance bottleneck for SMT solvers). We also mean to develop auxiliary
tools that can translate other threat modeling formalisms into PEALT for richer
analysis, as illustrated for ACTs in this paper. Finally, we mean to research how
we can extend Peal+, PEALT , and our certification to state transitions and to
conditions that analyse state changes through operators of temporal logic.
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Open access: We refer to URL http://www.doc.ic.ac.uk/~hk2109/PEALT/

for the latest version of PEALT and installation instructions. Please consult
https://bitbucket.org/jimhkuo/pealapp-lift for the Scala source code.
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Abstract. Tiled many-core computer architectures are becoming increasingly
popular, providing a viable solution to the complexity of resource management
in parallel processors. One of the critical challenges in programming such tiled
many-core architectures is the efficient use of available resources.
In this paper we present a hierarchical memory management approach for tiled
many-core processors. This memory management approach is capable to pro-
vide shared memory across multiple OS instances running on different cores.
This memory management approach made it possible for us to port LPEL, a dy-
namic load-balancing middleware for stream processing applications, to the In-
tel Single-Chip Cloud Computer (SCC), a research processor that shares many
similarities with other tiled architectures. This is the first execution middleware
running on the SCC that provides dynamic load balancing. An evaluation shows
that our framework performs better than an MPI-based implementation.

1 Introduction
The demand for compute power is exceeding the supply [20]. Until recently, increasing
the processor clock speed to meet the demand of performance had worked well, but
heat and interference caused by increased clock speeds and shrinking size of transistors
are starting to limit processor designs [5, 4].

The current strategy is to use several simple and power efficient cores [27] in-
stead of a single complex and power-hungry core. Processors such as the Intel Xeon
Phi [7], ARM (Cortex A7 & A15) [12], Tilera (Tile-Mx & Tile-Gx) [10, 25] and Kalray
MPPA 256 [18] reflect a trend towards tiled architectures.

Parallel architectures with multi-core tends to be more energy-efficient than an
equivalent single-core processor. However, programming multi-core processors is more
complex and requires the refactoring of algorithms for concurrency. The identification
and exposition of concurrency is not enough to exploit a high fraction of the poten-
tial computing power made available by a parallel platform. The scheduling of dynamic

? This work has been supported by the Material Transfer Agreement 2010-2013 for the In-
tel SCC Research Processor “Light-weight Parallel Execution Layer for Stream Processing
Networks on Distributed Memory Architectures” and the FP7 ARTEMIS-JU research project
“ConstRaint and Application driven Framework for Tailoring Embedded Real-time Systems”
(CRAFTERS) under contract no 295371.
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workload on these tiled platforms increases the difficulty in utilising available resources.
Automatic load-balancing reduces the waste of resources and relieves the programmer.

Dataflow programming [17] is a particularly promising model for concurrent pro-
gramming. Data flow languages expose concurrency directly through explicit modelling
of data dependencies, in contrast to most traditional programming languages which are
centered around control flow. Coordination languages [8] allow software engineers to
build parallel applications from sequential building blocks. Stream processing [28] is
a parallel execution model that is well-suited for architectures with multiple computa-
tional elements that are connected by a network. Put together, these mechanisms afford
a powerful software development approach for multi-cores [14, 13, 24].

In this paper we introduce a hierarchical memory management approach for tiled
many-core processors that provides shared memory across multiple OS instances. Like
the Hoard memory manager [3] and scalloc [1] our memory management approach
uses local memory pools per core. In contrast to Hoard and scalloc, ours also works
with separate OS instances. Based on that memory manager we ported the Light-weight
Parallel Execution Layer (LPEL) [24, 21] to the Intel SCC research processor, making
it the first execution middleware running on the SCC with dynamic load balancing.

Sections 2.1 and 2.2 of this paper offer a brief review of the SCC tiled architecture.
Sections 2.3 and 2.4 provide a short review of the stream programming paradigm and
the stream execution model. Section 3 describes how our middleware maps streaming
network on the SCC tiled architecture. In Section 4 we study the issue of caching and
compare our middleware with an existing MPI [2] implementation. We discuss relevant
related work in Section 5 and conclude with Section 6.

2 Preliminaries
2.1 The SCC Architecture

Fig. 1: SCC Top-Level Tile Architecture

The SCC [15, 26, 16] is an experimental tiled multi-core processor created by IN-
TEL. The processor consists of 24 tiles in a 4x6 grid, connected by a high bandwidth,
low latency, on-die 2D mesh network, resembling a cluster on a single chip, as shown
in Fig. 1. Each tile hosts two modified P54C processor cores that support x86 compilers
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and operating systems. Each core has 32 kB L1 and 256 kB L2 cache. Furthermore,
each tile has a 16 kB block of SRAM called Message Passing Buffer (MPB), which
is physically distributed, but logically shared. Each tile connects to the mesh network
via a router.There is a Voltage Regulator Controller (VRC) to let programs dynamically
manage the voltage and the frequency of cores, and four on-die Memory Controllers
(MC), which support a total of 16 to 64 GiB off-die DRAM. Only one atomic test-
and-set register and two atomic counter registers are available per core via the system
interface, which is a limiting factor for efficient synchronisation.

The SCC is a research processor, but many of its features are found in commercial
processors, for example in Tilera TILEPro series: In Tilera’s architecture, cores are also
organised as 2D grid of tiles connected to a mesh via on-tile routers, and each core
is capable to run an OS instance. Each tile has 16 kB L1 instruction cache, 8 kB L1
data cache, and a 64 kB combined L2 cache. In contrast to SCC’s mesh network, the
TILEPro has six independent networks to route traffic to different destination, i.e., tile,
tile caches, external memory, and IO Controllers. The Special Purpose Registers (SPRs)
are nearly identical to SCC’s control register buffer (CRB). There are three memory
modes: In default mode the hardware maintains cache coherence, but it does not do so
in non-coherent mode, and in non-cacheable mode all the data blocks are not cached
at any level. Dynamic Distributed Cached Shared Memory (DDC) on TILEPro serves
same purpose as MPB on SCC [30].

2.2 The SCC Memory Architecture
The SCC offers three address spaces:

– A private off-chip address space in DRAM for each core. This memory is cache-
coherent with an individual core’s L1 and L2 caches.

– A shared off-chip address space in DRAM. This memory can optionally be config-
ured as cached, but ensuring cache-coherence is the programmer’s responsibility.

– The MBP, a physically distributed, logically shared address space in SRAM.

Tiles are organised in four memory domains of six tiles each. Each memory domain
maps to a particular MC. Private memory is accessed through the assigned MC, shared
memory can be accessed through any of the four MCs.

Each core has its own 256-entry Lookup Table (LUT) to translate 32-bit core ad-
dresses to a 46-bit system addresses. Each core can address 4 GiB of physical memory,
even though the SCC supports up-to 64 GiB in total. The LUTs provide a mechanism
to translate 32-bit physical core address to 34-bit physical system address. The upper 8
bits of a physical core address index a LUT entry, which contains 22 bits, of which the
upper 12 are routing information. The lower 10 bits are prepended to the lower 24 bits
of the core address, resulting in the 34-bit memory address. The LUTs are loaded with
default values at boot time, but it is possible to change them dynamically.

The interaction of the memory with caches depends on its mapping. The part of the
DRAM that is mapped as a shared region between cores can be configured to be cached
or uncached. If memory is configured as cached, read/write accesses go through the
L1 and L2 caches and manual flushing of the L2 cache is required to commit data to
main memory. The SCC does not provide cache coherence, hence concurrent accesses
to shared data may cause memory consistency issues in cached mode. If the memory is
configured as uncached, read/write accesses go directly to main memory (DRAM).
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Fig. 2: Image Filter
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Fig. 3: LPEL Execution Layer

There is a tag for data in the MPB called Message Passing Buffer Type (MPBT) that
identifies L1 cache lines. Tagged data bypasses the L2 cache and goes directly to the L1
cache in the case of reads. Write operations to tagged memory are stored in the Write
Combine Buffer (WCB) until an entire cache line is filled or a write access to a different
cache line happens. Intel has also extended the Instruction Set Architecture (ISA) with
an instruction to invalidate all tagged cache lines in L1. Accessing invalidated L1 cache
lines forces an update of the L1 cache lines with the data in the shared memory.

2.3 Stream Programming

In stream programming, a program is structured as a set of computation processes called
nodes and a set of directed communication channels between them called streams.
Stream programs can be viewed as a graphs whose vertices are nodes and whose edges
are streams. Streaming data is presented as an infinite sequence of messages. Examples
of stream programming can be found in [6, 14, 29].

Fig. 2 shows an example of an S-Net [14] program — an image filter. The Split-
ter node consumes an image and splits it into sub-images. The number of sub-images
varies depending on the size of the original image. The sub-images are sent to differ-
ent branches where Filter nodes perform the actual filtering operation. The processed
sub-images are sent to the Merger node, which combines them into a complete image.

2.4 LPEL - A Stream Execution Layer with Efficient Scheduling

Our streaming middleware includes two layers: a runtime system (RTS) and an exe-
cution layer. At the RTS layer, each stream is represented as a FIFO message buffer
and each node of the stream program is transformed into a task. A task is an iterat-
ing process that reads messages from its input streams, performs the associated node’s
computations, and writes output messages to its output streams. The role of the RTS is
to enforce the semantic of stream programs, i.e., to ensure that each task reads from and
writes to its appropriate streams. The execution layer below the RTS provides primitives
for task and stream management and a scheduler that distributes tasks to cores.

The Light-weight Parallel Execution Layer (LPEL) [24] is an execution layer pro-
viding user-space threading and communication mechanisms for stream programs on
shared memory platforms. It provides functions for creating, reading, writing and mod-
ifying streams and a task component to create a wrapper around each node before send-
ing it to the scheduler.

LPEL offers two different schedulers: DS-LPEL uses a global mapper to allocate
tasks to cores and a local scheduler for each core. The local scheduling policy is round-
robin, whereas the mapper uses either a round-robin policy or a static mapping [24].
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HRC-LPEL follows a centralised approach of automatic load balancing [21], where
one conductor core is dedicated to manage the set of ready tasks; cf. Fig. 3.

3 LPEL on the SCC
To obtain good performance in terms of throughput and latency, the HRC-LPEL sched-
uler uses the notion of data demands on streams to derive the task priority that is used to
decide which task will be executed on available core. We deployed HRC-LPEL on the
SCC, as it has been shown to be more efficient than the DS-LPEL [21]. Furthermore, it
better suits our future plan to extend the scheduler with power management features.

HRC-LPEL requires shared memory to efficiently move tasks and their associated
states between the workers, however the SCC is by default a distributed memory plat-
form: Each core runs separate OS instance.

Although the SCC offers a fast network between the cores and on-chip shared mem-
ory (MPB), the default configuration does not offer enough shared memory. The limited
number of hardware locks also makes it difficult to deploy HRC-LPEL on the SCC,
as we need at least one lock per stream. Software mechanisms like mutexes from the
POSIX thread library are not safe to use on distributed memory platforms.

For all these reasons we re-configure the SCC as a shared memory platform.

3.1 Shared Memory Creation

We use the LUT entries described in Section 2.2 to configure the SCC such that it
behaves as a shared memory platform. There are 256 LUT entries, of which 0–40 are
used by OS that is running on the core. Entries 192–255 are mapped to the MPBs and
configuration registers. This leaves LUT entries 41–191 unused.

To create shared memory we improve upon technique used in the RCCE [31] li-
brary. In RCCE, 4 LUT entries are mapped to same physical address-space range on
all the cores. As each LUT entry points to a 16 MiB segment of physical memory, this
mapping provides 64 MiB of memory that is shared between all cores. There are two
problems with this approach: Firstly, 64 MiB are not enough to deploy HRC-LPEL and
run some real-world application. The lack of shared memory can be addressed using
the remaining LUT entries. As each entry points to a 16 MiB chunk of memory this
provides us approx 2.5 GiB of shared memory. As mentioned before, 41 of the 256 en-
tries point to physical memory needed by the individual OS instances. To obtain more
shared memory we disable 4 of the 48 cores and use entries from those cores to populate
unused entries of LUT.

The second problem is that with memory mapped as described in RCCE you get
a globally visible shared memory, but the virtual address range is not the same for all
the cores. In this case, pointers are not globally valid. Using offsets from the begin-
ning of the address-space instead would introduce an additional overhead. We solve the
problem by mapping the address-space to same virtual address range on all cores.

Calling standard malloc will allocate space in private rather than shared region of
memory. We have written our own malloc and free functions that are based on K&R
malloc and free [19] to address the issue.

3.2 Shared Memory Management

By using LUT entries to create shared memory, all cores get the same view on the
memory. There are multiple ways we can allocate this shared memory to cores.
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The first approach is to have a global allocator that allocates memory to each core
as and when requested. As shared memory is global each core has to grab the lock,
allocate memory and release lock. The lock is necessary as we do not want meta-data
within the memory allocator to be corrupted due to simultaneous accesses by multiple
cores. This creates unnecessary contention and adversely impacts the performance.

In the second approach, the global memory is divided into chunks of equal size and
then each core can locally manage its chunk. The problem with this approach is that
not all tasks need the same amount of memory. If we distribute equally-sized chunks of
memory to all the cores, we waste resources.

To alleviate this problem we can fuse the first and second approach to create a
hybrid allocator. We can have a global allocator that allocates chunks of memory as and
when required by participating cores and then cores allocate memory locally from these
chunks. When cores do not have enough memory to fulfil the next request for memory
allocation, it will request another chunk from the global allocator.
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Fig. 4: Shared memory layout

Figure 4 depicts the view of shared memory from perspective of different cores.
When a core makes a request to the global allocator it receives a chunk of memory.
The chunks that are managed by a core may not be contiguous. Thus the core keeps its
free storage as a circular list of free blocks, e.g., core 1 manages chunk 1 and 3. If we
consider core 1’s view at the chunks then both chunks are divided into small multiple
blocks. The local allocator manages two lists; first to keep track of free storage, known
as free list. Second list is garbage list to keep track of garbage storage that needs to be
added back to free list. Each block contains a header indicating its size, a pointer to the
next block, and an owner id, followed by the actual memory.

Algorithm 1 allocates n bytes of memory from local shared memory. The local
allocator scc malloc local uses a “first fit” algorithm [19] that is not thread-safe. It is
therefore protected by a lock (lines 1–3). A return value of NULL means there is no
block available from where core can allocate required memory (line 4). The core then
requests a new chunk of memory from the global allocator (line 5). In order to ease
the contention on global allocator the core always requests m bytes where m > n.
To make this newly allocated memory chunk available to the requesting core, we call
scc free local on it so that it gets added to the free list (line 7).
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The function scc malloc local is called again to allocate memory. If the return value
is still NULL that means there is not enough memory available and an error is returned
(lines 8–13). All the calls to scc malloc local and scc free local are protected by a mu-
tex from the POSIX thread library to make them thread-safe.

Algorithm 2 is a simple allocator that keeps track of the size of the global shared
memory and the starting point of this memory as meta-data. When a request for memory
allocation is made by a core, the global allocator performs three steps: First it checks,
if there is enough memory to allocate. If so, it continues to the next step—otherwise it
returns an error. Next it uses a lock implemented by using a test-and-set register to avoid
any corruption of meta-data. Finally it allocates the required memory block and adjusts
the size and starting point of the global shared memory before releasing the lock. This
hierarchical malloc means we will also need a hierarchical free.

Algorithm 1 scc malloc local to allocate
n bytes from local shared memory
1: mutex lock()
2: memptr← scc malloc local(n) . K&R

malloc
3: mutex unlock()

4: if memprt = NULL then
5: chunk← scc malloc global(m)
6: mutex lock()
7: scc free local(chunk)
8: memptr← scc malloc local(n)
9: mutex unlock()

10: if memprt = NULL then
11: Not enough memory available, return

Error
12: else
13: Return memptr

Algorithm 2 scc malloc global to allo-
cate m bytes from global shared memory
Require: m ≤ available global memory
1: tas lock()
2: chunk←m bytes from global memory
3: tas unlock()
4: Return chunk

Algorithm 3 scc free local to free mem-
ory pointed by p

1: if not (shmStart < p < shmEnd) then
2: standard free(p) . p points to private

memory
3: return
4: if owner id = core id then
5: mutex lock()
6: scc free local(p) . K&R free
7: mutex unlock()
8: else
9: acr lock()

10: add p to garbage list of core with
owner id

11: acr unlock()

Algorithm 4 scc free garbage to free
memory from garbage list
1: acr lock()
2: glfirst← gl . copy the garbage list gl
3: gl← NULL . empty the garbage list
4: acr unlock()

5: mutex lock()
6: while glfirst 6= NULL do
7: glnext← block after glfirst
8: scc free local(glfirst) . K&R free
9: glfirst← glnext

10: mutex unlock()

Algorithms 3 and 4 free the shared memory that was allocated with our own alloca-
tor function scc malloc local. We know the range of the global shared memory region
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and can check if the memory that is being freed is within this shared region or not (line
1). If the memory pointed by p was allocated in private region using standard malloc,
then we need to free it using standard free (line 2). If it was allocated in shared re-
gion then owner id from memory block and core id are compared (line 4). If the owner
id and core id are the same, then we call function scc free local, which is the stan-
dard free function corresponding to scc malloc local [19]. As mentioned earlier calls to
scc free local are protected by a lock to ensure thread-safe operation (lines 5–7).

Each core maintains a garbage list of blocks to be freed. Access to this garbage list
is protected by locks. In case of id mismatch, the core will add the block to the garbage
list of the core that allocated the block (lines 9–11).

Algorithm 4 frees the memory blocks that were added to its garbage list by some
other cores. This algorithm is executed periodically during scheduling cycle.

Here we use two different locks. The first lock is to protect the garbage list from
being corrupted due to the concurrent access by other cores (lines 1,4). We use atomic
counter registers of the SCC to implement this lock. The second lock is local to the
core to ensure thread-safe operation of scc malloc local and scc free local by using
a pthread mutex (lines 5,10). Once the garbage list is copied and the original list is
emptied, we can release the lock so that other cores can start adding memory block to
be freed (lines 2,3). Then we loop through copied list and add blocks to free list (lines
6–9) by calling function scc free local (line 8).

3.3 Conductor/Worker Initialisation

When deploying the HRC-LPEL scheduler on the SCC, it makes sense to create exactly
as many workers as there are cores, as the cores of SCC are single-threaded. As there
is no shared memory at the beginning, we can not just create conductor/workers on a
single core and then distribute them amongst participating cores. For this purpose, when
the execution of a program starts, a configuration file is used to decide which core will
be the conductor based on the physical core id.

As mentioned in Section 3.1, to create a truly globally shared memory, all cores have
to map part of program’s address-space to same virtual address range. At the beginning
there is no shared memory, apart from the MPB. Meta-data, including a flag necessary
to establish communication between cores is located in a pre-defined location in MPB.

If a core is a conductor, it starts by initialising the shared memory, tasks, streams
and the static parts of streaming network. If core is a worker, it will busy-wait on a
flag located in MPB. Once the conductor has mapped the LUT entries and created the
shared memory, it places the relevant LUT configuration in the MPB and sets the flag.
Once the flag is set the worker cores configure their LUTs to map shared memory to
same virtual address range as conductor.

HRC-LPEL uses mailboxes to facilitate communication between conductor and
workers. Each mailbox is protected by a lock to ensure that no messages are lost. Once
the mailboxes are setup, the workers request tasks to execute from the conductor and
the conductor will fulfil these requests based on demand and task priority. When there
are no more messages to be processed, the conductor sends a termination message to
all the workers via mailbox.

3.4 Synchronization primitives

HRC-LPEL requires a number of means to synchronise at different points.
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– when initialising, the conductor/workers need a shared flag
– the meta-data of the global shared memory may be accessed by conductor/workers

concurrently
– meta-data of the local shared memory needs to be protected against concurrent

access by multiple threads
– the mailbox is an example of producer/consumer, where messages are

added/removed from queue. This queue needs to be protected against concurrent
access to ensure messages are not lost

– streams are used to transfer data/messages between tasks. Streams are implemented
as FIFO buffers, and these buffers need protection to ensure integrity of data (during
reading/writing to the stream).

We already use all the hardware registers provided by SCC for synchronisation.
The MPB is used to store the shared flag. We use the test-and-set registers to implement
locks that protect the meta-data of the global shared memory. We use the atomic counter
registers to implement locks to protect the garbage list and the mailboxes.

We still need synchronisation primitives to protect the streams and for allocating
core local shared memory. For this purpose we use POSIX (pthread) mutexes. The SCC
runs an OS instance on each core, so we create mutexes with the process shared attribute
set. When different worker threads try to access the same mutex, it will be seen as it
was accessed by different processes.

4 Experiments
We evaluate the efficiency of HRC-LPEL with dynamic load balancing on the SCC
and compare it to DS-LPEL with manual load balancing. In the latter each core has its
local round-robin scheduler, and the cores communicate via MPI. We also evaluate the
scalability of HRC-LPEL for varying numbers of cores.

4.1 Experimental Setup
In our experiments we used a default sccKit 1.4.2 configuration, with the cores run-
ning SCCLinux at 533MHz, and memory and mesh running at 800MHz. We used the
SCCLinux driver for memory mapping.

We used four benchmarks implemented using the S-Net coordination language [14]:

– DES: Encrypts data using DES. This benchmark performs computationally inten-
sive operations on relatively small chunks of data of 2 kB.

– FFT: Calculates a fast fourier transform. This benchmark performs computationally
less intensive operation on relatively large chunks of data of 64 kB.

– HIST: Calculates histograms of images. This benchmark performs computationally
intensive operations on relatively large chunks of data of 127 kB.

– FILT: Applies a series of filters on images. This benchmark performs computation-
ally intensive operations on relatively large chunks of data of 127 kB.

Each benchmark contains a pipeline performing the application’s main function. To
increase the level of concurrency, S-Net provides parallel replication to create multiple
instances of the pipeline.

We used 4 out of the 48 cores as donors for shared memory, and 4 further cores to
model an external source/producer and sink/consumer for stream programs. Since we
need at least one conductor and one worker, our baseline is 2 cores.
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The SCC does not provide cache coherency and offers no direct control over cache
flushing, so we have to ensure consistency when using the cache. We use two variants
of HRC-LPEL: In DLB only the task stack—consisting of non-shared data—is cached,
whereas in NDLB we do not use caching. For DS-LPEL with manual load balancing
MPI is used and memory is not shared, so we can make full use of caching. In this
approach, which we denote MLB, each benchmark is mapped to achieve the best load
balance, i.e., each instance of the pipeline is mapped on a separate core.

The first core is special: Besides processing messages, it is also responsible for re-
ceiving input messages from the environment, distributing messages to the other cores
and collecting them, and sending them out to the environment. The MPI communica-
tions occur only between the first and all other cores. To ensure the message order, MPI
must be used in blocking mode.

4.2 Experimental Results
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Fig. 5: Performance of FFT on NDLB, DLB and MLB

Fig. 5 shows the maximum throughput and minimum latency of the FFT benchmark.
NDLB outperforms DLB by a factor of at least 1.5 for both, throughput and latency,
even though caching is disable in NDLB. Since the SCC is configured as a shared
memory platform, the caches need to be flushed to ensure data integrity among cores.
This causes a significant overhead that caching cannot compensate.

MLB has the lowest throughput, because the communication performance of MPI
is inferior to direct memory access. The maximum communication bandwidth between
2 cores is around 2.78 MiB/s for MPI. Transferring 64 kB between 2 cores takes more
than 22 ms via MPI but only 15 ms via direct memory access. With 2 cores the through-
put for MLB is smaller than for DLB and NDLB, and for more cores the MPI band-
width is shared. MLB requires one core to communicate with all other cores, sending
input messages and receiving output messages. Due to similar load on the cores, this
communication is likely to coincide. MPI introduces a (de)serialising and (un)packing
overhead and operates in blocking mode and this forces each core to wait while sending
messages via the MPI interface. As a result the MLB throughput for MLB can be 7
times smaller than for DLB and 20 times smaller than for NDLB, as shown in Fig. 5.

MLB has a higher latency than NDLB and DLB. Besides the beforementioned rea-
sons, the HRC-LPEL scheduler affords control over the consumption rate of input mes-
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Fig. 6: Scalability of FFT on NDLB
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Fig. 7: Scalability of DES on NDLB
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Fig. 8: Scalability of Histogram on NDLB
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Fig. 9: Scalability of Filter on NDLB

sages to optimise latency [21]. MLB lacks this feature and allows the program to con-
sume input messages even when it is overloaded and unable to process them. The la-
tency for MLB can be 370 and 900 times higher than for DLB and NDLB, respectively.

Fig. 6 shows how NDLB scales for the FFT benchmark. From 2 to 16 cores the
throughput scales roughly linearly, but more cores imply more memory accesses. Mem-
ory is managed by 4 memory controllers and extensive access can cause contention.
Therefore throughput does not scale well between 32 and 40 cores. Although FFT op-
erates on a sizeable amount of data (64 kB), the computation time is relatively small.
On average each task takes 65 ms to process a message, so each core must access a
large amount of data frequently.

In contrast, DES requires extensive computation on a small amount of data. Each
input message is 2 kB and each task takes 194 ms on average to process a message. For
this reason, the throughput of DES scales better, as shown in Fig. 7.

The latency depends on the immanent concurrency level of the stream program.
Increasing the number of cores takes advantage of the concurrency within the stream
program and helps to reduce the latency. However, more cores also imply higher com-
munication costs, as tasks are spread among cores. Figs. 6 and 7 show that the latency
decreases when we increase the number of core up to 16. For 32 and 40 cores the com-
munication overhead surpasses the benefit of concurrency. The latency of DES and FFT
therefore does not scale well for 32 or 40 cores.

Fig. 8 and Fig. 9 shows throughput and latency for HIST and FILT benchmark
respectively. In contrast to DES and FFT here we can see roughly linear scaling in
throughput from 2 cores all the way to 40 cores. This was expected, as HIST and FILT
are computationally more intensive than DES and FFT. For HIST the latency continues
to decrease up to 40 cores. In contrast, a decrease in latency can be observed for FILT
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for up to 32 cores, after which it rises sharply. One reason can be the higher number of
message queuing at merge point in the stream network, which can be a bottleneck.

Table 1 shows the minimal and maximal execution time for each task in the bench-
marks. Some of these tasks have multiple instances occurring in the separate parallel
pipelines created by S-Net. We can see that all benchmarks show a considerable vari-
ation in execution times of tasks. This can be attributed to high work-load imbalance
which depends highly on input messages. These numbers underline the need for a load
balancing scheduler like the one we have presented.

The table shows that the <collect> task of the FILT benchmark has nearly 4000%
variation on 40 cores (for 32 core run this variation is 495.30%). The <collect> task
merges messages from multiple streams and forwards them to the subsequent compo-
nent. Such a high variation indicates that at some point multiple messages were waiting
to be merged, resulting in the sharp increase in latency seen in Fig. 9.

Benchmark Task Min Max Diff (%)

FFT
initP 1.1232s 1.9954s 77.65s
stepP 10.3226s 15.2775s 48.00s

HIST

<collect> 0.9477s 1.5814s 66.86s
<split> 0.8987s 4.2756s 375.74s

split 3.9660s 5.0427s 27.15s
calHist 22.3738s 28.7144s 28.34s

FILT

<collect> 0.6123s 27.0231s 4313.34s
<filter> 0.1787s 0.4919s 175.19s

<parallel> 0.4500s 1.5947s 254.38s
<split> 0.3979s 11.5076s 2792.24s

filt 134.2071s 470.1736s 250.33s
split 1.0512s 6.3557s 504.62s

Table 1: Minimal and maximal task execution time on 40 cores

5 Related work
Verstraaten’s SCC port of S-Net [32], where the core allocation is determined via static
user annotations at the S-Net level, is closely related to our approach. In his approach
the programmer must manually specify the allocation at compile time, which can be
difficult and precludes system-wide load balancing under dynamic demand.

In our approach cores are allocated dynamically at the LPEL level beneath the S-
Net runtime system. The approach involves keeping track of the system-wide workload
and resource availability, enabling efficient task scheduling to maximise throughput and
to reduce latency by dynamic load balancing. Also our approach can easily be extended
towards dynamic power management.

The two approaches also differ in overhead. The distributed version of S-Net runs
several extra tasks per core, such as the input manager, the output manager and the
worker. This incurs extra overhead due to OS-level context switches. Our approach has
only worker tasks, which considerably reduces the context switching overhead.
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In [1] authors present a memory allocator called scalloc that is fast, multicore-
scalable and provides low-fragmentation. The allocator is made-up of two parts; a fron-
tend to manage memory in spans and a backend to manage empty spans. spans are same
concept as superblocks in Hoard [3]. The spans are organised in 29 different size classes
ranging from 16 bytes to 1MB. Any request for memory over 1MB is allocated directly
from OS using mmap. Span-pool is a global concurrent data structure that holds spans
in different pools using arrays and stack. Each span is used to fulfil memory request in
terms of blocks, when all the blocks in span are freed, i.e. span has no allocated block
it is returned to span-pool. With regard to memory allocation and deallocation we have
similar approach, for example notion of ownership of memory block and separate lists
to hold memory blocks that needs to be freed. For example, add block to local free list
when allocation was done by same core, or add to remote free list otherwise, in case
of scalloc it will be threads not cores. The main difference in our approach is that our
allocator works across different instance of OS and uses less complex data structure
and, can handle allocation bigger than 1MB in size.

In Intel’s [9] Privately Owned Public Shared Memory (POP-SHM) approach, each
core offers some private memory to share data with other cores. For computations, how-
ever, the data must be copied to private memory. In contrast, our middleware hides the
details of memory management, enabling programming at a high level of abstraction.

Software Managed Cache-coherence (SMC) [33] provides coherent, shared, virtual
memory, but it is the responsibility of the programmer to ensure that data is placed
in the shared region and that operations to shared data are guarded by release/acquire
calls. SMC is a library that provides coherent, shared memory, where as our middleware
provides a high-level abstraction that simplifies programming.

MESH [23] is a framework for memory-efficient sharing. It uses remote method
invocation to pass access to shared object between cores. The MESH framework uses
POP-SHM for shared memory. It provides a higher level of abstraction than POP-SHM,
but in contrast to our approach it does not provide a scheduler that is geared toward
maximising throughput and reducing latency in streaming applications and relieving
the programmer from worrying about load balancing.

Prell et al. [22] have presented an implementation of Go’s [11] concurrency con-
structs on the SCC. Their approach uses Intel’s RCCE [31] as communication library
and employs work-stealing. The work shows that the implementation failed to scale
due to limitation such as the number of simultaneously used channels and the size and
number of data items exchanged over channels. In contrast, our middleware provides
automatic load balancing and avoids these limitation. Furthermore, our middleware can
easily be extended to exploit SCC-specific power management functionality.

6 Summary and Conclusion
We have presented a hierarchical memory management approach for tiled many-core
processors. This memory management approach is capable to provide shared memory
across multiple OS instances running on different cores. Based on that memory man-
ager we were able to port the Light-weight Parallel Execution Layer (LPEL) to the Intel
SCC research processor, making it the first execution middleware with dynamic load
balancing to run on the SCC. We have studied the abstraction of communication, lo-
cal cache deployment, and the resource-efficient use of the cores on the SCC research
processor, which serves as an example of a tiled many-core architectures.
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Our results show that our middleware is superior to an MPI-based implementation
in throughput and latency. LPEL relies on multi-threading to offer high-performance
lightweight tasks switching, which requires MPI to use TCP-based sock channels.

We also found that exploiting local caches is basically limited to non-shared data
objects, resulting in inferior performance compared to the non-cached version. Using
a cache-coherent tiled architecture may yield better performance. Further work is re-
quired to study the influence of cache locality and core interconnect topology for cache-
coherent architectures.
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Abstract. JavaScript is the language of the web. It is used by more
than 89% of all the websites. Most of them rely on third-party libraries
for connecting to social networks, feature extensions, or advertisement.
Some of these libraries are packaged with the application, but others are
loaded at run time from origins of different trustworthiness, sometimes
depending on user input. Thus, managing untrusted JavaScript code has
become one of the key challenges of present research on JavaScript.
This work is about TreatJS and the TreatJS-Sandbox .
TreatJS is a language embedded, higher-order contract system for JavaScript
which enforces contracts by run-time monitoring. Beyond providing the
standard abstractions for building higher-order contracts (base, function,
and object contracts), TreatJS ’s novel contributions are its guarantee of
a non-interfering contract execution, its systematic approach to blame
assignment, its support for contracts in the style of union and inter-
section types, and its notion of a parameterized contract scope, which
is the building block for composable run-time generated contracts that
generalize dependent function contracts.
The TreatJS-Sandbox is a language-embedded sandbox for full JavaScript.
It enables scripts to run in a configurable degree of isolation with fine-
grained access control. It provides a transactional scope in which effects
are logged for review by the access control policy. After inspection of the
log, effects can be committed to the application state or rolled back.

1 Introduction

We present the design and implementation of TreatJS , a language embedded,
higher-order contract system for JavaScript which enforces contracts by run-time
monitoring. TreatJS supports most features of existing systems and a range of
novel features that have not been implemented in this combination before. No
source code transformation or change in the JavaScript run-time system is re-
quired. In particular, TreatJS is the first contract system for JavaScript that
supports the standard features of contemporary contract systems (embedded
contract language, JavaScript in flat contracts, contracts as projections, full in-
terposition using JavaScript proxies) in combination with the following three
novel points.

1. Noninterference. Contracts are guaranteed not to exert side effects on a
contract abiding program execution. A predicate is an arbitrary JavaScript
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function, which can access the state of the application program but which
cannot change it. An exception thrown by a predicate is not visible to the
application program.

2. Dynamic contract construction. Contracts can be constructed and composed
at run time using contract abstractions without compromising noninterfer-
ence. A contract abstraction may contain arbitrary JavaScript code; it may
read from global state and it may maintain encapsulated local state. The lat-
ter feature can be used to construct recursive contracts lazily or to remember
values from the prestate of a function for checking the postcondition.

3. New contract operators. Beyond the standard contract constructors (flat,
function, pairs), TreatJS supports object, intersection, and union contracts.
Furthermore, contracts can be combined arbitrarily with the boolean con-
nectives: conjunction, disjunction, and negation.

2 TreatJS by Example

TreatJS is implemented as a library so that all aspects of a contract can be speci-
fied using the full JavaScript language. The library relies on JavaScript proxies to
guarantee full interposition for contracts. It further exploits JavaScript’s reflec-
tive features to run contracts in a sandbox environment, which guarantees that
the execution of contract code does not modify the application state. No source
code transformation or change in the JavaScript run-time system is required.

In TreatJS , contracts are first-class values that can be stored or further com-
posed. They are dormant until they are asserted to a value.

We start out with explaining TreatJS ’s notation for base contracts and func-
tion contracts, and then move on to discuss intersection and union contracts.
The implementation of the system is available on the Web. 1.

2.1 Base Contracts

The base contract is the fundamental building block for all other contracts.
It is defined by a predicate, that is, a function returning a boolean value. In
JavaScript, any function can be used as a predicate, because any return value
can be converted to boolean. For example, the function typeOfNumber can serve
as a predicate that checks whether its argument is a number.

1 function typeOfNumber (arg) {
2 return (typeof arg) === ’number’;
3 };

To create a base contract from such a predicate, we apply the appropriate
contract constructor to it.

4 var Num = Contract.Base (typeOfNumber);

1 http://proglang.informatik.uni-freiburg.de/treatjs/
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Here, Contract is the object that encapsulates the TreatJS implementation.
Its assert method attaches a contract to a subject. Attaching a base contract
applies the predicate to the value. If the result is true, assert returns the original
value. Otherwise, assert signals a contract violation which blames the subject.
The following example demonstrates both outcomes.

5 Contract.assert (1, Num); // accepted, returns 1
6 Contract.assert (’a’, Num); // violation, blame subject ’a’

Figure 2.1 defines a number of base contracts for later use. Analogous to
Num, the contracts Bool and Str check the type of their argument. Contract
Any is a contract that accepts any value.

7 var Bool = Contract.Base (function (arg) {
8 return (typeof arg) === ’boolean’;
9 });

10 var Str = Contract.Base (function (arg) {
11 return (typeof arg) === ’string’;
12 });
13 var Any = Contract.Base (function (arg) {
14 return true;
15 });

Fig. 1. Some utility contracts.

2.2 Function Contracts

While a base contract can specify finitary properties of a function f (like f(1) =
0), a function contract is needed to specify that a function uniformly maps num-
bers to booleans. A function contract is built from one or more contracts, zero or
more for the arguments and one for the result of the function. Asserting a func-
tion contract to a non-function value immediately signals a contract violation.
Asserting it to a function creates a wrapper function that asserts the argument
contracts to the arguments of each call of the function and the result contract
to the return value of each call.

As a running example, we consider the function plus, which applies the plus
operator + to its arguments and returns the result.

16 function plus(x, y) {
17 return (x + y);
18 }

The function contract PlusNum restricts a function’s argument to a number
and asserts that the result is a number.
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19 var PlusNum = Contract.AFunction ([Num,Num], Num);
20 var plusNum = Contract.assert (plus, PlusNum);

In general, a JavaScript function has no fixed arity and arguments are passed
to a function in a special array like object. Thus, a standard function contract
takes two arguments. The first argument is an object contract that maps an
argument to a contract. The second argument is a contract for the function’s
return.

Contract.AFunction is the constructor for a simple function contract that
takes an array of contracts for the arguments and a contract for the result of a
function call as arguments.

The contracted function accepts any argument that satisfies the Num con-
tract. If there is an argument that violates its contract, then the function contract
raises an exception that blames the context, which is in this case the caller of the
function that provides the wrong kind of argument. If the argument is ok, but
the result contract fails, then blame is assigned to the subject (i.e., the function).
Here are some examples that exercise plusNum as well as a broken version of it
that returns a string.

21 plusNum (1, 2); // accepted, returns true
22 plusNum (’a’, ’b’); // violation, blame context ’a’

23 function plusBroken (x) {
24 return (’’ + (x + y));
25 };
26 var plusNum2 = Contract.assert (plusBroken, PlusNum);
27 plusNum2 (1, 2); // violation, blame subject (function)

Higher-order contracts are also possible: the argument and result contracts
may themselves be function contracts and so on, recursively. As an example, a
function that takes a number and a numeric plus function as arguments and
returns a number may be specified by the following contract.

28 var Add1Num =
29 Contract.AFunction ([Num, PlusNum], Num);

30 function add1Broken (x, plus) {
31 return plus(x, ’1’);
32 }
33 var add1BrokenNum = Contract.assert(add1Broken, Add1Num);

Higher-order contracts open up new ways for a function not to fulfill its
contract. For example, the function add1Broken violates the contract Add1Num:
the call add1BrokenNum (1, plus) signals a violation that blames the subject
(the function) because it supplies the wrong kind of argument to its parameter
plus.

Dually, a function that returns a function may be compromised. Consider
the function getAdd1 that fulfills the contract GetAdd1:
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34 function getAdd1 (plus) {
35 return function add1 (x) {
36 return plus(x, 1);
37 }
38 }
39 var GetAdd1 = Contract.AFunction ([PlusNum],
40 Contract.AFunction ([Num], Num));
41 var add1Num = Contract.assert (getAdd1, GetAdd1) (plus);

42 add1Num (5); // accepted
43 add1Num (’a’); // violation, blame context ’a’

This example demonstrates that a function call that receives a suitable argu-
ment and returns a contract abiding result can still lead to a contract violation
if the result is misused.

2.3 Intersection and Union Contracts

In the previous section, the function plus was contracted with PlusNum to restrict
the arguments to numbers. Indeed, plus fulfills this contract so that we might
say it has type Num,Num → Num. However, the plus operator of JavaScript is
overloaded and does not restrict its arguments to numbers: it works just as well
if one argument is a string. Thus, plus also has type Str ,Str → Str .

TreatJS provides a corresponding constructor for intersection contracts.

44 var PlusStr = Contract.AFunction ([Str,Str], Str);
45 var PlusNumStr = Contract.Intersection (PlusNum, PlusStr);
46 var plusNumStr = Contract.assert (plus, PlusNumStr);

The function plusNumStr may be applied to number or string values and
promises to return a either a number or a string, depending on its arguments.
The context is blamed if it provides the function with an argument that does
not fulfill the expectations. The subject is blamed if the function does not fulfill
both constituent contracts.

Generally, the subject f of an intersection contract C ∩D must fulfill both
contracts C and D. If C = C1 → C2 and D = D1 → D2 are both function
contracts, then any argument to f has to fulfill C1∪D1. Additionally, the context
must be prepared to handle a value satisfying C2 ∪ D2. In case the argument
contracts overlap (i.e., C1 ∩D1 6= ∅), then applying the function to an element
in their intersection must yield a result that satisfies both, C2 and D2. As an
example for the case where C1 ∩D1 6= ∅, consider

47 var StrAny = Contract.AFunction ([Str,Any], Str)
48 var AnyStr = Contract.AFunction ([Any,Str], Str)
49 var PlusAny = Contract.Intersection (StrAny, AnyStr);

which is another valid typing for the plus function.
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Just like intersections, union contracts are also applicable to functions. They
also mimick union types as closely as possible. That is, a function satisfies a
union of two function contracts if it satsifies either of them.

50 var TestPlus = Contract.Union(
51 Contract.AFunction([PlusNum], Num),
52 Contract.AFunction([PlusStr], Str));

A function which satisfied such a contract is either a function that accepts
a plus function which satisfies PlusNum and returns a number or by one that
accepts a plus function that satisfies PlusStr and returns a string value. As an
example consider the testPlus function.

53 function testPlus (plus) {
54 return plus(1, 2);
55 }
56 var testPlusNumStr = Contract.assert(testPlus, TestPlus);

Because the context do not know which kind or arguments testPlus supplies
to its plus argument, he has to call testPlus with a plus function that satisfiers
the intersection between PlusNum and PlusStr.

2.4 Dependent Contracts

A dependent contract is a contract on functions where the range portion depends
on the function argument. The contract for the function’s range can be created
with a contract abstraction, a contract that returns a contract. This abstration
is invoked with the caller’s argument. so that the returned contract may refer to
those values.

TreatJS ’s dependent contract operation only builds a range contract in this
way; it does not check the domain as checking the domain may be achieved with
a conjunction with another function contract.

For example, a dependent contract may be used to specify that the arguments
type of function add1 corresponds to the type of the functions return.

57 var SameType = Contract.SDependent(function(input) {
58 return Contract.Base(output) {
59 return (typeof input) === (typeof output).
60 }
61 });

The contract receives the input arguments and returns a contract for the
range that checks that the type of the input is identical to the type of the result.
When calling a function contracted with the dependent contract SameType, the
abstraction is invoked on the arguments and the resulting contract is imposed
on the return value.
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3 Sandboxing of Predicates

TreatJS is implemented as a library so that all aspects of a contract can be
specified using the full JavaScript language. For example, the base contract Num
checks its argument to be a number.

62 var Num = Contract.Base(function (arg) { {
63 return (typeof arg) === ’number’;
64 });

Asserting a base contracts to a value causes the predicate to be checked by
applying the predicate to the value.

65 Contract.assert(1, Num); // accepted

However, predicates are attempted not to influence the program state in any
way. A monitored program execution should either throw a contract violation or
evaluate to the same result as without contracts.

TreatJS relies on the sandbox presented in this work to guarantee that the
execution of contract code does not interfere with the contract abiding execution
of the host program.

To illustrate, we use a modified Num contract.

66 var NumBroken = Contract.Base(function(arg) {
67 type = (typeof arg);
68 return type === ’number’;
69 });

When asserting NumBroken, sandboxing intercepts the unintended write to the
global variable type in the following code and throws an exception.

As read-only access to objects and functions is safe and useful in many con-
tracts, TreatJS facilitates making external references visible inside of the sand-
box. For example, the Ary contract below references the global object Array.

70 var Ary = Contract.With(
71 {Array:Array},
72 Contract.Base(function (arg) {
73 return (arg instanceof Array);
74 }));

4 Transaction-based Sandboxing: A Primer

Today’s state of the art in securing JavaScript application that include code from
different origins is an all-or-nothing choice. Browsers apply protection mecha-
nisms, such as the same-origin policy or the signed script policy, so that scripts
either run in isolation or gain full access.

While script isolation guarantees noninterference with the function of the
application as well as preservation of data integrity and confidentiality, there
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are scripts that must have access to part of the application state to function
meaningfully. As all included scripts run with the same authority, the application
script cannot exert fine-grained control over the use of data by an included script.

Transactional sandboxing is inspired by the idea of transaction processing in
database systems and transactional memory. Each sandbox implements a trans-
actional scope the content of which can be examined, committed, or rolled back.
Its design is inspired by revocable references and SpiderMonkey’s compartment
concept. Our sandbox provides the following novel features:

1. Language embedded. The sandbox is implemented as a library in JavaScript.
It handles the full JavaScript language (ES5) including its dynamic features.
No source code transformation or change in the JavaScript run-time system
is required.

2. Full interposition. Our sandbox adapts SpiderMonkey’s compartment con-
cept2 and runs code in isolation to the application.

3. Transaction-based sandboxing. The sandbox provides a transactional scope.
A proxy-based membrane makes objects accessible inside the sandbox, per-
forms effect logging, and enables locally visible modifications. After inspec-
tion of the log, effects can be committed to the application state or rolled
back.

The implementation of the system is available on the Web3.

4.1 Cross-Sandbox Access

We consider operations on binary trees as defined by Node in Figure 2 along
with some auxiliary functions. As an example, we perform operations on a tree
consisting of one node and two leaves. All value fields are initially 0.

19 var root = new Node(0, new Node(0), new Node(0));

Next, we create a new empty sandbox by calling the constructor Sandbox.
Its first parameter acts as the global object of the sandbox environment. It
is wrapped in a proxy to mediate all accesses and it is placed on top of the
scope chain for code executing inside the sandbox. The seconds parameter is a
configuration object. A sandbox is a first class value that can be used for several
executions.

20 var sbx = new Sandbox(this, {/∗ some parameters ∗/});

One use of a sandbox is to wrap invocations of function objects. To this end, the
sandbox API provides methods call, apply, and bind analogous to methods from
Function.prototype. For example, we may call setValue on root inside of sbx.

2 SpiderMonkey creates one heap for each website, initially introduced to optimize
garbage collection. All objects created by a website are only allowed to touch objects
in the same compartment. Proxies are used as cross compartment wrappers to make
objects accessible in other compartments.

3 https://github.com/keil/Sandbox
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1 function Node (value, left, right) {
2 this.value = value;
3 this.left = left;
4 this.right = right;
5 }
6 Node.prototype.toString = function () {
7 return (this.left?this.left + ”, ”:””) + this.value +(this.right?”, ”+this.right:””);
8 }
9 function heightOf (node) {

10 return Math.max(((node.left)?heightOf(node.left)+1:0), ((node.right)?heightOf(
node.right)+1:0));

11 }
12 function setValue (node) {
13 if (node) {
14 node.value=heightOf(node);
15 setValue(node.left);
16 setValue(node.right);
17 }
18 }

Fig. 2. Implementation of Node. Each node object consists of a value field, a left
node, and a right node. Its prototype provides a toString method that returns a string
representation. Function heightOf computes the height of a node and function setValue
replaces the value field of a node by its height, recursively.

21 sbx.call(setValue, this, root);

The first argument of call is a function object that is decompiled and redefined
inside the sandbox. This step erases the function’s free variable bindings and
builds a new closure relative to the sandbox’s global object. The second argu-
ment, the receiver object of the call, as well as the actual arguments of the call
are wrapped in proxies to make these objects accessible inside of the sandbox.

The wrapper proxies mediate access to their target objects outside the sand-
box. Reads are forwarded to the target unless there are local modifications. The
return values are wrapped in proxies, again. Writes produce a shadow value that
represents the sandbox-internal modification of an object. Initially, this modifi-
cation is only visible to reads inside the sandbox.

Native objects, like the Math object in line 10, are also wrapped in a proxy,
but their methods cannot be decompiled because there exists no string represen-
tation. Thus, native methods must either be trusted or forbidden. Fortunately,
most native methods to not have side effects, so we chose to trust them.

Given all the wrapping and sandboxing, the call in line 21 did not modify
the root object:

22 root.toString(); // returns 0, 0, 0

But calling toString inside the sandbox shows the effect.
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23 sbx.call(root.toString, root); // return 0, 1, 0

4.2 Effect Monitoring

During execution, each sandbox records the effects on objects that cross the
sandbox membrane. The resulting lists of effect objects are accessible through sbx
.effects, sbx.readeffects, and sbx.writeeffects which contain all effects, read effects,
and write effects, respectively. All three lists offer query methods to select the
effects of a particular object.

24 sbx.call(heightOf, this, root);
25 var rects = sbx.effectsOf(this);
26 print(”;;; Effects of this”);
27 rects.foreach(function(i, e) {print(e)});

The code snippet above prints a list of all effects performed on this, the global ob-
ject, by executing the heightOf function on root. The output shows the resulting
accesses to heightOf and Math.

28 ;;; Effects of this
29 (1425301383541) has [name=heightOf]
30 (1425301383541) get [name=heightOf]
31 (1425301383543) has [name=Math]
32 (1425301383543) get [name=Math]
33 ...

The first column shows a timestamp, the second shows the name of the effect,
and the last column shows the name of the requested parameter. The list does
not contain write accesses to this. But there are write effects to value from the
previous invocation of setValue.

34 var wectso = sbx.writeeffectsOf(root);
35 print(”;;; Write Effects of root”);
36 wectso.foreach(function(i, e) {print(e)});

37 ;;; Write Effects of root
38 (1425301634992) set [name=value]

4.3 Inspecting a Sandbox

The state inside and outside of a sandbox may diverge for different reasons. We
distinguish changes, differences, and conflicts.

A change indicates if the sandbox-internal value has been changed with re-
spect to the outside value. A difference indicates if the outside value has been
modified after the sandbox has concluded. For example, a difference to the pre-
vious execution of setValue arises if we replace the left leaf element by a new
subtree of height 1 outside of the sandbox.
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39 root.left = new Node(new Node(0), new Node(0));

Changes and differences can be examined using an API that is very similar
to the effect API. There are flags to check whether a sandbox has changes or
differences as well as iterators over them.

A conflict arises in the comparison between different sandboxes. Two sandbox
environments are in conflict if at least one sandbox modifies a value that is
accessed by the other sandbox later on. We consider only Read-After-Write and
Write-After-Write conflicts.

To demonstrate conflicts, we define a function appendRight, which adds a
new subtree on the right.

40 function appendRight (node) {
41 node.right = Node(’a’, Node(’b’), Node(’c’));
42 }

To recapitulate, the global root is still unmodified and prints 0,0,0,0,0, whereas
the root in sbx prints 0,0,0,1,0. Now, let’s execute appendRight in a new sandbox
sbx2.

43 var sbx2 = new Sandbox(this, {/∗ some parameters ∗/});
44 sbx2.call(appendRight, this, root);

Calling toString in sbx2 prints 0,0,0,0,b,a,c. However, the sandboxes are not in
conflict, as the following command show.

45 sbx.inConflictWith(sbx2); // returns false

While both sandboxes manipulate root, they manipulate different fields. sbx re-
calculates the field value, whereas sbx2 replaces the field right. Neither reads data
that has previously been written by the other sandbox. However, this situation
changes if we call setValue again, which also modifies right.

46 sbx.call(setValue, this, root);
47 var cofts = sbx.conflictsWith(sbx2); // returns a list of conflicts
48 cofts.foreach(function(i, e) {print(e)});

It documents a read-after-write conflict:

1 Confict: (1425303937853) get [name=right]@SBX001 − (1425303937855) set [
name=right]@SBX002

4.4 Transaction Processing

The commit operation applies select effects from a sandbox to its target. Effects
may be committed one at a time by calling commit on each effect object or all
at once by calling commit on the sandbox object.

49 sbx.commit();
50 root.toString(); // returns 0, 1, 0, 2, 0
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The rollback operation undoes an existing manipulation and returns to its previ-
ous configuration before the effect. Again, rollbacks can be done on a per-effect
basis or for the sandbox as a whole. However, a rollback did not remove the
shadow object. Thus, after rolling back, the values are still shadow values in sbx.

51 sbx.rollabck();
52 root.toString(); // returns 0, 1, 0, 2, 0
53 sbx.call(toString, this, root); // returns 0, 0, 0, 0, 0

The revert operation resets the shadow object of a wrapped value. The following
code snippet reverts the root object in sbx.

54 sbx.revertOf(root);

Now, root’s shadow object is removed and the origin is visible again in the
sandbox. Calling toString inside of sbx returns 0,1,0,2,0.

4.5 Transparent Sandboxing

Transparent sandboxing is a special mode of our sandbox. It deactivates the
shadowing of write operations so that modifications apply directly to the target
objects. As those modifications are performed inside the sandbox, write effects
are still logged, so that they can be inspected and rolled back as usual. It can
be enabled by changing the transparent flag in the sandbox configuration. Here
is an example:

55 var tsbx = new Sandbox(this, {transparent:true});
56 tsbx.call(setValue, this, root);

Calling toString demonstrates the difference to the standard, non-transparent
sandbox: All changes of line 56 are visible.

57 root.toString(); // returns 0, 1, 0, 2, 0

Calling tsbx.rollback(); resets all modifications of tsbx. Afterwards, root prints
0,0,0,2,0.

4.6 Pre-state Snapshot

The snapshot mode instructs the membrane to clone target objects at initializa-
tion time and to use the clone as shadow object. The snapshot enables to rebase
the sandbox to its initialization state.

A snapshot can be triggered by including the object in the third argument
of the sandbox constructor, the snapshot array.

58 var ssbx = new Sandbox(this, {/∗ some parameters ∗/}, [root]);

The sandbox can be used as before.

59 ssbx.call(setValue, this, root);
60 ssbx.call(root.toString, root); // returns 0, 1, 0, 2, 0
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Remember, the original root object prints 0,0,0,2,0. Now, let’s do some changes,
for example by calling setValue(root);.

Both representations prints 0,1,0,2,0. But if one would rebase the sandbox
to its initial state, by calling ssbx.rebase();, the values go back to the version
that exist at initialization time.

61 ssbx.call(root.toString, root); // returns 0, 0, 0, 2, 0

4.7 Wrapping

The methods call and apply are shortcuts. Internally, they call a wrap method to
redefine the function inside of the sandbox and apply the corresponding method
from Function.prototype to it. The following example shows an alternative to
the call in line 21.

62 sbx.wrap(setValue).call(this, root);

But wrap can also be used independently. One example is to obtained a sand-
boxed version of root.

63 var sbxroot = sbx.wrap(root);

The returned object is wrapped in the sandbox membrane and identical to the
object visible inside of the sandbox. Each read access on sbxroot returns another
sandbox object and each each write access causes an effect. All sandbox features
like commit, rollback, and effect logging remain active.

Calling toString on sbxroot returns 0,1,0,2,0. The method call illustrates that
sbxroot is the modified object that occurs in sbx. Nevertheless, sbxroot can be
used like any other object.

This feature allows us to extend an existing data structure with transactional
features. For example, instead of defining root directly, a developer could define
it as follow.

64 var sbx3 = new Sandbox(this, {/∗ some parameters ∗/});
65 var root = sbx3.wrap(new Node(0, new Node(0), new Node(0)));

Proxies guarantee that the new root object performs as usual, for example when
calling setValue(root). But it enables to use all sandbox features in addition, e.g.
to commit changes or to roll back.

5 Related Work

Contract Monitoring TreatJS [7] is a language embedded, dynamic, higher-order
contract system implemented in JavaScript. Its development is based on a novel
denotational semantics of contracts and on a blame calculus [6] that enables
higher-order contract with unrestricted intersection and union of contracts. The
specification for intersection and union contracts is strongly inspired by their
type-theoretic counterparts. This connection tightly integrates statically and
dynamically typed worlds which may be beneficial for future integration in a
gradual type system.
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Effect Monitoring JSConTest [2] is a framework that helps to investigate the
effects of unfamiliar JavaScript code by monitoring the execution and by sum-
marizing the observed access traces to access permission contracts. It comes with
an algorithm [3] that infers a concise effect description from a set of access paths
and it enables the programmer to specify the effects of a function using access
permission contracts.

JSConTest2 [5] is a redesign and a reimplementation of JSConTest using
JavaScript proxies. The new implementation addresses shortcomings of the pre-
vious version. In particular, the proxy-based implementation guarantees full in-
terposition for the full language and for all code regardless of its origin, including
dynamically loaded code and code injected via eval.

JavaScript Proxies Object equality becomes an issue for non-interference when
the executed code ends up in a mixture between wrapper and target. The prob-
lem arises if an equality test between wrapper and target returns false instead
of true. The work of Keil et al. [4] examines this problem and presents a modifi-
cation of the underlying VM with respect to object equality and introduces new
transparent proxies that fit better to this use case.

6 Conclusion

We presented TreatJS , a language embedded, dynamic, higher-order contract
system for full JavaScript. TreatJS extends the standard abstractions for higher-
order contracts with intersection and union contracts, boolean combinations of
contracts, and parameterized contracts, which are the building blocks for con-
tracts that depend on run-time values. TreatJS implements proxy-based sand-
boxing for all code fragments in contracts to guarantee that contract evaluation
does not interfere with normal program execution. The only serious impediment
to full noninterference lies in JavaScript’s treatment of proxy equality, which
considers a proxy as an individual object.

The TreatJS-Sandbox runs JavaScript code in a configurable degree of isola-
tion with fine-grained access control. It provides a transactional scope in which
effects are logged for inspection. Effects can be committed to the application
state or rolled back.

Both systems are implemented as a JavaScript library. No source code trans-
formation or adaption in the JavaScript run-time system is required. All aspects
are accessible through a sandbox API.
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Abstract. Cyper-physical systems (CPS) are networked embedded systems, hav-
ing often real-time requirements for individual control tasks. The complexity of
CPS due to concurrency can be reduced by modelling it as a streaming network,
providing an implicit local synchronisation mechanism.
In this paper we show that specifying real-time requirements for such streaming
networks is not straight forward. Especially specifying latency is challenging due
to their global context from which they arise. Analysing models at requirements
and system design level, we provide practical solutions to the specification of the
timing behaviour of such models of streaming networks.

1 Introduction

Streaming networks consists of processing nodes connected via communication chan-
nels. Since this communication channels have a single reader and a single writer, stream-
ing networks are a well-recognised for their benefit of coping with the complexity of
concurrent systems.

This strength of streaming networks makes them also an interesting paradigm to
apply to cyber-physical systems (CPS). CPS are networked embedded systems, thus
exposing naturally a high level of concurrency [9]. At the same time CPS have often
real-time requirements, often for local subsystems, but sometimes also at a global level.

Lee has proposed coordination languages as a means to cope with the complexity
of CPS [9]. We support this observation and also propose to use the streaming network
paradigm such the underlying concept for such a coordination language.

In this paper we do not focus on the overall design of a coordination language well
suited for CPS. But rather, we focus on the underlying streaming network paradigm
and discuss how it suits the specification of real-time requirements. As we show in this
paper, it is not so easy to specify real-time properties for streaming networks in a simple
and resource-efficient way.

In Section 2 we study the specification of real-time properties for real-time systems
of simple structure, exposing the difference between modelling timing behaviour at
requirements level and at system design level. In Section 3 we show the challenges that
? This work was partially supported by COST Action IC1202: “Timing Analysis On Code-

Level” (TACLe). The research leading to these results has received funding from the FP7
ARTEMIS-JU research project “ConstRaint and Application driven Framework for Tailoring
Embedded Real-time Systems” (CRAFTERS).
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arise when aiming to annotate real-time properties in streaming networks and propose
concrete solutions. Section 4 shows some examples of streaming networks applied to
CPS. A selection of related work is discussed in Section 5. Section 6 concludes the
paper.

2 Development of Real-time Systems

In order to expose the challenge of specifying real-time properties of streaming net-
works we first review some fundamentals of developing real-time programs. There are
basically two extreme contexts for modelling extra-functional behaviour like real-time
requirements:

1. a high-level model that describes how the system is expected to fit into the environ-
ment. We call such a model a requirements specification or requirements model.

2. a low-level model that describes how the system is designed, with various levels of
detail. We call such a model a design model.

Depending on the concrete software development processes of specific application do-
mains, there are more fine-grained distinctions of modelling levels. However, for the
sake of simplicity, we focus only on these two fundamental ones. Furthermore, in the
following we discuss the timing-related aspects of such system models.

To understand modelling of real-time systems from its fundamentals, we assume a
simple system structure where a particular services is expected to work on input, derived
from sensors, to produce an output for an actuator. This fundamental structure is shown
in the top of Figure 1.

Focusing on the system requirements we derive a requirements model. In the con-
text of real-time systems such a requirements model has to include the specification
of extra-functional properties, especially timing requirements. The modelling aspects
of timing requirements are shown in the bottom half of Figure 1. Based on the simple
system structure we can express timing requirements as a tuple 〈Ix, Sy, Oz, T reqx,y,z〉,
meaning that each timing requirement Treqx,y,z spans from a particular input Ix to an
output Oz , characterising a service Sy . In the timing domain these requirements typ-
ically include the processing rate and the latency of a service. The processing rate is
sometimes also called throughput. The variation in rate or latency is called jitter, and
can also be included in the timing requirements. While often jitter is exclusively associ-
ated with latency, we consider it also applicable to processing rate, especially for such
real-time systems where the processing rate is more important than the latency, e.g., in
video streaming applications without control loops.

To give an example of a timing requirement, we consider the maximum latency for
a service, also called a deadline. Deadlines are called firm if the utility of a service
abruptly drops after exceeding the deadline, otherwise it is called a soft deadline [8].
Figure 2 shows the specification of a deadline for a service Sy from input Ix to output
Oz . It is important to include the data-flow path attached to the timing requirement,
since the same service, for example, might also write to another output with a different
deadline attached to it. The deadline shown in Figure 2 is relative, i.e., the maximum
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Fig. 1. Derivation of real-time requirements from application context

latency is measured against the trigger instant at input Ix. Each trigger instant of input
Ix results into a different absolute deadline:

tdeadline = tinput + tdeadline,rel

Figure 3 shows the transition from the requirements model to the design model.
While the requirements model is solely focused on the demands imposed by the ap-
plication environment of the real-time control system, the design model shifts its fo-
cus to the details of how to build the system, resulting in a design-specific model. As
shown in Figure 3, the design model can be expressed at different abstraction stages,
ranging from an implementation-independent model to an implementation-dependent
model. The implementation-dependent design model includes imposed properties like
the choice of platform. But the implementation-dependent design model might also be
enriched by annotations, derived from behaviour analysis, making behavioural prop-
erties, resulting from the implementation choices, explicit. Figure 4 shows a timing
requirement of latency (response time) attached to the design model.

The fundamental difference between Figure 4 and Figure 2 is that the abstract spec-
ification of a service in Figure 2 has been replaced by a concrete processing node re-
alising that service. The relation between services and processing nodes realising them
is, in general, n : m and not necessarily 1 : m or n : 1.

Here we want to stress that ideally a design model already reflects the real-time be-
haviour of the system at a platform-independent stage, if possible even at an implementation-
independent stage. The benefit of a platform-independent design model is that the sys-
tem behaviour can be reasoned about independently of the platform choice, making a
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correctness verification more robust against changes of the platform at a later develop-
ment stage.

However, including the specification of the timing behaviour into the platform-
independent design model also comes with a cost. We have to ensure, after the platform
choice, that the specified timing behaviour is actually implementable with the chosen
platform. While this is nothing surprising by itself, there is a fundamental difference of
whether we have to fulfil the timing specification of the requirements model or whether
we have to fulfil the timing requirements of an platform-independent design model.
The latter may impose additional design-specific constraints that can rise resource con-
straints which are not imposed by the application context itself. In Section 3 this aspect
is discussed in more detail within the context of timed streaming networks.

3 Specification of Complex Systems

In Section 2 we have discussed the specification of timing requirements of real-time
systems with a very simple structure. In the context of networked cyber-physical sys-
tems we have to deal with much more complex application structures. In the following
we discuss challenges of modelling extra-functional properties for both, requirements
and design models.

3.1 Timed Requirements Models

One of the challenges of requirements modelling is that requirements have to be devel-
oped in a modular way in order to cope with complexity. Like the example shown in
Figure 5, services of a system tend to be described in a cascaded way. We cannot use
the simple concept of Section 2 where a service is used to characterise the information
processing between the inputs and outputs of a system.

Instead of linking services directly to sensor inputs and actuator outputs, we have to
use some form of system interfaces. Regardless of the concrete specification methods
being used in practice, we abstract from them by using the generic concept of ports.
Sensors, actuators, and individual services can now be characterised locally within the
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Fig. 3. Derivation of real-time model from application context and refined by analysis

perimeter of their interface ports pi. Figure 5 shows the use of ports. Not only can the
information input by a sensor now be discussed independently of its use, the figure also
shows the characterisation of two services SV1 and SV2, which are cascaded, i.e., one
input of SV2 is not connected to a sensor but rather to the output of another service.
SV2 might rely on SV1 on a rather weak basis to provide a refined quality of service,
but it can be also the case that SV2 strictly relies on SV1 to provide any useful service
at all.

The challenge of modelling timing requirements of cascaded services is that timing
requirements in their purest form are imposed by the environment and are independent
of any internal structuring of the computer system. For example, in Figure 5 there might
be a certain relative deadline d2,1 from sensor S2 to actuator A1. At the same time, there
might be a relative different deadline d1,1 from sensor S1 to actuator A1. The problem
with the cascaded services S1 and S2 is that one cannot naturally assign them fractions
of d1,1 and d2,1 without creating artificial constraints on the flexibility of the use of
resources.

To characterise the latency requirements in their purest form one would have to use
a kind of path-based characterisation of latency requirements. Instead of the approach
in Section 2 where a timing requirement Treqx,y,z was associated with a context tuple
〈Ix, Sy, Oz〉, we would now have to match a timing requirement Treqp with a path
specifier. A path specifier pth is a sequence pth = (a1, a2, a3, . . . an) where each ele-
ment ai of the sequence is either a service, a port, or an IO node: ai ∈ SERVICES ∪
PORTS ∪ IO . A path specifier may also only incompletely describe a path, by which
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Fig. 5. Specification of multiple Services (Requirements Model)

multiple paths would match the specification. This can be used to assign a requirement
to a group of paths. For example, the path specifier (S2, P2, P4, A2) matches with two
concrete paths of Figure 5: (S2, P2, SV1, P5, SV2, P4, A2) and (S2, P2, SV2, P4, A2).

The good news is that modelling requirements of processing rates can be done lo-
cally and propagated over the network. This approach, for example, is used in Simulink
from Mathworks [10]. Nevertheless, clear semantic rules are needed to specify what
happens at the interface between different processing rates [11].

Summarising, the challenge of specifying timing requirements for streaming net-
works is to express them in a pure form, i.e., only implied by the application environ-
ment and not by any internal system structuring decisions.

3.2 Timed Design Models

In this section we discuss the issues of specifying timing requirements for design mod-
els. As discussed before, the design model focuses on the behaviour of the realised
system, where the realised system consists of inter-linked processing nodes with in the
general case an n : m mapping between services and processing nodes.

The challenge of how to describe latency in case of cascaded processing nodes is
related with the challenge of specifying latency for cascaded services mentioned in
Section 3.1. The additional challenge for the design model is that it tends to be more
complex than the requirements model in case of individual services being realised by
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multiple processing nodes. Figure 6 shows a streaming network with processing nodes
fed by multiple sensors and contributing to the control of multiple actuators.

S1#

S2#

A1#

A2#

n1#

n2#P1#

P2#

P6#

P4#

P3#

Fig. 6. Processing network with multiple sensors and actuators (Design Model)

What we ultimately want to obtain is a design model which has a clear timing se-
mantics, i.e., it is known what the timing behaviour of different components will be, at
least at a certain course granularity level. This is an aim somehow similar to the idea of
the Precision Timed Machine (PRET) whose machine code has a timed semantics [7,
6]. However, there is a slight difference. With PRET the focus is on a well-specified
processor platform with built-in timing semantics. The machine code for PRET would
be a platform-specific design model of the computer system.

However, with our ambition for design models of streaming networks we would like
to have a platform-independent design model with well-specified temporal behaviour.
This means, we would like to know how the system is going to behave, regardless of
the implementation details and even more, regardless of the chosen hardware platform.
With streaming networks we have the challenge that at a particular position of the net-
work messages originating from different sources can pass through, thus we generally
cannot assign the processing latency of a path to any particular place in the network. So
if we want to specify the timing behaviour directly at the design model rather than hav-
ing a separate list of timing constraints, we would have to split the overall latency into
multiple local latency values, assigned to individual sections of the streaming network.

For the split latency values there are two different semantics possible:

Summative latencies: the absolute latency along a path from the input to the output
is the sum of all the local latency values along that path. Summative latencies do
not require a platform-specific design model, so they can be also specified for a
platform-independent design model.

Local absolute latencies: each local latency value describes the absolute local latency
along a certain subsection of a processing path from the system input to the output.
Absolute local latencies require a platform-specific design model, so they cannot
be specified for a platform-independent design model.

To be most descriptive, the local latencies have be both, summative latencies as well
as local absolute latencies.

To give an example, we assume that the streaming network shown in Figure 6 has
as requirement the following absolute latencies from sensor input to actuator output:
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A1 A2

S1 10 ms 4 ms
S2 10 ms 4 ms

Having only a platform-independent design model, we can still decompose these
end-to-end latencies into summative latencies and map them to the streaming network
of Figure 6. Figure 7 shows summative latencies for the given example mapped to the
streaming network. In this small example we have been able to derive the summative
latencies manually. For larger graphs a systematic mapping method would be necessary
to use.
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n1#
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P2#

P6#

P4#
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2ms#
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Fig. 7. Processing network with timed semantics (Design Model)

Using such summative latencies for a platform-independent design model are ad-
equate to specify the end-to-end latencies by means of local annotation. However, it
would be problematic to interpret them as absolute latencies for local sections of the
streaming network. By doing so we would impose additional synthetic resource con-
straints for implementation and platform choice, not justified by the requirements. Thus
our proposal is that for the platform-independent design model we interpret the local
latency specifications in general only as summative latency specifications.

From Summative Latencies to Local Absolute Latencies As soon as we have de-
rived a platform-specific design model, we are able to use performance or worst-case
execution time (WCET) analysis to refine the model and replace the original summa-
tive latencies by another set of latencies that at the summative level are equivalent to
the summative latencies of the platform-independent design model, but now also have
a local absolute latency semantics.

Using such a refinement step towards the platform-specific design model avoids the
introduction of synthetic resource constraints while still providing a fundamental timing
semantics at the platform-independent design model. This approach is summarised in
Figure 8.
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•  summa<ve*only*

latency*specifica<ons*
•  summa<ve*
•  locally*absolute*

Fig. 8. Derivation of platform-specific semantics for latency

4 Examples of Real-time Streaming Networks

In the following, we show some applications of stream processing networks for real-
time computing and also discuss specific issues implied by them which are relevant for
modelling.

4.1 Fuel Injection

Figure 9 shows a grossly simplified model of a fuel injection system for internal com-
bustion engines. Fuel injection is a real-time application with very strict timing re-
quirements. Injecting the fuel to late or too early not only reduces the efficiency of the
engine, but also increases the mechanical stress of the engine components, resulting in
an acceptable outwear rate.

Engine&Fuel&Injec-on&

FIS&

CPS& TS&

FIS &…&fuel&injec-on&system&
CPS &…&cranksha=&posi-on&sensors&
TS &…&temperature&sensor&

Fig. 9. Example of multi-rate system: Engine Fuel Injection

While any real fuel injection system is much more complex, our simplified model is
sufficient to outline a relevant property when modelling it as a streaming network. The
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fuel injection system FIS collects inputs from two sources: the current motor tempera-
ture from sensor TS and the current crankshaft position from sensor CPS.

The important aspect of this simple model is that we have different rates involved
here. The CPS sensor has to deliver its trigger signal in fixed coupling with the crankshaft
position, every revolution of the crankshaft. Without the CPS trigger signal available,
the fuel injection cannot operate. Also the latencies involved along processing the
crankshaft position have to be precisely taken into account. In contrast, the motor tem-
perature from sensor TS has much weaker requirements. Neither the rate nor the latency
of that sensor are very significant, since the temperature of the engine changes relatively
slowly during correct operation.

4.2 Car Platooning

A car platooning (CP) system is a technology to line up vehicles on a highway into
virtual trains, automatically controlling distance and speed [1]. In this section we purely
focus on the influence of CPS to the brake control of a car. We want to highlight the
different levels of criticality when it comes to brake control in a modern car.

CARi%

CARi+2%CARi+1%CARi)1%

DCi%

ABSi%

MBi%

CPi+1%

…%

DSi%

CPi+2%

…%

CPi)1%

…%

CPi%

RSi% brake%

CP %…%car%platooning%
DC %…%distance%control%
MB%…%manual%brake%
ABS…%an@)lock%braking%system%
DS %…%distance%sensors%
RS %…%revolu@on%sensor%

Fig. 10. Example of mixed criticalities: Car Platooning

Figure 10 shows the control chain of components in a modern car that can influence
the activation of the brake. Quite standard nowadays is the anti-lock braking system
(ABS) which has the highest control over the brake. The driver may activate the braking
of the car with the manual brake (MB), but it is the ABS which finally decides when and
how long the brake should be actually activated, giving priority to preserve steer-ability
over short braking distance. To do so, ABS receives information about the current wheel
revolution speed from sensor RS, and lowers the brake activation whenever the speed of
a wheel drops. On top of MB acts the distance control (DC) system, which uses distance
sensors (DS) in order to keep a minimum distance with other vehicles driving in front
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of the car. On top of DC may be a car platooning (CP) system which, to some extent,
behaves similar to DC by taking DS into account in order to control the distance to the
font car. CP and DC can actually share the input from the same distance sensors of the
car. However, CP senses the environment beyond that, being in active communication
with the neighbouring vehicles on the road, allowing smoother operation by starting
distance adjustment measures before even a change was noticed via the DS sensors.

ABSi%

DCi%

CPi%

ABSi+1%

DCi+1%

CPi+1%

Fig. 11. Example of coupled control loops: Car Platooning

What this use case shows is that besides timing requirements there are also depend-
ability requirements, resulting in different criticalities of the above services. The closer
a component is to the brake, the higher is its criticality and the more control it has over
the brake. Figure 11 visualises the different automatic control loops involved in that use
case. Highest priority is given to ABS, as it is able to pause braking whenever it needs
to do so in order to give priority to steer-ability. The manual break MB is not shown in
that diagram, as it acts besides ABS since manual brake has to work even if ABS fails.
DC has higher priority to CP regarding braking, since DC might detect a road obstacle
while CP wants to accelerate in order to keep the distance with the vehicle driving in
front of it.

This example demonstrates that in the system design, real-time requirements and
criticality properties are orthogonal issues. Having the strongest real-time requirements
has nothing to do with having the highest criticality in the system.

To summarise, real-time requirements are an important category of extra-functional
properties, but there are other extra-functional requirements as well. So, scheduling
resources may not simply be a real-time problem, but also a mixed-criticality problem.

5 Related Work

There are many approaches of modelling distributed systems with specification of extra-
functional properties. In the following we present a sample of modelling approaches,
including academic research and concrete tools.

An all-round modelling approach is the Unified Modelling Language (UML), which
combines multiple modelling paradigms in a unified framework [12]. UML allows the
modelling of a system at different abstraction levels. For example, with the UML Use
Case Diagram (UCD) one can model the system application context without focusing
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on implementation details and formal interfaces. Regarding the application of UML
to real-time systems there are different approaches. For example, Real-Time UML de-
scribes how to model resources, time, and concurrency [5]. The UML Profile for Mod-
eling and Analysis of Real-time and Embedded systems (MARTE) extends Real-Time
UML with concepts for timed processing and timed events, introducing also logical and
physical clocks as different time sources [13, 3].

The UCD of UML provides an interesting concept of how to model system require-
ments at a high level, focusing on the different services to be provided. However, when
using the mechanisms of UML and its extensions to specify, one also has to face the
problems discussed in this paper.

An example of academic approaches of how to model timed systems is Ptides, a
variant of the Ptolemy execution model [4, 2]. Ptides and Ptolemy have been developed
by Ed Lee et al. at Berkeley. Ptides is a stream-based event processing model with
support to model extra-functional properties and time sources for real-time processing.
Ptides allows to model the processing chains on so-called platforms and the commu-
nication between multiple platforms, resulting in distributed systems. With Ptides, one
can annotate the extra-functional properties of different components, like delays to lo-
cally receive or send a message. In addition, one can set the “due date” of messages,
i.e., the time at which an output at an actuator should be produced. While this due date
is initially set to the message creation time, it can then be incrementally increased by
delay blocks along the processing path toward its final destination at an actuator. There
are no inherent rules of where to increment the due date by how much, as long as the
total delay of the multiple delay blocks along the processing chain add up to the desired
time for the output to be produced. By this delay blocks one can obtain a timed system
model that has a fixed semantics of the event timings, regardless of the underlying plat-
form. From that point of view, Ptides is well-suited to model the latency of real-time
systems in a platform-independent way via summative local latencies as described in
Section 3. So far, the published research on Ptides did not address the issue of how to
derive platform-specific latencies, which besides summative latencies, would also pro-
vide local absolute latencies. As such, Ptides provides a very useful summative timing
semantics at platform-independent design model level, but cannot escape the challenge
of how to obtain local absolute latencies, as discussed in Section 3, which would require
a platform-specific design model.

As an example of a modelling tool with wide-spread industrial use is Matlab/Simulink
from Mathworks [10]. In Simulink one can specify processing graphs with multiple up-
date rates of the different components. Simulink is well-prepared for modelling multi-
rate systems by a specific “Rate Transition” block [10]. The Rate Transition block can
be parameterised in order to trade data integrity and deterministic transfer for faster
response or lower memory requirements. Simulink’s focus on update rates works rela-
tively well to address the problem discussed in this paper, but only from the throughput
point of view. Simulink does not provide the same flexibility for modelling event la-
tency, as, for example, Ptides is able to offer.

Kirner and Maurer have recently introduced an interface specification for compo-
nents of stream-based mixed-criticality systems [11]. This model includes the spec-
ification of the progress type of components (time-triggered or some form of event-
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triggered), but most importantly it offers an explicit way to specify trigger dependencies
and trigger-decoupling of subsystems. They also introduced the classification of mes-
sages into event messages, state messages and semi-state messages in order to have a
semantic justification of trigger coupling/decoupling [11]. Their mixed-criticality inter-
face techniques could applied to other models like Ptides. While these mixed-criticality
interfaces are useful to compose the timing behaviour from subsystem, this cannot com-
pletely remedy the timing specification problem discussed in this paper.

6 Summary and Conclusion

The specification of real-time properties in complex systems causes some challenges
which we address in this paper. We have put our focus on streaming networks which
are a well-suited design paradigm for cyber-physical systems with their omnipresent
concurrent behaviour.

We have shown that it is not a straight forward process to specify real-time proper-
ties for streaming networks, neither at the requirements level nor at the system design
level. More precisely, it is the specification of latency (or deadlines) that is not well
suited for streaming networks, mostly because latency requirements are caused by the
application environment and do not have a direct imprint at subsystem level. Through-
put or processing rate on the other hand can be annotated to streaming networks rela-
tively easy.

We resolve the situation by providing latency specifications with only summative se-
mantics at the level of platform-independent design models. Using temporal behaviour
analysis these latency specifications can be refined from a platform-specific design
model into latency specifications, having both, a local absolute semantics as well as
the original summative semantics at the global level. This result shows to what extent
it is possible to specify platform-independent system design models with real-time se-
mantics.
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Abstract. This paper overviews the techniques that we use to develop
verified large software systems inside the Isabelle/HOL theorem prover.
It is based on our development of the fully verified efficiently executable
CAVA LTL model checker.
The verification follows a stepwise refinement approach, to which we
adapted standard engineering techniques such as object orientation and
modularization. It is entirely conducted in the Isabelle/HOL theorem
prover, which results in a high confidence correctness theorem that only
depends on the small inference kernel of Isabelle/HOL.
The techniques presented in this paper cover the Isabelle Refinement
Framework, which provides a formalization of refinement calculus and
a tool chain which makes it conveniently usable. Moreover, we describe
the Isabelle Collection Framework, which provides an extensible library
of efficient verified collection data structures. We also describe the ob-
ject oriented techniques used to develop the automata library below our
model checker, and the modularization techniques used to separate the
various components of the model checker.

1 Introduction

The objective of this paper is to give an overview of the development techniques
that we use to verify large-scale software systems in the Isabelle/HOL interactive
theorem prover. We present some of the engineering techniques that we used to
develop the verified CAVA model checker [7], a fully-fledged efficient LTL model
checker.

Our development process is based on stepwise refinement, to which we adapt
standard engineering techniques for structuring large software systems, like ob-
ject orientation and modularization.

Stepwise refinement is a well-known technique to verify programs. The idea
is to refine an abstract specification to an efficient implementation via a series
of correctness preserving refinement steps. Usually, the first refinement steps
introduce the algorithmic ideas of the program, and further refinement steps
then replace the abstract data types used to describe the algorithm by efficient
implementations.

Stepwise refinement reduces the proof complexity by separation of concerns:
Instead of one big proof that deals with both, the high-level algorithmic ideas
and the implementation details, it allows for several small proofs, each focusing
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on a single aspect. Our experience shows that direct correctness proofs of effi-
cient implementations tend to get unmanageable already for medium-complex
algorithms like Dijkstra’s Shortest Paths.

Refinement calculus [2] formalizes stepwise refinement in a Hoare-logic like
framework, based on rigorous mathematical foundations. Thus, it is well suited
for a theorem prover based development.

Our main tool is the Isabelle Refinement Framework[20] (cf. Section 2), which
implements a refinement calculus for shallowly embedded monadic programs. It
comes with tool support, which makes it practically usable. Besides a verifi-
cation condition generator, it also contains the Autoref tool [16], which can
automatically refine abstract data types to efficient implementations. Suitable
implementations are selected via user-adjustable heuristics.

When developing efficient algorithms, it is important to have a library of re-
usable general purpose data structures. The Isabelle Collection Framework [14]
(Section 3) provides such a library. It is based on the concepts of interfaces,
generic algorithms, and implementations. Its integration into Autoref ensures
easy usability.

The CAVA model checker operates on different types of graphs and automata.
To avoid redundancies, these are presented as a class diagram with inheritance.
In Section 4, we give a brief overview of the CAVA Automata Library [17] and
how it uses object oriented techniques inside Isabelle/HOL.

The CAVA model checker itself consists of several components, which are
separately maintained and developed. In Section 5, we review the modulariza-
tion techniques we use to ensure isolation between these components, and their
interplay with verification.

Finally, we conclude the paper in Section 6.

Note that this paper is an overview paper, presenting results that have been
detailed in [14, 20, 16, 17, 7], with some small parts of newer developments. We
have tried to indicate new developments in the paper at the points where they
are described. The main focus of this paper is on the refinement calculus and
the associated tool chains. Further engineering techniques that helped us in
developing the CAVA model checker are only briefly discussed, with references
to more detailed descriptions.

1.1 Related Work

Refinement Based on Back et al.’s initial formalization in HOL [1], there are
several formalizations of refinement calculus in different theorem provers (e. g.
[4, 23, 3]). However, they usually focus on the meta-theory of refinement calculus,
and only come with relatively small example programs that are actually verified.

For the Coq theorem prover, there is a refinement tool [5], which has been
used to refine some algebraic algorithms to use efficient data structures. Also the
Fiat-System [6] automatically synthesizes efficient implementations of database
queries phrased in an abstract query language. Both tools resemble our Autoref-
tool [16], which we use to automate canonical refinement steps.
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Another implementation of data refinement is supported by the Isabelle Code
Generator [9]. However, it relies on an extension of the code generator outside
the logic. Moreover, it can only be used for deterministic algorithms, while many
abstract algorithms of a model-checker are inherently nondeterministic.

Verification of Big Software Systems There are several verifications of big soft-
ware systems, even bigger ones than the CAVA model checker. One example
is the verified C compiler CompCert [21]. Here, modularization is achieved by
splitting the compiler into several phases, which translate between different in-
termediate languages. For each translation step, bisimulation between the input
and output is proved. Other important techniques include tailoring of algorithms
to be verification friendly, and to use a-posteriori verification of results computed
by external unverified algorithm.

Another big system that has been verified is the seL4 microkernel [12]. It
uses a refinement-centric development process: First, a prototype of the kernel
was implemented in Haskell. It serves both as an executable implementation
that can be tested, and as a functional specification that can be reasoned about
in a theorem prover. Then, an efficient C version was manually implemented,
and proved to refine the Haskell prototype, which, in turn, was shown to satisfy
the abstract specification. For the refinement proof between the C program and
the Haskell prototype, the Autocorres tool [8] was developed. Similar to our
approach, it implements a refinement calculus on shallowly embedded monadic
programs. However, it features bottom-up refinement, i.e., a concrete program
is abstracted, while our approach uses top-down refinement, where an abstract
program is concretized.

2 Foundations of the Refinement Framework

The Isabelle Refinement Framework [20, 15] provides a refinement calculus [2]
that is based on a nondeterminism monad [25]. It features a stepwise refinement
based development approach, where an algorithm is first specified on an abstract
level, and then refined towards an efficient implementation in possibly many
correctness preserving steps.

Note that nondeterminism is essential for specifying abstract algorithms:
For example, a standard textbook presentation of a workset algorithm might
contain the operation ,,pick some element from the workset”. However, a precise
description of which element is picked is not possible until the data structure
for the workset has been fixed. Thus, abstractly, one has to nondeterministically
choose an element, and prove the algorithm correct for any choice.

In the remainder of this section, we briefly introduce the Isabelle Refinement
Framework and its theoretical foundations.

2.1 The Refinement Monad

The Monadic Refinement Framework represents programs inside a monad over
the type ′a nres = res ′a set | fail. A result res X means that the program non-
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deterministically returns a value from the set X, and the result fail means that
an assertion failed. The subset ordering is lifted to results as follows:

res X ≤ res Y ≡ X ⊆ Y | ≤ fail ≡ True | ≤ ≡ False

Intuitively, m ≤ m′ (m refines m′) means that all possible values of m are also
possible values of m′. Note that this ordering yields a complete lattice on results,
with smallest element res {} and greatest element fail. The monad operations
return and bind (notation �=) are then defined as follows:

return x ≡ res {x}
res X �= f ≡ Sup {f x | x∈X} | fail �= f ≡ fail

Intuitively, return x is the result that contains the single value x, and m �= f
is sequential composition: Choose a value from m, and apply f to it.

As a shortcut to specify values satisfying a given predicate Φ, we define
spec Φ ≡ res {x | Φ x}. Moreover, we use a Haskell-like do-notation, and define
a shortcut for assertions: assert Φ ≡ if Φ then return () else fail. Recursion
is defined by a fixed point: rec B x ≡ do {assert (mono B); gfp B x}. As we
use the greatest fixed point, a non-terminating recursion causes the result to be
fail. This matches the notion of total correctness. We assert monotonicity of the
function’s body. Note that the standard way of defining recursion is w. r. t. a
flat ordering of results, where fail is the top element. Thus, we require mono-
tonicity w. r. t. both, the refinement ordering and the flat ordering, in which
case the greatest fixed points coincide. Note that monotonicity w. r. t. both or-
derings follows by construction [13] for any program that only uses the monad
combinators.

On top of the rec primitive, we define loop constructs like while and foreach,
with an explicit state threaded through the loop.

2.2 Data Refinement

In a typical refinement based development, one also wants to refine the repre-
sentation of data.

A data refinement is specified by a refinement relation between concrete and
abstract values. In many cases, this relation is single-valued, and can be expressed
by an abstraction function from concrete to abstract values and an invariant on
concrete values. Note, however, that refinement relations typically are neither
left nor right total.

A prototypical example is implementing sets by distinct lists, i. e. lists that
contain no duplicate elements. Here, the refinement relation 〈R〉list set rel re-
lates a distinct1 list to the set of its elements, where the elements are related
by R. This relation is not left-total, as lists with duplicate elements have no
abstract counterpart. This reflects the concrete data structure’s invariant. Also,
this relation is not right-total, as infinite sets cannot be implemented by lists.

1 Assuming R is single-valued

360



Given a refinement relation R, we define the function ⇓R to map results over
the abstract type to results over the concrete type:

⇓R (res A) ≡ res {c | ∃a ∈ A. (c,a) ∈ R} | ⇓R fail ≡ fail

Intuitively, ⇓R m2 is the largest concrete result, such that all its values have
abstract counterparts in m2. Thus, m1 ≤ ⇓R m2 (notation m1 ≤R m2) states
that m1 is a refinement of m2 w. r. t. the refinement relation R, i. e. all concrete
values in m1 correspond to abstract values in m2.

Note that we originally [20] defined the refinement relation differently: By
only including concrete elements for which all abstractions are contained in the
abstract result, we made ⇓R an adjoint of a Galois connection, which seemed
theoretically beautiful at first glance. However, with this definition, we could
prove some refinement rules only for single valued relations. However, during
our development of a DFS framework [19], we also required (non-single valued)
projection relations to reason with ghost variables. Thus, we changed the defini-
tions to better generalize to arbitrary relations, at the cost of loosing the Galois
connection property, which required reworking some proofs.

2.3 Refinement Calculus

For each combinator of the nres-monad, we define two refinement rules. One for
specification refinement, which proves properties of the form m ≤ spec Φ, and
one for pure data refinement, which proves properties of the form m ≤ ⇓R m′,
where m and m′ have the same top-level combinator. Intuitively, a specification
refinement replaces an abstract specification by an algorithmic implementation
(e. g. ,,Some path from u to v” by a depth-first search algorithm), and a pure
data refinement replaces abstract types by concrete data structures (e. g. set by
distinct list). For example, the rules for return and �= are the following:

Φ x =⇒ return x ≤ spec Φ
(x, x′) ∈ R =⇒ return x ≤R (return x′)

m ≤ spec (λx. f x ≤ spec Φ) =⇒ m �= f ≤ spec Φ
[[m ≤R′ m′;

∧
x x′. (x, x′) ∈ R′ =⇒ f x ≤R (f′ x′)]] =⇒ m �= f ≤R m′ �= f′

Consider a refinement goal of the form m ≤R m′. If the programs are similar
enough, i.e., they have the same structure, where m may contain an arbitrary
expression at places where m′ contains a spec and the refinement relation is Id
(note that ∀ m. ⇓Id m = m), resolution with the refinement rules leaves us with
verification conditions over the basic operations in the program. The Isabelle
Refinement Framework comes with a verification condition generator (VCG),
which automates this process, and has some additional rules to tolerate certain
structural changes.

2.4 Refinement Based Algorithm Development

In a typical development based on stepwise refinement, one specifies a series of
programs m1 ≥ . . . ≥ mn, such that m1 has the form assert pre; spec post,
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and mn is the final implementation. In each refinement step (from mi to mi+1),
some aspects of the program are refined.

Refinement is modular, i.e., one can prove refinements for parts of a program
in isolation. This is important for having libraries of standard algorithms, which
can be used in the program to be developed. One such example is the Isabelle
Collection Framework (cf. Section 3). Also, it allows to independently develop
the components of larger programs, as we illustrate in Section 5.

Example 1. Given a finite set S of sets, the following specifies a set r that con-
tains at least one element from every non-empty set in S:

sel1 S ≡ do {assert (finite S); (spec r. ∀s ∈ S. s 6= {} −→ r ∩ s 6= {})}

This specification can be implemented by iteration over the outer set. In each
iteration step, the result set must not shrink, and it must contain an element
from the current inner set, if this is not empty.

sel2 S ≡ do {
assert (finite S);
foreach S (λs r. spec r′. r′ ⊇ r ∧ (s 6= {} −→ r′ ∩ s 6= {})) {}
}

Using the verification condition generator, it is straightforward to show that sel2
is a refinement of sel1:

lemma sel2 S ≤ sel1 S
unfolding sel2 def sel1 def
by (refine vcg foreach rule[where I=λit r. ∀s∈S−it. s6={} −→ r∩s 6={}])

auto

Note that the invariant for the foreach-loop is explicitly specified here. It is
parametrized over the set it of elements still to be iterated over, and the current
state r of the loop.

Next, we want to further refine the program: In each iteration, we want to
pick an arbitrary element from the current inner set, and add it to the result
set. We specify the new algorithm:

sel3 S ≡ do {
assert (finite S);
foreach S (λs r.

if s={} then return r
else do {

x←spec x. x∈s;
return (insert x r)
}

) {}
}

Note that only the body of the foreach-loop has changed. Using the VCG, it is
straightforward to show that this algorithm refines the previous one:
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lemma sel3 S ≤ sel2 S
unfolding sel3 def sel2 def by (rule refine IdD,refine vcg inj on id) auto

Now assume that finding a representative element from a set is hard. Thus,
every inner set comes with an pre-computed representative. We define a refine-
ment relation between sets of sets with representatives, and sets of sets:

definition repr set rel ≡ {(S′,S).
(∗1∗) S = snd‘S′

(∗2∗) ∧ (∀(b,s)∈S′. case b of None ⇒ s={} | Some x ⇒ x∈s)
(∗3∗) ∧ (single valued (S′\<inverse>))

}

Proposition (1) ensures that the abstract set can be obtained from the concrete
set by projecting away the representatives. Proposition (2) ensures that the
attached representatives are actual representatives, where an option-type is used
to have None as representative for the empty set. Finally, proposition (3) ensures
that we do not add more than one representative for each set. This is important
to ensure that a finite abstract set must be represented by a finite concrete set,
over which iteration is well-defined.

Finally, we phrase the refined algorithm, and prove refinement:

definition sel4 S ≡ do {
assert (finite S);
foreach S (λ(b, ) r.

case b of None ⇒ return r | Some x ⇒ return (insert x r)
) {}
}

lemma (S′,S)∈repr set rel =⇒ sel4x S′ ≤ sel3 S
unfolding sel4x def sel3 def
apply (rule refine IdD)
apply (refine rcg FOREACH refine rcg[where α=snd])
[. . . ] (∗ Omitted 8 lines of standard Isabelle text to prove the VCs ∗)
done

2.5 Automatic Refinement

Many refinements, which are typically performed at the end of a refinement based
development, are pure data refinements, i. e. the overall structure of the program
is preserved, and only some abstract types are refined to concrete data structures.
Given which abstract types to refine to which concrete data structures, as well
as refinement rules for the required operations, the concrete program and the
refinement theorem can be automatically synthesized from the abstract program.

We have implemented such a synthesis procedure in the Autoref tool [16]. It
is based on the idea to express data refinement by relators [24].
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It contains various heuristics to automatically select appropriate data struc-
tures and algorithms for the types and operations in the abstract program. The
most important ones are the homogeneity principle and priorities. The homo-
geneity principle intuitively states that the result of an operation should be
implemented by the same data structure as the operands. This avoids frequent
casts between different implementations, thus producing a cleaner and more pre-
dictable synthesis result. Priorities can be assigned to both, data structures and
algorithms. They are used to prefer efficient data structures and algorithms over
less efficient ones.

Moreover, Autoref supports instantiation of generic algorithms via recursive
synthesis. A generic algorithm implements an operation in terms of other opera-
tions. For example, union of finite sets may be implemented by iterating over one
set, and inserting its elements into the other. When Autoref encounters a union
operation, and decides to use this generic algorithm, it will try to synthesize
algorithms for iteration and insertion.

Using priorities, generic algorithms may be specialized. For example, there is
a more efficient union-operation on red-black trees. Its rule has a higher priority
than the generic algorithm, such that Autoref will try it first. Similarly, if one
can prove that the sets to be joined are disjoint, union on distinct lists can be
efficiently implemented by concatenation. This rule depends on an additional
side condition, which our tool will try to prove using some standard Isabelle
tactics. If the proof fails, the generic algorithm is used.

2.6 Code Generation

Once the program is refined to a deterministic program that only uses executable
constructs, we have to generate actual code from it. This is done in two steps:
In the first step, the program is transfered to a deterministic monad, and in the
second step, it is translated to source code of an actual programming language.

Transfer to Deterministic Program The combinators of the nres-monad
itself are defined using non-executable constructs. For execution, we define the
dres-monad over the type ′a dres = dsucceed | dreturn ′a | dfail.

The function nres of :: ′a dres ⇒ ′a nres maps a result from the dres-monad
to its corresponding result from the nres-monad. Given a deterministic program
m in the nres-monad, it is straightforward to transport it to the dres-monad, i.e.,
automatically synthesize a program m′ with nres of m′ ≤ m. Moreover, if m is
tail recursive (i.e. does not contain the rec combinator), it can be transported
to a plain HOL expression. That is, we can automatically synthesize a term m′′

with return m′′ ≤ m.

Isabelle’s Code Generator When the program is refined to the dres-monad or
to a plain expression, and all functions used by the program are executable (i.e.,
the code generator knows how to generate code for them), the code generator of
Isabelle/HOL [10] can be used to generate code in one of its supported languages,
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which are currently SML, OCaml, Scala, and Haskell. Note that code generation
happens outside the logic of Isabelle/HOL, and thus belongs to the trusted code
base. However, there is a pen-and-paper proof of its correctness [10].

Example 2. Reconsider the program from Example 1. We want to implement the
input by a distinct list of distinct lists. As retrieving a representative element
from a non-empty list is simple, let’s drop our last refinement step and start at
program sel3 again.

As Autoref is often applied in the last refinement step before code generation,
it can combine the data refinement and the transportation to the dres-monad or
plain expression. Thus, an executable version of sel3 is generated as follows:

schematic lemma sel4
′ aux:

assumes [autoref rules]: (Si,S)∈〈〈Id〉list set rel〉list set rel
shows (?c::?′c,sel3 S)∈?R
unfolding sel3 def by (autoref monadic (plain))

concrete definition sel4
′ uses sel4

′ aux
prepare code thms sel4

′ def
export code sel4

′ in SML

Here, the assumes-line is an annotation that the parameter S should be
refined by a list of lists. The relation ?R for the result type is left unspecified.
Autoref also decides to use a distinct list, as it knows nothing about the (poly-
morphic) element type, and thus cannot derive an ordering or hash function,
which would be required for more efficient data structures. The (plain) option
indicates to transfer to a plain function, instead of the default transfer to the
dres-monad. Finally, the concrete definition command extracts the concrete
program from the refinement theorem and names it sel4

′. The last two lines then
generate the following SML-code:

fun sel4
′ A si =

Foldi.foldli si (fn ⇒ true)
(fn x ⇒ fn sigma ⇒

(if Autoref Bindings HOL.is Nil x then sigma
else let

val xa = List.hd x;
in

Impl List Set.glist insert (HOL.eq A ) xa sigma
end))

[];

The code has the same structure as the original program. The foreach-loop has
been replaced by a fold function2, and the set operations have been replaced
by corresponding list operations. The extra parameter A contains the equality
operation on the polymorphic element type, which is required by the insert
operation.

2 The variant foldli has an additional break condition, which, however its not used
here, and thus set to fn ⇒ true.
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As the generated code lives outside the logic of Isabelle, we cannot prove that
it coincides with sel4

′. However, by chaining all the refinement theorems we have
obtained on our way from the specification sel1 down to the executable version
sel4
′, we can prove that sel4

′ is actually correct w. r. t. the specification:

(S′,S) ∈ 〈〈Id〉list set rel〉list set rel =⇒ ∀s∈S−{{}}. set (sel4
′ S′) ∩ s 6= {}

3 The Isabelle Collection Framework

Having a library of re-usable standard data structures greatly reduces the effort
required to produce efficient implementations. In this section, we briefly describe
the Isabelle Collection Framework (ICF), which provides such a library.

It is seamlessly integrated into Autoref, such that many collection data struc-
tures are readily available, without any further setup. The current ICF is a de-
facto reimplementation of the original framework [14], to support nested data
structures (e.g. distinct lists of distinct lists), and make use of the Autoref tool
to instantiate generic algorithms.

The ICF is based on the concepts of interfaces, generic algorithms, and im-
plementations. Its main features are easy usability and extensibility, which is
achieved through seamless integration into the Autoref tool: Its heuristics select
appropriate data structures that the user do not even have to know about. More-
over, new interfaces, generic algorithms, and implementations can be added to
the ICF easily and without changing the original code base.

3.1 Interfaces

An interface describes an abstract data type and the operations on it. The default
interfaces which come with the ICF are map, set, priority queue, and list. All the
interfaces come with a large set of pre-defined operations, and the setup required
for Autoref to identify those operations in the abstract program.

For example, the map interface comes with an emptiness check operation, and
the abstract expressions m = Map.empty and dom m = {} may be identified as
emptiness check by Autoref.

3.2 Generic Algorithms

The ICF heavily relies on generic algorithms as a tool to avoid code duplica-
tion and allow rapid prototyping of new data structures. For example, the ICF
has generic algorithms to derive most operations on (finite) maps from five ba-
sic operations: empty-map, lookup, update, remove, and fold. Moreover, it has
generic algorithms to derive a set implementation from a map implementation,
by instantiating the value type to unit. This allows for rapid prototyping of a
new data structure, as all operations on sets and maps become available once
one has implemented the five basic map operations. Moreover, in many cases
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the generic algorithms are reasonably efficient and match the default implemen-
tation of the operation for this data structure. This way, code duplication is
avoided, as the generic algorithm is shared between many data structures. If a
data structure supports a more efficient version of an operation, specialization
is used to override the generic algorithm.

3.3 Implementations

An implementation provides a concrete data structure for an interface. It consists
of a refinement relation and implementations of some of the operations, along
with their correctness lemmas.

Note that an implementation needs not provide all operations. Some of the
operations may be filled in by generic algorithms, and others may not be sup-
ported at all. The Autoref tool will only select implementations that support all
operations required by the program to be refined.

Available Implementations Examples for data structures provided by the
ICF are red-black trees and hash tables for sets and maps, distinct lists for sets,
association lists for maps, characteristic functions for sets, bit-vectors for (dense)
sets of natural numbers, and arrays for (dense) maps from natural numbers.

While the red-black tree and list based data structures are purely functional,
hash-tables, bit-vectors, and arrays are based on mutable arrays with undo-
history (called DiffArray in Haskell) which behave like functional arrays, but
use destructive update internally.

For those arrays, access to the latest version is always efficient, while access
to earlier versions gets more expensive as older the accessed version is. However,
many algorithms access their data in a linear fashion, and for linear access,
the array-based implementations are considerably faster than purely functional
implementation.

One drawback is that the mutable arrays with undo-history have to be imple-
mented outside the logic, and thus contribute to the trusted code base. In [18],
we presented an alternative approach that allows to reason about imperative
features inside the logic.

4 The CAVA Automata Library

While the ICF organizes abstract types and their implementations, it has only
limited support to establish a hierarchy on the interfaces: Type classes can be
used to define specialized interfaces, which support additional operations: For
example, the interface ordered-set constrains its elements to be in a linear order
type class, and then provides additional operations like minimum.

When we developed the CAVA Automata Library [17], which formalizes the
various graph and automata types that occur in the CAVA Model Checker, we
realized that there are many redundancies between the various types, which we
eliminated by structuring them in a class hierarchy:
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fr_graph
+V: node set
+V0: node set
+E: (node × node) set
 V0 ⊆ V
 E ⊆ V × V
 finite ((frg_E G)*``frg_V0 G)

fin_graph
 finite V

igb_graph
+num_acc: nat
+acc: node → nat set
 ⋃(range (igbg_acc G)) ⊆ {0..<(igbg_num_acc G)}
 ∀q. igbg_acc G q ≠ {} ⇒ q ∈ V

gb_graph
+F: node set set
 F ⊆ Pow V
 finite F

fin_gb_graph

igba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

gba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

fin_gba

b_graph
+F: node set
 F ⊆ V

sa
+L: node → label

 F := {{q . i ∈ acc q} | i. i < num_acc}
 L := L

 F := {F}

Each class inherits the fields and invariants of its base classes, and may add
new fields and invariants. Moreover, some of the classes may be specializations of
other classes, as indicated by solid arrows. For example, Büchi automata can be
seen as generalized Büchi automata with a single acceptance class, as indicated
by the solid arrow from class b graph to gb graph.

Internally, classes are implemented by a mixture of locales [11] and records [22].
The records provide a mechanism to declare the fields of the classes, and exploit
polymorphism to have subtyping, i.e., the type of a base class matches on the
type of its subclasses. However, they are restricted to single inheritance, which
was not a problem for our design3.

Locales provide a mechanism to capture the invariants of a class. Moreover,
inside a class’ locale, concepts can be defined and theorems can be proven, which
are inherited to the subclasses. For example, the class fr graph defines the concept
of a path between two nodes, and proves theorems about it. These are available
in all subclasses.

Methods with static binding correspond to functions that take a parameter
of a class’ record type. Inside such a method, we may re-use the corresponding
method from the superclass. For example, renaming the states of an automaton
is implemented as first renaming the nodes of the underlying graph, and then
renaming the set of accepting states.

Definition of methods with dynamic binding (i. e. virtual methods) is more
tricky. We avoided this in our Automata library, and leave it to future research
to evaluate the different possible approaches.

Implementation is done via the Autoref-Tool, defining the classes as abstract
types, and relating them with implementations. The implementations are also

3 Note that we actually support multiple inheritance as long as all the fields can be
added by following a single path up the hierarchy.
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structured via records, such that implementations of base classes may be re-
used to implement subclasses. For example, a gb graph may be implemented by
augmenting an implementation of an fr graph with an acceptance set.

5 The CAVA LTL Model Checker

LTL-to-GBA

LTL-Formula

Indexed GBA

Kripke Structure

Synchronous Product

Indexed GBG

Emptiness Check

Result

LTL-to-GBA

Gerth's algorithm

to-index conversion

GBA

Emptiness Check

SCC-based

Degeneralization

Nested DFS

Büchi graph

BoolProg Promela

⟦⟧ ⟦⟧

Fig. 1: Structure of the CAVA Model
Checker

Figure 1 shows the overall architec-
ture of CAVA. It follows a standard
approach for LTL model checkers:
The input is an LTL formula and a
model, which is described either as a
while program over Boolean variables
or in Promela, the modeling language
of SPIN. The model is converted to a
Kripke structure, i. e. a directed graph
with sets of atomic propositions anno-
tated at the nodes.

The LTL formula is converted to
a generalized Büchi automaton, which
accepts all infinite words that do not
satisfy the formula.

Then, the synchronous product of
the Kripke structure and the gen-
eralized Büchi automaton is com-
puted, resulting in an generalized
Büchi graph. Finally, the generalized
Büchi graph is checked for emptiness
by either using a strongly connected
component algorithm, or by degeneralizing it and using nested depth first search.
The result of the emptiness check either declares the automaton as empty, in
which case the model satisfies the formula, or it returns a counterexample, which
is a representation of an infinite run of the model that violates the formula.

The different components of CAVA are implemented and maintained by dif-
ferent developers. Thus, it is important to decouple them as much as possible.
The interfaces between the components are based on the classes of the CAVA
Automata Library.

The components are linked on two levels: the specification level and the imple-
mentation level. The specification level describes the abstract components’ effect
on the abstract automata data structures, using nondeterminism to leave room
for different implementations. For example, the result of the intersection may
be any automaton whose language is the intersection of the Büchi-automata’s
language with the system’s runs.

The link at the implementation level is realized as generic algorithm: Given
consistent implementations of the components which satisfy their specifications,
a model-checker is constructed and proven correct. To obtain the actual model-
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checker and correctness proof, the generic algorithm is instantiated with the
actual implementations.

These are the only points where the different components of the model
checker are connected. Thus, changes to the components remain local, and do
not affect the rest of the system. This greatly increases the maintainability and
extensibility of the system. For example, we added the SCC-based emptiness
check algorithm to the system later. After formalizing and proving the new al-
gorithm correct, we could simply replace the original emptiness check component
by a dispatcher component, which selects the algorithm based on a flag.

6 Conclusion

We have presented an infrastructure to develop large-scale verified software sys-
tems. It is based on stepwise refinement, which reduces proof complexity by
splitting the correctness proof into independent parts. Our verification process
is done entirely inside the Isabelle/HOL theorem prover. Thus, our correctness
theorems only depend on the small inference kernel of Isabelle/HOL, which gives
them a very high confidence. The user of our framework is supported by a tool
chain which simplifies the proving process by automating canonical tasks.

Using the fully verified CAVA LTL model checker as a case study, we have
shown how to adapt standard engineering techniques like object orientation and
modularization to our development process.
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Abstract. SAC (Single Assignment C) is a purely functional, data-
parallel array programming language that predmoninantly targets
compute-intensive applications. Thus, clusters of workstations, or more
generally distributed address space supercomputers, form an attractive
compilation target. Notwithstanding, SAC today only supports shared
address space architectures, graphics accelerators and heterogeneous com-
binations thereof.
In our current work we aim at closing this gap. At the same time we
are determined to uphold SAC’s promise of entirely compiler-directed
exploitation of concurrency, no matter what the target architecture is. It
is well known that distributed memory architectures are going to make
this promise a particular challenge.
Despite SAC’s functional semantics, it is generally not straightforward to
infer exact communication patterns from memory architecture agnostic
code. Therefore, we intend to capitalise on recent advances in network
technology, namely the closing of the gap between memory bandwidth
and network bandwidth. We aim at a solution based on an implementa-
tion of software distributed shared memory (SDSM) and large per-node
software-managed cache memories. To this effect the functional nature of
SAC with its write-once/read-only arrays provides a strategic advantage
that we aim to exploit.
Throughout the paper we further motivate our approach, sketch out our
implementation strategy and show preliminary experimental evaluation.

1 Introduction

Single Assignment C (SAC) [9] is a functional data parallel language specialised
in array programming. The goal of the language is to combine high productiv-
ity programming with efficient parallel execution. Data parallelism in SAC is
based on array comprehensions in the form of with-loops that are used to create
immutable arrays and to perform reduction operations. At this point, we can
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compile SAC source code into data parallel programs for shared memory archi-
tectures, CUDA-enabled graphics accelerators including hybrid systems and the
MicroGrid architecture. However, the SAC compiler and runtime system do not
yet support symmetric distributed memory architectures like clusters.

Our goal is to add efficient support for distributed memory architectures to
the SAC compiler and runtime system. We aim to achieve competitive speedups
for high-performance computing applications.

In a shared memory system, all nodes share a common address space. By
contrast, in a distributed memory system, each node has a separate address
space. In order to access remote data in a distributed memory programming
model, the programmer must be aware of the data item’s location and use explicit
communication. While distributed memory systems can scale to greater size,
the shared memory model is simpler to program. Distributed Shared Memory
(DSM) aims to combine both models; it provides a shared memory abstraction
on top of a distributed memory architecture. DSM can be realised in software
or in hardware; hybrid solutions also exist. Partitioned Global Address Space
(PGAS) is a programming model that lies in between the local and global view
programming models. PGAS logically partitions a global address space such that
a portion of it is local to each process, thereby exploiting locality of reference.
PGAS is the underlying model of programming languages like Chapel [5].

In the remainder of this paper we will first give an introduction to the SAC
language and then motivate our current work, SAC for clusters. Subsequently,
we will discuss our implementation and show preliminary performance results.

2 Single Assignment C

Single Assignment C (SAC) is a data parallel language for multi- and many-core
architectures. For an introduction to SAC see [9]. The language aims to combine
the productivity of high-level programming languages with the performance of
hand-parallelized C or Fortran code. As the name suggests, the syntax is inspired
by C. Other than C, however, SAC is a functional programming language without
side-effects.

SAC is specialised in array programming; it provides multi-dimensional ar-
rays that can be programmed in a shape-independent manner. While the lan-
guage only includes the most basic array operations it comes with a comprehen-
sive library. Conceptually, SAC’s functional semantics requires to copy the full
array whenever a single element is updated. To minimise the resulting overhead,
SAC uses reference counting. This facilitates in-place updates of data structures
when they are no longer referenced elsewhere. See [12] for SAC’s memory man-
agement.

Array operations are typically implemented by with-loops, a type of array
comprehension, which comes in three variants. See Figure 1 for examples. Both
genarray and modarray with-loops create an array; modarray does so based
on an existing array. For individual indices or sets of indices, expressions define
the value of the corresponding array element(s). Independently for each index,

373



the associated expression is evaluated and the corresponding array element is
initialised. The third with-loop variant, fold, performs a reduction operation
over an index set. As we have do not distribute these with-loops, we will not
discuss them in this paper.

4 4 5 5

6 6 6 6

6 7 7 7

arr 1 =

arr1 = with {
    ( [0, 0] <= iv < [0, 2]) : 4;
    ( [0, 2] <= iv < [0, 4]) : 5;
    ( [1, 0] <= iv < [2, 1]) : 6;
  } : genarray( [3, 4], 7);

5 5 6 6

7 7 7 7

7 8 8 8

arr 2 =
arr2 = with {
      ( . <= iv <= .) : arr1[iv] + 1;
    } : modarray( arr1);

Fig. 1: Examples of genarray and modarray with-loops and resulting arrays

All variants of with-loops have in common that the compiler may evaluate in-
dividual expressions independently of each other in any order and that write-
accesses are very restricted. These properties allow us to parallelise with-loops
in an efficient way. While with-loops denote opportunities for parallelism, the
decision whether they are actually executed in parallel or not is taken by the
compiler and runtime system. At all times, program execution is either sequential
or a with-loop is processed in parallel.

The SAC compiler is a many-pass compiler and emits platform-specific C
code. The compiler spends a lot of effort on combining and optimising with-
loops [10]. Currently, the compiler includes backends for symmetric multi-cores
[8], GPUs (based on CUDA) [14] and the MicroGrid many-core architecture [15].
Heterogeneous systems are supported as well [6] and there have been experiments
with OpenMP as a compilation target.

3 Motivation

In this section we argue why it is useful to add support for distributed memory
architectures to SAC, why we followed a software DSM-based approach and why
we decided to build a custom compiler-integrated DSM system.

3.1 Why support distributed memory architectures?

Distributed memory architectures are more cost-efficient, more scalable, and
distributed memory architectures dominate high-performance computing. Cur-
rently, 86% of the TOP500 supercomputers are clusters and 14% have a Mas-
sively Parallel Processing (MPP) architecture [1] which is also a type of dis-
tributed memory system. While they are still predominant in commodity hard-
ware, typical shared memory architectures have long vanished from the TOP500
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list: single processors by 1997 and Symmetric multiprocessing (SMP) architec-
tures by 2003 [1].

Message passing, and in particular MPI, is still the prevailing programming
model for distributed memory systems [7]. While such a local view or fragmented
programming model meets the performance requirements, it lacks programma-
bility [5]. The programmer is responsible for the decomposition and distribution
of data structures. Algorithms operate on the local portion of data structures
and require explicit communication to access remote data. Data distribution and
communication statements obscure the core algorithm.

By contrast, global view programming represents a higher-level alternative.
In this model, the programmer works with whole data structures and writes
algorithms that operate on these whole data structures. Data transfers and work
distribution are handled implicitly. The algorithm is specified as a whole and not
interleaved with communication. SAC offers a global view of computation to the
programmer. By adding support for distributed memory architectures to SAC,
we can utilise its global view programming model to make programming for
distributed memory systems more efficient.

3.2 Why a software DSM-based solution?

Distributed Shared Memory (DSM) provides a shared memory abstraction on
top of a physically distributed memory. An overview of issues of Distributed
Shared Memory (DSM) systems can be found in [17]. DSM can be realised in
software or hardware; hybrid systems also exist. In the context of this work, we
focus on software solutions. According to [19], the first software DSM system
was Ivy which appeared in 1984. Until the early 1990’s, several other software
DSM systems were proposed. Examples include Linda, Munin and Shiva [17].

These early DSM systems have not been adopted on a large scale due to
shortcomings in performance. Explicit message passing, and in particular MPI,
remain the predominant programming model for clusters. However, Bharath et
al. suggest that it is time to revisit DSM systems [18]. They argue that early
DSM systems were not successful because of slow network connections at the
time. In the meantime, the picture has changed. Network bandwidth is com-
parable to main memory bandwidth and network latency is only one order of
magnitude worse than main memory latency. According to Bharath et al. these
developments reduce DSM to a cache management problem. They propose to use
the improved network bandwidth to hide latency. As we will discuss in Section 4,
our implementation uses that trick as well.

3.3 Why a custom DSM system?

In order to support distributed memory systems, we could run a SAC program
on top of an existing software DSM system. Instead, we decided to integrate a
custom DSM system into the SAC compiler and runtime system. This allows
us to exploit SAC’s functional semantics and its very controlled parallelism in
with-loops. Since variables in sac have write-once/read-only semantics, we do

375



not have to take into account that they could change their value. Furthermore,
parallelism only occurs in with-loops and while arbitrary variables can be read
in the body with-loop, only a single variable is written to.

4 Implementation of our distributed memory backend

We added support for distributed memory architectures to the SAC compiler
and runtime system based on a page-based software DSM system. Every node
owns part of each distributed array and the owner computes principle applies.
All accesses to remote data are performed through a local cache. To abstract
from the physical network and provide portability, we utilise existing one-sided
Remote Direct Memory Access (RDMA) communication libraries. Currently,
we support GASNet [4], GPI-2 [13], ARMCI [16] and MPI-3. In order to add
support for a communication library, one only has to provide implementations
for a small set of operations. These include initialisation and shut down of the
communication system, an operation to load a memory page from a remote node
and barriers.

4.1 Distributed arrays and memory model

Distributed execution is triggered by with-loops that generate distributed arrays.
The runtime system decides whether an array is distributed based on the size of
the array, the number of compute nodes and the execution mode at allocation
time (see Section 4.4 for execution modes). Arrays are always distributed block-
wise along their first dimension. The minimum number of elements per node
such that an array gets distributed can be configured at compile time.

In memory, a distributed array does not form one contiguous block, but
instead it is split into number-of-nodes blocks of memory corresponding to the
elements that are owned by each node. We will motivate the choice for this
memory model in Section 4.5.

For an illustrative example of the memory model, see Figure 2. The example
uses two arrays, denoted by different colours, with fourteen and eight elements,
respectively, and four compute nodes. The numbers in the boxes denote the
element indices. Every node owns a share of each distributed array. The portion
of the array that is owned by a node is located in that node’s shared segment
(e.g. elements 0 - 3/0 - 1 of the first/second array on Node 0). Note that the
array sizes were chosen to simplify the example; in practise only arrays that are
some orders of magnitudes bigger would be distributed. Furthermore, we assume
for this example that a memory page can hold three array elements only.

Each node’s DSM memory consists of memory for the shared segment and
memory for the local caches. At program startup, each node pins a configurable
amout of memory for its shared segment and reserves an address space of the
same size for the caches of each other node’s data. (De-)allocation of distributed
arrays in DSM memory is taken care of by an adapted version of the SAC private
heap manager [11]. When a distributed array is allocated, the runtime system
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Fig. 2: Memory model for two distributed arrays (distinguished by different
colours)

also reserves an address space of the same size within the local caches for all
other nodes. To simplify locating array elements, the shared segment and caches
are aligned. In the example, the second array starts at offset 4 in the shared DSM
segment and all three cache segments on all four compute nodes. Non-distributed
arrays, scalars and array descriptors are not allocated in DSM memory.

4.2 Array element pointer calculations

SAC supports multi-dimensional arrays; the translation of multi-dimensional
array indices into vector offsets for memory accesses is taken care of by the
compiler [3]. For the remainder of this paper, we assume that this conversion
has already taken place. As explained in Section 4.1, a distributed array does
not form a contiguous block of memory. The runtime system, therefore, needs
to translate an offset to an array element to a pointer to the actual location of
the element. This section describes how this is done and how we optimise this
process.

In SAC, arrays have descriptors that hold a reference counter and, if not
known at compile time, shape information. For each distributed array, we add
two fields to the array descriptor: first elems and arr offs. The value of
first elems is the number of elements that are owned by each node except for
the last node, which owns the remaining elements. The value of arr offs is the
offset at which the array starts within the shared segment of its owner node and
within the cache for the owner at each other node. The formula for the pointer

377



calculation is shown in Listing 1. The variable segments contains pointers to the
local shared segment and the local caches; the rank of a node is the index of its
segment within segments. The value of elem offs is the offset of the requested
element within the array assuming that the array would be allocated as one
contiguous block of memory.

(segments[elem_offs / first_elems] + arr_offs) + (elem_offs % first_elems)

Listing 1: Formula for array element pointer calculations

In a naive implementation we would have to perform this pointer calculation
for every access to an array element. However, we implemented three optimisa-
tions for write accesses, remote read accesses and local read accesses, respectively,
so that the calculation can be avoided in most cases.

When writing distributed arrays we know that the elements we are writing
to are local to the writing node because of the owner computes principle. We,
therefore, simply keep a pointer to the start of the local portion of the array.

For remote read accesses we implemented a pointer cache. For each dis-
tributed array, we keep a pointer to the start of the array within the local cache
for the node that owns the least recently accessed remote element of that array.
In addition, we keep the offset of the first and last element that are owned by
the same node.

For local read accesses we use the same pointer to the start of the local
portion of the array that we use for write accesses. In addition, we keep the
offset of the first and the last element that are local to the current node.

When a read access to an array element occurs, we first check whether the
element is local to the current node by comparing its offset to the offsets of the
first and last node that are local to the current node. If the element is local,
we can use the pointer to the start of the local portion of the array in the local
shared segment.

If the element is not local, we check whether it is owned by the same node as
the last remote element of the same array that was accessed by comparing the
offsets. If that is the case, we can use the pointer to the start of the array in the
local cache for that node. Otherwise, we have to perform a pointer calculation
as shown in Listing 1 to update the pointer cache.

4.3 Communication model and cache

According to the owner computes rule, a node only writes array elements that
it owns. By contrast, every node can read all elements of a distributed array,
including remote elements. This section describes the required communication
for read accesses to remote array elements.

As mentioned in Section 4.1, the address space for the caches of remote
elements is reserved when a distributed array is allocated. Initially, the caches
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are protected page-wise against all accesses by means of the mprotect system
call. When a node tries to access remote data through its local cache, a SIGSEGV

signal is raised. A custom handler then copies the appropriate memory page from
the remote node into the local node’s cache and allows accesses to it. Subsequent
accesses to the same memory page can then be served directly from the local
cache. The signal handler can calculate the requested array element and its
location from the address where the segfault occurred. See Listing 1 for how to
calculate the memory location of array elements.

When part of the cache becomes outdated, the corresponding memory pages
are protected again. Distributed arrays are written in with-loops and we do not
need any communication to trigger the required cache invalidations. Every node
participates in the write operation and, therefore, knows that it has to invalidate
the cache for that array on completion.

When a remote element is not in the local cache yet, we always load entire
memory pages rather than single array elements. For an example, see Figure 2.
When Node 0 first accesses Element 8 of the first array, Elements 9 and 10 will
also be fetched from Node 2. Likewise, when Node 1 accesses Element 4 of the
second array for the first time, Element 5 of the second and Element 11 of the
first array will also be fetched from Node 2.

The rationale for loading entire pages is that thanks to advances in network
technology, available bandwidth has increased so much that we can use it to
hide latency [18]. Furthermore, the page-based approach allows us to use the
operation system’s memory page protection mechanism to decide whether an
element is present in the cache or not.

4.4 Execution modes and barriers

A distributed memory SAC program is always in one out of three execution
modes: replicated, distributed or side effects execution mode. See Figure 3 for
an illustrating example. In the following, we call the node with rank 0 master
node and the remaining nodes worker nodes.

Program execution starts in replicated execution mode in which every node
executes the same instructions on the same data. This way all nodes maintain
the same execution environment without requiring communication.

In distributed execution mode, each node works on its share of the data.
Currently, genarray and modarray with-loops are distributed iff the result array
is distributed. Distributed memory SAC supports one level of distribution, an
array and the with-loop that writes that array are not distributed if the program
is already in distributed execution mode when the array is allocated.

In side effects execution mode, only the master node is executing and the
workers are waiting until it is done. This is important because functions that
have side effects, such as I/O, must not be executed more than once. If functions
with side-effects yield any results, they are broadcast to the workers when the
master is done.

In some cases we need barriers to preserve the correctness of the program
in a distributed environment. For examples see Figure 3; the horizontal bars
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dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
        ( [0] <= iv < [310]) : a[iv];
        ( [210] <= iv < [400]) : x * x;
      } : genarray( [400]);

y = b[[5]] + y;

print( b);

x = fun2();

x = fun3();
y = fun4();

y = fun5();

dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
       ( [200] <= iv < [310]) : a[iv];
       ( [310] <= iv < [400]) : x * x;
     } : genarray( [400]);

y = b[[5]] + y;

x = fun2();

x = fun3();
y = fun4();

y = fun5();

Source program Execution node 1 (worker)Execution mode

Replicated

Distributed

Replicated

Side effects

Replicated

dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
        ( [0] <= iv < [200]) : a[iv];
      } : genarray( [400]);

y = b[[5]] + y;

print( b);

x = fun2();

x = fun3();
y = fun4();

y = fun5();

Execution node 0 (master)

Fig. 3: Execution modes and barriers (horizontal bars)

denote barriers. In general, we require barriers after program startup and before
program termination, before and after a distributed with-loop and before a
function application with side effects.

The barrier after a distributed with-loop ensures that no stale data is read
by other nodes because there were write accesses to the distributed array in
the with-loop. The barrier before a distributed with-loop ensures that, in case
memory is reused (see [12] for SAC’s memory management), no other node needs
to read the old data anymore before it is overwritten.

4.5 Motivation for memory model

As described in Section 4.1, distributed arrays do not form one contiguous block,
but instead are split into number-of-nodes blocks of memory corresponding to
the elements that are owned by each node. We explained in Section 4.2 that it
is relatively expensive to calculate pointers to array elements with this memory
model and proposed a pointer cache as a solution. Given this disadvantage, why
do we propose the described memory model? For our argumentation we will
assume that we use a page-based DSM system. We will, therefore, first elaborate
on the reasons why we decided to build a page-based DSM system: to hide
latency and to avoid overheads when checking whether an element is present in
the cache.

On a cache miss, we fetch a whole memory page rather than a single el-
ement from the remote node that owns the element. Subsequent accesses to
neighbouring elements can then be served from the cache. This allows us to use
the available bandwidth to hide latency. In addition, if we fetch whole memory
pages, we can use the operating system’s page protection mechanism to decide
whether a page is present in the cache or not. If a page is not present in the
cache, a SIGSEGV signal is raised when we try to access it and the fetch from the
remote node is taken care of by our custom signal handler. If a page is present in
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the cache, however, the access simply returns the data. The alternative to using
the page protection mechanism would be to keep track of the cached elements
ourselves, but that would involve a search in a possibly large data structure.
This search would incur additional overheads, also in the case that an element
is already present in the cache.

Having decided that we want to use a page based DSM system, why do
we use the described memory model? SAC supports multi-dimensional arrays
and with-loops that generate multi-dimensional arrays are compiled to complex
nested loop structures with a loop for each array dimension. We need to make
sure that the distribution happens along a single dimension; in practise along
the outermost dimension. Otherwise, the iteration of the index space becomes
impractically complex, especially when considering that the size and dimension-
ality of arrays is often not known at compile time.

We have established that we want to use a page-based DSM system and that
the distribution of the array should happen along the outermost dimension. If
an array was to form a single contiguous form of memory we would then have
to partition it at memory page borders. However, we have also established that
the distribution should happen along the outermost dimension. Unfortunately,
these two demands generally cannot be met at the same time.

Another benefit of our memory model is that it allows us to solve larger
problems. With contiguous arrays, we would need to allocate the entire array
within the DSM segment so that remote nodes can read the local portion of it.
Unfortunately, the size of the DSM segment is limited by hardware constraints.
In any case, it cannot be larger than the node’s physical memory. By contrast, in
our memory model, we only allocate the local part of the array within the DSM
segment. The caches are allocated outside of the DSM segment using mmap. Until
a memory page is accessed for the first time, only an address space is reserved
but no phyiscal memory is provided.

5 Evaluation of our distributed memory backend

We evaluate the performance of our distributed memory backend for SAC by
means of experiments in the areas of image convolution, matrix multiplication
and N-body simulation. In the following, we will first describe the experimental
setup and then discuss the results of the individual experiments.

5.1 Experimental setup

All experiments were performed on the VU cluster side of the DAS-4 supercom-
puter system [2]. The VU cluster side consists of 74 dual quad-core 2.4 GHz
compute nodes with 24 GB of memory each. The nodes are interconnected by
Gigabit Ethernet as well as high speed InfiniBand. We used the following versions
of the supported communication libraries for our experiments: GASNet 1.24.0,
GPI-2 1.1.1, ARMCI as included in Global Arrays 5.3 and the Open MPI 1.6.5
implementation of MPI-3.
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In our experiments, we compare the runtimes of the program compiled for
our distributed memory backend (dm) to the runtimes of the sequential SAC pro-
gram (seq). With the distributed program, we start each process on a separate
compute node. For N ≤ 8 (as the nodes of the DAS-4 system have eight cores),
we also compare the performance of our distributed memory backend program
run by multiple processes on a single node (dm-sn) to the performance of the
multi-threaded SAC program mt.

For all included measurements, we compared the output of the distributed
memory backend program to the output of the sequential program to ensure
that the program yields correct results. We measure the kernel execution time
of the calculations and not the total execution time of the program. The reason
is that the setup of the communication libraries and the printing of the result
arrays to check the correctness take a considerable amount of time and that
would otherwise distort our results. For real-world applications, the compute
time would be much longer, whereas the setup time remains nearly constant
and, thus, can be neglected.

We performed all experiments at least three times or more often if there was
a high variance in the results. From all measurements, we take the minimum
execution time for each program version rather than the average execution time.
Our justification is that there may be background processes running on the
compute nodes that have an influence on our experiments. All reported speedups
are with respect to the sequential SAC program (seq).

5.2 Image convolution

First, we present our image convolution experiments. We include image convo-
lution in our evaluation because it is a simple application where array element
accesses show a high degree of locality. We have optimised our implementation
for that by fetching entire pages on a cache miss and by using optimisations such
as array pointer caches (see Section 4.2).

The gaussBlurOpt test program performs twenty iterations of a 3 x 3 kernel
Gaussian blur on a 50,000 x 8,000 = 400,000,000 elements integer array. Figure 4
shows the performance results for gaussBlurOpt. For this program, we achieve
speedups of more than 80% of linear for up to sixteen nodes.

5.3 Matrix multiplication

We also include experiments with matrix multiplication, because, compared to
image convolution, it requires more communication. In this way, the matrix
multiplication experiments are a stress test for the communication performance
of our distributed memory backend for SAC.

The matmulBigDiff program performs ten iterations of a multiplication of
two matrices with 2,000 x 2,000 = 4,000,000 double-precision floating point
elements each. Implementation-wise, we first transpose the second matrix be-
fore we calculate the result matrix. Figure 5 shows our measurements for the
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Fig. 4: Speedups for the gaussBlurOpt program (twenty iterations of a 3 x 3
kernel Gaussian blur on a 50,000 x 8,000 = 400,000,000 elements integer array)

matmulBigDiff program: for eight nodes we achieve a speedup of 3.2 (40% of
linear) and for sixteen nodes a speedup of 4.2 (26% of linear).
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Fig. 5: Speedups for the matmulBigDiff program (ten iterations of a multipli-
cation of two matrices with 2,000 x 2,000 = 4,000,000 double-precision floating
point elements each)

5.4 N-Body simulation

Finally, we present the measurements for our all-pairs N-body problem exper-
iments. The SICSA N-body challenge simulates the movements of a system of
planets in three-dimensional space over time. Our program is based on the SAC
implementation proposed in [20].
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The nbodyBig program performs fifty iterations for 16,384 planets. Figure 6
show the measurements for the nbodyBig program. We achieve approximately
50% of linear speedups for up to sixteen nodes.

For the nbodyBig program, we also compare the minimum runtimes with
the different communication libraries GASNet, ARMCI, GPI-2 and MPI-3. In
Figure 7, we can see that MPI shows the weakest overall performance. Overall,
GASNet is slightly faster than ARMCI and GPI-2.
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Fig. 6: Speedups for the nbodyBig program (N-body simulation: movements of
16,384 planets, 50 iterations)
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6 Conclusions and future work

6.1 Conclusion

In this paper, we have presented our implementation of a new compiler backend
for SAC that supports symmetric distributed memory architectures like clusters
of workstations. A particular challenge in doing so is upholding SAC’s promise
of entirely compiler-directed exploitation of concurrency.

We propose a DSM-based implementation where all accesses to remote data
go through large local caches. Initially, the caches are protected by means of the
mprotect system call. When a memory page is first accessed, a SIGSEGV signal
is raised. A custom signal handler fetches the requested data from the remote
node and subsequent accesses to the same data can be served directly from the
cache.

While there is a lot of work to be done, our first results are promising. For
our convolution experiments, we achieve 80% of linear speedups, for our N-body
simulation approximately 50% of linear speedups and for matrix multiplication
about one third of linear speedups.

6.2 Future Work

Possible future research directions lie in the areas of general performance im-
provements, the combination with multi-threading, cache eviction and distributed
I/O. In the following, we briefly elaborate on these topics.

We want to improve overall performance by reducing the number of barri-
ers. Furthermore, we want to make read operations to distributed arrays more
efficient by avoiding locality checks and/or reducing overheads caused by them.

To fully utilise clusters of multi-core compute nodes, we want to combine
the distributed memory backend with SAC’s multi-threaded execution facilities
[8]. We expect that we can achieve higher speedups with a hybrid solution that
combines distributed execution and multi-threading.

Other than speeding up program execution, distributed execution has an-
other advantage: It allows us to solve problems that do not fit into the memory
of a single node. This is already possible to some extent in our solution, but to
support the general case, we would need to add a cache eviction scheme.

Currently, functions that have side effects including I/O are only executed
by the master node. We decided for this implementation to ensure that existing
SAC libraries work correctly with the distributed memory backend. However, in
many situations it would be more efficient to distribute I/O operations.
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Abstract. Separation Logic with inductive predicate definitions (SL)
and hyperedge replacement grammars (HRG) are established formalisms
to describe the abstract shape of data structures maintained by heap-
manipulating programs. Fragments of both formalisms are known to co-
incide, and neither the entailment problem for SL nor its counterpart for
HRGs, the inclusion problem, are decidable in general.
We introduce tree-like grammars (TLG), a fragment of HRGs with a
decidable inclusion problem. By the correspondence between HRGs and
SL, we simultaneously obtain an equivalent SL fragment (SLtl) featuring
some remarkable properties including a decidable entailment problem.

1 Introduction

Symbolic execution of heap-manipulating programs builds upon abstractions to
obtain finite descriptions of dynamic data structures, like linked lists and trees.
Proposed abstraction approaches employ, amongst others, Separation Logic with
inductive predicate definitions (SL) [21, 2, 16] and hyperedge replacement gram-
mars (HRG) [12, 15].

While these formalisms are intuitive and expressive, important problems are
undecidable. In particular, the entailment problem for SL [5, 1], i.e. the ques-
tion whether all models of a formula φ are also models of another formula ψ,
as well as its graph-theoretical counterpart, the inclusion problem for HRGs
[12], are undecidable in general. Unfortunately, as stated by Brotherston, Dis-
tefano and Peterson [4], “effective procedures for establishing entailments are
at the foundation of automatic verification based on Separation Logic”. Conse-
quently, SL-based verification tools, such as SLayer [3] and Predator [13],
often restrict themselves to the analysis of list-like data structures, where the
entailment problem is known to be decidable [2]. VeriFast [17], Hip/Sleek
[7] and Cyclist [4] allow general user-specified predicates, but are incomplete
and/or require additional user interaction. The largest known fragment of SL fea-
turing both inductive predicate definitions and a decidable entailment problem
is Separation Logic with bounded tree width (SLbtw) [16].

Approaches based on graph grammars suffer from the undecidability of the
related inclusion problem: Lee et al. [20] propose the use of graph grammars for
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shape analysis, but their approach is restricted to trees. Juggrnaut [15] allows
the user to specify the shape of dynamic data structures by an HRG, but relies on
an approximation to check whether newly computed abstractions are subsumed
by previously encountered ones. Hence, finding more general fragments of SL
and HRGs with good decidability properties is highly desirable.

This paper investigates fragments of HRGs with a decidable inclusion prob-
lem. In a nutshell, HRGs are a natural extension of context-free word grammars
specifying the replacement of nonterminal-labelled edges by graphs (cf. [14]).
Common notions and results for context-free word languages, e.g. decidability of
the emptiness problem and existence of derivation trees, can be lifted to HRGs
(cf. [22]) which justifies the alternative name “context-free graph grammars”.

Most of our results stand on two pillars. To introduce these two pillars as well
as to summarise our main results here, the utilisation of some formal notation
and concepts is indispensable. Corresponding definitions and detailed explana-
tions can be found in the successive sections. The first pillar is an extension of the
well-known fact that context-free word languages are closed under intersection
with regular word languages, which are, by Büchi’s famous theorem [6], exactly
the word languages definable in monadic second-order logic (MSO).

Lemma 1 (Courcelle [8]) For each HRG G and MSO2 sentence φ, one can
construct an HRG G′ such that L(G′) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Here, MSO2 means MSO over graphs with quantification over nodes and edges.
The second pillar is the close connection between a fragment of HRGs - called

data structure grammars (DSG) - and a fragment of SL studied by Dodds [11]
and Jansen et al. [18].

Lemma 2 (Jansen et al. [18]) Every SL formula can be translated into a lan-
guage-equivalent data structure grammar and vice versa.

The overall goal of this paper is to develop fragments of HRGs which can
be translated into MSO2. Then it directly follows from Lemma 1 that the re-
sulting classes of languages have a decidable inclusion problem and are closed
under union, intersection and difference as well as under intersection with gen-
eral context-free graph languages. By Lemma 2, we obtain analogous results for
equivalent SL fragments.

The largest fragment we propose are tree-like grammars (TLG). Intuitively,
every graph H generated by a TLG allows to reconstruct one of its derivation
trees by identifying certain nodes, the anchor nodes, with positions in a deriva-
tion tree. Furthermore, each edge of H is uniquely associated with one of these
anchor nodes. These properties allow for each graph H generated by a given
TLG G to first encode a derivation tree t in MSO2 and then to verify that H is
in fact the graph derived by G according to t. Our main result is that the two
informally stated properties from above guarantee MSO2-definability.

Theorem 1. For each TLG G, there exists an MSO2 sentence φG such that for
each H ∈ HG, H ∈ L(G) if and only if H |= φG.
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TLGs are introduced in detail in Section 4. Furthermore, we study the frag-
ment of tree-like Separation Logic (SLtl, cf. Section 5) which is equivalent to
TLGs generating heaps rather than arbitrary graphs.

Definition 1. An SLtl environment is an SL environment Γ where every disjunct
φ(x1, ..., xn) of every predicate definition meets the following conditions:

– Anchoredness: All pointer assertions y.s 7→ z occurring in φ contain the first
parameter x1 of φ, either on their left-hand or right-hand side, i.e. x1 = y
or x1 = z.

– Connectedness: The first parameter of every predicate call in φ occurs in
some pointer assertion of φ.

– Distinctness: x1 is unequal to the first parameter of every predicate call
occurring in Γ.

By Lemma 2, our results on TLGs also hold for SLtl. Thus, SLtl has the
following remarkable properties:

1. The satisfiability as well as the extended entailment problem, i.e. the question
whether an arbitrary SL formula φ entails an SLtl formula ψ, are decidable.

2. Although negation and conjunction are restricted to pure formulae, SLtl is
closed under intersection and difference.

Regarding expressiveness, common data structures like (cyclic) lists, trees,
in-trees, n × k-grids for fixed k and combinations thereof are SLtl-definable.
In particular, we show that SLtl is strictly more expressive than SLbtw. The
same holds for an entirely syntactic fragment of TLGs, called ∆-DSGs, and a
corresponding fragment of SLtl.

A full version of this paper containing further details and proofs has recently
been submitted to APLAS1.

The remainder of this paper is structured as follows. Section 2 very briefly
recapitulates standard definitions on SL and MSO, while Section 3 covers es-
sential concepts of hypergraphs and HRGs. The fragment of TLGs and its MSO-
definability result is introduced in Section 4. Our results on TLGs are transferred
to SL and discussed in Section 5. Finally, Section 6 concludes.

2 Preliminaries

This section introduces our notation and briefly recapitulates trees, graphs, MSO2,
and SL. On first reading, the well-informed reader might want to skip this part.

1 http://pl.postech.ac.kr/aplas2015/
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Notation Given a set S, S⋆ denotes all finite sequences over S. For s, s′ ∈ S⋆,
s.s′ denotes their concatenation, the i-th element of s is denoted by s(i) and
the set of all of its elements is denoted by ⌊s⌋. A ranked alphabet is a finite
set S with ranking function rkS : S → N and maximal rank ℜ(S). We write
{x1 7→ y1, . . . , xm 7→ ym} to denote a finite (partial) function f with domain
dom(f) = {x1, . . . , xm} and co-domain {y1, . . . , ym} such that f(xi) = yi for
each i ∈ [m] = [1,m] = {1, 2, . . . ,m}. The operators ⊎ and +⊔ denote the disjoint
union of two sets and two functions, respectively.

Trees Given a ranked alphabet S, a tree over S is a finite function t : dom(t) → S
such that ∅ ̸= dom(t) ⊆ N⋆, dom(t) is prefix closed and for all x ∈ dom(t), {i ∈
N | x.i ∈ dom(t)} = [rkS(t(x))]. x ∈ dom(t) is a (proper) prefix of y ∈ dom(t),
written x ≺ y, if y = x.i.z for some i ∈ N and z ∈ N⋆. The subtree of t with root
x ∈ dom(t) is given by t|x : {y | x.y ∈ dom(t)} → S : y 7→ t(x.y).

Graphs An edge-labelled graph over an alphabet S is a tuple H = (V,E) with
a finite set of nodes V and edge relation E ⊆ V × S × V . With each graph H
we associate the relational structure H = (V ⊎ E, src, tgt, (Es)s∈S) where src
and tgt are the binary source and target relations given by src := {(u, e) | e =
(u, s, v) ∈ E}, tgt := {(e, v) | e = (u, s, v) ∈ E}. For each s ∈ S, there is a unary
relation Es := {(u, s, v) ∈ E | u, v ∈ V } collecting all edges labelled with s.

Monadic Second-Order Logic over Graphs Given a finite alphabet S, the syntax
of MSO2 is given by:

φ ::= Es(x) | src(x, y) | tgt(x, y) | X(x) | φ1 ∨ φ2 | ¬φ | ∃x : φ | ∃X : φ | x = y

where x, y are first-order variables, X is a second-order variable and s ∈ S. For a
graph H = (V,E), we write H, ȷ |= φ iff H satisfies φ where ȷ is an interpretation
mapping every free first-order variable to an element of V ⊎E and every second-
order variable to a subset of either V or E, respectively. The semantics of |= is
standard (cf. [10]). Note that the semantics of src, tgt and Es has been given
explicitly in the definition of H.

Heaps Similarly to the typical RAM model, a heap is understood as a set of
locations Loc, whose values are interpreted as pointers to other locations. For-
mally, we assume Loc := N and define a heap as a partial mapping h : Loc →
Loc⊎{null}. The set of all heaps is denoted by He. Let Σ be a finite alphabet of
selectors equipped with an injective ordering function cn : Σ → [0, |Σ| − 1]. We
assume a heap to consist of objects equipped with finitely many pointer variables
which are modelled by reserving exactly |Σ| successive locations. Hence, for a
heap containing n objects, dom(h) = [n · |Σ|].

Separation Logic with Recursive Definitions We consider a fragment of Separa-
tion Logic, similar to Separation Logic with recursive definitions in [16, 18], in
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which negation ¬, true, and conjunction ∧ in spatial formulae are disallowed.
Let Pred be a set of predicate names. The syntax of SL is given by:

E ::= x | null
P ::= x = y | P ∧ P pure formulae
F ::= emp | x.s 7→ E | F ∗ F | ∃x : F | σ(x1, ..., xn) spatial formulae
S ::= F | S ∨ S | S ∧ P SL formulae

where x, y, x1, ..., xn ∈ Var, s ∈ Σ and σ ∈ Pred. The formula x.s 7→ E is called
a pointer assertion, σ(x1, ..., xn) a predicate call.

Note that we do not require that all selectors of a given variable are de-
fined by a single pointer assertion, i.e. we are less strict about pointer assertions
than other fragments proposed in the literature, e.g. in [16]. Furthermore, it is
straightforward to add program variables to SL, which we omitted for the sake
of simplicity. To improve readability, we write x.(s1, . . . , sk) 7→ (y1, . . . , yk) as a
shortcut for x.s1 7→ y1 ∗ . . . ∗ x.sk 7→ yk.

Predicate calls are interpreted by means of predicate definitions. A predicate
definition for σ ∈ Pred is of the form σ(x1, ..., xn) := σ1∨...∨σm where m,n ∈ N,
σj is a formula of the form F ∧P , and x1, ..., xn ∈ Var are pairwise distinct and
exactly the free variables of σj for each j ∈ [m]. The disjunction σ1 ∨ ... ∨ σm is
called the body of the predicate. An environment is a set of predicate definitions.
Env denotes the set of all environments.

The semantics of a predicate call σ(x1, ..., xn), σ ∈ Pred, w.r.t. an environ-
ment Γ ∈ Env is given by the predicate interpretation ηΓ. It is defined as the least
set of location sequences instantiating the arguments x1, . . . , xn and heaps that
fulfil the unrolling of the predicate body. We refer to [18] for a formal definition.

The semantics of the remaining SL constructs is determined by the standard
semantics of first-order logic and the following, where ȷ is an interpretation of
variables as introduced for MSO2:

h, ȷ, ηΓ |= x.s 7→ null ⇔ dom(h) = {ȷ(x) + cn(s)}, h(ȷ(x) + cn(s)) = null
h, ȷ, ηΓ |= x.s 7→ y ⇔ dom(h) = {ȷ(x) + cn(s)}, h(ȷ(x) + cn(s)) = ȷ(y)

h, ȷ, ηΓ |= σ(x1, ..., xn) ⇔ ((ȷ(x1), ..., ȷ(xn)), h) ∈ ηΓ(σ)

h, ȷ, ηΓ |= φ1 ∗ φ2 ⇔ ∃h1, h2 : h = h1 +⊔h2, h1, ȷ, ηΓ |= φ1, h2, ȷ, ηΓ |= φ2

A variable x ∈ Var is said to be allocated in a formula if it (or a variable y
with y = x) occurs on the left-hand side of a pointer assertion.

From now on, we assume that all existentially quantified variables are even-
tually allocated. This requirement is similar to the “establishment” condition in
[16]. With this assumption, the inequality operator for logical variables x ̸= y
is redundant with respect to the expressive power of the formalism, because
x.s 7→ z ∗ y.s 7→ z already implies that ȷ(x) ̸= ȷ(y) in all heaps satisfying the
formula. Thus, we assume that two existentially quantified variables refer to
different locations if not stated otherwise by a pure formula.
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3 Context-Free Graph Grammars

This section introduces HRGs together with some of their properties relevant
for the remainder of this paper. For a comprehensive introduction, we refer to
[14, 22].

Let ΣN := Σ⊎N be a ranked alphabet consisting of terminal symbols Σ and
nonterminal symbols N .

Definition 2 (Hypergraph). A labelled hypergraph (HG) over ΣN is a tuple
H = (V,E, att, lab, ext) where V and E are disjoint sets of nodes and hyperedges,
att : E → V ⋆ maps each hyperedge to a sequence of attached nodes such that
|att(e)| = rkΣN (lab(e)), lab : E → ΣN is a labelling function, and ext ∈ V ⋆ a
sequence of external nodes. The set of all HGs over ΣN is denoted by HGΣN

.

Note that we allow attachments of hyperedges as well as the sequence of
external nodes to contain repetitions. Hyperedges with a label from Σ are called
terminal edges, nonterminal otherwise. The set of terminal (nonterminal) hyper-
edges of an HG H is denoted by EΣ

H (EN
H , respectively). In this paper, we assume

rkΣN
(s) = 2 for each s ∈ Σ. Moreover, a hyperedge e with lab(e) = s ∈ Σ and

att(e) = u.v is interpreted as a directed edge from u to v. The relational struc-
ture corresponding to H ∈ HGΣ is H := [H], where the (conventional) graph [H]
is defined as [H] = (VH , E), E := {(attH(e)(1), labH(e), attH(e)(2)) | e ∈ EH}.

Example 1. As an example, consider the HG illustrated in Figure 1(a). For
referencing purpose, we provide a unique index i ∈ [|V |] inside of each node
ui represented by a circle. External nodes are shaded. For simplicity, we as-
sume them to be ordered according to the provided index. Terminal edges are
drawn as directed, labelled edges and nonterminal edges as square boxes with
their label inside. The ordinals pictured next to the connections of a nonter-
minal hyperedge denote the position of the attached nodes in the attachment
sequence. For example, if e is the leftmost nonterminal hyperedge in Figure 1(a),
att(e) = u5.u1.u3.u7.

Two HGs H, H ′ are isomorphic, written H ∼= H ′, if they are identical up
to renaming of nodes and edges. In this paper, we will not distinguish between
isomorphic HGs. The disjoint union of H,H ′ ∈ HGΣN

is denoted by H ⊎H ′.
The main concept to specify (infinite) sets of HGs in terms of context-free

graph grammars is the replacement of a nonterminal hyperedge by a finite HG.
Intuitively, a nonterminal hyperedge e is replaced by an HG H by first removing
e, inserting a disjoint copy of H and identifying the nodes originally attached
to e with the sequence of external nodes of H. This is formally expressed by a
quotient.

Definition 3 (Hypergraph Quotient). Let H ∈ HGΣN
, R ⊆ VH × VH be an

equivalence relation and [u]/R = {v ∈ VH | (u, v) ∈ R} the equivalence class of
u ∈ VH , which is canonically extended to sequences of nodes. The R-quotient
graph of H is [H]/R = (V,E, att, lab, ext), where V = {[u]/R | u ∈ VH}, E = EH ,
att = {e 7→ [attH(e)]/R | e ∈ EH}, lab = labH , ext = [extH ]/R.
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Definition 4 (Hyperedge Replacement). Let H,K ∈ HGΣN be hypergraphs
with disjoint nodes and hyperedges, e ∈ EN

H with rkΣN
(e) = k = |extK |. Let

V = VH ⊎VK , and H,e ≈K ⊆ V ×V be the least equivalence relation containing
{(attH(e)(i), extK(i)) | i ∈ [k]}. Then the HG obtained from replacing e by K is
H[e/K] := [(H \ {e} ⊎ K)]/ H,e≈K

where H \ {e} is the HG H in which e has
been removed. Moreover, two nodes u, v ∈ V are merged by H[e/K] if u ̸= v and
u H,e ≈K v.
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Fig. 1. HRG TLL with two production rules p1 and p2

We now formally introduce context-free graph grammars based on hyperedge
replacement.

Definition 5 (Hyperedge Replacement Grammar). An HRG is a 3-tuple
G = (ΣN , P, S) where ΣN is a ranked alphabet, S ∈ N is the initial symbol and
P ⊆ N×HGΣN is a finite set of production rules such that rkΣN (X) = |extH | > 0
for each (X,H) ∈ P . The class of all HRGs is denoted by HRG.

Given p = (X,H) ∈ P , we write lhs(p) and rhs(p) to denote X and H, respec-
tively. To improve readability, we write p instead of lhs(p) or rhs(p) whenever
the context is clear.

Example 2. The HRG TLL depicted in Figure 1(a),(b) will serve as a running
example. It consists of one nonterminal symbol S, four terminal symbols l, r, p, n
and two production rules p1, p2.

A key feature of HRGs is that the order in which nonterminal hyperedges
are replaced is irrelevant, i.e. HRGs are confluent (cf. [14, 22]). Thus, derivations
of HRGs can be described by derivation trees. Towards a formal definition, we
assume that the nonterminal hyperedges EN

p = {e1, ..., en} of each production
rule p = (X,H) are in some (arbitrary, but fixed) linear order, say e1, ..., en. For
HRG G, G[X] denotes the HRG (ΣN , PG, X).

Definition 6 (Derivation Tree). Let G = (ΣN , P, S) ∈ HRG. The set of all
derivation trees of G is the least set D(G) of trees over the alphabet P with
ranking function rkP : P → N such that t(ε) = p for some p ∈ P with lhs(p) = S.
Moreover, if EN

p = {e1, . . . , em}, then rkP (p) = m and t|i ∈ D(G[labp(ei)]) for
each i ∈ [m]. The yield of a derivation tree is given by the HG

yield(t) = t(ε)[e1/yield(t|1), . . . , em/yield(t|m)].
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We implicitly assume that the nodes and hyperedges of t(x) and t(y) are
disjoint if x ̸= y. The yield of a derivation tree is also called the derived HG
according to t.

Example 3. Figure 1(c) illustrates a derivation tree t of the HRG TLL in which
production rule p1 has been applied once, and production rule p2 twice. The
labels next to the circles provide the position in dom(t) while the labels inside
indicate the applied production rule. The graph on the right (d) illustrates the
shape of yield(t). For simplicity, node indices as well as edge labels are omitted.

The language generated by an HRG consists of all HGs without nonterminal
edges that can be derived from the initial nonterminal symbol.

Definition 7 (HR Language). The language generated by G ∈ HRG is the set
L(G) = {yield(t) | t ∈ D(G)}.

Example 4. The HRG TLL, provided in Figure 1, generates the set of all fully-
branched binary trees in which the leaves are connected from left to right and
each node has an additional edge to its parent.

Two results for derivation trees are needed in the following. The first result
is directly lifted from analogous results for context-free word grammars (cf. [22]
below Theorem 3.10).

Lemma 3 For each G ∈ HRG, D(G) is a regular tree language. In particular, the
emptiness problem for HRGs is decidable in linear time.

Furthermore, we generalize the notion of merged nodes to multiple successive
applications of hyperedge replacement.

Definition 8 (Merged Nodes). Let G ∈ HRG, t ∈ D(G), x, y ∈ dom(t) such
that x ≺ y, i.e. y = x.i.z for some i ∈ N, z ∈ N⋆, and let u ∈ Vt(x), v ∈ Vt(y).
We say that u and v are merged in t, written u ∼t v, if

– z = ε and u t(x),ei
≈t(x.i) v, or

– z ̸= ε and there exists w ∈ Vt(x.i) such that u t(x),ei
≈t(x.i) w and w ∼t v.

Example 5. Consider the derivation tree t shown in Figure 1(c) again. In its
yield, the node u7 in t(ε) is merged with u4 in t(1) and with u3 in t(2). In
yield(t), this node represents the leftmost leaf of the right subtree.

The relation ∼t merges exactly the nodes that are identified with each other
by yield(t).

Lemma 4 (Merge Lemma) Given G ∈ HRG and t ∈ D(G), let ≃t denote the
least equivalence relation containing ∼t. Then

yield(t) ∼=


 ⊎

x∈dom(t)

rhs(t(x))




/≃t

.
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4 Tree-Like Grammars

This section introduces tree-like grammars (TLG), a fragment of HRGs which
can be translated into MSO2.

Some further notation is needed. Let H ∈ HGΣN with EN
H = {e1, . . . , em}. We

call extH(1) the anchor node of H and denote it by ⚓H . Moreover, the sequence
of context nodes of H is defined as ctxtH := attH(e1)(1) . . . attH(em)(1) and
the free nodes of H are all nodes attached to nonterminal hyperedges only, i.e.
free(H) := {u ∈ VH | ∀e ∈ EΣ

H : u /∈ ⌊attH(e)⌋}.
We will see that TLGs are constructed such that every anchor node u rep-

resents an application of a production rule and thus a position in a derivation
tree t. The context nodes represent its children as they are merged with an-
chor nodes after their corresponding nonterminal hyperedges have been replaced.
Consequently, by the characteristic edges of an anchor node u we refer to the
characteristic edges EΣ

t(x) of a position x ∈ dom(t) represented by u. We consider
a series of simple graph languages to narrow down the class of TLGs step by
step. The first example stems from the fact that every context-free word lan-
guage can be generated by an HRG [14] (if words are canonically encoded by
edge-labelled graphs).
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b

.S ..1 ..S .. 2.a .1 .2. b.

(a)

.

S

..

1

..

2

.

a

.

b

Fig. 2. Two HRGs generating the language {an.bn | n ≥ 1} of string-like graphs.

Example 6. The HRG G shown in Figure 2(a) generates string-like graphs of
the form an.bn for each n ≥ 1. It is well known that the language L(G) is not
MSO2-definable. We observe that for arbitrary hypergraphs H ∈ L(G) it is not
possible to determine a node that is uniquely associated with all terminal edges
in the recursive, upper production rule of Figure 2(a) (which is in accordance
with the idea behind TLGs formulated at the beginning of this section). This
is caused by the intermediate nonterminal hyperedge, which can be replaced
by an arbitrarily large HG. Thus, to ensure that TLGs generate MSO2-definable
hypergraphs only, we require that every non-free node (and thus every terminal
edge) is reachable from the anchor node using terminal edges only.

However, this requirement is insufficient. For instance, Figure 2(b) depicts
an HRG G′ with L(G′) = L(G) which satisfies the condition from above. G′ is
obtained by transforming G into the well-known Greibach normal form (for word
grammars). In a derivation tree t, a position x ∈ dom(t) corresponding to an
application of the upper production rule has two children which represent the
nonterminal hyperedges labelled with S1 and S2, respectively. Since all nodes
except for the two leftmost ones are free in this production rule, the parent-child
relationship between anchor nodes and context nodes (or any other triple of
nodes) cannot be reconstructed in MSO2. Thus, we additionally require context
nodes to be non-free.
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In the following we consider basic tree-like HGs, which form the building
blocks of which a tree-like HG is composed.

Definition 9 (Basic Tree-Like Hypergraphs). H ∈ HGΣN is a basic tree-like
HG if ⚓H ∈ ⌊attH(e)⌋ for each e ∈ EΣ

H and ⌊ctxtH⌋ ∩ free(H) = ∅.

As a first condition on TLGs, we require right-hand sides of production rules
to be (basic) tree-like. In case of string-like graphs, this condition is sufficient to
capture exactly the regular word languages (if the direction of edges is ignored),
because every such grammar corresponds to a right-linear grammar. If arbitrary
graphs are considered, however, there are more subtle cases.

Example 7. Figure 3 (left) depicts an HRG G with three production rules p, q, r.
L(G) is the set of “doubly-linked even stars”, i.e. a single node u connected by
an incoming and an outgoing edge to each of 2n nodes for some n ≥ 0. An HG
H ∈ L(G) is illustrated in Figure 3 (right). Again, L(G) is not MSO2-definable.
In particular, no derivation tree can be reconstructed from H by identifying
nodes (or edges) in H with positions in a derivation tree, because |VH | = 5 and
|EH | = 8, but |dom(t)| = 9. The problem emerges from the fact that all anchor
nodes are merged with the central node u. Hence, we additionally require that
anchor nodes are never merged with each other.
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H ∼= yield(t)

Fig. 3. An HRG G where production rules p, q, r map to tree-like HGs (left) and a
generated graph H ∈ L(G) (right)

Formally, for any X ∈ N , H ∈ L(G[X]) contains merged anchor nodes if for
some t ∈ D(G[X]) with H ∼= yield(t), there exist x, y ∈ dom(t), x ̸= y such that
⚓t(x) ≃t ⚓t(y). The set of all HGs in

∪
X∈N L(G[X]) containing merged anchor

nodes is denoted by M(G).

Definition 10 (Tree-Like Grammar). G = (ΣN , P, S) ∈ HRG is a TLG if
M(G) = ∅ and for each p ∈ P , rhs(p) is a basic tree-like HG. The set of all
TLGs is denoted by TLG.

The condition M(G) = ∅ is, admittedly, not syntactic. However, it is possible
to automatically derive an HRG generating exactly the graphs satisfying it.

Theorem 2. For each HRG G, one can construct a TLG G′ such that L(G′) =
L(G) \ M(G).
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Remark 1. We call an HG H tree-like if it can be composed from basic tree-
like HGs, i.e. there exists a TLG G with L(G) = {H} (where nonterminals
of H are considered to be terminal). Although only basic tree-like HGs are
considered in all proofs, our results also hold for tree-like HGs. In particular,
if all non-free nodes of an HG H are reachable from the anchor node without
visiting an external node, a context node or a nonterminal hyperedge, H is tree-
like. Intuitively, the anchor nodes of corresponding TLG production rules are
determined by a spanning tree with the anchor of H as root. Analogously, the
initial nonterminal S may be mapped to an arbitrary HG provided that it never
occurs on the right-hand side of a production rule.

Example 8. According to the previous remark, the recurring example HRG TLL
illustrated in Figure 1 is a TLG.

As already stated in the introduction, our main result is the following.

Theorem 1. For each TLG G, there exists an MSO2 sentence φG such that for
each H ∈ HG, H ∈ L(G) if and only if H |= φG.

An important observation to show this theorem is that every graph H gen-
erated by a TLG G has two properties:

1. A derivation tree t of H is MSO2-definable in H, i.e. TLGs generate recognis-
able graph languages in the sense of Courcelle [8].

2. Every edge e ∈ EH can be uniquely associated in MSO2 with some x ∈ dom(t)
corresponding to the production rule t(x) which added e to H.

Hence, given MSO2 formulae encoding t in H and defining EΣ
t(x) for each

x ∈ dom(t), one can easily obtain a formula φ ensuring that all edges in every
model of φ are edges introduced by the proper application of a production rule.
In particular, K =

⊎
x∈dom(t) rhs(t(x)) is a model of φ for each t ∈ D(G). By

Lemma 4, it is sufficient to extend φ to an MSO2 sentence φ′ such that only
graphs H with H ∼= [K]/≃t

∼= yield(t), i.e. graphs that resulted from hyperedge
replacement steps where exactly the [K]/≃t

-equivalent nodes were merged, are
models of φ′. For any given pair of nodes, this property can be verfied by a finite
(string) automaton running on a path in the derivation tree t.

We collect two direct consequences of Theorem 1 and Lemma 1.

Theorem 3. The class of languages generated by TLGs is closed under union,
intersection and difference.
Theorem 4. Given G ∈ TLG and G′ ∈ HRG, it is decidable whether L(G′) ⊆
L(G). In particular, the inclusion problem for TLGs is decidable.

5 Tree-Like Separation Logic

As can be seen in Lemma 2, there exists a strong correspondence between SL and
HRGs. This correspondence leads to portability of the obtained TLG results to
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12 Christoph Matheja, Christina Jansen, and Thomas Noll

analogous SL results. As SL is tailored to reason about heaps, we restrict ourselves
to data structure grammars (DSG), i.e. HRGs generating heaps only. We denote
the class of all DSGs by DSG.

The largest SL fragment considered in this paper is SLtl as defined in the
introduction (see Definition 1).
Theorem 5. For every SLtl formula φ there exists a language-equivalent tree-
like DSG G and vice versa.
Example 9. Consider the SLtl formula φ := σ(x1, x2, x3, x4) defined over an
environment Γ consisting of predicate definitions for two predicate symbols σ
and γ.

σ(x1, x2, x3, x4) := [∃x5, x6, x7 : x1.(p, l, r) 7→ (x2, x5, x6) ∗ σ(x5, x1, x3, x7)

∗ σ(x6, x1, x7, x4)] ∨ [∃x5 : x1.(p, l, r) 7→ (x2, x3, x5)

∗ x3.p 7→ x1 ∗ x5.p 7→ x1 ∗ γ(x5, x3, x4)]

γ(x1, x2, x3) := x2.n 7→ x1 ∗ x1.n 7→ x3

Applying Lemma 2 to φ and Γ yields a tree-like DSG generating the same lan-
guage as the HRG TLL shown in Figure 1, i.e. the set of all fully-branched binary
trees with linked leaves and parent pointers. In particular, the first disjunct of
σ(x1, x2, x3, x4) directly corresponds to the production rule in Figure 1(a), where
variable names match with node indices. The other two disjuncts, split across
two predicates, translate into basic tree-like HGs and correspond to the second
production rule.

We can exploit the additional requirements for DSGs to obtain a simple, yet
expressive, purely syntactical fragment of TLGs.
Definition 11 (∆-DSGs). Let ∆ ⊆ Σ be a nonempty set of terminal symbols.
Then G = (ΣN , P, S) ∈ DSG is a ∆-DSG if for each p ∈ P , rhs(p) is a tree-like
hypergraph and ⚓p has an outgoing edge labelled δ for each δ ∈ ∆.
Example 10. Our example HRG TLL shown in Figure 1 is a {p, l, r}-DSG.

Lemma 5 Every ∆-DSG with ∅ ̸= ∆ ⊆ Σ is a TLG. ..

S

.. 1.
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.
p
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h

.
p

.

1

.

1

.

2

.

2

... 1.

2

.
h

Fig. 4. Tree-like DSG

In terms of expressiveness, we may compare
∆-DSGs to SLbtw [16], which is, to the best of
our knowledge, the largest known fragment of SL
with a decidable entailment problem. In partic-
ular, consider the {h}-DSG G depicted in Fig-
ure 4 generating reversed binary trees with an
additional pointer to the head of another data
structure. The language generated by G is not SLbtw-definable, because the num-
ber of allocated locations from which the whole heap must be reachable is fixed
a priori for every SLbtw formula and a corresponding environment.
Theorem 6. ∆-DSGs are strictly more expressive than SLbtw, i.e. for every
SLbtw formula there exists a language-equivalent ∆-DSG, but not vice versa.
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6 Conclusion

SL and DSGs are established formalisms to describe the abstract shape of dy-
namic data structures. A substantial fragment of SL is known to coincide with
the class DSG. With this relationship, decidability of the satisfiability problem
for SL, for instance, follows directly from decidability of its graph theoretic coun-
terpart, the emptiness problem for DSGs. However, the entailment problem or,
equivalently, the inclusion problem is undecidable.

..SLRD. HRG. MSO2

.

TLG

.

DSG

.

SL

.

TL − DSG

.

SLtl

.

SLbtw

.

Γ − DSG

.

RGG

Fig. 5. Relationships between frag-
ments of HRG and SL

We introduced the class TLG of tree-
like grammars which generate MSO2 de-
finable languages only. From this, some
remarkable properties, like decidability
of the inclusion problem and closure un-
der intersection, directly follow by pre-
vious work on context-free and recognis-
able graph languages. Moreover, the close
correspondence between HRGs and SL
yields several fragments of SL, in partic-
ular SLtl, where an extended entailment

problem is decidable. The resulting fragments are more expressive than SLbtw,
the largest fragment of SL with a decidable entailment problem known so far.

Figure 5 depicts an overview of the SL and HRG fragments considered in this
paper, where an edge from formalism F1 to formalism F2 denotes that the class
of languages realizable by F2 is included in the class of languages realizable by
F1. All of these inclusion relations are strict. For completeness, we also added the
class SLRD of completely unrestricted Separation Logic with inductive predicate
definitions (cf. [16, 1]) and the class RGG of regular graph grammars [9].

With regard to future research, investigating decision procedures and their
tractability for the entailment problem for (fragments of) SLtl is of great in-
terest. Although the entailment and inclusion problem is effectively decidable
for the fragments presented in this paper, our reliance on Courcelle’s theorem
does not lead to efficient algorithms (see [19] for a recent survey of alternative
approaches). Still, a better understanding of the boundary between decidability
and undecidability of the entailment problem for SL and the inclusion problem
for HRGs might help to obtain more efficient algorithms for specialised frag-
ments. We hope that a combined approach - studying SL as well as context-free
graph languages - will lead to further improvements in this area.
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Abstract. Work flow frameworks have become an integral part of mod-
ern information systems. They provide a clearly defined interface and
structure for interaction with a system. The specification of work flow
systems, however, is usually ad-hoc. Often, programmers simply define
a number of tasks (forms and actions) that are sequentially connected.
Users are then restricted to input data in this prescribed order.

In this paper, we propose a data-flow oriented work flow system where
the data flow is described by a purely functional program. This approach
offers the user and the system flexibility in the order of tasks while guar-
anteeing a consistent and correct result.

1 Motivation

Work flow frameworks are a common component in today’s content manage-
ment systems. They enable the modeling, structuring, support, and execution
of business processes. In this paper, we focus on a particular type of interactive
work flow, called case management [1], that dictates the tasks a user needs to
perform with the system (e.g. fill in a form, print a document, acknowledge some
information) to complete some business process. This could range from surveys
or tax forms to complexly structured financial consultation sessions.

This particular type of work flow is typically described with control flow
graphs (e.g. Apache ODE). The programming of such work flows and their tasks
fits neatly the imperative paradigm. However, such an approach forces the user
to perform the tasks in a rigid predefined order, even when this is not strictly
necessary to stay in compliance with the company’s policies and local laws.

For example, in financial or insurance consultation, the sessions are desirably
dynamic, with the consultant jumping back and forth through tasks, possibly
revising prior inputs, depending on the interaction with the client. Such behav-
ior is difficult to describe cleanly with control flow graphs, especially when it
contains dynamic elements like loops.

Therefore, we propose a functional approach, in which the work flows are
described with data flow graphs instead. The nodes of this graphs represent
tasks (effectively idempotent impure functions with localized side effects) and
the edges represent pure functions that map outputs of tasks to inputs of (other)
tasks. Arrows [4] provide the necessary scaffolding for the (dynamic) construction
of such graphs.
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Two extensions of arrows are particularly important in this context: monadic
arrows allow the structure of the work flow to be dependent on inputs (e.g. to
generate a set of tasks for each client), and feedback loops model destructive
changes (e.g. finalizing or closing some tasks).

We present these ideas in a simplified setting as an embedded domain spe-
cific language using Haskell. We start with an example that demonstrates the
notation, then discuss its properties and its implementation in more detail.

2 Example

As an example, we consider a simple work flow consisting of three individual
tasks, given by the data flow chart in Figure 1. The tasks askName and askAge

ask for the name and age of the user, respectively. The task askAddress asks
for the address of the user if he is of full age, otherwise it asks for the address of
a parent or legal guardian. Therefore it depends on the return value of askAge.

askName

askAge

askAddress

()

String

Integer

String

Fig. 1. Data flow of the example workflow.

While the data flow is fixed, the order in which the tasks have to be pro-
cessed is only partially determined by the data dependencies. The only restric-
tion is that the askAge task is executed before the askAddress task. Instead of
programming the control flow by hand, we want to define the individual tasks
independently of each other using pure and impure Haskell functions:

askName :: Task () String
askName = ...

askAge :: Task () Integer
askAge = ...

askAddress :: Task Integer String
askAddress = ...

In a second step, we combine them using Arrow constructors to model the data
flow given by the chart:
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workflow :: Task () (String,String)
workflow = askName &&& (askAge >>> askAddress)

Afterwards, it should be possible to execute the complete work flow using an
automatically computed dynamic ordering of the tasks.

> runTask workflow ()
...
("Alice","Berlin")

where

runTask :: Task a b -> a -> IO b
runTask = ...

3 Implementation

In this section, we discuss the details of the task data type, the arrow combinators
and execution of (composed) tasks in our Haskell implementation in detail.

3.1 Type Definition

We define a new parametric data type Task a b to model tasks with input type
a and output type b. Since this type has to represent pure and impure tasks and
support the various ways in which arrows can be combined, we need multiple
constructors. In addition, we use a generalized algebraic data type(GADT) to
achieve the necessary flexibility when composing tasks.

data Task a b where
Pure :: (a -> b) -> Task a b
Impure :: (a -> IO b) -> Task a b
Serial :: Task a b -> Task b c -> Task a c
Parallel :: Task a b -> Task c d -> Task (a,c) (b,d)

The intended usage for the constructors is as follows:

Pure and Impure create single tasks out of pure functions and IO actions, re-
spectively. While the Impure constructor would be sufficient for all functions
(by simply lifting pure functions into the IO monad), this distinction allows
us to later optimize the execution of the task; since pure functions have no
side effects, the execution order is not important. In fact, we can rely on lazy
evaluation to only compute those tasks whose results are actually needed.

Serial allows to compose two tasks in series, using the output of the first task
as the input for the second. This dependency has to be considered later
in the evaluation of the task. The Serial constructor basically models the
composition (>>>) of arrows.

Parallel represents two tasks which are independent of each other and can
thus be evaluated in an arbitrary order. It also represents the composition
of two arrows with the (***) function.
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3.2 Instance Declarations

The next step is to write an instance for the Arrow type class as well as for
various subclasses. First, we have to turn Task into an instance of Category:

instance Cat.Category Task where
id = Pure id
t1 . t2 = Serial t2 t1

The identity in Catecory is simply the pure task consisting of the identity
function. The composition of two tasks is done with the Serial constructor.

Next, we can turn Task into an instance of the Arrow type class.

instance Arrow Task where
arr = Pure
t1 *** t2 = Parallel t1 t2
t1 &&& t2 = Pure (\a -> (a,a)) >>> t1 *** t2
first t = t *** Cat.id
second t = Cat.id *** t

The functions arr and (***) use the corresponding constructors Pure and
Parallel. The (&&&) operator is implemented by using a pure function to
feed the same input into both parallel tasks. first and second then simply use
(***) and the identity task.

3.3 Additional Instances

To use the full potential of arrows, we can also create instances for the vari-
ous arrow subclasses. For example, ArrowChoice allows the case distinction of
two arrows based on the return value of the previous arrows and can be easily
implemented by adding an additional constructor:

Or :: Task a c -> Task b c -> Task (Either a b) c

The instantiation of ArrowChoice is based on using Or to represent the
(|||) operator.

instance ArrowChoice Task where
(|||) = Or
f +++ g = (f >>> arr Left) ||| (g >>> arr Right)

left f = f +++ Cat.id
right f = Cat.id +++ f

Similarly, its possible to create instances for other subclasses like ArrowApply
or ArrowLoop, if necessary, by adding further constructors to the data type.

3.4 Optimizing the Instances

The given instances can be optimized to simplify the resulting data structures.
Using pattern matching, we can for example introduce special cases for pure
tasks. The composition of two pure tasks can be done with the creation of a
pure task containing the composition of the functions which results in a simpler
data structure:

(Pure f1) . (Pure f2) = Pure (f1 . f2)
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In the same way, the other arrow operators can be optimized for pure tasks
by simply applying the operators to the contained functions and wrapping the
result in a new pure task:

(Pure f1) *** (Pure f2) = Pure (f1 *** f2)
(Pure f1) &&& (Pure f2) = Pure (f1 &&& f2)

Notice that we cannot do the same with impure tasks since that would in-
evitably fix the execution order.

3.5 Arrow Laws

While Task is now technically an instance of the Arrow type class, we have to
verify if it actually behaves like an arrow. As for many type classes, there are
laws which every Arrow instance should obey [5]:

1. arr id = id

2. arr (f >>> g) = arr f >>> arr g

3. first (arr f) = arr (first f)

4. first (f >>> g) = first f >>> first g

5. first f >>> arr fst = arr fst >>> f

6. first f >>> arr (id *** g) = arr (id *** g) >>> first f

7. first (first f) >>> arr assoc = arr assoc >>> first f

where assoc ((a,b),c) = (a,(b,c))

Note that there are similar laws for the ArrowChoice and ArrowApply type
classes.

We want to check now if our implementation actually satisfies these laws.
The first three are verified quite easily:

1.

arr id = Pure id

= Category.id

2.

arr (f >>> g) = Pure (f >>> g)

= Pure (g . f)

= (Pure g) . (Pure f)

= (arr g) . (arr f)

= arr f >>> arr g
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3.

first (arr f) = first (Pure f)

= (Pure f) *** Cat.id

= (Pure f) *** (Pure id)

= (Pure f) *** (Pure id)

= Pure (f *** id)

= Pure (first f)

= arr (first f)

For the fourth law, everything works as long as both tasks are pure:

4. (a) f = Pure p and g = Pure q:

first (f >>> g) = first (g . f)

= first ((Pure q) . (Pure p))

= first (Pure (q . p))

= (Pure (q . p)) *** Cat.id

= (Pure (q . p)) *** (Pure id)

= Pure ((q . p) *** id)

= Pure (first (q . p))

= Pure (first (p >>> q))

= Pure (first p >>> first q))

= Pure ((p *** id) >>> (q *** id))

= Pure (p *** id) >>> Pure (q *** id)

= (Pure p) *** (Pure id) >>> (Pure q) *** (Pure id)

= f *** Cat.id >>> g *** Cat.id

= first f >>> first g

But if one of the tasks is not pure, the equality does not hold anymore:
(b) f 6= Pure p:

first (f >>> g) = first (g . f)

= first (Serial f g)

= (Serial f g) *** Cat.id

= Parallel (Serial f g) Cat.id

6= Serial (f *** Cat.id) (Parallel g Cat.id)

= Serial (f *** Cat.id) (g *** Cat.id)

= Serial (first f) (first g)

= first g . first f

= first f >>> first g
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The laws 5, 6 and 7 behave similarly. This means that only the first three laws
hold in general; as soon as one of the tasks is not pure, they fail. This isn’t
surprising: For pure tasks, the laws are directly derivable from the fulfilled laws
for the Arrow instance of functions. For all other tasks, the internal structure
directly represents the order in which the arrows where combined. Hence, most
laws have to fail. But is this a problem? The laws are there to guarantee that
the instance actually behaves like an arrow. In our case, we are mostly interested
in the behavior when we actually execute the task. It is therefore sufficient to
check if the tasks are equivalent under execution.

3.6 Task execution

Until now, we considered the static representation of tasks as a composition of
subtasks. Regarding their dynamic behavior, we needs a way to execute tasks.
The runTask function executes a task as an IO action, thus allowing input and
output of data:

runTask :: Task a b -> a -> IO b

The simplest way to do this is by remodeling the behavior of the Kleisli
arrow.

runTask :: Task a b -> a -> IO b
runTask (Pure f) = return . f
runTask (Impure m) = m
runTask (Serial t1 t2) = \a -> runTask t1 a >>= runTask t2
runTask (Parallel t1 t2) = \(u,v) -> do

r1 <- runTask t1 u
r2 <- runTask t2 v
return (r1,r2)

runTask (Or t1 t2) = either (runTask t1) (runTask t2)

This certainly works, and it is also easy to show that this function is compatible
with the arrow laws. For example, considering the fourth law,

first (f >>> g) = first f >>> first g

both sides of the equality evaluate to the execution of task f followed by the
execution of task g.

While this solution respects the laws, it is not very useful yet. The execution
order is fixed and not dynamic; in case of two parallel tasks, we always execute
the left one first. To actually gain an advantage over simply using Kleisli arrows,
we have to add some modifications. The easiest one would be to ask the user to
specify the order in which parallel tasks get executed:

runTask (Parallel t1 t2) = \(u,v) -> do
putStrLn "Run Task a or b first?"
l <- getLine
if l == "b" then do

r2 <- (runTask t2) v
r1 <- (runTask t1) u
return (r1,r2)

else do
r1 <- (runTask t1) u
r2 <- (runTask t2) v
return (r1,r2)
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This is an improvement but still not flexible enough. After choosing for example
the left task, we have to finish all subtasks before we can start to execute the
right task.

We can circumvent this problem by writing a function that executes only a
single subtask:

runSingleTask :: (Task a b) -> a -> IO (Task a b)
runSingleTask t a = ...

We can then simply iterate over the subtasks of a composed task until all
impure tasks have been processed:

runEveryTask :: (Task a b) -> a -> IO b
runEveryTask (Pure f) a = return . f $ a
runEveryTask t a = do

s <- runSingleTask t a
runEveryTask s a

To make this even more useful, we can add names

Impure :: String -> (a -> IO b) -> Task a b

to the individual tasks to allow for an easier selection of which task to execute
next.

A more advanced system could also offer the possibility to redo already pro-
cessed tasks.

3.7 Example revisited

After all this work, we now return to our example from Section 2 and present an
implementation. We start with the specification of the three in monadic syntax,
assigning each a name:

askName :: Task () String
askName = Impure "askName" (const $ putStr "Please enter your name: " >>

getLine)

askAge :: Task () Integer
askAge = Impure "askAge" (const $ putStr "Please enter your age: " >> readLn)

askAddress :: Task Integer String
askAddress = Impure "askAddress" $ \age -> do

if age >= 18 then do
putStr "Please enter your address: "
getLine

else do
putStr "Please enter the address of a parent or legal guardian: "
getLine

Then, we combine them with arrow operators reflecting the data dependencies
to obtain the complete work flow:

workflow :: Task () (String,String)
workflow = askName &&& (askAge >>> askAddress)

When executing the tasks, we can dynamically choose the order in which the
questions will be asked. For example, a session can take the following form:
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> runEveryTask workflow ()
Open tasks:
0. askName
1. askAge
Which task do you want to run?: 1
Please enter your age: 23
Open tasks:
0. askName
1. askAddress
Which task do you want to run?: 0
Please enter your name: Alice
Please enter your address: Berlin
("Alice","Berlin")

4 Related work

The ideas in this paper are closely related to those of the iTasks system [6],
which uses monads instead of arrows to describe work flows. Monads provide
a means to describe a sequential work flow using pure functions. Recently, the
authors seem to experiment with arrows as well [2]. Essential differences to our
work are that we are not considering concurrent processes (orchestration), and
instead enable different execution orders and revision of prior tasks.

These ideas are further a typical example of functional reactive program-
ming [3], in particular with respect to the interaction of user and system.

5 Conclusion

In this paper, we presented a simple, but flexible work flow management frame-
work. It allows to compose work flows from individual tasks and provides the
means to process the subtasks in a dynamically adaptable order. A previous
version of this work is incorporated in a real world financial application using
a propriety functional programming language. Due to practical considerations,
such as side effects in legacy code, that version used a mixture of control and
data flow graphs. In this work, we essentially prototyped the next version which
is based entirely on the work flow’s data dependencies, and verified that the
ideas are both viable and practical.

In future work, we will integrate our work flow management system into
some web framework. This will provide programmers with the means to specify
applications such as surveys and questionnaires in a simple and flexible way.
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Towards a Theory of Objects in Sequentially
Constructive Synchronous Programming
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Abstract. The synchronous model of computation reduces the pro-
gramming of deterministic concurrent systems to the programming of
stateful reaction modules that operate in lock-step. At each macro-step,
also called synchronous instant, each concurrent program module reads
inputs from the environment and executes a step function to change
internal memory and produce an output which is consumed by the en-
vironment during the same instant. To guarantee overall determinacy,
current synchronous programming (SP) languages are heavily restric-
tive: Modules may only communicate through signals, the modules’ step
functions must be schedulable so that there is essentially only one write
access to a signal and each step function is called at most once within
a single instant. Programs which cannot be scheduled to satisfy this are
considered non-constructive and rejected. Thus, on the face of it, the
synchronous paradigm, as embodied in traditional SP languages, seems
to preclude object-style component models, which are common in main-
stream imperative programming and natural for modular compilation of
synchronous programs.
Previous attempts to add objects to SP have been fairly tentative or re-
mained hidden in the intermediate languages of SP compilers. However,
the situation may now be changing. Recent work on a scheduling-centred
reconstruction of SP, called the sequentially constructive model of syn-
chronous computation (SCMoC), has introduced a key advance. The
SCMoC permits multiple sequential writes to a signal variable under an
init-update-read scheduling discipline which relaxes the standard con-
structiveness analysis for an SP program. Considering that a signal is
nothing but a rather special case of a shared object, we show how to en-
rich earlier tentative synchronous object models by pushing the SCMoC
scheduling perspective further. We generalise from simple read/write ac-
cess functions on signals to module tasks on shared state, and from pre-
defined implicit scheduling disciplines to programmer-defined scheduling
policies. In this way, we can encapsulate both memory and synchronous
code freely into shared objects just as SCMoC signals can be shared
modulo init-update-read protocols. This yields an expressive component
model that fills an abstraction gap still prevalent in standard SP lan-
guages.
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Abstract. The compilation of languages for parallel computations which
provide constructs to control the dynamic allocation of data structures
to processors requires the analysis of the relationship between array ref-
erences and data distribution functions. Expressions representing classes
of distribution functions constitute the basic data flow information. For
the interprocedural analysis, they are represented symbolically. A back-
ward phase over the call graph calculates precise procedure summaries, a
subsequent forward phase, by propagating calling context, eliminates the
symbols therein. The meet operation allows for subsumptions, subclasses
of already occurring classes are ignored. If the control flow is affected by
the distribution class related to a reference, the data flow information is
masked with the decisive condition. The analysis is based on a reduced
flow graph containing only the nodes relevant to the analysis outcome.

1 Introduction

Information about the distribution of arrays is essential for a compiler for a
data parallel programming language to generate efficient code. Optimization
strategies can improve the code considerably, if detailed knowledge about the
use of data and work distributions in a program is available. Extensive analysis
has to provide this information.

The distribution of an array is a function that defines how the elements of the
array are partitioned into subsets—often rectangular segments—and mapped to
processors. This has various implications, most importantly, with respect to the
allocation of arrays in the processors’ memories, and the processors’ responsibil-
ities for preforming calculations with arrays.

The array distribution is specified in connection with the array declaration,
after the keyword dist, for each array dimension as a reference to an intrinsic
distribution function such as block or cyclic, or the keyword none for “no
distribution”.1 For example, a dist (block block) specifies a blockwise distri-
bution for array a in both dimensions, whereas b dist (block none) defines,
that array b is distributed blockwise in the first dimension, and not distributed

1 none for every dimension specifies a replicated array, yet this is seen as a special
case of distribution.
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in the second dimension i.e., b is is partitioned into blocks of rows. Vice versa,
(none block) specifies blocks of columns (see Figure 1).
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Fig. 1. Segments of a (block block), (block none), and (none block) distribution

The distribution of an array may be changed at runtime by means of the
distribute statement. Through

distribute b (none block)

b will be redistributed to a (none block) distribution.
The current distribution of an array can influence the control flow in the

program by means of a distribution query in the form of a test for “Identical
Distribution Types”.

if a idt (block ∗) then . . . else . . . ,

restricts the execution of the then-part to states in which a is distributed block-
wise in the first dimension, independent of its distribution in the second dimen-
sion. The complementary condition is relevant to the else-part. The wildcard “∗”
is used in the standard manner.

Whenever a distributed array is passed as a parameter in a procedure call, its
distribution is passed as well. On procedure return, the actual parameter adopts
the distribution of the formal parameter.2

The language constructs presented show, in a simplistic syntax, a small subset
of the features for distributed arrays in data parallel languages [5, 4]. Primarily,
they are supposed to serve as the basis for the presentation of our analysis.

This analysis delivers a range of possible distribution states for each state-
ment of a program composed of several procedures. It includes an intra- and an
interprocedural level, connected with each other through a symbolic representa-
tion of distribution classes (see Section 4, Section 3).

As a special feature, the analysis deals also with classes of distributions con-
stituted by use of wildcards. This gives reasons for the definition of a subsumption
relation between more general and more specific classes of distributions.

2 A different behavior can be achieved through appropriate placements of distribute
statements at procedure boundaries.
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2 Intraprocedural Data Flow Analysis

2.1 Data Flow Information

A distribution expression is a list, equal in length to the number of array dimen-
sions; each element corresponds to an array dimension and is

– an intrinsic distribution function name (such as block or cyclic),
– or none,
– or the wildcard “∗”, which stands for any of the above.

A distribution expression specifies a class of distributions, which is called a
distribution type [5].

A distribution state is a vector of distribution expressions, in which each com-
ponent is assigned to a declared (distributed) array. Alternatively, a component
can be formed from an array identifier, namely of a formal parameter array,
which accepts its distribution type from the corresponding actual parameter.
The array identifier is in fact a symbol representing the transferred distribution
type.

A masked distribution state is a distribution state with a distribution mask,
a distribution mask is a set of pairs (array identifier, distribution expression).
A pair may be labeled with a negation “¬”. The same array identifier can occur
in more than one pairs, thus an arbitrary number, including zero, of distribution
expressions can be assigned to an array. It is also possible, that no array occurs,
i.e., the mask is the empty set. A distribution state without a (non-empty) mask
is called immediate.

The data flow information set consists of sets of masked distribution states.

Example 1. The masked distribution state

{a (block ∗),¬ c (block none)} · [a : (block cyclic) b : â c : (∗ block)]

at a program point denotes the following.3 If, on procedure entry, array a is
block distributed in the first dimension, irrespective of its distribution in the
second dimension, and array c is not (block none) distributed, then a is
(cyclic block) distributed at that point, and array b has the same distri-
bution type as a on procedure entry, and array c is block distributed in the
second dimension, whereas its distribution in the first dimension is not specified
and can be any of block, cyclic, none.4

A distribution expression is called generic in the presence of one or more
wildcards.5 A distribution expression which is not generic is called terminal. A
distribution state is called generic, if it contains at least one generic distribution
expression, otherwise it is called terminal.

3 A pair (a, δ) in a mask is written as a δ, and an array identifier component as â.
4 “a is δ distributed”, “a has a δ distribution”, and “a has the distribution type δ”

have the same meaning.
5 The genericity is an extension of the definition in [5].
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2.2 Subsumption

Based on genericity, we define a relation on distribution expressions. A distribu-
tion expression δ is said to subsume a distribution expression δ′, δ � δ′, iff δ and
δ′ are equal in length, and δ contains n ≥ 0 wildcards, and δ′ contains at most
n wildcards, and for each wildcard in δ′ there is a wildcard in δ at the same
position (i.e., for the same array dimension). By this definition a distribution
expression subsumes itself. In contrast to this, a distribution expression δ is said
to properly subsume a distribution expression δ′, d � δ′, iff d � δ′ and δ′ � d.
Note that d � δ′ implies d 6= δ′ and δ being generic.

Let τ(δ) denote the set of terminal distribution expressions represented by
δ. Iff δ subsumes δ′, τ(δ′) is a subset of τ(δ).

A distribution state s is said to subsume a distribution state s′, s � s′, iff s
and s′ are equal in length, and every component of s formed from a distribution
expression subsumes the corresponding component of s′, and every component
formed from an array identifier is equal to the corresponding component of s′.

A distribution mask m specifies a predicate S(m) on the distribution state
of the formal parameter arrays on procedure entry. A distribution masks m is
said to subsume a distribution mask m′, m � m′, iff m′ represents the same or
a stronger condition than m, i.e., iff S(m′) ⊆ S(m).

A masked distribution state w = m · s is said to subsume a masked distribu-
tion state w′ = m′ · s′, w � w′, iff m = m′ and s � s′, or m � m′ and s = s′,
or both m � m′ and s � s′ hold, i.e., at least one of its parts subsumes the
corresponding part of w′.

Sets of masked distribution states, which do not contain elements properly
subsumed by other elements, are called subsumption free. They constitute the
elements of the data flow information set L. Let W denote the set of masked
distribution states. Then L = P(W ), and for all ` ∈ L, w,w′ ∈W

w ∈ ` ∧ w � w′ → w′ /∈ `.

2.3 Meet Operation

The meet operation is a modified set union operation such that the result does
not contain elements which are properly subsumed by other elements, the sub-
sumption free union ∪̃. Let `1, `2 ∈ L. Then

`1 ∪̃ `2 := `1 ∪ `2 − {w′ ∈W | ∃w ∈ `1 ∪ `2 ∧ w � w′ }.

Based on ∪̃ a partial order on L can be defined,

`1 ≤ `2 ⇔ `1∪̃`2 = `1.

≤ is the modified superset relation ⊇̃,

`1⊇̃`2 ⇔ ∀w′ ∈ `2 [w′ ∈ `1 ∨ ∃w ∈ `1 (w � w′) ].
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2.4 Transfer Functions

The distribution state can change due to (i) redistributions, (ii) distribution
queries, and (iii) procedure calls. For the pertaining types of flow graph nodes
the transfer functions are given; for all other types the transfer function is the
identity function.

In the following, let s[a] denote the component of a distribution state s as-
signed to array a (the “a-component”), w.m denote the mask part of a masked
distribution state w = m · s, w.s denote the state part of w, and ` ∈ L denote
the incoming data flow information at a node.

2.4.1 Redistribution The effect of the redistribution

distribute a δ,

where a is an array and δ is a distribution expression, is defined by the transfer
function fD : L → L of a distribute node (a node representing a distribute
statement). It sets in all elements of ` the a-component to δ. I.e., fD(`) executes,
∀w ∈ `,

w.s[a]← d.

In case of a statement

distribute a = b,

where both a and b are arrays, it sets the a-component to the distribution ex-
pression, or the array identifier, which is currently assigned to array b. Thus
fD(`) executes, ∀w ∈ `,

w.s[a]← w.s[b].

Example 2. The redistribution

distribute a (block cyclic)

in the state

[a : (block block), b : (block none)]

yields

[a : (block cyclic), b : (block none)],

whereas

distribute a = b,

in the same state, yields

[a : (block none), b : (block none)].
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2.4.2 Distribution Query A node n in the flow graph representing a distri-
bution query

if a idt δ then . . . else . . . ,

where a is an array and δ is a distribution expression, has two successor nodes,
corresponding to the two possible outcomes. For processing distribution queries,
prior to the analysis, two assertion nodes, ntrue and nfalse, are added to the flow
graph between n and its successors.6 The effect of the query is specified through
the transfer function fA : L → L of an assertion node; the transfer function of
n itself is the identity function.7

We have to distinguish, whether the a-component of a distribution state in
`, w.s[a], is (i) a distribution expression η, or (ii) an array identifier û.

In the first case, for ntrue, the query is evaluated through determining the
intersection δ ∩ η; for nfalse, the intersection ¬δ ∩ η is calculated, respectively.
If the result is empty, the entire distribution state is removed from `, otherwise
the a-component is set to the intersection. So, fA(`) for ntrue executes, ∀w ∈ `,

w.s[a]← δ ∩ w.s[a].

In the second case, as the query depends on û, it cannot be evaluated. Its
effect is expressed symbolically, through adding the pair (û, δ) for ntrue (the
pair (û,¬δ) for nfalse, respectively), to the mask. Thus fA(`) for ntrue executes,
∀w ∈ `,

w.m← w.m ∪ (w.s[a], δ).

fA(`) for nfalse is specified analogously.

Example 3. The effect of the query

a idt (block ∗)

on the state (in the then-part)

[a : (∗ block), b : (block none)]

is, with (block ∗) ∩ (∗ block) = (block block),

[a : (block block), b : (block none)].

In contrast, for the state

[a : â b : (block none)],

fA yields

{a (block ∗), } · [a : â b : (block none)].

6 For queries without else-part, only what is said about ntrue applies.
7 However, fA knows both a and δ.
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2.4.3 Procedure Call A procedure call can, by some redistribution in the
called procedure, change the distribution type of a parameter array. Further, the
effect can, through a distribution query, depend on the current (i.e., before the
call) distribution type of the same, or a different, actual parameter.

Transfer functions for procedure call and return nodes are involved in han-
dling a procedure call. We assume only one return node in a procedure’s flow
graph.

Return Node The purpose of the transfer function fR : L→ L for a return node
of a procedure p is to summarize the effect of a call of p on the formal parameter
arrays’ distribution types. Local arrays in p do not affect the analysis of the
calling procedure, hence fR shrinks ` to information about formal parameter
arrays. fR(`) executes, ∀w ∈ `,

w.s← ΠFp(w.s),

where ΠFp
denotes the projection onto the set Fp of formal parameter arrays of

p. Components of s assigned to local arrays, if they exist, are removed. Since
only formal parameter arrays can occur in a mask, fR has no effect on the latter.

After completion of the analysis of a procedure, Rp, the set of return states,
identical with the result of fR, describes the effect of a call.

Call Node The processing of a procedure call requires the previous analysis of
the called procedure. The transfer function of the call node fC : L→ L is based
on Rp and has to interpret the parameter transfer. Masks in distribution states
in `, i.e., at the calling site, remain unaffected by fC. In the following, let A
denote the set of actual parameters of a call of p, and ϕp : A → Fp denote the
mapping to corresponding formal parameters.8

Immediate Return States At first we consider distribution states in Rp without
masks. fC(`) executes, for ∀w ∈ `, r ∈ Rp, acting on a temporary copy w′ of w,

∀ a ∈ A : t← r.s[ϕ(a)],

where t is the component of r corresponding to the actual parameter a. If t is a
distribution expression, then the component’s new value is ready, so

w′.s[a]← t.

Otherwise, t is an identifier of a formal parameter array. The corresponding
actual parameter is ϕ−1(t), and the respective component at the call site will
become the new value

w′.s[a]← w.s[ϕ−1(t)],

regardless of whether it is a distribution expression or an array identifier. In the
latter case, it refers to a formal parameter of the calling procedure (currently
analyzed) and thus represents a distribution type passed to it from its caller.

8 We consider only array parameters.
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Components of w′ assigned to other arrays than actual parameters of the call
remain unmodified. The ultimate result of fCp is formed from the subsumption
free union of all temporary states w′ built as described,

fCp (`) =
⋃̃

w∈`,r∈Rp

w′.

Example 4. The analysis of the procedure p(x, y, z) reveals the return state

r = [x : (block block), y : ẑ, z : x̂].

The call p(a, b, c) in state

w = [a : (block cyclic), b : (block none), c : b̂, d : (∗ block)]

produces, by

r.s[ϕ(a)] = r.s[x] = (block block),

r.s[ϕ(b)] = r.s[y] = ẑ, w.s[ϕ−1(z)] = w.s[c] = b̂,

r.s[ϕ(c)] = r.s[z] = x̂, w.s[ϕ−1(x)] = w.s[a] = (block cyclic),

the state

w′ = [a : (block block), b : b̂, c : (block cyclic), d : (∗ block)].

Example 5. The analysis of the procedure q(x, y) reveals the return state

r = [x : (block cyclic), y : ŷ].

The call q(a, b) in the state

w = [a : (block block), b : (block none)]

produces, by

r.s[ϕ(a)] = r.s[x] = (block cyclic),

r.s[ϕ(b)] = r.s[y] = ŷ, w.s[ϕ−1(y)] = w.s[b] = (block none),

the state

w′ = [a : (block cyclic), b : (block none)].

In contrast, the call q(a, b) in the masked state

w = {a (block ∗)} · [a : (block block), b : (block none)]

produces, retaining the mask,

w′ = {a (block ∗)} · [a : (block cyclic), b : (block none)].
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Masked Return States A mask in a return state can be evaluated to the extent
in which it does not relate (taking into account the formal–actual parameter
mapping) to distribution types transferred already to the calling procedure.

For every actual parameter, the distribution expression δ of every pair in the
mask, in which the formal parameter corresponding to the actual parameter a
occurs, will be compared with the a-component of the distribution state w

∀ a ∈ A : ∀ (ϕ(a), δ) ∈ m : t← w.s[a].

If t is a distribution expression η, the pair is evaluated through computing the
intersection δ ∩ η. Only if the result is non-empty for all pairs, w′ will be produced
as described, and added to the result of fCp .

If t is an array identifier û, the pair (û, δ) is added to the mask,

w′.m← w′.m ∪ (w.s[a], δ).

This is equivalent to the handling of queries in fA. However, here the condition
arises from a query in the called, not in the currently analyzed, procedure.

Example 6. The analysis of the procedure q′(x, y) reveals the masked return
state

r = {x (block ∗)} · [x : (block cyclic), y : ŷ].

The call q′(a, b) in the state

w = [a : (block block), b : (block none)]

evaluates (ϕ(a), (block ∗)) ∈ r.m, w.s[a] = (block block),
(block block) ∩ (block ∗) = (block block) 6= ∅.
As the intersection is non-empty, fC produces (see Example 5) the state

w′ = [a : (block cyclic), b : (block none)].

In contrast, the call q′(a, b) in the state

w = [a : (cyclic block), b : (block none)]

evaluates
w.s[a] = (cyclic block),
(cyclic block) ∩ (block ∗) = ∅,
hence nothing will be produced.

Example 7. The call q′(a, b) in the state

w = [a : â b : (block none)]

evaluates w.s[a] = â. The intersection â ∩ (block ∗) is unfeasible, hence the
result (see Example 6) will be equipped with an equivalent mask,

w′ = {a (block ∗)} · [a : (block cyclic) b : (block none)].
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If q′(a, b) is called in the masked state

w = {b (∗ block)} · [a : â b : (block none)],

the mask will be expanded,

w′ = {a (block ∗), b (∗ block)} · [a : (block cyclic) b : (block none)].

2.5 Flow Graph Reduction

Most often, the nodes of the flow graph actually having an effect on the analysis
represent a very small fraction of all the nodes. It is obvious that excluding
the irrelevant rest (nodes with identity transfer functions) from the analysis can
significantly improve its performance. The flow graph can be reduced to the
minimum extent necessary. By inserting an edge from an irrelevant successor
k of a relevant node n1 to every relevant node n2 that can be reached from
k along a path (k, k1, . . . , kl, n2) of irrelevant nodes ki, i ≥ 1, the ki can be
eliminated. Subsequent to the analysis of a procedure, the data flow information
at the reduced flow graph’s node k is propagated to the nodes (k1, . . . , kl) in the
original flow graph.

3 Symbolic Interprocedural Analysis

3.1 Backward Pass

In a (first) backward pass, the masked distribution states data flow analysis
(see Section 2) is performed for each procedure, in reverse topological order along
the call graph. Unknown distribution types handed over from calling procedures
are represented by means of symbols (identifiers of formal parameters arrays, see
Section 2.1). The result of the analysis of a procedure is expressed—without loss
of precision—as a procedure summary (set of return states, see Section 2.4.3)
using these symbols.

A called procedure is always analyzed in advance of the calling one(s), so it is
possible to treat a call by interpretation of the procedure summary; there is no
need to analyze the called procedure specifically for different actual parameter
distribution types, or different call sites; every procedure needs to be analyzed
only once.

3.2 Forward Pass

Information obtained in the analysis of the main procedure does not depend on
calling context and therefore does not refer to symbols. Consequently, it does not
contain masks, i.e., the result of the analysis of the main procedure is built from
immediate states only. In a (second) forward pass, this information is gradually
propagated into all called procedures where it allows for resolving the symbols,
and thus eliminating the masks (see Algorithm 1).
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For each procedure, in topological order along the call graph, and for all
procedure calls therein, and for all—now immediate—states at such a call site
(call node), the actual parameter distribution types are mapped to the formal
parameters. In the called procedure, the—now known—distribution types of the
formal parameters can be substituted for the symbols, hence all masks can be
evaluated (cf. Section 2.4.3). A non-empty intersection for all pairs in a mask
must appear at least once (over all states at all call sites), otherwise the state
will eventually be removed.

The remaining states represent the result of the whole analysis.

Algorithm 1. Interprocedural Distribution Class Analysis

{backward pass:}
for each procedure p in reverse topological order do

solve masked distribution states on p’s flow graph
endfor

{forward pass:}
for each procedure p in topological order do

if p 6= main then
remove masked states with untagged masks in p
remove masks in p

endif
{all states in p are immediate, propagate them into called procedures:}
for each call of a procedure q do

for each state s at call site do
{evaluate masks in q:}
for each mask m in q do

if all pairs in m yield non-empty then tag mask
endfor

endfor
endfor

endfor

Figures 2 to 4 show the complete analysis of a program consisting of a main
procedure which calls a procedure p, which in turn calls a procedure q.

4 Conclusion

In this paper, we presented an interprocedural data flow analysis which deter-
mines for every program statement the set of possible states of array distribu-
tions, considering classes of distributions. It deals with dynamic redistribution
and the impact of distribution queries. The data flow information has a complex
structure and supports subsumption relationships through wildcards.
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The data flow analysis of procedure calls avoids approximations; the result is
equivalent to the inline expansion of the calls. This is achieved by representing
in the data flow information the formal parameters’ properties as symbols, and
by carrying along the conditions involving formal parameters’ properties. In the
second pass the symbols and conditions are resolved.

In our opinion, the basic principle behind is very general and can be employed
for other kinds of data flow information and transfer functions than for the actual
analysis as well.
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  DISTRIBUTE v (BLOCK NONE)

  return

procedure

  if !(u IDT (* BLOCK)) then

{u/(* B)}.[u ^u v(B N)]

 v DIST (NONE BLOCK)
 u DIST ( )

q(u,v) 

{u/(* B)}.[u ^u v(N B)]

  if y IDT (* B) then

  DISTRIBUTE x (B N)

procedure  x DIST (NONE BLOCK)
 y DIST ( )p(x,y) 

{y(* BLOCK)}.[x(N B) y ^y]

  return

  call q(x,y)

{y/(* B)}.[x(N B) y(N B)]

{y(* B)}.[x(B N) y(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y(* B)}.[x(B N) y(B N)]

{y(* B)}.[x(B N) y(B N)]
{y/(* B)}.[x(N B) y(N B)]

{u(* B)}.[u ^u v(N B)]
{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y/(* B)}.[x(B N) y(N B)]

{y/(* B)}.[x(B N) y(N B)] {y(* B)}.[x(B N) y(B N)]

{y(* B)}.[x(B N) y ^y]

{y(* B)}.[x(B N) y ^y] {y/(* B)}.[x(N B) y ^y]

{u(* B)}.[u ^u v(N B)]

{u/(* B)}.[u ^u v(B N)]
{u(* B)}.[u ^u v(N B)]

{u/(* B)}.[u ^u v(B N)]

            [u ^u v(N B)]

            [x(N B) y ^y]

2nd Iteration

1st Iteration

Fig. 2. Solution of masked distribution states for the procedures q and p (pass 1)
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main

  DISTRIBUTE a (NONE NONE)

  if !(a IDT (BLOCK *)) then

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)]

  call p(a,b)

[a(B B) b(B N)]

[a(B B) b(B B)]

[a(N B) b(N B)]

[a(B N) b(B N)]

[]

 a DIST (BLOCK BLOCK)   b DIST (BLOCK BLOCK)

  DISTRIBUTE b (BLOCK NONE)

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)][a(B N) b(B N)]

[a(N B) b(N B)]

[a(B N) b(B N)]

[a(N B) b(N B)]

[a(N B) b(N B)]

[a(N N) b(N B)]

[a(B N) b(B N)]

[a(N N) b(N B)]

Fig. 3. Solution for the main procedure
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procedure 

  DISTRIBUTE v (BLOCK NONE)

  return

  if !(u IDT (* BLOCK)) then

 v DIST (NONE BLOCK)
 u DIST ( )

q(u,v) 

{u(B N) v(N B)] {u(B N) v(B N)]

  if y IDT (* BLOCK) then

  DISTRIBUTE x (BLOCK NONE)

procedure  x DIST (NONE BLOCK)
 y DIST ( )p(x,y) 

  return

  call q(x,y)

[x(B B) y(B N)] [x(N N) y(N B)]

[u(B N) v(N B)]

[u(B N) v(B N)]

[u(B N) v(N B)]
[u(B N) v(b.:)]

[u(B N) v(B N)]

[u(B N) v(B N)]

[u(N B) v(N B)]

[u(N B) v(N B)]

[u(B N) v(B N)]
[u(N B) v(N B)]

{y (* B)}.[x(N B) y ^y]

{y (* B)}.[x(b:,) y ^y]

{y (* B)}.[x(b:,) y ^y] {y/(* B)}.[x(N B) y ^y]
{y (* B)}.[x(B N) y(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y/(* B)}.[x(N B) y(N B)]

{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{u (* B)}.[u ^u v(N B)]
{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]
{u (* B)}.[u ^u v(N B)]

[u(B N) v(B B)] [u(N B) v(B N)]

[x(B B) y(B B)] [x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

[x(N B) y(B B)]

[x(N B) y(N B)]

[x(N B) y(B N)]

[x(B N) y(B N)]

[x(B N) y(N B)]

[x(B N) y(B B)]

[x(N B) y(N B)]

[x(N B) y(B B)]

[x(N B) y(N B)]

[x(B N) y(B N)]
[x(N B) y(N B)]

[x(B N) y(B N)]

[x(B N) y(B B)]

[x(B N) y(N B)] [x(N B) y(B N)]

[x(B N) y(B N)]

            [x(N B) y ^y]

            [u ^u v(N B)]

{u/(* B)}.[u ^u v(N B)]

Fig. 4. Result for p and q after the down-propagation of states (pass 2)
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Zusammenfassung. Einfache bedingte Verzweigungen sind in den mei-
sten Programmiersprachen ein elementares Sprachmittel. In monotonen
Logikprogrammen war ihre Verwendung bisher auf nur sehr wenige Berei-
che beschränkt, was oft zu unnatürlich komplexen oder inkorrekten For-
mulierungen führte. Wir stellen ein monotones Kontrollkonstrukt if_/3
vor, das in vielen Fällen kompakte, korrekte und effiziente Definitionen
direkt in ISO-Prolog erlaubt. Dies erreichen wir durch die explizite Dar-
stellung von Wahrheitswerten mit Prädikaten höherer Ordnung. Zudem
können auch Constraints unmittelbar einbezogen werden. Insbesondere
werden dadurch Programme, die syntaktische Ungleichheit (dif/2) ver-
wenden, wesentlich vereinfacht.

1 Einführung

Das Programmieren in purem, monotonem Prolog ist seit jeher ein wenig be-
achteter Bereich der Logikprogrammierung. Die meisten Prologprogramme be-
stehen noch immer aus unnötigerweise prozeduralen Elementen. Mit ein Grund
dieses Missstandes sind oft Effizienzüberlegungen, die jegliche deklarative Sicht-
weise vernebeln. Um für pures Prolog eine brauchbare Programmiermethodik
zu entwickeln, benötigen wir Konstrukte, die punkto Effizienz mit den nicht-
deklarativen Methodiken vergleichbar sind. Wir richten dabei unsere Aufmerk-
samkeit ausschließlich auf monotone Elemente, die in vielerlei Hinsicht Vortei-
le bieten. So können alternative Beweisverfahren, wie etwa iterative deepening
auf monotone Programme unmittelbar angewendet werden. Ähnlich verhält es
sich mit deklarativen Debugging-Techniken und Program Slicing [5,10]. Eben-
so wird der Constraintprogrammierung dadurch ein pureres Umfeld bereitet.
Unsere Bemühungen zielen in eine ähnliche Richtung, wie es die Funktionale
Programmierung erfolgreich vorgeführt hat: Fort von einer befehlsorientierten
Sichtweise hin zum eigentlichen puren Kern des Paradigmas.

Viele Entwicklungen der letzten Jahre haben dazu beigetragen einen dekla-
rativeren Programmierstil zu fördern. Ein besonders großer Fortschritt war die
Klärung von Prologs ISO-Norm [8] durch Cor.2:2012 [13], das Laufzeitfehler se-
mantisch abgeglichen hat [12] und das insbesondere die Programmierung Höherer

427



Ordnung über call/N auf feste, normative Beine stellte und damit weitergehen-
de Verwendungen erlaubte [11]. Während das Konstrukt 1982 in ersten vagen
Formen sondiert wurde [4] und bereits 1984 zum ersten Mal vorgeschlagen wurde
[6], benötigte die präzise Definition offenbar ihre Zeit, um allgemein anerkannt
und kodifiziert zu werden. Leider sind jedoch viele nichtdeklarative Konstrukte
derzeit noch alternativlos. Ihre Verwendung für deklarative Zwecke ist zwar prin-
zipiell möglich, aber der Aufwand um dabei noch im puren Bereich zu verbleiben
ist so hoch, dass er kaum in Kauf genommen wird.

Wir betrachten dazu zunächst die Schwächen von Prologs if-then-else Kon-
strukt und wenden uns dann jenen des Prädikats member/2 zu, um daraufhin ver-
besserte Fassungen dieses Prädikats vorzustellen, die zur Einführung von Reifika-
tion und letztlich eines monotonen if-then-else führen. Zu guter Letzt betrachten
wir einige Beispiele zur allgemeinen Reifikation, die vor allem die Unterschiede
zur konstruktiven Negation hervorheben.

2 Die Grenzen von Prologs if-then-else

Prologs if-then-else Konstrukt wurde erstmals um 1978 vom Interpreter des
DEC10 Prologsystems implementiert [3], es wurde aber nicht durch den Com-
piler unterstützt. Erst spätere Systeme wie etwa Quintus Prolog verfügten über
eine effiziente Implementierung, die schließlich zur Aufnahme in die ISO-Norm
führte.

Wir betrachten lediglich Ziele der Form ( If_0 -> Then_0 ; Else_0 ), wo-
bei alle Teile einfache Ziele vor- oder benutzerdefinierter Prädikate sind. Hier ist
die Ausführung äquivalent zu ( once(If_0) -> Then_0 ; Else_0 ). Es wird
also die erste Antwort von If_0 genommen, weitere Antworten werden igno-
riert. Weiters kommt Else_0 nur dann in Betracht, wenn If_0 scheitert. Das
Konstrukt ist geeignet, um Prologs Negation zu implementieren, andererseits
bedeutet das auch, dass zumindest dieselben Probleme auftreten: Nichtkommu-
tativität der Konjunktion sowie Nichtmonotonie.

Weitere Verbesserungsversuche sind das sogenannte soft cut, das alle Antwor-
ten von If_0 betrachtet. Es wird von einigen Systemen als if/3 oder (*->)/2

angeboten. Dadurch wird zwar die willkürliche Beschränkung auf die erste Ant-
wort aufgehoben, und damit die Menge an Lösungen vollständiger und Antwor-
ten unabhängig von der Reihenfolge der Klauseln — modulo Termination und
Fehler. Die eigentlichen, tieferliegenden Probleme der Nichtkommutativität und
Nichtmonotonie bleiben jedoch bestehen.

Um die bisherigen Konstrukte sicher verwenden zu können, kommen für If_0
nur Ziele in Betracht, die selbst zusichern, dass sie hinreichend instanziert sind.
So etwa Prologs Arithmetikprädikate, die in Arithmetikausdrücken keine Va-
riable zulassen, indem sie Instanzierungsfehler melden. Es gibt aber nicht viele
weitere Prädikate, die sich in ähnlich sicherer Weise verwenden lassen. Insbe-
sondere kommen Constraints dafür nicht in Frage. Darüber hinausgehende Ziele
für If_0 können nur in speziellen, kaum dokumentierten und ungeprüften Modi
verwendet werden.
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3 Die Schwächen von member/2

Auch an sich pure Definitionen weisen problematische Eigenschaften auf. Wir
erläutern dies anhand von member/2, das für ein Ziel member(X, Es) wahr ist,
wenn X Element der Liste Es ist.

member(X, [X|_Es]).

member(X, [_E|Es]) :-

member(X, Es).

Die bekannte Relation ist etwas zu allgemein gefasst, da sie auch für Nicht-
Listen erfüllt ist, die einen Listenpräfix mit dem passenden Element besitzen. So
gilt etwa member(a, [a|non_list]). Derartige Verallgemeinerungen werden in
Prolog jedoch gern in Kauf genommen, weil man sich dadurch eine effizientere
Ausführung erwartet. Für die erste Antwort muss nur der Anfang der Liste bis
zum ersten passenden Element betrachtet werden. Allerdings wird bei Wieder-
erfüllung dann doch noch die gesamte Liste betrachtet. Man bleibt also trotz
Verallgemeinerung auf den Kosten zum Besuch der gesamten Liste sitzen. Dies
ist einfach schon dadurch begründet, dass die verbleibende Liste ja tatsächlich
noch ein weiteres passendes Element besitzen könnte.

?- member(1, [1,2,3,4,5]). ?- member(1, [1,2,1,4,5]).

true true

; false. ; true

; false.

Ein Ziel member/2 wird praktisch nie deterministisch sein und wird für die
gesamte Dauer des Beweises Platz benötigen. Es ist naheliegend sich in dieser
Situation nicht-deklarativer Hilfsmittel zu bedienen. Man beschränkt sich etwa
auf die erste Antwort — ungeachtet der dadurch bedingten Unvollständigkeit.
Ein weit verbreitetes Bibliotheksprädikat dazu ist memberchk/2.

memberchk(X, Es) :- ?- X = 2, memberchk(X, [1,2]), X = 2.

once(member(X, Es)). X = 2.

?- memberchk(X, [1,2]), X = 2.

false. % unerwartetes Scheitern

Offenbar wird so nicht nur die Monotonieeigenschaft verletzt, es gibt nun
überhaupt keine deklarative Erklärungsmöglichkeit mehr. Als einzige Erklärung
verbleibt das schrittweise Nachvollziehen des prozeduralen Ablaufs. Häufig wird
diese Unzulänglichkeit kaschiert, indem man nur memberchk/2-Ziele zulässig
erklärt, die hinreichend instanziert (sufficiently instantiated) sind, ohne sich
allerdings auf eine genaue Definition dieses Kriteriums festzulegen und ohne
Rückmeldung in Form eines Laufzeitfehlers. Man kann sich also nur bei varia-
blenfreien Zielen sicher sein, dass memberchk/2 korrekt verwendet wird.
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4 Ein grundüberholtes member/2

Das eigentliche Problem von member/2 ist nicht sosehr Prologs Ausführungs-
mechanismus als die ursprüngliche Definition selbst, die bei einer gefundenen
Antwort noch weitere redundante Antworten zulässt. Durch die folgende äqui-
valente, alternative Formulierung tritt die Ursache der redundanten Antwort,
die durch die erste subsumiert wird, etwas deutlicher zutage. Die erste Alter-
native X = E wird in der zweiten nicht ausgeschlossen. Es ist also gut möglich,
dass X = E auch für die zweite Alternative gilt. Genau an dieser Stelle muss
also die Ungültigkeit von X = E und damit die syntaktische Ungleichheit der
Terme zugesichert werden. In der neuen Definition memberd/2 verwenden wir
dazu das zu Anbeginn in Prolog 0 [1] vorhandene und leider ab Prolog I [2] für
lange Zeit vergessene Prädikat dif/2, welches bisher nicht in die ISO-Norm von
Prolog aufgenommen wurde. Für unsere Zwecke ist es unerheblich, ob dif/2 wie
vorgesehen Constraints verwendet, oder durch ISO-konforme Instanzierungsfeh-
ler falsche Antworten meidet. Wird dif/2 nicht als implementierungsspezifische
Erweiterung der ISO-Norm [8] bereitgestellt, genügt die Definition im Anhang.

member(X, [E|Es]) :- memberd(X, [E|Es]) :-

( X = E ( X = E

; member(X, Es) ; dif(X, E),

). memberd(X, Es)

).

?- member(1, [1,X]). ?- memberd(1, [1,X]).

true true

; X = 1. % redundante Antwort ; false. % nichtdet. Scheitern

?- memberd(1, [1,2,3]).

true

; false. % nichtdet. Scheitern

In dieser Formulierung von memberd/2 treten nun keine redundanten Ant-
worten mehr auf, dennoch verbleiben überflüssige Wahlpunkte, die nichtde-
terministisches Scheitern verursachen und durch ; false angezeigt werden.
Dieses Problem tritt oft auf, wenn man versucht, mittels dif/2 pure Programme
zu definieren.

5 Reifizierung der Gleichheit

Das Problem dahinter liegt hier darin, dass durch unterschiedliche Alternativen
miteinander zusammenhängende Fälle beschrieben werden. In einer Alternati-
ve ist Gleichheit und in der anderen Ungleichheit derselben Terme beschrie-
ben. Durch Komprimierung dieser beiden Fälle in ein einziges Prädikat (=)/3

hat nun eine Implementierung die Freiheit, Wahlpunkte, so möglich, zu vermei-
den. Im Anhang findet sich dazu eine normkonforme Definition, die bereits viele
überflüssige Wahlpunkte sofort entfernt.
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memberd(X, [E|Es]) :- =(X, X, true).

=(X, E, T), =(X, Y, false) :-

( T = true dif(X, Y).

; T = false,

memberd(X, Es)

).

Diese Implementierung ist noch etwas verbesserungswürdig. Einige Prologsy-
steme sind nicht in der Lage die Disjunktion effizient zu implementieren. Zudem
sollten auch fehlerhafte Werte für T erkannt werden. Weiters ist die Verwendung
der Hilfsvariable T zur Darstellung des Wahrheitswertes besonders fehleranfällig.
All diese Probleme werden wir durch einen neuen Ansatz lösen.

6 Das monotone if /3

Die angeführten Probleme lassen sich allesamt durch ein neues Prädikat if_/3

beheben: if_(If_1, Then_0, Else_0). Die Bedingung wird nun nicht mehr
durch ein einfaches Ziel dargestellt, sondern durch ein partielles Ziel eines reifi-
zierten Prädikats, dem noch ein weiteres Argument zum vollständigen Ziel fehlt.
Auf diese Art wird die Hilfsvariable für den Wahrheitswert versteckt. Damit
gelangen wir nun zur endgültigen Fassung von memberd/2:

memberd(X, [E|Es]) :- ?- memberd(1, [1,X]).

if_( X = E true.

, true

, memberd(X, Es) ?- memberd(1, [1,2,3]).

). true.

Diese Fassung vermeidet bereits überflüssige Wahlpunkte. Weitere Optimie-
rungen sind durch partielle Auswertung möglich, um sämtliche Metacalls in
if_/3 durch Ziele zu ersetzen.

Die Wahl, ein dreistelliges Prädikat zu verwenden und nicht mehrere binäre
Operatoren, wie etwa bei Prologs if-then-else, war vor allem den semantisch
sehr problematischen Nebeneffekten von if-then-else in ISO-Prolog geschuldet.
So überschneidet sich das Konstrukt mit der Disjunktion, beide besitzen densel-
ben äußeren Funktor (;)/2. Weiters ist (->)/2 für sich ein eigenes Konstrukt
und führt damit zu einer sehr fragilen Semantik, die oft vom genauen Zeitpunkt
abhängt, wann ein Term ein if-then-else Konstrukt beschreibt. Bei einem drei-
stelligen Prädikat können diese Probleme nicht auftreten. Dafür sind mehrfache
Verzweigungen eher umständlich zu schachteln.

Aufbauend auf if_/3 lassen sich nun viele der üblichen Prädikate höherer
Ordnung definieren - wobei sich nun wesentlich allgemeinere Verwendungen an-
bieten.
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?- tfilter(=(X), [1,2,2], Fs).

X = 1, Fs = [1]

; X = 2, Fs = [2, 2]

; Fs = [], dif(X, 2), dif(X, 1).

duplicate(X, Xs) :- ?- duplicate(X, [1,2,2,1,3]).

tfilter(=(X), Xs, [_,_|_]). X = 1

; X = 2

; false.

7 Allgemeine Reifizierung

Bisher haben wir lediglich ein einziges reifiziertes Prädikat verwendet — für syn-
taktische Gleichheit. Für jede weitere neue Bedingung benötigen wir eine eigene
Definition. Es obliegt also dem Programmierer, eine entsprechend reifizierte Fas-
sung eines Prädikats zu erarbeiten. Damit unterscheiden wir uns grundsätzlich
von allgemeineren Verfahren, wie etwa der Konstruktiven Negation [7,9], die
mehr oder minder automatisch versucht, die Negation eines Ziels zu bilden. Ein
Ansatz [7] hängt von richtig gesetzten delay-Deklarationen ab. Kann also keine
unendliche Anzahl von Antworten erzeugen für Prädikate, die als Bedingungen
gelten. Jedenfalls sind derartige Techniken verwendbar, um reifizierte Prädikate
automatisch zu erzeugen. Effizient werden sie vermutlich jedoch nicht sein, da
für den negativen Teil der positive nochmals in einem eigenen, vermutlich meta-
interpretierten Ausführungsmodus behandelt wird und da die Gemeinsamkeiten
zwischen positivem und negativem Fall nicht geteilt werden können; zumindest
also dieser Teil redundant ist. Wir werden dies nun anhand der Reifikation von
memberd/2 erörtern.

memberd_t(X, Es, true) :-

memberd(X, Es).

memberd_t(X, Es, false) :-

maplist(dif(X), Es).

Die Definition besteht für den negativen Fall darauf, dass Es eine wohlgeform-
te Liste ist, deren Elemente alle von X verschieden sind. Dies zeigt schon einen
klaren Unterschied zur Konstruktiven Negation. Während in unserer Definition
memberd_t(X, non_list, T) einfach nur scheitert, also weder wahr noch falsch
ist, müsste diese bei konstruktiver Negation mit T = false erfolgreich sein. Ein-
fach, weil memberd(X, non_list) scheitert, muss die Negation also gelten. Hin-
gegen verlangt unsere Definition bis zu einem gewissen Grad einen Listentyp.
Es gibt auch Fälle, in denen unsere Definition für Nicht-Listen erfüllt ist. Etwa
gilt memberd_t(1, [1|non_list], true). Die genaue Entscheidung, welcher
Fall einem Wahrheitswert zugeordnet wird und welcher nicht, lässt sich nur aus
rein implementierungstechnischen Erwägungen ersehen. Weder Typsysteme noch
konstruktive Negation lassen ein solches Ermessen zu. Es ist diese Freiheit, die
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uns eine sehr effiziente Implementierung gestattet. Unmittelbar ist unsere Defi-
nition nicht sonderlich effizient, vor allem weil beide Klauseln völlig unabhängig
voneinander sind, und zur Erzeugung von überflüssigen Wahlpunkten führen.
Allerdings können wir nun die Gemeinsamkeiten beider Alternativen heraushe-
ben: Beide Alternativen bestehen zumindest auf einer gemeinsamen Präfixliste,
welche an Stellen endet, an denen das gesuchte Element X vorkommt.

memberd_t(X, Es, T) :- l_memberd_t([], _, false).

l_memberd_t(Es, X, T). l_memberd_t([E|Es], X, T) :-

if_( X = E

, T = true

, l_memberd_t(Es, X, T) ).

firstduplicate(X, [E|Es]) :- ?- firstduplicate(1, [1,2,3,1]).

if_( memberd_t(E, Es) true.

, X = E

, firstduplicate(X, Es) ?- firstduplicate(X, [1,2,2,1,3]).

). X = 1.

?- firstduplicate(X, [A,B,C]).

X = A, A = B

; X = A, A = C, dif(C, B)

; X = B, B = C, dif(A, C), dif(A, C)

; false.

Komplexere Strukturen erschweren die Identifikation des gemeinsamen Teils.
Bei einer linearen Liste kann ja nur der gemeinsame Teil aus einem Präfix be-
stehen, damit gibt es praktisch keine Freiheiten. Bereits ein binärer Baum gibt
viel weniger vor, da jene Zweige, die nicht das betrachtete Element enthalten
nun je nach Implementierung von Relevanz sind oder nicht. Die erste Fassung
fordert hier nur das Minimum, während die verbesserte Fassung die Relation
etwas einschränkt.

treemember(E, t(E,_,_)). tree_non_member(_, nil).

treemember(E, t(_,L,R)) :- tree_non_member(E, t(F,L,R)) :-

( treemember(E, L) dif(E, F),

; treemember(E, R) tree_non_member(E, L),

). tree_non_member(E, R).

treemember_t(E, Tr, true) :-

treemember(E, Tr).

treemember_t(E, Tr, false) :-

tree_non_member(E, Tr).

?- treememberd_t(2, t(1,non_tree,t(2,non_tree,non_tree)), T).

T = true.
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In der folgenden verbesserten Implementierung verwenden wir bereits die rei-
fizierte Disjunktion. Während Disjunktion in purem, monotonem Prolog modu-
lo Nichttermination und Laufzeitfehler kommutativ ist, gilt die Kommutativität
der reifizierten Disjunktion nur bedingt.

treememberd_t(_, nil, false).

treememberd_t(E, t(F,L,R), T) :-

call(

( E = F

; treememberd_t(E, L)

; treememberd_t(E, R)

),

T).

?- treememberd_t(2, t(1,non_tree,t(2,non_tree,non_tree)), T).

false. % Einschränkung

?- treememberd_t(2, t(1, nil,t(2,non_tree,non_tree)), T).

T = true

; false.

8 Schluss

Wir haben einen neuen, besonders einfachen Ansatz zur monotonen, bedingten
Verzweigung vorgestellt, der bereits in seiner ersten Implementierung kostspielige
Wahlpunkte effektiv vermeidet. Alle verwendeten Mittel sind zwar schon seit
langem bekannt, die konkrete Zusammenstellung gab es bislang jedoch nicht.

Die vorgestellten Programme wurden in den letzten Jahren von den Autoren
auf comp.lang.prolog und stackoverflow.com schrittweise entwickelt. Die wesent-
lichen Eckpunkte waren:

2009-10-15 ISO-dif/2 comp.lang.prolog
2012-12-01 Reification of term equality stackoverflow.com/q/13664870
2014-02-23 memberd/2 stackoverflow.com/a/21971885
2014-02-23 tfilter/3 stackoverflow.com/a/22053194
2014-12-09 if_/3 stackoverflow.com/a/27358600

Weitere Beispiele unter stackoverflow.com/search?q=[prolog]+if_
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Anhang

Alle folgenden Definitionen sind strikt normkonform und benötigen daher kei-
nerlei Constraintmechanismus. Sie finden sich in library(reif) für SICStus
Prolog und andere Prologsysteme.

Die Definition von dif/2 ist nur dann erforderlich, wenn ein Prologsystem
keine eigene Implementierung von dif/2 als implementierungsspezifische Erwei-
terung aufweist. Alle Fälle, in denen keine korrekte Antwort möglich ist, der
Constraintmechanismus also benötigt werden würde, werden durch einen Lauf-
zeitfehler angezeigt. Inkorrekte Antworten werden somit vermieden.
if_/3 besteht auf einen konkreten Wahrheitswert für T in call(If_1, T). Im
Falle von Nichtdeterminismus sollte If_1 zuerst true als Antwort liefern.
(=)/3 ist bereits völlig deterministisch in allen Fällen, die durch syntaktische
Gleichheit und Ungleichheit eindeutig sind. Möglicherweise ist es auch hier in-
teressant, den Wahrheitswert mit dem Fehler type_error(boolean, T) abzu-
sichern. Eine effizientere interne Implementierung könnte die bis zu vier Traver-
sierungen der beiden Terme auf bestenfalls eine reduzieren.
(’,’)/3 und (;)/3 sind reifizierte Fassungen der Konjunktion und Disjunktion.

dif(X, Y) :-

X \== Y,

( X \= Y -> true ; throw(error(instantiation_error,_)) ).

% :- meta_predicate(if_(1, 0, 0)).

if_(If_1, Then_0, Else_0) :-

call(If_1, T),

( T == true -> call(Then_0)

; T == false -> call(Else_0)

; nonvar(T) -> throw(error(type_error(boolean,T),_))

; /* var(T) */ throw(error(instantiation_error,_))

).

=(X, Y, T) :-

( X == Y -> T = true

; X \= Y -> T = false

; T = true, X = Y

; T = false,

dif(X, Y) % ISO extension

% throw(error(instantiation_error,_)) % ISO strict

).

’,’(A_1, B_1, T) :-

if_(A_1, call(B_1, T), T = false).

;(A_1, B_1, T) :-

if_(A_1, T = true, call(B_1, T)).

436



Obstacles to Compilation of Rebol Programs

Viktor Pavlu

TU Wien
Institute of Computer Aided Automation, Computer Vision Lab

A-1040 Vienna, Favoritenstr. 9/183-2, Austria
pavlu@caa.tuwien.ac.at

Abstract. Rebol’s syntax has no explicit delimiters around function arguments;
all values in Rebol are first-class; Rebol uses fexprs as means of dynamic syntactic
abstraction; Rebol thus combines the advantages of syntactic abstraction and a
common language concept for both meta-program and object-program. All of the
above are convenient attributes from a programmer’s point of view, yet at the same
time pose severe challenges when striving to compile Rebol into reasonable code.
An approach to compiling Rebol code that is still in its infancy is sketched,
expected outcomes are presented.

Keywords: first-class macros, dynamic syntactic abstraction, $vau calculus, fexpr, Ker-
nel, Rebol

1 Introduction

A meta-program is a program that can analyze (read), transform (read/write), or generate
(write) another program, called the object-program.

Static techniques for syntactic abstraction (macro systems, preprocessors) resolve
all abstraction during compilation, so the expansion of abstractions incurs no cost at
run-time. Static techniques are, however, conceptionally burdensome as they lead to
staged systems with phases that are isolated from each other. In systems where different
syntax is used for the phases (e. g., C++), it results in a multitude of programming
languages following different sets of rules.

In systems where the same syntax is shared between phases (e. g., Lisp), the separa-
tion is even more unnatural: two syntactically largely identical-looking pieces of code
cannot interact with each other as they are assigned to different execution stages.

While static approaches to syntactic abstraction try to alleviate the burden on the
programmer by lowering the barriers between phases (e. g., constexprs introduced in
C++11 can be used at compile-time and in the compiled program) we are interested in
making conceptually simple dynamic abstractions more efficient.

Recent work [7] has shown that fexprs can in fact be used to bring the two phases
together in a single dynamic syntactic abstraction system.

Vau expressions as defined by Shutt create operative combiners (operatives) based
on statically scoped fexprs. An operative combiner is a function that does not evaluate
its operands before application. Instead, operatives work directly with their operands,
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not on their argument values. Operands are passed unevaluated together with access to
the calling environment, so that the operands may be evaluated explicitly when needed
by the operative. This shifts from an implicit-evaluation environment to an environment
where the evaluation of operands is controlled explicitly.

Operative combiners have access to both the static (or lexical) environment where
the combiner was created and the dynamic environment where the combiner is applied.
When using the dynamic environment to evaluate the body of the combiner, we get
dynamic scoping as in LISP. When using the static environment to evaluate the body of
the combiner, we get static scoping as in Scheme. Both can be implemented using Shutt’s
operative combiners as the vau abstraction provides explicit access to both environments.

The shift from an implicit-evaluation environment to an environment where evalua-
tion of operands is explicitly requested avoids frequent difficulties with (naive) macro
implementations. Consider the running example in Figs. 1–4. or shall be defined with
short-circuit evaluation, so that it returns the value of its first operand if it evaluates to
true and otherwise returns the result of evaluating the second operand.

A naive approach to define or as applicative (or lambda) is shown in Fig. 1. The
problem with this definition is that the second operand will be evaluated already when
or is applied, no matter what the value of the first operand is. The definition therefore
lacks the required short-circuit evaluation.

>> (define (or x y)

(if x

x

y))

>> (or 1 something -undefined)

reference to undefined identifier: something -undefined

Fig. 1. Flawed defintion of or as an applicative in Racket. Operands to an applicative are evaluated
to argument values during application, so the required short-circuiting cannot be provided by
applicatives.

Using pattern-based macros we can define or as a macro that rewrites to a conditional
(cf. Fig. 2) and offers the required short-circuiting but the first operand is evaluated twice
in the expanded code which in the least creates bloat but also causes unwanted results
when the evaluation has side-effects.

By the use of a local variable to cache the value of the first operand, the macro can
avoid duplicate evaluation (cf. Fig. 3). The introduction of a new local variable, however,
introduces another set of problems with accidental name captures that hygienic macro
implementations solve for the programmer [1]. Still, the macro definition is obfuscated
with code that circumvents multiple evaluation as there is no means of referring to a
parameter without triggering its evaluation in an implicit-evaluation environment.

In the context of explicit-evaluation operatives this is different: referring to a param-
eter and evaluation of a parameter are distinct. Shutt’s Kernel programming language [6]
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>> (define -syntax -rule (or x-exp y-exp)

(if x-exp x-exp y-exp))

>> (or (print "first ") (print "second "))

"first"" first"

Fig. 2. Flawed defintion of a short-circuiting or as a pattern-based macro in Racket. The first
operand is evaluated twice.

>> (define -syntax -rule (or x-exp y-exp)

(let ([x x-exp])

(if x x y-exp)))

>> (or ((get -print) "first") ((get -print) "second "))

>> (or (print "first ") (print "second "))

Fig. 3. Definition of a short-circuiting or as a pattern-based macro in Racket. Caching the result
of the evaluated first operand avoids multiple evaluation.

based on vau expressions thus allows for a straight-forward definition of the or macro
as shown in Fig. 4. No code to circumvent multiple evaluation obfuscates the actual
algorithm. The calls to eval make it explicit where evaluation is performed and within
which environment.

(define -vau (or x-exp y-exp env) env

(let ([x (eval x-exp env )])

(if x x (eval y-exp env ))))

Fig. 4. Definition of a short-circuiting or operative in Kernel (with Racket Syntax).

Operatives can choose to implement any evaluation strategy and may even choose not
to evaluate but analyze its operands. An operative may then compose code based on the
syntactic structure of its operands, which is what macro systems offer, only at run-time.
As a result, the core language is drastically simplified, as many language features usually
built-in to the language can be constructed from vau expressions, e. g., Macros, special
forms, applicative and operative combiners can all be constructed from vau expressions.
Applicative combiners or lambdas, i. e., functions that evaluate operands to arguments,
are just operative combiners where all operands are evaluated to argument values.

Shutt has demonstrated that a language based on vau expressions can use a small
axiomatic set of primitives for both the macro language and the target language.

Dynamic syntactic abstraction using vau expressions thus promises both, the general
advantages of syntactic abstraction in e. g., crafting domain-specific (sub-)languages and
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a common language concept. The phase separation is overcome as syntactic abstraction
is then an equal among the other abstraction mechanisms, increasing the use of syntactic
abstraction and making it possible for interactive languages to have syntactic abstraction
in the first place.

2 Problem

When operatives are primitive data types of the language (first-class operatives) the
separation in a metaprogramming- and a programming stage is lifted from the language.
What would otherwise be conceptually isolated may now freely interact, i. e., not only
may the same language and primitives be used in the meta-program and the object
program (homogenous metaprogramming), they may also share the same data as the
phase separation is overcome.

This unique feature of dynamic syntactic abstraction, however, comes at a price: when
operatives are deliberately indistinguisable from applicatives, it is generally no longer
possible to determine whether a combiner is an applicative (works on operands evaluated
to arguments) or an operative (works on unevaluated operands), until immediately before
evaluation (when the operator of a combination is evaluated to an applicative or operative
combiner). This is not an unwanted side-effect but the direct result of treating operative
combiners like any other value in the language. Still, it presents a practical difficulty.

Expressions in a program with first-class operatives can no longer be grouped into
expressions that will be evaluated to argument values and expressions that must remain
unmodified. Hence, two expressions that evaluate to the same value are no longer
interchangeable in any context because an operative combiner may distinguish between
those expressions on purely syntactic grounds, e. g., (print (add 3 1)) must not be
replaced with the shorter (print 4) since print may or may not be an operative that
distinguishes between combinations and literals.

In effect, all expressions must remain unmodified in order to not alter the meaning
of the program as long as it is not known whether an expression is to be evaluated by an
applicative or operative combiner. This precludes all program optimization since there
is no way to statically distinguish between applicative and operative combiners in the
general case.

2.1 The Kernel Programming Language

Kernel [6] is the programming language implemented by Shutt to demonstrate the
practicability of fexpr-based dynamic syntactic abstractions.

Even without the transformation-adverse properties introduced by first-class opera-
tives, Kernel is not an easy target for program analysis:

– We cannot statically determine the value of any variable; all combiners are first-class
and kept in variables.

– We cannot statically compute the value of even the simplest arithmetic expressions
(e. g., 1+1) because mathematical operators are also combiners and may have been
redefined to a non-standard binding.
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– Non-standard bindings of combiners may also alter the number of operands the
combiner uses, resulting in a different program structure.

– We cannot statically determine the list of free variables in a code block.

Kernel is thus implemented as a simple non-optimizing interpreter due to the proper-
ties of the language.

2.2 The Rebol Programming Language

Rebol [4] has the same concept of operands being passed unevaluated but calls them
get arguments and the choice of evaluation or non-evaluation lies with each individual
operand rather than with the type of combiner (applicative or operative). So while Kernel
only allows purely applicative or purely operative combiners, Rebol programs may have
mixed combiners where some values are passed as unevaluated operands and some as
evaluated arguments.

Further, Rebol has no syntax to denote the list of operands in a combination but
instead each combiner has a fixed number of operands known from the combiner’s
definition. Before applying a function, the exact number of operand expressions is
evaluated and then passed as argument values.

With the potential for redefinitions to a different number of operands this is an
obstacle for static analysis in its own right, that is orthogonal to the problem of discerning
applicative and operative operands.

The example in Fig. 5 illustrates the practical implications of this. It shows how
a programmer would interpret the application of three pre-defined functions in Rebol.
Given this example, a Rebol programmer knows that replace consumes the three values
and replaces all occurrences of “bar” with “baz” in the string “foo”. The call to append

returns a new string “foobar” and is followed by the (unconsumed) literal “baz”, and
the third function application using print is read as (print "foo") followed by two
string literals. With the information on the number of arguments a function consumes, a
program analysis would be able to interpret this program fragment in the same manner.
If, however, the number of arguments a function consumes is not known statically, as is
the case in the example given in Fig. 5 where the arity of function f depends on a value
only known at runtime, neither programmer nor analysis are able to statically discern
between operand values and further values that follow the function application.

While making the definition of a function’s arity depend on some completely random
value is clearly an artificial example, it is definitely of practical relevance to a language
as dynamic as Rebol that the definition of a function depends on a value only known
at runtime. This is always the case when an identifier is used to abstract over two or
more implementations of a function, e. g., when a generic open-db function is used to
establish the connection to a database, and depending on the particular database system
used, one or the other open-db-implementation is assigned to open-db. Then, at least,
the case of a change in arity is ruled out for practical reasons, although in theory is still
possible.

The absence of syntax to delimit the operand list has an additional effect in Rebol.
Applicatives evaluate their arbitrarily nested operand expressions to single argument
values while operatives only consume their first operand unevaluated as single value
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>> replace "foo" "bar" "baz"

;; read as: (replace "foo" "bar" "baz")

>> append "foo" "bar" "baz"

;; read as: (append "foo" "bar") ("baz")

>> print "foo" "bar" "baz"

;; read as: (print "foo") ("bar") ("baz")

>> switch random 3 [

1 [f: :replace]

2 [f: :append ]

3 [f: :probe ]

]

>> f "foo" "bar" "baz"

;; read as: ???

Fig. 5. Function application syntax in Rebol has no clue to the number of arguments a funtion will
consume. Without the implicit information on the arity of functions, it is impossible to parse the
tokens following the application of f into arguments and non-arguments.

with no attention to the arity of sub-expressions. The same code f g x where f and
g are combiners with arity 1 can therefore result in different parse trees depending on
the kind of combiner in f: with an applictive combiner, the code reads as (f (g x)),
whereas an operative combiner results in (f g) (x).

An example is given in Fig. 6. In the applicative combiner, the operand expression
add1 1 is reduced to 2 and passed as argument value. 42 remains as the next value to
be consumed. Meanwhile, in the operative example, the operand expression consists of
add1 only and 1 remains as the next value to be consumed.

So Rebol, too, has very limited room for static optimization and is implemented as a
simple interpreter.

3 Expected Results

By introducing a strict import/export module system to a language with dynamic syntac-
tic abstraction, we essentially replace the implicit stage boundaries common to static
syntactic abstraction techniques with explicit module boundaries. We expect three main
results of this change.

3.1 Increased Flexibility Inside

We believe that the creation of domain-specific languages is a very powerful tool that
is best used within a closely confined part of a program. Within a module there will be
no separation between meta- and object program and no phase separation when using
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>> add1: func [x][ x + 1 ]

>> applicative: func [x][ probe x ]

>> operative: func ['x][ probe x ]

>> print -next: func [a b][

print ["next value:" b]

]

>> print -next applicative add1 1 42

2

next -value: 42

>> print -next operative add1 1 42

add1

next -value: 1

Fig. 6. Two combiners are evaluated. The applicative reduces a nested expression to a single value
while the operative passes a single operand without reduction, resulting in different associations of
operands.

first-class operatives. A single base language can be used to both extend the language
and write programs using the base or extended languages.

Between modules, the flexibility is curtailed. Any modifications to the base language
are restricted to module boundaries. We believe this to be the level of flexibility that
is practical when using such a powerful tool. For small problems, domain-specific
sub-languages have successfully been used as effective tools. For programming in the
large, however, we do not believe that it is of advantage if all combiners, operators
and functions as well as names can be redefined at a single place and all other, entirely
unrelated places that use the same entity, are affected.

3.2 Modularization of Modifications

While stage boundaries prevent program phases from all interactions with each other
(even wanted interactions of seemingly compatible parts), the module boundaries

– separate different program parts and prevent accidental interaction of distant pro-
gram parts with each other,

– explicitly state the interface between separate program parts,
– document the scope of semantic abstractions,
– aid with selective imports of syntactic abstractions and thus encourage reuse of

abstractions.

This simplifies the creation of domain-specific languages as accidental side-effects of
language modifications are better isolated. Errors due to these side-effects are then easier
to locate and debug.
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All of which fosters locality and modularization of language extensions, therefore
increasing clarity of a program with syntactic abstraction and adding to hygiene. This will
add to the attractiveness of domain-specific languages and dynamic syntactic abstraction.

3.3 Room for Static Analysis

Explicity stated imports/exports between modules confine the flexibility of the self-
modifying language within module boundaries to a degree where static analysis and
optimization becomes useful again.

When the flexibility that code from one module leaks into another module is ruled
out and the only interaction between modules is documented through the imports, we
anticipate that modules are self-contained to the degree that all analysis is essentially
whole-program analysis, so static analysis becomes useful again. The interplay with
other modules need not be analyzed at all, as information on external objects is already
available through the imports each module is instructed to follow.

From the division into libraries we expect that separate ahead-of-time compilation to
machine code is feasible and allows efficient implementation of syntactic abstractions
without stage boundaries.

4 Methods

Aim of this work is to research practical methods to achieve separate compilation of
subexpressions at the module level in a language with first-class operatives as dynamic
syntactic abstraction.

We will primarily focus our efforts on the Kernel programming language as several
problems with Rebol are avoided there while the metaprogramming characteristics that
make Rebol interesting are retained. In particular, Kernel has a clean definition of the
language (not just a reference implementation), several implementations are available and
it does not share the implicit arity of combiners found in Rebol, so we can concentrate
on the problem of separate compilation of first-class operatives.

The first steps are:

– We analyze library systems that allow the selective importation and exportation of
symbols for their suitability to a language based on vau expressions. As starting
point we use the Scheme library system defined in R7RS small language [5].

– Leveraging the customized library system we add devices to the language that
separate programs into independent modules with an explicitly defined interface. We
expect that tying down all flexibility between modules to what is explicity declared in
the imports/exports will allow us to conservatively treat each module as a complete
program, enabling whole-program analysis at the module level.

– A static data-flow analysis will be formulated as whole-program analysis to find
stable bindings of operatives and applicatives. With this information in place, safe
optimizing transformations can be implemented.

– For pathological programs that abuse the flexibility of the language (i. e., repeated
redefinition of core operatives that confuses static analysis) the analysis will produce
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warnings as we think that those cases are rarely of practical use. Compilation of
programs with such constructs must be treated in a convservative way, however. Fall-
back to interpretation at run-time is an option. The rationale here is that programs are
analyzed and optimized where possible and interpreted at run-time where necessary.

– Shutt comments briefly on possible inlining transformations for hygienic and un-
hygienic fexprs. This seems a viable starting point for optimizations orthogonal to
module-based optimization and approximate typing.

The benefits of Shutt’s vau expressions can be evaluated by direct comparison of
programs with first-class operatives to a similar program written in a language without
this language construct. A more rigorous evaluation of vau expressions is difficult as
the number of real-world programs in Kernel is very small. The motivation for vau
expressions is, however, not the main focus of this work. Our goal is to investige
restrictions on programs with vau expression that do not impede their usefulness as a
means of syntactic abstraction and, at the same time, create room for static analysis and
optimization.

The fact that first-class operatives are not encumbered by our restrictions will be
validated by creating an implementation of Kernel under these restrictions. In Kernel, the
operatives are not merely a device added on top of the languge to enhance programmer
productivity (which, in addition, would be laborious to evaluate), but are the basic
abstraction of the language from which all other abstractions are built, i. e., $lambda,
the primitive to define functions, is an application of the operative $vau. Consequently,
if it is possible to implement Kernel with our restrictions in place, the viability of the
restrictions is demonstrated.

The other part to be validated is that the restrictions actually introduce a potential
for analysis and optimization and to a lesser degree, that the optimizations are in fact
beneficial to the efficiency of programs. The feasibility of optimizing ahead-of-time com-
pilation will be established by implementing a system capable of modular compilation
of a language with first-class operatives. This is an open question left for future work in
Shutt’s thesis [7] and the central point of this work.

Once the potential for optimization is in place, it is then interesting to evaluate
the quality of optimizations in terms of fast execution. This is primarily a question of
quality regarding the analyses and transformations but also regarding the potential for
optimizations attained through restrictions on the flexibility of the language, which,
again, is the center of interest in our work. Evaluation of performance will be done using
benchmarks derived from the (few) existing Kernel and (more) Rebol programs. Roughly
1200 programs are available through the Rebol Script Library [3] that can be used for
this purpose.

5 Related Work

Macros are the predominant form to implement syntactic abstraction. They range from
simple token-based substitutions over pattern-based substitution systems (syntax-rules
macros used in R5RS [2]) to meta-programs that can use arbitrary functions to create
their object programs (syntax-case macros used in R6RS [1]). They have in common
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that they operate in an implicit-evaluation environment so that naively written macros
may suffer from undesired multiple evaluation of macro operands. A way around this is
to have the programmer manually ensure that macro parameters are at most evaluated
once and the results be kept in a variable local to the macro expansion for use inside the
expanded code. Hygienic macro expansion automatically takes care that local names
of such variables do not inadvertedly capture bindings at the macro expansion site.
Circumventing multiple evaluation obfuscates the actual algorithm but is necessary as
there is no means of referring to a parameter without triggering its evaluation in an
implicit-evaluation environment.

C++ Templates can be seen as a macro system that expands code to cater for different
types. It can also be used to perform integer and pointer computations at compile-time.

All these syntactic abstraction mechanisms, being static techniques, share the same
conceptual divide in a generating phase (macro expansion) and a phase where the
generated code is executed. Sometimes the phases share the same language (e. g., Lisp)
resulting in an even more unnatural separation as two syntactically largely identical-
looking pieces of code cannot interact with each other because they are assigned to
different execution stages.

Dynamic syntactic abstraction using operatives was pioneered by Shutt in his the-
sis [7]. His operatives are implemented using statically-scoped fexprs and work like
normal functions (i. e., applicatives), except that the operand expressions are passed
unevaluated.

Wand [8] demonstrated that the equational theory of fexprs is trivial which means
that two expressions in the language can only be used interchangeably (are contextually
equivalent) if they are syntactically identical (α-congruent). In essence, this observa-
tion precludes all optimizations as expressions cannot be replaced by anything except
themselves without possibly altering the meaning of the program.

Shutt addresses this result and traces back the seeming contradiction with his thesis to
differences in the modeled language. If there is any difference between two expressions
that is observable by a fexpr, the two expressions are no longer contextually equivalent.
In Wand’s language, everything was an S-expression and could thus be deconstructed by
fexprs. As a result, only S-expressions that were identical had contextual equivalence
and the equational theory was indeed trivial. In Shutt’s language, however, not every
entity is a decomposable S-expression. There are encapsulated objects (environments,
compound operatives) and computational states (active terms) which have a non-trivial
equational theory and leave potential for optimizing transformations.

6 Conclusions

We believe that adapting a rigorous library system to an otherwise hardly restricted
language is a viable first step to attain optimizing ahead-of-time compilation of pro-
grams with syntactic abstractions based on first-class operatives. Aim of this work is to
demonstrate the feasibility of this approach.
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Abstract. PyPy is a widely known virtual machine for the Python pro-
gramming language implemented in the RPython subset of Python which
includes a tracing Just-In-Time (JIT) compiler. In this article the new
auto vectorizer built into the RPython optimizing backend is presented.
It uses the linear sequence of instructions of a trace to find parallelism.
Dependency information is gathered and used to reschedule some of the
instructions as vector statements.
This optimization is neither tailored for the NumPy library nor for a
specific hardware architecture. Every interpreter written in RPython can
benefit from the new optimization. To empirically evaluate the optimiza-
tion, the x86 assembler backend has been extended to emit SSE4 vector
instructions for the optimized traces. Preliminary results show that it is
indeed possible to leverage the speed gain SIMD instruction sets offer.
The implementation is not very complex and the optimizer is reasonably
fast.

1 Introduction

PyPy is a widely known virtual machine for the Python programming language.
Opposed to the standard implementation (CPython), it includes a tracing just-
in-time (JIT) compiler. The implementation language is a statically typed subset
of Python called Restricted Python (RPython). RPython is an abstraction for
byte code interpreters and is able to automatically generate a garbage collector
and a tracing JIT compiler. Thus it is not only used for PyPy but also for many
other interpreters for dynamic functional languages or instruction set simulators.

In the last decade new Single Instruction Multiple Data (SIMD) instruction
sets where built into processors to speed up multimedia applications. They are
not only useful for multimedia applications but also for scientific applications.
In theory, given a single precision floating point operation in a loop, if the loop
is vectorized to SSE4 instructions (a x86 instruction set architecture (ISA) ex-
tension) it executes 4 times faster.

Recent developments in scientific computing have drawn attention to libraries
for numerical computations (e.g NumPy). NumPy and others currently remove
the interpreter overhead of numerical computations by writing the critical rou-
tine in a low level language. They are compiled to the host computers architec-
ture ahead of time. At runtime the language interpreter invokes the foreign func-
tion compiled earlier. Since NumPy is a commonly used library, PyPy rewrote
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parts of NumPy and included it in the standard library. This setup renders most
of the critical loops as normal program loops instead of foreign functions and
makes it desirable to optimize such loops. To simplify optimizations arrays in
NumPy are homogeneous, primitive typed and continuous in memory.

In this article the new auto vectorizer built into the RPython optimizing
backend is presented. First details of PyPys tracing JIT compiler are presented,
then the vectorizer is described, finally preliminary results on the performance
are given.

2 Related Work

The building block for Tracing JIT compilation has been introduced in the Dy-
namo project [BDB00]. Dynamo is an transparent optimization system that op-
erates on a binary executable. Interpretation starts to execute the program and
observes backward branches in a target address cache. By the time a backward
branch threshold of an address has been reached, the interpreter switches to a
mode where instructions are recorded at the same time as they are executed.
This creates a single-entry, multi-exit linear sequence of instructions called a
“trace”. Results show that this approach is able to optimize opportunities that
manifest themselves only at runtime.

Both [AK87] and [ZC90] have laid the foundation for loop transformation into
vectorized or parallel form. To transform loops into a semantically equivalent
vector form is the data dependence. Strongly Connected Components (SCCs)
are built from the data dependency graph and aid to distribute the loop partly
or totally into vector form.

Vectorization as an optimization technique in JIT compilers is seldom. One
research project extended the Jikes RVM [ESEMEN09] to automatically vector-
ize loops. The technique that used an extended tree pattern matcher was not
improved by follow up projects. Others [RDN+11] try to find data parallelism on
byte code level by annotating information that can later used by the JIT VM.
[LCF+07] is another example to annotate the byte code generated to enable the
VM to vectorize loops.

3 PyPy’s JIT

When we speak of PyPy’s JIT compiler, we really mean the effort put into the
RPython tool chain. The fundamental idea of RPython is to provide both a JIT
compiler and garbage collector to any dynamic language written in RPython.
Thus it is not only a subset of the Python programming language but also a tool
chain to ease the construction of byte code interpreters. The translation itself is
a vast topic. It is not the main topic of this document, thus information can be
found in e.g. [BCFR09] or [BR07].

The tracing JIT compiler is generated for the main interpreter loop dispatch-
ing the byte codes. The only addition required to the interpreter annotates the
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dispatch header and the backwards jump. An automatic process creates an ab-
stract representation that can be traced and JIT compiled. Figure 1 shows a
sample trace tree.

Fig. 1. A trace tree constructed by e.g. PyPy’s tracing interpreter. It shows a doubly
nested loop.

It represents a nested loop, switching to the inner loop in the middle of
the outer loop. Guarding instructions ensure the correctness of the execution.
Whenever a guard fails frequently, a “bridge” is created and attached to the
trace. To exit a trace loop the bridge ends in a “Finish” operation and continues
to execute an outer loop or switches back to the interpreter.

The instructions that form the outer loop body are split by the inner loop.
Operations prior the inner loop are executed from the outer loop header until
entering the inner loop by a “Jump”1 operation. The guard exit leading into a
“Finish” operation executes all operations that succeed the inner loop until the
outer loop is closed again.

4 Contributions to PyPy’s TJIT

The following contributions have been made to the tracing just-in-time compiler
backend and it is now able to:

– Create a dependency graph for trace instructions.
– Unroll a trace loop for a factor greater than two.
– Find, extend and combine groups of parallel instructions.

1 In RPython, this jump is named “call assembler” and is a different operation than
the jump to a loop header.
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– Schedule a dependency graph and emit vector statements.
– Strengthen guards that protect comparison.
– Create several different version of the trace loop and stitch it to guard in-

structions.
– Support accumulation patterns (e.g. sum).
– Emit SSE4.1 machine code for vector instructions.

Henceforward the term “VecOpt” will refer to both the branch that includes
the changes2 and the implemented algorithm. Section 8 refers to VecOpt as a
compiled PyPy interpreter using the contributions of this document.

5 Motivation

PyPy is eager to provide parts of the NumPy library within the standard library
of their virtual machine. At the time of writing one of the biggest challenge is to
compete with the speed of native code produced by an ahead of time compiler
for NumPy kernels. It was decided to reimplement part of the library due to
major limitations.

– Many array operations invoke foreign functions. The penalty can be signifi-
cant for PyPy.

– They are written and must be maintained in a low level language (e.g. For-
tran,C).

– By reason of the moving garbage collector, there is no API to let foreign
code access PyPy’s internal objects. This is one of the biggest limitation
that separates CPython and PyPy.

The native NumPy routines used by CPython are written in C and use the
CPython API to manipulate Python objects. It uses a preprocessing utility3

to generate all numerical kernels and use plain memory/pointer arithmetic to
access elements. The loop kernels are unrolled manually to ensure that SIMD
operations are emitted by the ahead of time compiler.

The numerical kernels of PyPy are written in RPython using an iterator API
to access memory elements. The numerical kernels are parameterized with the
kernel function, operator types and result type. They take full advantage of the
tracing JIT compiler.

6 Design

Program transformations for vector machines try to maximize the size of vectors
to be processed in parallel. The resulting parallel execution improves the bigger
the input vectors. Statements and the loop nest provide the basic information

2 Located at https://bitbucket.org/pypy/pypy. Aug. 2015.
3 It does not use the preprocessor to duplicated routines for different element types.

The preprocessor is annotated in comments.
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to build a cyclic dependency graph. Strongly connected components (SCC) are
identified and the graph’s topological order is used to emit vector statements
that are not contained in SCCs. SIMD instructions have a bounded vector size
thus the usual abstractions force the code generation to split up the vectors into
short vectors again.

In a tracing context the nesting of a loop is opaque and the inner most loop
is always traced first. This limitation is a design decision that helps to cope
with one problem object oriented languages impose on the runtime: abstraction
through layering. A function call often flows through several object layers to
accomplish small tasks. The well known optimization to improve performance
in these cases is called “Inlining”. A tracing compiler can efficiently inline and
optimize the execution. At the same time the assembled machine code size of a
trace is only a fraction compared to a method base compiler.

Practically speaking, the abstractions for nested loops and acyclic depen-
dency construction are well suited for vector machines. Whenever time is of
essence and the vector size is bounded a different approach might yield simi-
lar results. The algorithm proposed by Larsen [LA00] is able to vectorize basic
blocks.

Parallel instructions are gathered by unrolling the loop. Dependency con-
struction is simplified because cyclic dependencies are ignored. Only loop inde-
pendent dependencies are tracked using the definition use chains of the basic
block. This can be done in a linear pass over the trace loop using a associative
data structure to remember definitions. Opposed to this, approaches like the
Power test [WT92], the Omega test [Pug91] or the well known GCD [Ban97]
test need linear/affine equations and solvers to determine the dependency.

The rest of the algorithm boils down to a scheduling problem. The depen-
dency graph is used to group independent and isomorphic instructions. This
information is then considered while rescheduling the trace and emits vector
instructions.

7 Superword parallelism on trace sequences

The optimization routine is outlined in Algorithm 1. Although the the imple-
mentation in the RPython optimization backend is quite similar to [LA00] and
[PKH07] there are some key differences.

Algorithm 1 shows the preparation routine for a trace loop and the algorithm
to vectorize trace loops. The function BasicInfo returns the smallest type in
bytes (for load/store operations), a list of operations that reference memory
(read/write) and all modifications on index variables. The three different infor-
mation types can be acquired in a single forward pass. The unrolling factor is
heuristically determined by the smallest type and the size of the vector register.
The smallest type has been chosen, to offer more opportunity to pack instruc-
tions. By choosing the biggest type, occasionally packed instructions do not span
over the whole vector register.
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Tracing checks the loop index at the end of the trace, before it jumps back
to the header. This check at the end adds an dependency to the next load
instruction and the previous store instruction of the unrolled trace loop. It is
impossible to execute the instructions in parallel. Relax in Algorithm 1 finds
the index guards and moves them to the beginning of the loop. This operation is
then marked as an “early exit” which enables the dependency builder to reduce
the dependencies.

Algorithm 1 Vectorization optimization routine

T ... Trace loop
vs ... Size of the hardware vector register
Mr ... Set of instructions that read/write memory references
Iv ... Set of affine combinations for indices
function Prepare(T,vs)

T ← Relax(T)
b, Mr, Iv ← BasicInfo(T)
factor ← vs

b

Tu ← unroll(T,factor)
return (Tu,Mr,Iv)

function Vectorize(T, Mr, Iv)
G ← BuildDependecyGraph(T, Iv)
P ← InitPairs(G, Mr, Iv)
P ← Extend(P , G)
P ← Combine(P )
Tvec, savings← Schedule(G, P)
if savings ≤ −1 then

return T
return Tvec

The output of Prepare is the input for Vectorize. Iv is used to determine
if memory loads/stores alias or if they are adjacent in memory e.i. Adjacent.
Without inferring this information, the resulting dependency graph cannot as-
sume that two memory stores don’t depend on each other. This introduces edges
which are not necessary in most cases, but prohibit vectorization.

InitPairs, Extend and Schedule are shown in Algorithm 2,3,4 respec-
tively.

7.1 Initialize and Extend

InitPairs create pairs of adjacent memory operations that are both isomorphic
and independent. Isomorphic is defined as “semantically equivalent intermedi-
ate instruction”. Relying on these properties, a parallel execution is semantically
valid.

Extend enumerates all known pairs and tries to follow the definition and
use chains. The Cartesian product of the two calls to Def/Use represent the
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Algorithm 2

function InitPairs(G, Mr, Iv)
P ← ∅
for m1,m2 ∈Mr ×Mr do

if Adjacent(m1,m2) ∧ Isomorphic(m1,m2) ∧
Independent(G,m1,m2) then
P ← P ∪ Pair(m1,m2)

instructions combinations possible for two pairs. These candidates are subject
of extending the list of pairs. The clou of this algorithm is to find the pairs that
directly use or input pairs to the same argument slots. If the operation has a
vectorized equivalent, a hardware SIMD instruction might be able to execute
the operation faster. The routine continues as long as new candidate pairs are
found.

Algorithm 3

function Extend(P, G)
C ← ∅
while C 6= |P | do

C ← |P |
for Pair(i1, i2)∈ P do

for i3, i4 ∈ Use(G,i1) × Use(G,i2) do
if Isomorphic(i3, i4) ∧ Independent(G,i3,i4) then

P ← P ∪ Pair(i3,i4)

for i3, i4 ∈ Def(G,i1) × Def(G,i2) do
if Isomorphic(i3, i4) ∧ Independent(G,i3,i4) then

P ← P ∪ Pair(i3,i4)

7.2 Combine and Schedule

Up to this point only pairs of operations have been recorded. By design pairs
can overlap with other pairs. Given the two pairs (l1,l2) and (l2,l3) they can
be merged into a pack of three elements (l1,l2,l3). This task is accomplished
by Combine. It has been omitted from the listing, since it’s implementation is
straight forward. It simply compares pack by pack and merges them if the right
most operation matches the left most. It already takes into account the vector
size provided by the target ISA and stops to pack further operations if the limit
of the vector size is reached.

To accomplish tight packing and the minimum number of resulting packs
the input pairs are sorted. Each pair’s first operation is sorted ascending. The
current pack is expanded as long as there are more matching packs and the
capacity has been reached.
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In the last step the trace is rescheduled using the information gathered earlier.
The scheduling algorithm is interwoven with logic to estimate the savings of
the loop. The estimated savings for packing an instruction is modeled using the
CPU architecture in mind. The basic saving can be calculated using the following
formula: s = −cost+count(pack)∗benefit. E.g. The SSE4.1 instruction ADDPD
is modeled as s = −1 + 2 ∗ 1 = 1.

UnpackCost models the costs needed to unpack variables that are con-
tained in any vector registers. Depending on the position the function estimates
costs modeled after the CPU architecture. E.g. Unpacking the higher element
of a double precision floating point has a higher cost than unpacking the lower
element4.

Scheduling picks a candidate operation that is scheduleable. An operation in
the dependency graph is schedulable if there are no edges that point to the oper-
ation. This is trivially true for the label operation, which starts the scheduling.

If the candidate operation to be scheduled has an associated pack, all op-
erations are transformed to a single vector operation by VectorOperations.
For this to succeed all operations of the pack must be schedulable, otherwise the
current candidate is postponed. Then all edges to descending operations (e.i. the
ones that depend on the current operation) are removed in Scheduled. A call
to Next gathers all operations that are now schedulable after edges have been
removed.

7.3 Enhancements

Scalar constants and variables are expanded. If the scalar value is produced in
the loop, the expansion creates the vector register before it is used. In any other
case a dedicated vector register is reserved before the trace loop is entered. The
constant or variable content is scattered to each slot of the vector register. The
operation is later able to use the expanded register instead of executing the loop
iterations one by one.

Accumulation of values (e.g. sum,product) can also be transformed into vec-
tor instructions. The summation of a vector contains dependent addition instruc-
tions for a value that is carried across the trace loop. This pattern is recognized
and a special pair is added in Expand. Similar to variable expansion the accu-
mulator is expanded before the loop is entered. The summation is done using a
normal vector addition. Parts of the sum are accumulated at the slots of the vec-
tor register. After exiting the loop through any guard the vector register is added
horizontally to a single value. This transformation is only valid for commutative
operations such as addition or multiplication as well as logical reductions as and
(∧), or (∨) or xor (⊕).

4 The assembler backend needs at least 2 assembler instructions for the high element,
instead of a maximum of one for the lower element.
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Algorithm 4

function Schedule(P, G)
S ← 0
T ← ∅
N ← Next(G,∅)
while N 6= ∅ do

O ← Head(N)
pack ← Pack(P,O)
if ¬ pack then

T ← T ∪ {O}
S ← S − UnpackCost(O)
Scheduled(G,O)

else
if PackScheduleable(pack) then

S ← S − PackCost(pack)
T ← T ∪ VectorOperations(pack)
S ← S + EstimateSavings(pack)
Scheduled(G,pack)

else
N ← N ∪ {O}

N ← Next(G,N)
return T,S

8 Evaluation

The evaluation is split into two different parts. The first measures the time spent
in the trace loops that have been vectorized and is compared to the scalar trace
loops. The second are programs that do not stress the vectorization algorithm,
but try to evaluate the gain the optimization is able to achieve.

Although the implementation is already nearly finished, these benchmarks
are a preview for the final implementation.

8.1 Trace loop benchmarks

The following programs have been evaluated using the following configuration:
Intel i7-4550U CPU @ 1.50GHz with 4 cores, Linux Kernel 4.0.6.

The source code can be found in the branch “vecopt” and is based on the
PyPy release version 2.6.0. The garbage collector “incminimark” was prevented
to be run in the trace loop benchmarks by setting the minimum memory thresh-
old to 4GB of allocated memory. Below the modified threshold, the garbage
collector does not start a collection run.

For the following measurements, the tracer and JIT compiler has been in-
strumented5 to measure the time elapsed in traces. The function to time the
execution was clock gettime. It records the CPU time spent in the process.

5 The revision a026d96015e4 was used for this benchmark run. It imposes a significant
performance penalty when exiting or entering traces.
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Table 8.1 shows the micro seconds that have been spent in the optimization
pass. It excludes all other optimizations.

Table 1. Optimization time measured. Instruction count is the number before the
transformation and unrolling has been applied.

Count Instruction count Unroll factor Microseconds Variance

6 12-16 2 101.47 9.90

5 17-19 4 158.46 4.57

2 17 8 224.03 2.20

2 17 16 396.60 1.24

Figure 2 shows several different vector calculations. The horizontal line shows
the baseline of the normal trace. Every program run iterates the operation for
1000 execution. The vector operands are sized four times the tracing threshold.
The following listing shows a sample program that is used in Figure 2.

def bench(vector_a , vector_b ):

for i in range (1000):

numpy.multiply(vector_a , vector_b , out=vector_a)
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Fig. 2. Speedup of the vectorized trace loops. Horizontal line is the baseline for the
calculated speedup values (speedup = scalar

vector
).
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Single floating point operations don’t show a significant speedup to their
scalar trace loops. The reason for this behavior is that floating point opera-
tions are always done on the biggest floating point type available. The language
semantics of Python make the size of floating point numbers platform specific,
thus the tracer does not emit floating point operations for single floats, but casts
them to double floats.

The theoretical maximum speedup can be observed for loops with double
float multiply operations. Other loops show about half of the expected speedup.
Considering that it is currently not possible to use aligned vector statements the
results are quite satisfying.

Integer addition for 16/8 bits don’t show very good results due to the small
vector size. It has been observed that on bigger vector sizes these data types
perform better. In any case these instructions are not expected to be used very
frequently in NumPy programs.

8.2 NumPy benchmark suite

The following evaluates VecOpt on small to medium sized numerical kernels. The
latter configuration is a mobile CPU chip. For these benchmarks a hardware
configuration was used that offers more performance. Intel(R) Core(TM) i7-
2600 CPU @ 3.40GHz, 4 cores, Linux 4.1.5. Python 2.7.10 and NumPy version
v1.9.2rc1 has been used as a base line implementation. VecOpt uses revision
3742fae37 and the forked NumPy branch for PyPy (504ee4757). PyPy uses
the 2.6.0 release binary (295ee98b69).

Table 3 shows a NumPy benchmark suite6. The source code was forked and
modified. The modifications executes the kernel several times to warm up the
JIT compiler. Each benchmark is repeated five times and the mean value is
displayed in the table. For PyPy the benchmark kernel is executed twenty times
in the warm up phase. Table 2 shows the loop count of the kernels.

Name Loop Warm up

diffusion 20 5

allpairs-distances 30 20

vibr-energy 100 20

l2norm 100 20

rosen 30 10

Table 2. The loop count and warm up iteration count for the benchmark programs in
3. All kernels that are not listed loop 50 times and warm up 20 iterations.

Table 3 shows that for some benchmarks only minor improvements can be
achieved. The current weakness both PyPy and VecOpt suffers from is related

6 https://github.com/planrich/numpy-benchmarks. Aug. 2015
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Name CPython (C1) PyPy (C2) VecOpt (C3) SpeedupC1
C3

SpeedupC2
C3

allpairs-distances 0.9868 2.57 2.534 0.39 1.0

allpairs-distances-loops 1.826 4.287 4.177 0.44 1.0

arc-distance 0.07898 0.1813 0.1608 0.49 1.1

diffusion 0.5603 5.665 3.889 0.14 1.5

evolve 0.1967 1.815 1.728 0.11 1.1

fft 0.9507 0.2981 0.2955 3.2 1.0

harris 0.3485 3.119 1.504 0.23 2.1

l2norm 0.564 1.73 1.634 0.35 1.1

lstsqr 0.3844 1.506 1.39 0.28 1.1

multiple-sum 0.1432 0.6341 0.5768 0.25 1.1

rosen 0.5795 3.498 3.438 0.17 1.0

specialconvolve 0.4713 3.876 2.649 0.18 1.5

vibr-energy 0.2784 0.7552 0.699 0.4 1.1

wave 2.191 1.114 1.166 1.9 0.96

wdist 2.927 1.202 1.179 2.5 1.0

Table 3. Benchmark suite. C1, C2 and C3 show the CPU clock time spent. C4 and C5

show the speedup. C5 additionally marks the improvements introduced by VecOpt.

to the allocation of memory in the benchmark kernel. CPython’s GC uses refer-
ence counting which immediately frees NumPy arrays. PyPy’s GC might keep
memory for many more cycles. In Section 8.3 we will see custom written kernels,
that do not allocate memory within the kernel loop.

Table 3 indicates that CPython most of the time is a better choice than PyPy.
The only reason why CPython has such good results is because a significant
fraction of time is spent in native code, removing all interpretative overhead.
Furthermore note that the NumPyPy library has not completely implemented
all features offered by NumPy.

8.3 Pure Python loops and other kernels

To show that there are really more significant improvements than presented in
the previous section, a list of benchmarks has been compiled7:

– som - Self Organizing Maps8.
– dot - Matrix vector dot product.
– any - Micro benchmark stressing the any NumPy operation.
– fir* - Finite impulse response.

7 https://github.com/planrich/pypy-simd-benchmark Aug. 2015
8 This implementation is not complete. It only simulates the “find nearest neighbor”

and “update weight vector” step of the algorithm. Is a numeric application that
makes heavy use of vector subtractions, multiplications, distance and summation.
Similar to principal component analysis this procedure can be employed as a pre
step for machine learning.
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– add* - Addition of a Python array.

– sum* - Summation of a Python array.

– rgbtoyuv* - RGB to Y’UV converions using Python arrays.

All benchmarks that end with an asterisk symbol (*) are pure Python im-
plementations. Indeed the optimizer makes no distinction between NumPy and
Python traces, but is currently by default deactivated for the latter.

Name Vector size Repeat count

som 256 4000

dot 1000 1000

any 1024 1000

add* 2500 10000

sum* 2500 10000

fir* 200 3000

rgbtoyuv* 1024 ∗ 768 500

Table 4. The vector size and the repetition count of the kernel benchmark programs
in Figure 3. All programs are run ten times and the mean value is used to calculate
the speedup value.

9 Future work

PyPy is constantly changed and improved. Only recently work has been started
to cut down the optimization time and improve the warm up speed of the virtual
machine. Interestingly these changes already track the dependencies of the IR
operations and with little effort, the dependency construction step can be merged
with the new model. There are plans to integrate these changes and enable them
by default with the new optimization setup.

One deficiency has already been mentioned in the evaluation section. Allo-
cating memory frequently is not handled very well by PyPy’s GC. Moreover it
does not know that the allocated NumPyPy array is a large chunk of memory,
but only sees the object encapsulating the pointer to the actual storage. This
problem could be mitigated by changing parts of the NumPyPy library.

The unrolling heuristic performs very well for most numerical loops. But
it is ignoring the fact that there could be already several memory load/store
instructions that could be grouped to one vector operation.

Furthermore there are cases where the input memory locations are inter-
leaved. If follow up instruction wanted to use the vector register, they would
need to shuffle the slots to continue. This is not done in the current implemen-
tation.
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Fig. 3. Yet another benchmark plotting the speedup. The first four runs use CPython
as base line to measure the speedup (Indicated by the horizontal line). For all others
CPython had to be excluded from the benchmark run. All of them are written in pure
Python. CPython is not able to execute any computation in native code and thus takes
far to long to complete the benchmark run. The speedup of VecOpt in these cases uses
PyPy as baseline implementation. Due to some limitations of the current prototype,
RGB to YUV operations on floating points rather than 8/16 bit bytes.

10 Conclusion

It has been shown that a tracing JIT compiler can indeed use SIMD instructions
to speed up numerical loops. This is not only true for the NumPyPy standard
library, but also for any other traces that adheres the pattern the transformer
understands. It additionally shows that the optimization time is reasonably fast
and the implementation complexity is rather low. The contributions do not only
enhance PyPy, but for any other virtual machine written in RPython. This
opens up new possibilities to write a virtual machine that executes numerical
computations fast using all the comfort a dynamic language provides.
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Abstract. In this paper we will present ideas for the extension of the
Java type system. On the one hand Java could get real function types.
There are some disadvantages of the Java 8 approach to use target types
as types for lambda expressions. In our approach the idea of target typing
is preserved but extended by real function types. From this extension
follows an extension of our type inference algorithm.
On the other hand we extend the Java type system by intersection types
of function types. The principal types of functions in Java are in general
intersection types.

Introduction

The development of Java in the last decade has introduced many features from
functional programming languages. While in Java 5.0 [GJSB05] generics are in-
troduced in Java 8 [GJS+14] lambda expression are added. In [Plü07,Plü15] we
proposed Java type inference systems that allows to give Java programs without
type annotations. Type inference systems are also well-known from functional
programming languages.
All these three approaches have some difficulties but were good enough. We
address these difficulties in this paper. For this we extend the Java type system
again. We call the language Java Type Extended (Java-TX), that is a conservative
extension of Java 8.
In Java 8 lambda expressions themselves have no explicit types. They get as
target types so-called functional interfaces (interfaces with one method) from
the context. This approach has the advantage that many implementations of
existing call-back interfaces are improved. But it has also some disadvantages i.e.
the subtyping property. Therefore in Java-TX we add a concept of real function
types as explicit types of lambda expressions. For this we define a set of special
interfaces FunN *, that represent real function types. We address this extension
in Section 1.
In Section 2 we explain the role of the FunN *–types in our type inference system.
The inferred types of Java functions are in general intersections of function types.
As Java allows no intersection types, the intersections had to be resolved by the
programmer. Since now, we do this by an eclipse plugin [Sta15]. In Java-TX
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we introduce intersection types of function types. In Section 3 this extension is
addressed.
Finally, we close with a conclusion and give an outlook.

1 Real function types

In the past we considered two different type inference algorithms for lambda
expressions. While in [Plü11] real function types are considered, in [Plü15] the
Java 8-like functional interface are used. In Java-TX we merge these both ap-
proaches, as both have some advantages.

1.1 The special interface FunN∗
A lambda expression in Java 8 has no explicit type. The type is determined by
the compiler from the context in which the expression appears. This means that
one lambda expression can have different types in different contexts.

Callable<String> c = () -> "done";
PrivilegedAction<String> a = () -> "done";

In the first context for the lambda expression the type Callable<String> is
determined, while in the second context PrivilegedAction<String> is deter-
mined.
In [Plü14] we summarized all functional interfaces to equivalence classes, which
single abstract method’s have the same typings. As a representation of the re-
spective classes we introduce for simulating function types a predefined collection
of interfaces for all N ∈ N :

interface FunN <R,T1 , . . . , TN > {
R apply(T1 arg1 , . . . , TN argN );

}

The following example shows the inconvenience of this approach.

Example 1. Let be the following function g defined:

g = x -> y -> f -> f.apply(x,y);

The curried function g takes three arguments, where the third argument is a
function, that is applied to the first and the second argument. In a functional
programming language a principal type of g would be

A -> (B -> (((A, B) -> C) -> C)).

But with the FunN -construction the equivalent type would be

Fun1<? extends Fun1<? extends Fun1<? extends C,
? super Fun2<? extends C,? super A,? super B>>,

? super B>,
? super A>
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Nearly no programmer would give g such type, although it is the principal type.
In Java-TX we extend these interfaces to special interfaces FunN *, where the
subtyping property is changed in comparison to Java. The special interfaces
FunN * correspond to functions types in Scala [Ode14].

The language Java-TX contains interfaces for all N ∈ N
interface FunN *<+R,-T1, . . . , -TN >1 {

R apply(T1 arg1, . . . , TN argN );
}

where FunN∗<T0,T′1, . . . , T′N>≤∗ FunN∗<T′0,T1, . . . , TN> iff Ti≤∗ T′i with ≤∗ as sub-
typing relation. For FunN ∗ no wildcards are allowed.
Let us consider the following example

Object m(Integer x, Fun1*<Object, Integer> f) {
return f.apply(x);

}

It is obvious, that the following application is correct:

Fun1*<Object,Integer> f_IntObj = . . .
Object x2 = m(2, f_IntObj);

But for Integer ≤∗ Number ≤∗ Object also
Fun1*<Integer,Integer> f_IntInt = . . .
Object x1 = m(2, f_IntInt);

is correct, as Fun1∗<Integer, Integer> is a subtype of Fun1∗<Object, Integer>
and

Fun1*<Number, Number> f_NumNum = . . .
Object x3 = m(2, f_NumNum);

is correct, as Fun1∗<Number, Number> is also a subtype of Fun1∗<Object, Integer>.
Example 2. Considering again Example 1 the program

g = x -> y -> f -> f.apply(x,y);

has in Java-TX the type Fun1*<Fun1*<Fun1*<C,Fun2*<C,A,B»,B>,A>

1.2 FunN∗ as types of methods

We can also give FunN ∗–types to methods. This means with the class CL

class CL {

T0 meth (T1 x1, . . . , TN xN) { . . . }

}

the method reference CL::meth has the type FunN ∗<To,T1, . . . , TN>.
The advantage of this definition is that method references can be used as lambda
expression. Also subtyping and direct applications work in the same manner.
1 The arguments are covariant resp. contravariant, written as in Scala [Ode14]
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1.3 Integration of real function types into Java-8

We preserve in our approach the great benefits of the target typing in Java 8 by
integration both concepts. The target typing is extended in the following way:

– A lambda expression itself has an explicit FunN *–type.
– A lambda expression fits any target type, which must be a functional in-

terface, if its method’s type in FunN *–representation is a supertype of the
explicit type.

Example 3. Let us consider again:

Callable<String> c = () -> "done";
PrivilegedAction<String> a = () -> "done";

The explicit type of the lambda expressions () -> "done" is Fun0∗<String>.
The types of the methods call of Callable<String> and run of Privileged-
Action<String> have also the type Fun0∗<String>. This means that the target
types are compatible.

2 Type inference

Another feature well-known from functional programming languages is type in-
ference. In object-oriented languages, type inference is only in the restricted form
of local type inference [PT98] implemented, while in Java 8 some elements are
introduced. It is possible to leave out the argument types of lambda expression
(instead (ty a) -> expr it is possible to write (a) -> expr). Furthermore the
so-called diamond operator is introduced. This means that it is possible to write
new Class<> and the parameters of Class are inferred.
But complete type inference, especially type inference of recursive declared func-
tions is not implemented.
The main reason for this lack is that the results in the defined Java type system
are generally not unique.
We address this problem in different approaches. In [Plü07] we gave a type
inference algorithm for Java with generics including wildcards. In [Plü11] we
presented a type inference algorithm for Java with real function types. In [Plü15]
finally we presented a type inference algorithm for Java with lambda expressions
and functional interfaces.
In this section we present the type inference algorithm for Java-TX. For this we
have to combine the approaches of type inference for real function types [Plü11]
and type inference for functional interfaces [Plü15]. Java-TX uses the special
interfaces FunN * for function types, that are nominal types. Therefore we use
the base of [Plü15]. The differences in the results are solved by adapting the
underlying type unification [Plü09].

466



2.1 The algorithm

The type inference algorithm (Figure 1) takes a set of type assumptions TypeAss-
umptions and a untyped class Class and gives a pair of a set of remaining
constraints Constraints and a typed class TClass.

TI: TypeAssumptions× Class→ { (Constraints, TClass) }
TI(Ass,Class( τ, extends( τ ′ ), fdecls ) ) =

let (Class( τ, extends( τ ′ ), fdeclst ), ConS) =

TYPE(Ass,Class( τ, extends( τ ′ ), fdecls ) )
{ (cs1, σ1), . . . , (csn, σn) } = SOLVE(ConS )

in { (csi, σi( Class( τ, extends( τ ′ ), fdeclst ) ))| 16 i6n }

Fig. 1. The type inference algorithm

TI consists of two main functions TYPE and SOLVE, where TYPE inserts
type annotations, widely type variables as placeholders, in the Java class and
determines a set of type constraints and SOLVE solves the constraints by
our type unification algorithm [Plü09]. The result of SOLVE is a set of pairs
{ (cs1, σ1), . . . , (csn, σn) }, where the csi consists of remaining constraints (ala′)
of types variables and σi consists of solutions (a

.
= θ), where (a l a′) means a

has to be a subtype of a′ and (a
.
= b) means a and b are equal.

Let us consider the class Matrix in Figure 2. A class Matrix is declared as an
extension of Vector<Vector<Integer>>. op is a function defined by a lambda
expression in curried representation with two arguments. First it takes a matrix
and second it takes a function, that has as arguments two matrices and returns
another matrix. The result of op is the application of the function (second argu-
ment) to its object (this) and its first argument. The method mul is the ordinary
matrix multiplication in lambda representation. Finally, in main the function op
is applied. The op-function of matrix m1 is applied to the matrix m2 and the func-
tion mul of m1. In the figure the class Matrix is shown in Java 8 and in Java-TX.
The Java-TX program shows the possibilities to declare programs without type
annotations. A little curious is the declaration of local variables ret; v1; v2;
m1; and m2;. This is necessary as for the reason of unambiguousness Java-TX
retains the Java property that all variables must be declared before used.

2.2 Type unification

In the function SOLVE the type unification is called to solve the type con-
straints. In [Plü09] we described the type unification for the Java type system.
The introduction of the FunN * types induces an extension of this unification.
The three most important added unifications rule are given in Figure 3. In the
rules a l b means a must be a subtype of b and a .

= b means a and b must be
equal.
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//Java 8 with type annotations
class Matrix extends Vector<Vector<Integer>> {

Fun1<Fun1<Matrix, Fun2<Matrix, Matrix,Matrix>>, Matrix>
op = (Matrix m) -> (Fun2<Matrix, Matrix,Matrix> f) -> f.apply(this, m);

Fun2<Matrix, Matrix,Matrix> mul = (Matrix m1, Matrix m2) -> {
Matrix ret = new Matrix ();
for(int i = 0; i < size(); i++) {

Vector<Integer> v1 = m1.elementAt(i);
Vector<Integer> v2 = new Vector<Integer> ();
for (int j = 0; j < size(); j++) {

int erg = 0;
for (int k = 0; k < v1.size(); k++) {

erg = erg + v1.elementAt(k).intValue()
* (m2.elementAt(k)).elementAt(j).intValue(); }

v2.addElement(erg); }
ret.addElement(v2); }

return ret; };

public static void main(String[] args) {
Matrix m1 = new Matrix(...);
Matrix m2 = new Matrix(...);
(m1.op.apply(m2)).apply(m1.mul);}

}

//Java-TX without type annotations
class Matrix extends Vector<Vector<Integer>> {

op = (m) -> (f) -> f.apply(this, m);

mul = (m1, m2) -> {
ret; ret = new Matrix ();
for(int i = 0; i < size(); i++) {

v1; v1 = m1.elementAt(i);
v2; v2 = new Vector<Integer> ();
for (int j = 0; j < size(); j++) {

int erg = 0;
for (int k = 0; k < v1.size(); k++) {

erg = erg + v1.elementAt(k).intValue()
* (m2.elementAt(k)).elementAt(j).intValue(); }

v2.addElement(erg); }
ret.addElement(v2); }

return ret; };

public static void main(String[] args) {
m1; m1 = new Matrix(...);
m2; m2 = new Matrix(...);
(m1.op.apply(m2)).apply(m1.mul);}

}

Fig. 2. Matrix in Java 8 respectively in Java-TX without th and type annotations
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(reduceFunN *)
Eq ∪ { FunN *<θ, θ′1, . . . , θ′N>l FunN *<θ′, θ1, . . . , θN> }

Eq ∪ { θ l θ′, θ1 l θ′1, . . . , θN l θ′N }

(greaterFunN *)
Eq ∪ { FunN *<θ, θ′1, . . . , θ′N>l a }

Eq ∪ { a .
= FunN *<b′, b1, . . . , bN>, θ l b′, bi l θ′i }

b′, bi are fresh

(smallerFunN *)
Eq ∪ { al FunN *<θ′, θ1, . . . , θN> }

Eq ∪ { a .
= FunN *<b, b′1, . . . , b′N>, bl θ′, θ1 l b′i }

b′, bi are fresh

Fig. 3. Extension of the type unification

The rule reduceFunN* describes the reduction of the FunN * interfaces. This
means that the parameters are in covariant respectively contravariant relations.
The rules greaterFunN* and smallerFunN* describes the solutions of all
greater respectively all smaller FunN *-types. This means that the parameters
of the FunN *-types gets greater respectively smaller.

2.3 Example

In the following we show the functionality of the type inference algorithm TI by
the application to the function op from Figure 2. First the function TYPE is
called, that inserts type annotations, widely type variables as placeholders, and
determines a set of type constraints. The abstract syntax of the program with
type annotations inserted is:

op:aop =
((m:am) ->

((f:af) -> f.apply(this:Matrix, m:am):a3)
:Fun1*<aapp, af>)

:Fun1*<aλf , am>

and the set of constraints is given as:

{ (Fun1∗<aλf , am>l aop), (Fun1∗<aapp, af>l aλf ),
(af

.
= Fun2∗<a3, a1, a2>), (Matrixl a1), (am l a2),

(a3 l aapp) }

With applying greaterFunN* to Fun1∗<aλf , am>l aop) we get

{ (aop .
= Fun1∗<b′, b1>), (aλf l b′), (b1 l am) }.

With applying greaterFunN* to Fun1∗<aapp, af>l aλf we get

{ (aλf .
= Fun1∗<c′, c1>), (aapp l c′), (c1 l af ) }.

With substituting aλf in aλf l b′ and again applying greaterFunN* we get

{ (b′ .= Fun1∗<d′, d1>), (c′ l d′), (d1 l c1) }
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With substituting af in c1 l af and applying smallerFunN* we get

{ (c1 .
= Fun2∗<x, x′1, x′2>), (xl a3), (a1 l x′1), (a2 l x′2) }

With substituting c1 in d1 l c1 and applying smallerFunN* again we get

{ (d1 .
= Fun2∗<y, y′1, y′2>), (y l x), (x′1 l y′1), (x

′
2 l y′2) }

This leads to the following set of constraints (considering only the relevant con-
straints):

{ Matrixl a1 l x′1 l y′1
b1 l am l a2 l x′2 l y′2,
y l xl a3 l aapp l c′ l d′,
aop

.
= Fun1∗<Fun1∗<d′, Fun2∗<y, y′1, y′2>>, b1>,

aλf
.
= Fun1∗<c′, Fun2∗<x, x′1, x′2>>,

af
.
= Fun2∗<a3, a1, a2> }

The result of SOLVE (considering only the relevant constraints and solutions)
is given as following set of pairs:

{ ({ b1 l a2 l x′2 l y′2,
y l xl a3 l c′ l d′ },
{ aop .

= Fun1∗<Fun1∗<d′, Fun2∗<y, y′1, y′2>>, b1>,
aλf

.
= Fun1∗<c′, Fun2∗<x, x′1, x′2>>,

af
.
= Fun2∗<a3, a1, a2> })

| Matrix≤∗ a1≤∗ x′1≤∗ y′1 }

The result of TI is given as the application of the SOLVE’s results to the result
program of TYPE. The result consists of a set of typings for op:

class Matrix extends Vector<Vector<Integer>> {

<y2’, b1 extends y2’, d’, y extends d’>2

Fun1*<Fun1*<d’, Fun2*<y, X , y2’>>, b1>
op = (m) -> (f) -> f.apply(this, m);

...
}

where Matrix ≤∗ X.

If we compare this result with the Java 8 program in Figure 2 we see that the
types are more general: On the one hand argument and result types are type
variables and on the other hand there are more than one principal results (Matrix
≤∗ X).
This example shows that the results of the type inference algorithm are not
unique in general. The reason is, that the type unification algorithm has multiple
results.
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class OL {

m(a) { return a + a; }
m(a) { return a || a; }

}

class Main {

main(a) {
ol;
ol = new OL();
return ol.m(a);

}
}

Fig. 4. Type inference in the presence of overloading

Let us consider another example. In Figure 4 we show how the type inference
algorithm deals with overloading. The result of the type inference for the method
main is:

{X main(X a) {
OL ol;
ol = new OL();
return ol.m(a); }| X ∈ { Integer, String, Long, Double, Boolean, Float } }

In this example the property of multiple results is induced by the overloading of
the operators + and ||, while in Matrix the property is induced by the property
that the type unification has multiple results.

Upto now, we have had a simple but practical solution to resolve multiple results.
We have had an eclipse plugin [Sta15] as user interface such that the user can
select the desired solution.

In this paper we consider a new approach, that resolves multiple solutions by
extending the Java type system by intersections of function types.

3 Intersection function types

In this section we extend the Java type system by introducing intersections of
function types. In [Plü08] we considered this for Java without FunN *–types. Now
we extend the idea to function types.
Let us look again on the class Matrix from Section 2. A first approach to define an
intersection type could be to introduce for each supertype of Matrix an element
(Figure 5). This definition makes less sense, as there are many subtype relations
2 The constraints are given here as bounded type variables for fields, which is permitted
only in methods in Java
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op : Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<? extends Vector<? extends Integer>>, y2′>>,b1>
& Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<? super Vector<? super Integer>>, y2′>>,b1>
& . . . &
& Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<Vector<Integer>>, y2′>>,b1>
& Fun1∗<Fun1∗<d′,Fun2∗<y,Matrix, y2′>>,b1>

Fig. 5. Intersection type of op

op : Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<? extends Vector<? extends Integer>>, y2′>>,b1>
& Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<? extends Vector<? super Integer>>, y2′>>,b1>
& Fun1∗<Fun1∗<d′,Fun2∗<y,Vector<? super Vector<Integer>>, y2′>>,b1>

Fig. 6. Reduced intersection type of op

between elements of the intersection. Therefore a better approach would be to
define the type of op as the intersection of all maximal elements in the subtyping
ordering. Then the type of op would be as given in Figure 6.
In general a principal type should be defined. The idea of principal typing is,
that if an expression has multiple types, there is one type, from which all other
types are derivable. This type is called the principal type.
E.g. in [DM82] a principal type for functional programs is defined, where the
possibility to derive is the generic instantiation of type variables. E.g. the identity
function has the principal type id: a -> a, where a is a type variable. This
means all other types of id are instantiations of a -> a, e.g. id: int -> int
or id: char -> char.
In [vB93] a generalization of this definition is given, that replaces the generic
instantiation by an arbitrary derive-function.

We define for Java-TX the following principal typing:

Definition 1 (Java-TX principal typing). An intersection type with minimal
number of elements of an expression is a principal type, if any (non-intersection)
type of the expression is a subtype of a generic instance of one element of the
intersection type and the call-graphs are identical.

For the explanation of this definition we give three further examples. We extend
the matrix example by introducing a parameter for Matrix<E> and an additional
class intMatrix, that contains the method mul (cp. Figure 7).
The type of op applied in the method main is

Fun1*<Fun1*<intMatrix, Fun2*<intMatrix,intMatrix, intMatrix>>, intMatrix>.

The corresponding element of the principal intersection type is

Fun1*<Fun1*<d’, Fun2*<y,Vector<? extends Vector<? extends E>>, y2’>>, b1>
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class Matrix<E> extends Vector<Vector<E>> {

op = (m) -> (f) -> f.apply(this, m);
}

class IntMatrix extends Matrix<Integer>

mul = (m1, m2) -> { ... }

public static void main(String[] args) {
m1; m1 = new intMatrix(...);
m2; m2 = new intMatrix(...);
(m1.op.apply(m2)).apply(m1.mul);}

}

Fig. 7. Parametrized Matrix

Let us consider again the class OL in Figure 4. The principal type of main is:

main: Integer→ Integer& String→ String& Long→ Long& Double→ Double&
Boolean→ Boolean& Float→ Float

Finally we give an example that shows why the call-graph must be considered.
Let the class Put in Figure 8 be given.

class Put {
<T> putElement(T ele, Vector<T> v) {
v.addElement(ele);

}

<T> putElement(T ele, Stack<T> s) {
s.push(ele);

}

main(ele, x) {
putElement(ele, x);

}
}

Fig. 8. The class Put

The principal type of main is:

main : T× Vector<T>→ void & T× Stack<T>→ void.

473



If the call-graph would not be considered, T × Stack<T> → void would not
belong to the principal type, as Stack is a subtype of Vector. But this type is
necessary as main defines different functions on Vector and Stack.

If we compare the matrix example with the others, we recognize, that the matrix
example uses the lambda expression representation for functions, while in OL and
Put methods are used. The Java-TX type systems allows for both representations
intersection types.

4 Conclusion and outlook

4.1 Conclusion

We have presented an extension of the Java type system. On the one hand we
proposed to introduce real function types. We gave an approach similar to the
approach in Scala. We showed how both concepts, the concept of using functional
interfaces as target types for lambda expressions, as well as our concept of real
function types, can be integrated. So the advantages of both concepts can be
used.
We showed the necessary extension of our type inference algorithm to use real
function types.
On the other hand we have introduced function intersection types, that are in
general results of our type inference algorithm.

4.2 Outlook

For the implementation of both the real function types and the intersection
types generics in byte-code are necessary. In [ORW00] two ways to compile
PIZZA [OW97] (an early Java extension with generics) are given. Beside the
common homogenous compilation (type-erasures) there is given an approach of
heterogenous compilation, which preserves the type parameters. This approach
is designed for JVM version < 5. This approach has to be redesigned and adopted
to version 8.
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Zusammenfassung Workflows — ausführbare (technische) Geschäfts-
prozesse — ähneln in ihrer Struktur und Funktionalität gerade im Umfeld
der serviceorientierten Systeme einer modernen Programmiersprache. Der
Kontrollfluss wird jedoch explizit mit Parallelität und Verzweigungs-
strukturen als Graph modelliert. Die aus diesen Graphen entspringenden
Programme sind dadurch selten strukturiert.
Für die Validierung und Übersetzung in ein interpretierbares und sicheres
Übertragungsformat haben wir einen Compiler für Workflows entwickelt,
der einen Modellierer direkt während der Entwicklung des Prozesses mit
nützlichen Informationen unterstützt. Eine solche Information ist bei-
spielsweise das Anzeigen aller möglichen Verklemmungen. Weiterhin kann
der Compiler das Verhalten komplexer sogenannter inklusiver zusam-
menführender Gateways (OR-Joins) dem Nutzer erklären. Ein weiteres
Novum ist die Benachrichtigung über mögliche Wettkampfsbedingungen
und die damit zusammenhängende Transformation von unstrukturierten
Programmen in die Concurrent Static Single Assignment Form.
In unserem Beitrag wird der Compiler mojo und seine verschiedenen Pha-
sen vom eingehenden Geschäftsprozess bis hin zur Ausgabe vorgestellt.
Im Zuge dessen gehen wir kurz auf die genutzten Analyse- und Transfor-
mationstechniken ein. Es handelt sich dabei um den ersten vollständigen
Compiler für Geschäftsprozesse.

Schlüsselwörter: Compiler, Geschäftsprozess, Analyse, Verifikation

1 Einleitung

Große Softwareanwendungen werden heute im Hinblick auf Flexibilität, Skalierbar-
keit und Übersichtlichkeit mit dem Pattern der serviceorientierten Architekturen
(SOA) entwickelt. In einer SOA bieten Module ihre Dienste (Services) über
Schnittstellen an. Solch ein Dienst steht dabei für die Durchführung einer (nach
außen) abgeschlossenen Aufgabe. Eine Softwareanwendung, die auf dem SOA-
Pattern basiert, nutzt eine Vielzahl solcher in sich abgeschlossener Dienste, um
den Anwendungszweck, das Ziel, der Software zu erreichen. Wichtig ist also nicht
mehr, Wie etwas getan wird, sondern Was. Sprich das Geschäft, das durch die
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Abbildung 1. Vereinfachter Ablauf eines Einkaufs im Onlineshop

Verknüpfung mehrerer Dienste in einem Ablaufplan (Prozess) erledigt wird —
beschrieben durch einen Geschäftsprozess.

Geschäftsprozesse verbinden verschiedene Aufgaben (Tasks) durch eine geord-
nete Reihenfolge (Prozess) zur Erfüllung eines Ziels (Geschäft). Abbildung 1 zeigt
einen solchen Geschäftsprozess, der den (vereinfachten) Ablauf eines Einkaufs in
einem Onlineshop repräsentiert und das Ziel hat, dass ein Kunde Produkte kauft,
bezahlt und erhält. Die hier gewählte Notation für den Geschäftsprozess ist die
Business Process Model and Notation (BPMN) 2.0 [1]. Der in dieser Sprache
verfasste Prozess zeigt zwei involvierte Parteien: den Kunde und den Händler.
Der Kunde setzt den Prozess in Gang, wenn er den Onlineshop betritt. Dies wird
durch das Startevent (Kreis mit dünner Linie) gekennzeichnet. Der Teilprozess
des Händlers startet ebenfalls mit dem Betreten des Onlineshops des Kunden,
da er per Signal an diesen gebunden ist (Kreis mit Dreieck). Daraufhin zeigt
der Händler dem Kunden seine Produkte. Daraus sucht sich der Kunde seine
Produkte aus und entscheidet sich danach (Diamant mit einem X), entweder
ob sie zu teuer sind oder ob er diese kauft. Sind die ausgewählten Produkte zu
teuer, verlässt er den Onlineshop (Kreis mit dicker Linie) und sein Teilprozess ist
beendet. Möchte er die Ware bezahlen, so geht er aus Sicht des Prozesses in die
nächste Aufgabe. Ist der Kunde mit der Bezahlung fertig, so wird dem Händler
eine Bestellung zugeschickt (Zwischenevent, doppelter Kreis mit Briefumschlag).
Daraufhin kontrolliert der Händler den Geldeingang auf seinem Konto so lange,
bis der Betrag eingegangen ist. Dann liefert er die Ware, auf die der Kunde
bereits wartet. Der Teilprozess des Händlers ist damit abgeschlossen und der
Kunde betrachtet abschließend noch seine erhaltene Ware.

Deutlich ist bei einem solchen Geschäftsprozess der Bezug zu Programmier-
sprachen zu sehen, mit zwei Unterschieden: 1) ein Geschäftsprozess wird haupt-
sächlich durch eine relativ abstrakte, graphbasierte und unstrukturierte Modellie-
rungssprache repräsentiert und 2) besitzt einen anderen Sprachumfang.

Von diesem generellen Bezug zu Programmiersprachen ist es demnach er-
strebenswert, wenn ein Geschäftsprozess ähnlich zu einem Programm in einer
Programmiersprache ohne großen Aufwand automatisch ausgeführt werden kann.
In diesem Zusammenhang wird dann über einen Workflow, also der technischen
Umsetzung eines Geschäftsprozesses, gesprochen. Für einfache Geschäftsprozesse
ist die Ausführung als Workflow derzeit sogar schon mit dem richtigen Werk-
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zeug möglich (bspw. Activiti BPM Platform [2], Redhat jBPM [3] und IBM
WebSphere [4]). Dabei wird der Prozess von einer Workflowengine interpretiert.

Ein Großteil von praxisnahen Prozessen kann jedoch nicht ohne weiteres
ausgeführt bzw. als Workflow angesehen werden. Dies hat mehrere Gründe. Zum
einen sind Beschreibungselemente moderner, meist graphbasierter Prozessmodel-
lierungssprachen nicht vollständig spezifiert und deren Semantik könnte demnach
unterschiedlich interpretiert werden. Dazu zählen beispielsweise die sogenannten
inklusiven Gateways (OR-Split und OR-Join), die Fehlerbehandlung und Events.
Zum anderen sind die existierenden Informationen im Prozess meist derart ab-
strakt, dass eine Übersetzung in maschinenverständliche Befehle nur durch einen
Menschen vorgenommen werden kann.

Ein weiterer wichtiger Punkt ist die generelle Unterstützung des Prozessent-
wicklers bei der Modellierung eines Prozesses durch ein vernünftiges Werkzeug,
dass dem Entwickler bereits während der Modellierung Fehler im Entwurf an-
zeigt. Teure Fehlverhalten sind ein wichtiger Knackpunkt zur Automatisierung.
Tatsächlich gibt es bereits Werkzeuge (bspw. LoLA [5] und Woflan [6]), die in
der Regel nach der Entwicklung Auskunft darüber geben, ob der Prozess frei
von bestimmten Fehlern ist. Diese verwenden aber hauptsächlich Techniken zur
Untersuchung des Zustandsraums, die in manchen Fällen einen exponentiell
wachsenden Zustandsraum in Bezug auf die Größe des Prozesses generieren. Viel
schwerwiegender ist jedoch, dass immer nur die Fehlerwirkung, sprich der Effekt,
der durch einen Modellierungsfehler entsteht, untersucht wird. Aus Gründen
der Berechnungskomplexität wird sogar nur die erste erreichbare Fehlerwirkung
gesucht und danach die Fehlersuche abgebrochen. Die Information über eine
solche Fehlerwirkung ist auch wichtig, kann aber nur unter Umständen zur
Findung des Fehlerzustands bzw. der Fehlerursache beitragen. Dies wird in der
Softwarequalitätssicherung auch als die Entfernung zwischen dem Fehlerzustand
und der Fehlerwirkung bezeichnet. Ebenso ist auch die Entfernung zwischen
der Fehlerwirkung von der eigentlichen Fehlhandlung (bspw. der falsche Einsatz
eines Beschreibungselements) entsprechend hoch. Erschwerend kommt noch hin-
zu, dass sich zwei Fehler gegenseitig maskieren können, d.h., die Fehlerwirkung
eines Fehlerzustands wird durch eine andere Fehlerwirkung eines Fehlerzustands
korrigiert. Auch das Blockieren von weiteren Fehlerzuständen durch eine bereits
aufgetretene Fehlerwirkung ist möglich — zum Beispiel bei einer Verklemmung,
die alle nachfolgenden Fehlerzustände unerreichbar macht.

Abschließend zur Unterstützung bei der Modellierung finden außerdem Da-
teninformationen in geläufigen Techniken kaum bis keine Betrachtung und auch
die Visualisierung und detailierte Beschreibung von gefundenen Fehlern (seien es
Fehlerzustände oder -wirkungen) ist sehr unausgeprägt.

Insgesamt sehen wir den Bedarf der Evolution der Geschäftsprozesse, Prozess-
modellierung und -ausführung hin zu einer (wenn auch abstrakteren) graphischen
Programmiersprache mit einer integrierten Entwicklungsumgebung (IDE) be-
stehend aus einem Prozessdesigner, einem Compiler und der dazu passenden
virtuellen Maschine (VM). Dafür zwingend erachten wir die folgenden Schritte:
1) die Herleitung und Spezifikation einer relativ kompakten Kernsprache zur

478



Fr
o

n
te

n
d

Tr
an

sf
o

rm
at

io
n

 
Fo

ld
o

u
tg

ra
p

h

Workflow-
graph 
(WFG)

BPMN

Petrinetz

C
SS

A
-F

o
rm

-
K

o
n

st
ru

kt
io

n

Foldout-
graph (FG)

FG 
(CSSA)

Fe
h

le
ra

n
al

ys
e

B
ac

ke
n

d

FG (CSSA) 
+ Fehler

Fehler-
ausgabe

Mobiler 
Prozess

Abbildung 2. Phasen des Compilers

Prozessmodellierung mit häufig verwendeten Sprachelementen inklusive deren
eindeutiger Semantik, 2) die Herleitung und Spezifikation von Befehlen dieser
Sprache zur Modifizierung von Informationen, 3) die Definition von potentiellen
Fehlerwirkungen und Fehlhandlungen, deren Fehlerursachen gefunden, angezeigt
und detailliert beschrieben werden sollen, 4) die Entwicklung von Anlaysen zur
Findung von Fehlerursachen, 5) die Entwicklung eines Compilers, der den Prozess
einliest, nach Fehlerursachen und -wirkungen analysiert ggbf. Fehler anzeigt und
beschreibt sowie in ein übertragbares und ausführbares Format übersetzt, und 6)
die Entwicklung einer virtuellen Maschine, die dieses Format einliest, auf seine
Richtigkeit und Fehlerfreiheit überprüft und ausführt.

Ausführlichere Beschreibungen sind in einer vorangegangenen Arbeit [7] zu
finden. In dieser stellten wir auch unsere Idee für den generellen Aufbau eines
solchen Systems vor. Dabei wird das System in eine Produzenten- (der Compiler)
und eine Konsumentenseite (die virtuelle Maschine bzw. Engine) unterteilt.

In dieser Arbeit stellen wir die bisherige Umsetzung der Produzentenseite
in Form unseres Compilers für Geschäftsprozesse vor. Unter dem Namen mojo1

entwickeln wir seit 2013 einen eigenständigen Compiler zur Analyse und Überset-
zung von Prozessen. Er kann in existierende Prozessdesigner eingebunden werden,
um deren Funktionalität zu erweitern (bisher im Activiti-Designer [2] getestet).
Die Features unseres Compilers sind zum Beispiel, dass 1) die Fehlerursachen
aller potentiellen Verklemmungen innerhalb eines Prozesses gefunden werden, 2)
eine vollständige Semantik für inklusive zusammenführende Gateways (OR-Joins)
genutzt wird und 3) mögliche Wettkampfsbedingungen angezeigt werden können.

Im nächsten Abschnitt 2 untersuchen wir die unterschiedlichen Phasen des
Compilers und zeigen dessen einzigartigen Funktionsumfang. Zum Schluss geben
wir einen Ausblick auf zukünftige Arbeiten und Funktionalitäten in Abschnitt 3.

2 Aufbau des Compilers

Unser Compiler mojo orientiert sich an klassischen Phasen, in denen der Prozess
immer wieder transformiert und analysiert wird. Das Phasenmodell in Abbildung
2 zeigt die derzeitigen Phasen von mojo.

1 http://sourceforge.net/projects/bpmojo/, http://www.bpmn-compiler.org
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Als Eingabe des Compilers dienen entweder ein in XML linearisierter BPMN-
Prozess oder ein Prozess in Form der Petri Net Markup Language (PNML) [8]. Der
Eingabeprozess wird dann im Frontend zunächst in die Zwischenrepräsentation
des erweiterten Workflowgraphen [9] übersetzt. Erweiterte Workflowgraphen
sind technische Repräsentationen des Prozesses als Graph. In der nächsten
Phase (Transformation Foldoutgraph) wird der erweiterte Workflowgraph in
den speziell für mojo entwickelten Foldoutgraphen übersetzt. Ein Foldoutgraph
besteht in strukturierten Graphen immer nur aus einer Sequenz von hintereinander
folgenden Knoten. Jeder dieser Knoten kann dabei jedoch in einen größeren
Teilgraphen des Workflowgraphen entfaltet werden. Aus diesem Grund hat der
Foldoutgraph auch seinen Namen erhalten. Der Gewinn dieser Transformation
in den Foldoutgraph erlaubt schnelle Analysen dank einer impliziten Dominanz-
und Postdominanzbeziehung zwischen den Knoten.

Nach der Konstruktion des Foldoutgraphen werden seine Instruktionen in die
Concurrent Static Single Assignment Form (CSSA) [10] überführt (Phase CSSA-
Form-Konstruktion). Im Zuge dieses Schritts muss der Compiler analysieren,
welche Instruktionen parallel abgearbeitet werden und somit Wettkampfsbedin-
gungen erzeugen können. Die gewonnene CSSA-Form der Instruktion macht es
danach leichter dieses Wissen in Analysen zu verwenden. Diese Analysen werden
dadurch wesentlich einfacher und effizienter.

Der eingehende Prozess befindet sich jetzt in der endgültigen Zwischenre-
präsentation. Nun werden verschiedene Fehleranalysen durchgeführt. Aufgrund
der Foldoutgraph-Struktur werden viele der Fehler bereits während der Trans-
formation entdeckt. An dieser Stelle werden demnach noch die unstrukturierten
Bestandteile des Foldoutgraphen analysiert und weitergehende Überprüfungen
durch Prädikatenanalysen durchgeführt. Die gefundenen Fehler nutzt der Com-
piler für deren detaillierte Beschreibung zur Weitergabe an das entsprechende
Modellierungswerkzeug (Phase Backend). Werden hingegen keine Fehler gefunden,
linearisiert das Backend den Prozess und exportiert ihn. Er kann nun einfach
von einer virtuellen Maschine ausgeführt werden.

Im weiteren Verlauf beleuchten wir die einzelnen Phasen etwas gründlicher.

2.1 Frontend

Wie bereits erwähnt wird im Frontend ein eingehender Prozess in einen erweiterten
Workflowgraphen übersetzt. Der eingehende Prozess ist dabei entweder in der
Notation eines BPMN-Prozesses notiert oder liegt als Petrinetz (PNML [8]) vor.
Ausschnitt a) aus Abbildung 3 zeigt dies schematisch.

Für jedes Eingangsformat gibt es einen eigenen Parser, der zunächst die
Syntax überprüft. Danach wird Knoten für Knoten und Kante für Kante des
Eingangsprozesses in einen Workflowgraphen übersetzt [11]. Abbildung 4 zeigt
die Übersetzung des Beispielprozesses aus Abbildung 1 in einen solchen Graphen.

Ein Workflowgraph ist im Wesentlichen eine allgemeinere und technischere
Darstellungsform von Prozessen. Grundlegend stellt sie — ähnlich zu einem
Kontrollflussgraphen — den Prozess als einen Graphen dar. Jedoch werden die
Knoten je nach Funktionalität in verschiedene Typen unterteilt. Wir illustrieren
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Abbildung 3. Detaillierte Phasen des Compilers

Startknoten als runde Kreise mit dünner Linie. Auf den ausgehenden Kanten dieser
Knoten liegt zu Beginn der Kontrollfluss. Einfache Berechnungen, etc. werden in
Aufgaben (Tasks, dargestellt als einfache Rechtecke) durchgeführt. Parallelität
wird in AND-Forks erzeugt und in AND-Joins wieder zusammengefasst (schwarz-
gefüllte Rechtecke). Außerdem gibt es noch XOR-Forks und XOR-Joins für die
Darstellung von Verzweigungen und Schleifen, im Graphen durch Diamanten
dargestellt (XOR-Forks mit dünner, XOR-Joins mit dicker Linie). Analog dazu
werden OR-Forks und OR-Joins dargestellt. Sie enthalten jedoch in der Mitte
des Diamanten einen schwarzen Punkt. Ein OR-Fork und OR-Join ist in der
Abbildung nicht zu sehen. Zu guter Letzt gibt es noch die Endknoten (Kreise
mit dicker Linie), wobei in jedem Endknoten maximal ein Kontrollfluss endet.

Eine weitere Aufgabe des Frontends ist die Vereinigung der Start- und End-
knoten zu einem einzigen Start- bzw. Endknoten unter Berücksichtigung der
Semantik der Eingangssprache. Dies dient vor allen Dingen der wesentlichen
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Abbildung 5. Verknüpfung mehrerer Start- und Endknoten zu einem einzigen

Vereinfachung von Analysen und Transformationen in den weiteren Phasen des
Compilers. Vor unserer Einführung einer eindeutigen und vollständigen Seman-
tik von OR-Joins [12], war das Verknüpfen verschiedener Endknoten zu einem
einzigen uneffizient. Nun können (mit den passenden Bedingungen) die existieren-
den Start- und Endknoten jeweils durch einen Task ersetzt und mit Hilfe eines
OR-Forks bzw. OR-Joins verknüpft werden, wie in Abbildung 5 zu sehen ist.

Außerdem transformiert das Frontend auch die Instruktionen des Prozesses.
Die Erweiterung von Workflowgraphen mit Instruktionen wurde dabei erstmals
in einer unserer früheren Arbeiten [9] genutzt. Sie werden erweiterte Workflow-
graphen genannt. Im Zuge dieser Arbeit nutzen wir einfache Anweisungen, wie
define und read, um die Nutzung von Variablen anzudeuten.

2.2 Transformation Foldoutgraph

Der erweiterte Workflowgraph des Frontends wird an die nächste Phase des
Compilers weitergereicht. Ab diesem Zeitpunkt sind die Analysen und Transfor-
mationen unabhängig von der gewählten Ausgangsnotation.

Der Compiler transformiert in dieser Phase den erweiterten Workflowgraphen
in eine weitere Zwischenrepräsentation — den Foldoutgraphen. Foldoutgraphen
zeichnen sich durch ihre Effizienz bei der Ausführung weiterer Transformationen
und vor allen Dingen Analysen aus. Für strukturierte Prozesse besteht jeder Fol-
doutgraph aus einer Sequenz von Knoten — ohne Sprünge, Schleifen, Parallelität,
etc. Dafür können bestimmte Knoten entfaltet werden. Diese Knoten haben dabei
einen speziellen Knotentyp und stehen dabei beispielsweise für Verzweigungen,
Schleifen und Parallelität.

482



T0

... A
F 1

T1

...A
J 1 XF1

[sum(cart) > expensive]

T2

...

[else]

A
J 2

A
F 2

T3

...

T4

... A
F 3

A
J 3 T5

...

unstructuredS E

OF1

OJ1[true]

[true]
loop

S E

S E S ECondition:
not check

forward cond backward

Abbildung 6. Der Foldoutgraph des Workflowgraphen aus Abbildung 4

Die Idee des Foldoutgraphen wurde von OP2 [13], einem portablen Oberon-
Compiler, und dem mobilen Code SafeTSA [14] inspiriert. Der Vorteil ist, dass
der Dominator- und Postdominatorbaum und somit auch die Gültigkeit von
Variablendefinitionen, etc. implizit gegeben sind. Außerdem ist das Auffinden
vieler Modellierungsfehler schon während der Transformation möglich.

Da die meisten Workflowgraphen von realen Prozessen leider unstrukturiert
sind, können Knoten des Foldoutgraphen auch zu unstrukturierten Teilgraphen
entfaltet werden. Diese Teilgraphen folgen der Definition normaler erweiterter
Workflowgraphen. Als Beispiel zeigt Abbildung 6 den Foldoutgraphen unseres
Beispielprozesses. Da dieser stark unstrukturiert ist, sind lediglich die Schleife
und das Fragment aus OR-Fork und OR-Join ausklappbar.

Die Transformation eines Workflowgraphen in einen Foldoutgraphen geschieht
in zwei Schritten, wie in der schematischen Darstellung dieser Phase in Abbildung
3 b) zu sehen ist. Zunächst findet auf dem Workflowgraphen eine Dekomposition
statt. Danach werden die aus der Dekomposition gewonnenen Daten genutzt, um
den Foldoutgraphen zu konstruieren.

Die Dekomposition von Kontrollflussgraphen führten Johnson et al. [15]
in ihrer Arbeit über den Program Structure Tree ein. Dabei werden Single-
Entry-Single-Exit-Teilgraphen gesucht, wobei diese genau einen eingehenden und
einen ausgehenden Knoten besitzen. Für unsere Dekomposition haben wir den
Algorithmus von Vanhatalo et al. [16] übernommen, der von einem Prozess einen
Refined Process Structure Tree (PST) ableitet. Dabei sucht er nach Regionen mit
einer einzigen eingehenden und ausgehenden Kante.

Mit Hilfe des PST wird der Workflowgraph in linearer Zeit durchlaufen und
die Fragmente des PST in Knoten und Kanten umgewandelt. Dabei wird auch
bestimmt, welche Funktionalität das Fragment und somit der erzeugte Knoten
widerspiegelt (Parallelität, Verzweigung, Schleife, usw.).

Während der Konstruktion des Foldoutgraphen wird außerdem überprüft,
ob Fragmente korrekte öffnende und schließende Knoten haben. Beispielsweise
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wird geschaut, ob ein Fragment, dass mit einem AND-Fork beginnt auch immer
mit einem AND- oder OR-Join abgeschlossen wird. Diese Fehler merkt sich der
Compiler, repariert aber quasi den Graphen selbst für spätere Analysen.

2.3 Konstruktion der CSSA-Form

Nach der Konstruktion des Foldoutgraphen werden seine Instruktionen in der
Phase der CSSA-Form-Konstruktion (Abbildung 3 c)) in die Concurrent Static
Single Assignment (CSSA) Form [10] übertragen. In der CSSA-Form wird jede
Variable (statisch) nur genau einmal definiert und bei jeder Änderung gibt es eine
Neudefinition der Variablen. Da bei der Zusammenkunft zweier exklusiver Pfade
mehrere Definitionen einer Variablen vorkommen können, wird an diese Stelle eine
φ-Funktion für jede Variable eingefügt. Diese dient als virtuelle Kopieroperation,
d.h., der Wert des ausgeführten Pfades wird durch die φ-Funktion gewählt.

In parallelen Programmen kann außerdem eine Variable gleichzeitig an zwei
unterschiedlichen Stellen im Prozess modifiziert werden. Da dadurch Analysen
fehlerhafte Ergebnisse liefern, wird vor jeder dieser möglichen, gleichzeitigen
Zugriffe eine π-Funktion eingefügt. Diese speichert in einer neuen Kopie der
Variablen den jeweilig zuletzt gefundenen Wert.

Um die CSSA-Form ableiten zu können, muss zunächst ermittelt werden,
welche Variablen überhaupt an welchen Stellen im Programm Gültigkeit haben
(Schritt Symbolgültigkeitsanalyse). Die Gültigkeitsbereiche von Variablen in ex-
plizit parallelen, strukturierten Programmiersprachen werden von der Struktur
selbst vorgegeben. Da die Gültigkeitsbereiche in Workflows bisher jedoch noch
keine Festlegung haben, benutzen wir den von uns in [17] vorgeschlagenen Ansatz:
Für einen Knoten n sind alle Variablen gültig, wenn diese in einem Dominator
von n ebenfalls gültig sind oder dort definiert werden.

Dieser Ansatz folgt den strukturierten Programmiersprachen, in denen die
Struktur die Dominanzbeziehung vorgibt. Innerhalb des Foldoutgraphen können
somit die Variablengültigkeiten in strukturierten Bereichen durch eine Rückwärts-
traversierung für einen Knoten ermittelt werden. Für unstrukturierte Bereiche
wird die Dominatorrelation abgeleitet.

Bezogen auf unser Beispiel aus den Abbildungen 4 und 6 bedeutet dies, dass
die Variable products im Task T1 nicht gültig ist. Dies kommt daher, dass der
Task T0 den Task T1 nicht dominiert. Entsprechend sollte die Variablendefinition
nach vorn gezogen werden.

Nun kann die Transformation in die CSSA-Form durchgeführt werden. Der
Algorithmus zur Erzeugung der CSSA-Form von Lee et al. [10] leitet zunächst
eine partielle Ordnung des Graphen ab, um festzustellen, welche Variablenzugriffe
Konflikte verursachen können. Die tatsächliche partielle Ordnung zu bestimmen,
ist Co-NP-vollständig. Wie jedoch bereits Lee et al. in ihrer Arbeit berichten,
wird durch eine konservative Abschätzung lediglich die Anzahl der einzufügenden
π-Funktionen erhöht. Dadurch werden mehr π-Funktion eingeführt als notwendig.

Anstelle der partiellen Ordnung ermittelt mojo Wettkampfsbedingungen.
Die Analyse von Wettkampfsbedingungen in strukturierten Fragmenten des
Foldoutgraphen ist einfach: Können zwei Zugriffe auf dieselbe Variable in zwei
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unterschiedlichen Knoten in Konflikt stehen, so müssen beide Knoten im Foldout-
graphen als ersten gemeinsamen Knoten eine Parallelität besitzen.

In unstrukturierten Bereichen (und somit für allgemeine Workflowgraphen)
nutzen wir eine konservative Heuristik. Diese Heuristik besteht aus zwei Schritten
für je zwei Zugriffe auf dieselbe Variable in zwei Knoten: 1) Lösche von beiden
Knoten die ausgehenden Kanten und verbinde beide durch ein XOR-Join (in
einer Kopie des Graphen). 2) Erreichen nun in einem Zustand zwei Kontrollflüsse
das neue XOR-Join, so gibt es einen Konflikt.

Schritt 2) der Heuristik bezieht sich auf die Fehlerwirkung einer fehlenden
Synchronisierung — einem klassischen Fehler in der Prozessmodellierung. Wie
in der folgenden Phase der Fehleranalyse beschrieben wird, haben wir einen
effizienten Algorithmus entwickelt, der alle fehlenden Synchronisierungen in
beliebigen Workflowgraphen findet [18].

Tests an einer Benchmark realer Geschäftsprozesse mit zufälligen Varia-
blenzugriffen haben gezeigt, dass die Heuristik mit unserem Algorithmus zur
Fehlererkennung gleiche Ergebnisse erzielt, wie die zeitaufwändige und im Zweifel
exponentiell-große Zustandsraumerkundung.

Nachdem mojo die Wettkampfsbedingungen gefunden hat, werden diese
zum einen zu deren späterer Visualisierung für den Entwickler gespeichert und
zum anderen zur Platzierung der π-Funktionen genutzt. Danach werden die
φ-Funktionen eingefügt. Die Konstruktion der CSSA-Form ist vollendet.

Wie in unserem Prozess aus Abbildung 4 gut zu sehen ist, besitzt unser Prozess
keine solcher Konflikte, da die parallelen Prozesse quasi sequentiell verlaufen.

2.4 Fehleranalyse

Der ursprüngliche Prozess liegt nun in Form eines Foldoutgraphen in CSSA-Form
vor. Diese (endgültige) Zwischenrepräsentation wird genutzt, um Modellierungs-
fehler innerhalb des Prozesses zu finden.

mojo findet verschiedene Arten von Modellierungsfehlern. Wie bereits erwähnt,
analysiert der Compiler den Prozess bereits in jedem Übersetzungsschritt: 1) syn-
taktische Fehler, 2) korrekte Verwendung von öffnenden und schließenden Knoten
von Fragmenten und 3) undefinierte Variablen und Wettkampfsbedingungen.

In der Phase der Fehleranalyse sucht mojo zusätzlich nach Verklemmungen
(Deadlocks), fehlenden Synchronisierungen und nicht lebendigen Knoten.

Verklemmungen und fehlende Synchronisierung Bei Verklemmungen und
fehlenden Synchronisierungen handelt es sich um klassische Fehler während der
Kontrollflussmodellierung in Geschäftsprozessen. Bei einer Verklemmung verbleibt
der Prozess in ein und denselben Zustand und kann daher nicht ordnungsgemäß
terminieren. Dies geschieht bei AND-Joins, die nicht auf jeder eingehenden Kante
einen Kontrollfluss anliegen haben, und bei zwei OR-Joins, die sich gegenseitig
blockieren. Die linke Seite von Abbildung 7 a) zeigt eine klassische Deadlock-
situation, die durch das Zusammenführen zweier alternativer Pfade durch ein
AND-Join herbeigeführt wird.
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Abbildung 7. Eine Verklemmung a) und eine fehlende Synchronisierung b)

In einer Situtation mit einer fehlenden Synchronisierung besitzt eine Kante
des Graphen zwei Kontrollflüsse (Tokens). Dies ist in Abbildung 7 auf der rechten
Seite b) dargestellt. Diese Situation entsteht hier durch das Zusammenführen
zweier paralleler Pfade durch ein XOR-Join.

Ursprünglich wurden die Begriffe Verklemmung (Deadlock) und fehlende
Synchronisierung (Lack of Synchronization) von Sadiq und Orlowska eingeführt
[19]. Seit dem entstanden die verschiedensten Techniken, um diese zu zeigen. Das
Augenmerk dieser Techniken liegt auf dem Zustand, in dem die Fehlerwirkung
zu Tage tritt. Die Fehlerursache wird nicht betrachtet. Außerdem wird nur die
erste Fehlerwirkung gefunden und es wird nicht analysiert, ob nicht eine andere
Fehlerwirkung bereits die Ursache für die gefundene Fehlerwirkung war.

In unseren Arbeiten zu diesem Thema [18, 20] haben wir einen neuen, compi-
lerbasierten Ansatz entwickelt. Dieser erlaubt es bei kurzzeitiger Vernachlässigung
der Dateninformationen (analog zu den bisherigen Techniken), alle potentiellen
Fehlerursachen in beliebigen Prozessen zu finden und diese zu beschreiben. Po-
tentielle Fehlerursachen müssen sich zur Laufzeit nicht durch eine Fehlerwirkung
zeigen, da der eigentliche Kontrollfluss die Fehlerwirkung in manchen Fällen
maskiert oder der Knoten, der die Fehlerursache bewirkt, gar nicht erreicht wird.

Die Algorithmen zur Analyse sind sehr effizient. Tests und Benchmarks haben
gezeigt, dass dazu notwendige Analysen bereits im Hintergrund während der
Modellierung durchgeführt werden und Ergebnisse liefern können.

Der wesentliche Ansatz, den wir verfolgen, ist das Ausfindigmachen von
Knoten, deren Ausführung bestimmte Fehlerwirkungen hervorrufen können. Bspw.
haben wir festgestellt, dass es auf allen Pfaden vom Startknoten zu einem AND-
Join und auch von diesem AND-Join zu sich selbst Knoten geben muss, die
garantieren, dass jede eingehende Kante des AND-Joins einen Kontrollfluss
bekommt. Diese Knoten nennen wir Aktivierungsknoten. Die Abwesenheit eines
solchen Knotens ergibt somit das Potential zu einer Verklemmung. Somit ist die
Ursache einer aufgetretenen (und tatsächlichen) Verklemmung in einem AND-
Join, das Fehlen eines solchen Aktivierungsknotens. Nehmen wir unser Beispiel
aus Abbildung 6: Das AND-Join AJ2 besitzt einen potentiellen Deadlock. Der
Grund dafür liegt in dem XOR-Fork XF1, das dafür sorgen kann, dass der
Kontrollfluss nicht die obere eingehende Kante von AJ2 erreicht, sondern über
das OR-Join OJ1 zum Endknoten verschwindet. Damit existiert auf keinem Pfad
vom Startknoten zu AJ2 ein Aktivierungsknoten. Bei der Untersuchung nach
fehlenden Synchronisierungen verfolgen wir eine ähnliche Herangehensweise.
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Die in unseren Vorarbeiten entwickelten Techniken wurden außerdem mit
mojo weiterentwickelt, so dass auch Verklemmungen in OR-Joins erkannt werden
können. Seitdem können auch Verklemmungen und fehlende Synchronisierungen
erstmals in Prozessen gefunden werden, die OR-Joins beinhalten.

Prädikatenanalyse Unser Beispiel aus Abbildung 6 zeigt, dass es sich bei den
gefundenen Verklemmungen und fehlenden Synchronisierungen um konservati-
ve Abschätzungen handelt: Wenn die Kosten für den Warenkorb (sum(cart))
immer kleiner oder gleich dem Wert expensive sind, dann tritt die gefundene
Verklemmung nicht auf.

Diese Überabschätzung der tatsächlichen Fehler kommt durch die Vernachlässi-
gung der Dateninformationen. Aus diesem Grund vollzieht mojo nach der Analyse
von Deadlocks und Synchronisierungsfehlern eine Prädikatenanalyse. Dabei leitet
der Compiler Zusicherungen ab. Solch eine Zusicherung x = assert(y, predicate)
steht für eine einfache Kopieroperation (x = y), garantiert jedoch zusätzlich, dass
das Prädikat predicate für den Wert von y wahr ist. Dadurch werden (ähnlich
zu φ- und π-Funktionen) zusätzliche Kopien einer Variable erzeugt.

Die Prädikate erster Ordnung ergeben sich aus der Menge der Zuweisungen
und Bedingungen. Gelten mehrere Prädikate für eine einzelne Instruktion, so
werden diese konjunktiv zusammengeschlossen. Gibt es mehrere Definitionen auf
exklusiven Pfaden für dieselbe Variable, so werden diese Prädikate disjunktiv
verknüpft: Das Prädikat einer Variablen liegt in disjunktiver Normalform vor.

Der Vorteil der Zwischenrepräsentation und der Verwendung der CSSA-Form
liegt in der einmaligen Definition von Variablen. Aus diesem Grund kann der
Zustandsraum einer Variablen einmalig direkt bei seiner Definition annotiert
werden. Durch die zusätzliche Einführung von Zusicherungen wird dies (ähnlich
zur Static Single Information (SSI) Form [21]) auch nach Verzweigungen, etc.
möglich, wo sich der tatsächliche Wert der Variablen nicht ändert, sondern
nur dessen garantierter Zustandsraum. Zur Ableitung der Prädikate mittels
Datenflussanalyse verweisen wir an dieser Stelle auf unsere Vorarbeiten [22].

Mit Hilfe der Prädikate überprüft mojo, ob bspw. ein als nicht aktivierend
eingestufter Knoten eines AND-Joins unter den Zusicherungen doch ein Aktivie-
rungsknoten ist. Diese Überprüfung findet unter Zuhilfenahme des SMT-Lösers
SMTInterpol [23] statt.

Insgesamt kann die Abschätzung der Fehler mit Hilfe der Prädikatenanalyse
präzisiert werden. Wir geben die eliminierten Fehler dennoch als Warnung aus,
da sie nur durch den bedingten Kontrollfluss verhindert werden.

Nicht lebendige Knoten Die Prädikatenanalyse wird auch zur Warnung des
Modellierers über nicht lebendige Knoten genutzt. Ein nicht lebendiger Knoten
ist ein Knoten des Prozesses, der aufgrund der Bedingungen, die auf jedem Pfad
zu ihm vorhanden sind, niemals ausgeführt werden kann. Dies ist vergleichbar
mit Deadcode Elimination.
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Abbildung 8. Fehlerdiagnose im Activiti Designer [18]

2.5 Backend

Das Backend von mojo erfüllt zwei Aufgaben: Die Visualisierung von Fehlern im
Prozessmodellierungswerkzeug und die Linearisierung des Foldoutgraphen bei
festgestellter Korrektheit des Prozesses.

Das Backend ist abhängig von der Workflowengine, die den Prozess ausführen
soll, als auch vom gewählten Modellierungstool. Zum Zeitpunkt dieser Arbeit
wurde mojo in den Activiti Designer [2] integriert. Der Designer nutzt sowohl den
Compiler in jedem Motivierungsschritt des Prozesses als auch die von dem Com-
piler zurückgegebenen Fehlerinformationen. Diese Fehlerinformationen werden
dann in einem speziellen Fenster angezeigt und direkt im Prozess illustriert. In
einem Fehlerdiagnosemodus können die Fehler im Einzelnen untersucht werden.
Dabei werden viele Informationen über den Fehler, wie der verursachende Knoten,
die Fehlerwirkung und eine Fehlerbeschreibung graphisch im Prozess hervorge-
hoben. Abbildung 8 zeigt eine Bildschirmaufnahme der Applikation. Eine solch
detailierte Fehlerdiagnose und die vielen verschiedenen Arten von Fehlern sind in
der Prozessmodellierung einzigartig.

Der Kodierer vollführt derzeit eine einfache Linearisierung des Foldoutgraphen
aus Mangel einer entsprechend allgemeingültigen virtuellen Maschine (Prozes-
sengine). An dieser Stelle sind Techniken, wie sie in dem SafeTSA-Format [14]
verwendet werden, angedacht: Ein inhärent typ- und referenzsicheres und damit
einfach zu verfizierendes mobiles Format. Damit wird sowohl die Verifikation und
das Einlesen von Prozessen als auch die Ausführung beschleunigt.
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3 Ausblick

In dieser Arbeit haben wir unseren Compiler mojo vorgestellt. Er ist der ers-
te Compiler für (technische) Geschäftsprozesse. Er bietet zahlreiche Features,
die in der Analyse und Transformation von Prozessen heute einzigartig ist:
1) Vollständige Unterstützung von OR-Forks und OR-Joins, 2) Schnell analy-
sierbare Zwischenrepräsentation, 3) Anzeigen von Wettkampfsbedingungen, 4)
Analyse von Gültigkeitsbereichen von Variablen, 5) CSSA-Form, 6) Vollständige
Auflistung aller Verklemmungen und Synchronisierungsfehler, 7) Einbeziehung
von Dateninformationen, 8) Analyse von toten Knoten und 9) Detailierteste
Fehlerdiagnostik mit Fehlerursache und Fehlerwirkung.

In zukünftigen Arbeiten soll mojo zur Produktreife für die Forschung wei-
terentwickelt werden. Dabei gehören auch weitere Analysen, wie das Auffinden
von Zugriffen auf vorher gelöschte Variablen, Adaption der Techniken zur Kon-
trollflussentfaltung aus unseren früheren Arbeiten [22] und Korrekturvorschläge.
Zudem soll die Veröffentlichung der neuen Techniken durch einen quelloffenen
Download stattfinden.
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Abstract. Prohibiting external control is one of the key principles en-
gineers apply when building time-predictable computer systems (e.g.,
time-triggered computer systems do not react to any external interrupts
from sensors or devices, but all actions of these computer systems are
triggered solely by the progression of the local clock). In this paper we
apply this principle of prohibiting external control to code generation:
The single-path code generator is a compiler that produces real-time
code that does not contain any input-dependent control flow. All input-
dependent control-flow dependencies are eliminated by if-conversion or
by the generation of loops whose iteration counts are fixed. We explain
the principle of operation of single-path code generation and illustrate
how single-path code generation contributes to the time-predictable be-
havior of real-time computer systems.

Keywords: real-time computer systems, embedded systems, compilers,
code generation, time predictability

1 Introduction

Real-time computer systems are used in safety-critical application domains like
the automotive and aerospace domains. In these application domains computer
systems must not only deliver functionally correct results. They must also pro-
duce these results at the right time. Otherwise a catastrophe like a plane crash
might occur. Thus, an important property of each computer system used in a
safety-critical real-time application is the temporal correctness of its operation.
The worst-case analysis has to identify and analyze all worst-case timing sce-
narios such that the timely operation of the real-time computer system can be
guaranteed for all phases of system operation.

Providing timing guarantees is a highly complex issue, especially as both the
hardware and the software used in safety-critical real-time computer systems
are getting more complex themselves. To keep systems nonetheless simple, the
pre-planning design strategy for so-called time-triggered systems constructs a
time schedule for all activities of the computer system at system design time [4,
3]. This means, the points in time when user tasks or operating-system tasks
are started or when messages are sent is planned and written into scheduling

491



tables before the system is started. At runtime, the system software of the real-
time computer system interprets these tables as time progresses (time-triggered
activation), thus strictly controlling the execution of all actions as planned. Such
time-triggered systems do not allow for a dynamic change of the plan once the
system is in operation, i.e., any external control over the sequencing of actions
in the computer system is prohibited.

In this work we take the principle of prohibiting external control on actions
in a real-time computer system one step further, from the scheduling level to the
code level of single tasks. We present the single-path code-generation strategy
that compiles C source code to machine code in such a way that the resulting
machine code does not contain any input-dependent control flow. The absence
of input-dependent control flow makes the execution of the machine code always
take the same path through the instructions of the program and thus produces
the same instruction trace every time the code is executed (therefore the name
single-path code [10]).

Within this paper we will explain our approach to single-path code genera-
tion. We will first provide more motivation for using single-path code and then
present the main idea behind single-path code generation (Section 2). We will
then show how the LLVM compiler framework [5] can be extended with a single-
path code generator (Section 3). We have run a number of experiments with
the extended LLVM compiler framework. In these experiments, we compiled
benchmark programs to single-path code and executed the compiled code on the
Patmos time predictable processor [14]. These experiments and lessons learned
are summarized in Section 4. Following this evaluation, we conclude the paper.

2 The Single-Path Approach

In this section, we would like to introduce the single-path code-generation strat-
egy. In particular, we will answer the questions of (a) why one would like to
generate and run single-path code and (b) how imperative code for real-time
systems can be made to execute on the same instruction path for any inputs.

Above, we have motivated the use of single-path code by the fact that remov-
ing control-flow alternatives simplifies the worst-case execution-time (WCET)
analysis of the generated code. In fact, the generation of single-path code elimi-
nates the task of identifying (in)feasible program paths, one of the main subtasks
of WCET analysis [9, 15], from WCET analysis. Besides, there are further ad-
vantages of using single-path code. The main advantages are summarized in the
following paragraphs.

– The first and main advantage is that single-path code is much easier to
analyze for its (worst-case) timing than traditional code – analyzing a single
stream of instructions has a lower complexity than accounting for the timing
of code that allows for a multitude of different instruction sequences.

– Second, if the instruction trace of a piece of code is always the same one
can expect smaller execution-time variations than for code that executes

492



different instructions on each execution. This type of execution-time stability
is advantageous for control software where a variable latency between inputs
and outputs adversely affects control quality.

– Third, single-path code can be used to thwart certain side-channel security
attacks: if all inputs are processed along the same instruction stream and
with identical execution time (e.g., by using a processor with invariable in-
struction timing, [14]) then attackers cannot exploit observations of the code
execution times to draw conclusions about the actual data being processed.

– Finally, precise knowledge about the instruction stream can be beneficial for
speeding up code execution, e.g., by using the knowledge about the execution
path to control the prefetching of code blocks into the fast levels of the
memory hierarchy right before they are executed [2].

Making Code Execute on a Single Path

Traditional compilers generate code with input-data dependent branches in the
control flow to realize input-data dependent code behavior. Such input-data
dependent control flow realizes (a) the branching to conditional or alternative
code of if-then, if-then-else or multi-way branches (e.g., switch-case) and (b)
loop-exit branches for all types of loop statements. A single-path compiler, in
contrast, must generate code that executes the same stream of instructions for all
inputs. I.e., a single-path compiler has to provide code-generation patterns that
bring forth data-invariant control flow for alternatives as well as loop constructs.

The single-path code generation uses the following strategies to generate code
for alternatives respectively loop constructs:

Alternative constructs with input-dependent conditions are translated by
means of if-conversion [1]: Instead of using conditional branches to achieve
data-dependent code behavior, the single-path compiler generates predicated
code [7], i.e., it serializes the code of input-dependent alternatives and uses
predicates to control the activation of instructions and achieve the right code
semantics at runtime.

Loops with input-data dependent exit conditions are translated into simple
counting loops with a constant iteration count. Thereby, the iteration count
of the generated loop is set to the maximum iteration count of the original
loop1. The exit condition of the original source-code loop is used to compute
a predicate for the execution of the loop body of the new loop that is itself
translated into predicated code.

Further details about the single-path approach can be found in [10, 11]. The
following part of the paper provides details about the realization of the single-
path code generation in the LLVM compiler framework.

1 We assume that the source code is is real-time code for which all loop bounds are
known.
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3 Generation of Single-Path Code

As a modern state-of-the-art compiler framework, LLVM operates in several
phases. The frontend translates the source language to bitcode. Most optimiza-
tions are operating on this source language- and target-agnostic intermediate
representation of LLVM. A backend translates the bitcode to target-specific ma-
chine instructions. Because the source code is not translated to machine code
directly, the translation schemata described in [11] are not applicable directly.
Where in the compilation process can the single-path code generation be inte-
grated?

3.1 The Single-Path Graph Transformation

For the Patmos compiler, the single-path code generator is a set of program
transformation passes that are executed late in the backend. As such, the prob-
lem of generating single-path code requires a suitable formulation on the program
representation at that stage. To this end, we have developed the single-path graph
transformation [8], that operates on the control-flow graph of a given function.
Based on the algorithm of Park and Schlansker [7], it transforms the control-flow
graph into a graph with linear structure, simple loops, and predicated nodes. It
extends the algorithm [7] by transforming any reducible control-flow graph (not
only the body of innermost loops) and by producing loops with constant iter-
ation counts. Following the graph structure and the constraints regarding the
loop back edges, there exists only a single path through the resulting graph. Fur-
thermore, the transformation involves the insertion of instructions that control
the value of the predicates assigned to the nodes.

Predicates are Boolean-valued variables that enable or disable operations. If
the predicate is true, the operations are performed as usual, if the predicate is
false, the operations have no effect. In terms of nodes in a control-flow graph, a
predicate controls all the instructions of that node. Informally, the single-path
graph transformation achieves the following:

For every valid path in the original control-flow graph, the sequence of
nodes on that path is equal to the sequence of nodes on the resulting
graph with a predicate value of true.

The single-path graph transformation is best illustrated by an example. Fig-
ure 1a shows a control-flow graph before the single-path graph transformation.
Figure 1b shows the single-path control-flow graph, with constant counts on
the loop back-edges. Consider example paths π1, π2 in the original control-flow
graph in the following table:
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Fig. 1: Example illustrating the original control-flow graph and the control-flow
graph after the single-path graph transformation.

Original control flow graph Single-path control flow graph

π1 = abdebcbdegh πSP
1 = abcdebcdebcdeffffgh

π2 = abcbcbdfffgh πSP
2 = abcdebcdebcdeffffgh

In the corresponding paths in the single-path control flow graph, πSP
1 and

πSP
2 , respectively, the nodes with predicate value of true are underlined and

their sequence equals the nodes of the original path. The singleton execution
path always contains the same sequence of nodes, albeit with different predicate
values.

Details on the single-path graph transformation, including how the predicates
are assigned and changed along the execution path, can be found in [8].

3.2 The Patmos Processor

Before elaborating on the compiler passes, we briefly describe the relevant char-
acteristics of the Patmos processor [14] that make it a suitable target for single-
path code. Time predictability is the key principle in the design of Patmos. The
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timing of the instructions of the fully predicated instruction set is independent
from the operands (except for latencies originating from the memory hierarchy).
Features like dynamic instruction reordering and dynamic branch prediction are
avoided in favor of static alternatives. Delays in the in-order dual-issue pipeline
are exposed at instruction set architectural level (branch delay slots, load de-
lays). The memory hierarchy is organized as a split cache architecture [13]. The
caches are either software managed or at least controllable to obtain a known
state, e.g., by flushing the cache contents.

3.3 Compiler Passes for Single-Path Code

As mentioned before, single-path code generation is performed late in the back-
end. This is due to following reasons. First, LLVM bitcode is SSA-based and
predication-oblivious. Although there is support for partial predication in the
form of a select instruction, which creates a new value as one of two operands
depending on a Boolean operand, this form of predication is not sufficient to deal
with the difficulties arising from instructions with side effects. Computing the
values for alternative paths and discarding the unnecessary ones is only an op-
tion when safe values are provided, for example, to memory accesses and division
operations in order to prevent access to invalid addresses and division by zero,
respectively [6]. The machine instructions of the backend are predication-aware
and have predicate operands. Second, the code structure is final at that stage
and no instructions are inserted that could invalidate the single-path property.
Calls to software arithmetic functions are already visible and the final number
of required predicates is known. Third, we can perform optimized register allo-
cation for predicate registers with detailed knowledge of the target, which we
explain below.

The compiler passes for generation of single-path code are categorized as
(i) preparatory passes, and (ii) the main transformation pass. The preparatory
passes include a unify return pass, to guarantee that there is only one sink
node in the control flow graph of each function, a lower switch pass to convert
indirect jumps to a cascade of if-else statements, and function cloning to restrict
single-path functions only to where they are required.

The main transformation pass performs the single-path graph transformation
as described in the previous section. After computing predicates for each node
in the graph, a specialized predicate register allocator is invoked, which assigns
machine registers to the virtual predicates, on basic block (= node) level. Space
for spilling predicate registers is allocated on Patmos’ stack cache, and the 1-bit
registers are stored packed into machine words. Live-ranges of predicates are
predominantly nested and cover whole inner loops. This observation is exploited
in Patmos to obtain a new set of available predicate registers when a loop is
entered by spilling the whole predicate register file, and restoring it when the
loop is left. After the assignment of physical registers, the instructions of each
block are predicated accordingly. Function calls are executed unconditionally,
passing the predicate to the called function. Then, instructions for manipulation
and for spilling and restoring of predicate registers are inserted.
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Finally, the basic blocks of the transformed control flow-graph are merged
wherever possible, as illustrated in Figure 1c. This removal of basic block bound-
aries leads to a simplified control-flow graph structure with large basic blocks,
which gives the final instruction scheduler more opportunities to generate com-
pact and efficient instruction schedules.

4 Experiments

Having a compiler at hand that produces single-path code, we were particularly
interested in answering following questions:

– How does the generated single-path code perform in the worst case, compared
to conventionally generated code?

– How do latencies caused by the memory hierarchy affect the execution time?

To obtain answers to these questions, we evaluated the single-path code gen-
erator on a benchmark based on a real-world application. The debie1 benchmark
is based in the on-board software of the DEBIE-1 satellite instrument for mea-
suring impacts of small space debris or micro-meteoroids, developed by Space
Systems Finland Ltd for Patria Aviation Oy.2

We generated both conventional code and single-path code for the main tasks
of the benchmark. We executed the conventional code to measure the observable
range of execution times and additionally applied static analysis. For the mea-
surement, we used pasim, the cycle-accurate simulator for Patmos. Each task is
executed at least several hundred times in a benchmark run.3 We used platin

for static WCET analysis, a toolkit which is part of the compilation tool chain
for Patmos [12].

We performed the evaluation with two different hardware configurations:

1. Ideal memory (ideal) - Memory accesses do not entail any additional access
latency.

2. Ideal data cache (dcideal) - Only accesses that go through the data cache do
not entail any additional latency. Memory accessed via Patmos’ stack cache
(2 kB) and method cache (4 kB) exhibits actual memory access latencies.

This choice is motivated by the fact that the serialization of control flow
alternatives leads to an increase of the path lengths through the tasks. Masking
the impact of the memory hierarchy enables us to quantify this effect solely at
the instruction level. By allowing memory access for instructions and call frames,
we can evaluate the single-path code in the context of real memory latencies,
while maintaining execution-time invariability: On the single execution path,
functions are called unconditionally, and space for call frames is allocated on the
stack cache for those functions. Hence, every execution has the same sequence

2 The source code is available at http://www.tidorum.fi/debie1/debie1-e-free.zip
3 To be more precise, the number of executions of a task is in the range between 394

and 17795.

497



Task S
P

F
u
n
ct

io
n
s

P
re

d
ic

a
te

s

C
o
n
fi
g
u
ra

ti
o
n

M
ea

su
re

d

S
ta

ti
c

A
n
a
ly

si
s

S
in

g
le

-P
a
th

R
a
ti

o

TC InterruptService 1 55
ideal [17, 157] 163 306 1.88

dcideal [70, 445] 459 696 1.52

TM InterruptService 1 10
ideal [27, 38] 47 68 1.45

dcideal [78, 132] 141 163 1.16

HandleHitTrigger 3 31
ideal [44, 7502] 12586 13879 1.10

dcideal [106, 7890] 13245 14351 1.08

HandleTelecommand 7 311
ideal [67, 994] 994 3013 3.03

dcideal [179, 1294] 1294 5590 4.32

HandleAcquisition 17 234
ideal [68, 26878] 29332 35695 1.21

dcideal [176, 29985] 36106 39824 1.10

Table 1: Results for the debie1 benchmark.

of accesses to the caches. In addition, we clear the caches before each entry
to a single path function to obtain a well defined cache state. As a result, the
generated single-path code has a singleton execution time by construction.

4.1 Results

The results of our experiments are shown in Table 1. The column “SP Func-
tions” shows the number of functions that are involved in the tasks’ execution
and require transformation. This contains the entry function of the task itself
and all functions reachable in the call-graph. Column “Predicates” shows the
total number of predicates required for the single-path version of the task. This
number gives a hint about the breadth of the involved control-flow graphs. The
column “Measured” shows the interval [min, max] containing the observed ex-
ecution times of the conventional variants, while “Static Analysis” shows the
WCET bound as computed by platin. The execution time of the single-path
task code is given in column “Single-Path”. Because it is not known whether
the actual worst-case path has been observed for the conventionally generated
code, though we are primarily interested in worst-case guarantees, we have to
consider the statically computed bound for a performance comparison with the
single-path code. Column “Ratio” shows the execution time of the single-path
code relative to the WCET bound of the conventionally generated code.
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For these experiments, we can make some interesting observations. In all
cases, the linearization of control flow alternatives leads to an increase in the
execution time (bound), hence a ratio greater than 1. The highest ratio was
obtained for HandleTelecommand (3.03 for ideal). In this particular task, the
additional cost stems from serialization of a switch-statement: In the program,
a message is read and processed accordingly depending on the message type. In
the single-path variant, code for all the different cases is fetched and executed.
The effect is even more pronounced when the code is loaded to the method
cache (4.32 for dcideal). In the other tasks, the original control-flow structure
has fewer alternatives in the control flow. As a result, the relative additional cost
for loading code from main memory is lower, yielding a lower ratio in the dcideal
case than in the ideal case.

4.2 Lessons learned

Our single path code generator is able to produce code without input-data de-
pendent control flow. Targeting the time-predictable Patmos processor, this code
generation strategy further results in code for real-time tasks that not only has a
singleton execution path, but also is completely free from execution time jitter,
making timing analysis trivial.

This property comes at a cost, as the experiments have shown. The execution
time of the single-path code is higher than the statically computed worst-case
execution time of the conventionally generated code. This is due to the serial-
ization of control flow alternatives. One way to address the problem is to avoid
input-data dependent control flow in the first place. But this has limited use,
especially, when one has to deal with legacy code.

Another way would be to incorporate input-data dependence on a higher
level of modeling. For example, the HandleTelecommand task of our benchmark
performs different actions according to the message type of the incoming mes-
sage. A type has its particular action, and the set of actions could be considered
as modes of the task. There is little point in serializing all actions. Instead, by
generating single-path code for each action individually, we would obtain a set
of execution paths, where each path can be tied to the corresponding action.

5 Conclusion

Single-path code is free from input-data dependent control flow. Our single-path
code generator is integrated in the compiler backend for the Patmos processor
by adopting the single-path graph transformation. Patmos is a suitable target
for single-path code, because it provides a predictable instruction set with full
predication and software-controllable caches. Our experiments with the debie1
benchmark have shown that the generated single-path code is competitive with
conventionally generated code in terms of worst-case performance, yet it is easier
to analyze and exhibits stable execution-time behavior.
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As future work we plan to implement compiler optimizations tailored to
single-path code, for minimizing the cost introduced by control-flow serializa-
tion. Mode-specific single-path code will avoid complete serialization of input-
dependent alternatives. It will provide a means to leave branches to mode-specific
sections in the code, and the resulting mode-specific execution times could be
used in a more differentiated way.
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Abstract

Configuration files are the dominant tool for local configuration man-
agement today. Up to now, applications cannot access any configura-
tion file of their system, because they lack the knowledge where the
configuration files reside, which syntax they use, and how a value is
interpreted correctly. As a result, software systems are often poorly
integrated. In this paper, we propose a specification for configuration
files to mitigate these issues. Developers specify links and transforma-
tion rules to share configuration items between applications. We im-
plemented tools and a library that integrate existing configuration files
as well as a C/C++ code generator that makes sure that newly writ-
ten applications are consistent with their specification. Our approach
bridges across configuration file standards. It integrates configuration
files we do not have control over. In a case study we demonstrate
that our approach saves time, when unmodified applications need to
be integrated into a coherent system. Additionally, we show that the
run-time overhead of these links does not have significant impact on
applications.

1 Introduction

Only a few factors determine how well-integrated an application, with respect to a software system, is: logging,
external interfaces, user interfaces (such as dialogues), and user interaction (such as shortcuts and menus). In
modern software these aspects are configurable. We only need to configure the software in a way that the system
feels as if made from one piece. Currently, such endeavor is cumbersome in a heterogeneous system. Specific
technologies only provide solutions within their respective field. Thus usually many technologies are involved,
and a näıve approach often fails.

We faced this issue, next to many domain-specific ones, during an one-year project. The staff of the software
engineering project varied between 3 and 5 software developers, who wrote about 50.000 lines of C and C++.
The aim of the project was to engineer a platform for integrating different software applications from multiple
customers. The platform enabled the modification of more than 200 configuration items which affect the behavior
and features of the platform and the integrated applications.

Due to complexity of that specific system, caused by the domain-specific issues, we present our approach by the
means of another issue instead: Nearly every graphical user interface (GUI) provides a shortcut for quitting the
application. Also, nearly every application provides a way to use a different shortcut to change the default (that
is often Ctrl+Q). Currently, no generic way exists that one application uses the shortcut of another application.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
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We propose the following solution to give our applications access to configuration items of other applications:
First, during installation of applications, we register their configuration files with information about their syntax.
During startup of our application, we parse all necessary configuration files into key/value pairs with properties.
A specification describes links and transformations between these abstract configuration items. Finally, we map
the configuration items to variables of the programming language the application uses.

In the present paper, we will explain how a specification is used to drive the last two steps. In this specification,
the developer defines which configuration items of other applications are used and how values are transformed.
The specification is independent from a concrete programming language and extensible, e.g. for an editor:

[/ our_editor/quit]
fallback /#0=/ kde/kate/ActionProp/Default/file_quit
fallback /#1=/ vim/map/:qa<CR >
fallback /#2=/ emacs/keyboard -escape -quit

The first and the only required line of the specification defines the configuration item. We will call this
unique id key name. The other lines of the section are properties of this configuration item. In this example, we
introduced one property, called fallback. Using this property we establish a link to another key name. It tells
the system that, whenever the configuration item itself was not found, the value should be used from a fallback
configuration item instead. We see that we add an array of such fallbacks, using the syntax #<number> for
indexing.

The novelty of the approach is that it is transparent for any external tool in which order keys will be searched
for. The specification is present at runtime and will be automatically enforced by a library. Additionally, code
generation makes sure that applications use the configuration items in a type-safe way.

Our paper will answer the question: “Which properties in a specification are needed to share configuration
items?”. This question is significant because it enables the developer to reuse configuration items in less time
than building ad-hoc solutions for every single integration needed.

The paper is structured as follows: In Section 2 we explain the details of our approach and in Section 3 we
describe Elektra, a framework that implements our approach. In Section 4 we evaluate and benchmark Elektra,
then in Section 5 we compare our approach with other work and finally we conclude our paper in Section 6.

2 Elektra

2.1 Technology

Configuration files have a countless number of syntactic differences. E.g. lenses [1] are one way to describe
syntax of configuration files. The repository of Augeas [7] (only covers some parts of Linux configuration files)
already contains 181 lenses. Semi-structured data, e.g. JSON, YAML, XML and self-describing data [16], e.g.
S-expressions and also JSON [3], are very popular for configuration.

To handle this diversity, as a first step, we transform such configuration files to an abstract syntax tree
(AST). We use an AST that consists only of key/value pairs with properties. Using this abstraction we get rid of
specialties in syntax. We use plugins as described in [9] that parse the configuration files and yield an AST. After
the transformation to an AST, the nodes refer to key names and the properties store details that are necessary
to reconstruct the configuration file. Let us consider a JSON file as example:

{
"boolean_key": true

}

Elektra’s JSON plugin will transform this file to an AST. If we serialize the AST to the syntax we already used
for the previous example we would get the following output:

[/ boolean_key]
value=true
type=boolean

The example illustrates that self-describing data already has properties even without a specification. In a
specification we directly link to /boolean_key regardless if a specification was written for it. Nothing novel so far,
but using this technique we get an abstraction over the concrete syntax of configuration files. As a specialty, our
approach handles specifications the same way as configuration files.
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2.2 Resolve Sources

The location of the configuration’s file name differs between different OS and distributions of the same OS. In
our approach, the configuration file names from all applications are registered globally at installation time when
we know the file name and its syntax. We use further configuration files to store this information. For every
configuration file we add an OS-dependent plugin, called resolver, to handle the dynamic properties of the file
name resolving. Depending on the OS context, resolvers will yield different file names.

Our approach introduces the abstraction that we will call key database. The key database is a tiny middleware
between the plugins and the applications. Its main responsibility is the splitting and merging of the AST: plugins
always get their part of the AST. The key database bootstraps itself whenever it is opened. It is library-based,
that means the bootstrap process happens during the start of every application:

1. First the key database reads from a hard coded configuration file to know where the other configuration files
are and which plugins (resolver, syntax of configuration file and others) should be used for each of them.

2. The resolvers determine the full configuration file names with information from the OS.

3. With the information from the previous steps, the key database builds up a data structure. In the data
structure we lookup key names without any knowledge of the file name (and its syntax).

For example, consider that an application registers a JSON configuration file app.j, with the content as displayed
above, in the key database at /myapplication. Then the full filename is the concatenation of a directory and app.j

and the key name is /myapplication/boolean_key.

2.3 Namespace

Another dimension of configuration items is their namespace. Elektra supports following namespaces related to
configuration files:

spec if the configuration file contains the specification.

dir if the configuration file is in a special directory (e.g. .htaccess of the apache web server).

user if the configuration file is in the user’s home directory.

system if the configuration file is located system wide (e.g. below /etc).

In our approach, applications lookup all keys using the method lookup of a library. It has two arguments: the
complete configuration conf (AST with all key/value pairs) and a key key without a namespace. No namespace is
encoded in the application’s source code. Instead, keys in different namespaces are considered for every lookup.
The algorithm is straight-forward:

lookup(conf , key)
{

s = lookupByKey(conf , spec / key);
if (!s) return lookupBySpec(conf , s);

ret = lookupByKey(conf , dir / key);
if (ret) return ret;

ret = lookupByKey(conf , user / key);
if (ret) return ret;

ret = lookupByKey(conf , system / key);
if (ret) return ret;
return 0;

}

First we search for the key, that contains the specification by using the spec namespace. If found, the internal
method lookupBySpec is invoked with it. Otherwise, we do a cascading search of all namespaces. The operator
/ specifies that key is in the given namespace. The specification is only configuration represented by keys and
defines how the lookup of keys work.

An abstraction of the configuration has been established. It enables us to uniquely identify configuration
items. We do not have to care about the path to configuration files anymore.
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2.4 Links

We already introduced the property array fallback. It specifies which configuration items should be used as
fallback when the configuration item itself was not found. The property array override complements the linking
functionality. If this property is available, the configuration items linked will be preferred to the item itself. The
property array namespace defines which namespaces should be considered and in which order. Finally, the
property default completes the linking functionality. It will be used if every configuration item mentioned was
not found.

Given the AST conf and the key with properties key we define the search order by the following algorithm:

lookupBySpec(conf , key)
{

for (number: 0 .. length(key , override )-1)
{

m = lookupByProperty(key , "override/#<number >");
k = lookup(conf , m, withoutDefault );
if (k) return k;

}

if (lookupByProperty(key , namespace ))
{

for (number: 0 .. length(key , namespace )-1)
{

m = lookupByProperty(key , "namespace/#<number >");
k = lookupByKey(conf , m / key);
if (k) return k;

}
}
else // if no property namespace exists
{

k = lookup(conf , key , withoutKey );
if (k) return k;

}

for (number: 0 .. length(key , fallback )-1)
{

m = lookupByProperty(key , "fallback/#<number >");
k = lookup(conf , m, true , withoutDefault );
if (k) return k;

}
return lookupByProperty(key , "default");

}

The method lookupBySpec iterates over the three property arrays fallback, namespace, and override. We
see that the algorithm works recursively, but with special options for recursive invocations. The code shown here
is not cluttered with those branches for clarity. If the property namespace is not specified (else branch), we use
the cascading lookup as defined previously in the method lookup, but obviously do not search for the same key in
spec again. The expression m / key means that key is in the namespace as stated by m and "#<number>" is the syntax
for indexing. If neither an override, the key itself, nor any fallback was found, the algorithm returns the value
as specified in the property default.

For example, suppose we have no other configuration than the specification:

[/ our_editor/quit]
namespace /#0= system
fallback /#0=/ vim/quit
default="Ctrl+Q"

[/vim/quit]
namespace /#0= user
default=":q"

Then a call to lookup with /our_editor/quit as key will:

1. first lookup the key /our_editor/quit in the namespace spec successfully and call lookupBySpec with this key,

2. then skip override (because no property override is present),

3. then fail in searching for the key in the system namespace (because no configuration file is present),

4. then lookup the key /vim/quit in spec successfully and call lookupBySpec with this key,

5. skip override again,
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6. then fail in searching for the key /vim/quit in the user namespace and

7. finally use the default value Ctrl+Q.

2.5 Value Transformation

The override/fallback mapping covers only the rare situation that the provider and consumer of the configuration
item happens to interpret the same bit pattern in exactly the same way. In general, we need a unidirectional
mapping of values from one bit pattern to another one if we want to reuse a configuration item. The straight
forward way is to use a map:

[/ our_editor/shortcut/quit]
transform =/kate/quit
transform/map/Ctrl+A=CTRL+A
transform/map/Ctrl+B=CTRL+B
transform/map/Ctrl+B=CTRL+C
... (23 more)

The property transform is similar to override/fallback. On keys with this property, however, the key itself
does not exist in a file. Instead its value is the result of a transformation specified by one of the properties
transform/type, where “type” describes the type of the transformation. In the example, the transformation
type is map. Such a mapping is practical for situations where an enumeration of all values is straight-forward, but
cumbersome for others. Thus we use existing programming languages for sophisticated transformations:

[/ our_editor/shortcut/quit]
transform =/kate/quit
transform/haskell=map toUpper

Which is much shorter than the previous example but has the same behaviour for valid input. In general, the
transform code snippets must take one argument and return the transformed value. Obviously this specification
language now is expressive enough for any transformation of values between applications, but we lack semantics
when such a transformation should not happen or fails.

2.6 Skip Transformation

Sometimes the transformation is not possible or avoided on purpose:

• If the input value is not within the domain.

• If a runtime error (e.g. failed memory allocation) occurs.

• If someone decides that in the specific case it is better not to use the configuration item.

To support these semantics we use, depending on the programming language, either exceptions, errors, optional
values or omit the return value. In such situations the configuration item will not be present for the application.
The behavior is identical to a not-found key name.

For example, a typical request is that the application should only be adapted for an OS or desktop when the
application is executed within the specific environment:

[/ our_editor/shortcut/quit]
default =:qa!
transform =/kate/quit
transform/python=if kde_running ():

return value.upper()

In this example our_editor will use the quit shortcut from kate (which is part of KDE) only if KDE is the
currently running desktop. Otherwise the key /our_editor/shortcut/quit will not exist.

2.7 Types and Code Generation

In our approach, every parameter has a type. If no property type is given, an abstract top type will be assumed.
This behavior guarantees that configuration items without the property type still type-check safely [6].

Types give a better understanding how the parameter is used and provide a foundation to check if a concrete
configuration is valid. In our approach we generate code for easy access to the configuration items in the same
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way as [12]. Then types become a necessity because only with types the compiler ensures that the usage of the
configuration values is correct.

We conclude that every type used in the property type must have an exact counterpart in the type systems
of the target languages. CORBA IDL already defines a consistent mapping for many programming language and
can be used with our approach.

3 Implementation

Figure 1: Architecture of Elektra
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We call our framework Elektra. It consists of following parts:

1. A library (called libelektra) that transforms configuration files to an AST. It contains an implementation of
the key database as discussed before.

2. We use a code generator (called kdb-gen) to ensure that the usage of the variables match the specification
in statically typed programming languages. kdb-gen generates both C and C++ front ends and different
documentation artifacts by using different templates.

3. The front end is a type safe access code that is generated by the specification.

The user of our approach has to implement only two parts (bold, blue boxes in Figure 1):

1. The specification with the properties fallback, override, etc. (as discussed in Section 2).

2. The program code of the application consuming the configuration files has to be adapted to use Elektra
(also called elektrify). The programmer must make sure that the program code uses the type safe access
code and not directly configuration files nor environment variables so that the links will work.

We see in Figure 1 that the program code, that uses other configuration files, needs to use the key database in
order to enable the consumption of other configuration files. Because of the plugins, however, other applications
providing configuration files do not need to be modified. Elektra can use their configuration files directly.

3.1 Front end

The generated classes (C++) and functions (C) provide type safe and context aware access to configuration
items [12] [10]. This layer is very thin. It is only responsible for looking up the configuration value and lexical
casting the resulting string to a native data variable. It is straight forward to provide support for additional
programming languages.

If desired, the front end can have a built-in copy of the specification. Using this technique, the application
starts up without any configuration files.

In order to support the properties override and fallback, we enhanced the lookup of values in the AST.
Using the property transform it will be transformed with the given rules. In rather static languages, e.g.
C++, the transformation rule will be included in the generated code. In our C++ implementation we use
policy-based design. Using policies programmers can modify the behavior of the front end. Additionally, it
supports a separation of hand-written and generated parts.
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E.g. the specification,

[/myapp/shortcut/quit_myapp]
default=CTRL+Q
type=string
transform =/kate/quit
transform/cpp=

std:: transform(value.begin(), value.end(),
value.begin(), :: toupper );
return value

will generate the following policy code (shortened for the sake of brevity):

class QuitMyappGetPolicy
{
public: typedef std:: string type;
static type get(kdb:: KeySet &ks , kdb::Key const& ) {

type value = "CTRL+Q";
kdb::Key found = ks.lookup("/kate/quit", 0);
if (found) {

value = found.get <std::string >();
std:: transform(value.begin(), value.end(),
value.begin(), :: toupper );
return value;

}
return value;

} };

The policy classes GetPolicy are responsible to lookup a configuration item in the case of a cache miss of the type
safe access code [12]. The AST is denoted as kdb::KeySet. We see that the default value and the transformation
are hard coded.

The generic tools we saw in Figure 1 cannot rely on code generation. Instead they read the specification
dynamically. The implementation for both cases (code generated and dynamically) is a straightforward imple-
mentation of the pseudo-code as given in Section 2.

3.2 Key Database

The key database is a very thin layer that delegates all the work to Elektra’s plugins. The plugins are responsible
to resolve the configuration file name, as described in Section 2 and to parse and write configuration files. Different
parsers are used for different formats:

1. JSON, INI and XML libraries handle semi-structured data.

2. Elektra’s augeas [7] plugin handles most Linux configuration files, e.g. sshd, security/limits.conf.

3. Hand-written parsers handle other INI dialects and other configuration files, e.g. hosts, fstab.

The only responsibility left to the key database is to bootstrap the system and to pass the correct parts of the
AST to the correct plugins.
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4 Evaluation

We implemented the described artefacts and plugins in Elektra. Based on the experiences of the one-year project
mentioned in Section 1 and later measurements, we will discuss the development time. The rest of the evaluation,
however, is based on programs we wrote specifically for that purpose.

4.1 Development time

Measuring the overall time in a larger project was unfortunately not possible for us because using our approach
individual configuration related tasks are done in a few minutes, which is difficult to track. We will only
discuss development time of individual tasks. Additionally, we will show representative code to give a better
understanding of necessary effort. The time measurement is based on the commits of our version control system.

The basic setup to use Elektra only consists of the following straight-forward lines:

#include <editor.hpp >

int main()
{

using namespace kdb;
KDB kdb;
KeySet conf;
Context c;
Parameters par(conf ,c);
std::cout << par.myapp.shortcut.quitMyapp << "\n";

}

In the first line we include the code generated from the specification. After creating a handle to the key
database, an AST for the configuration (called KeySet) and a Context [12], we finally create an instance of the
generated class Parameters. Then we directly access configuration variables with the key name. The only difference
to the specification is the usage of . instead of / to denote the key name.

The needed time to add one parameter is noteworthy: In only two minutes we were able to add a new
configuration item that was fully documented and used in the application. The needed time does not change
significantly if a small number of links exist. To add transformation keys, however, can take much longer,
especially, if the original configuration item is not documented properly. To add command-line parsing ability
for all parameters in a small application, we only needed six minutes (the template for generating the code
already exists within Elektra).

We developed a large application (50.000 lines of C and C++) based on a specification describing configuration
with Elektra. In that project we used several properties not described in this paper. Nevertheless, we experienced
an improved development time and especially debugging time compared to another project with rather traditional
means of configuration access: the direct use of a data structure along with a XML Schema Definition (XSD)
validating configuration files written in XML. While one configuration change in our approach needed only a
single change in the specification, up to more than 10 places needed to be modified in the project using XSD.

Adding new plugins to support new configuration file standards, unsurprisingly, takes significantly longer.
Small tasks, e.g. integrating existing configuration parsers or writing a template similar to existing ones, were
done by us within a day. For example, the INI plugin ni, that parses the syntax of the examples in this paper,
has 158 lines of C code and was developed within a day (10:41:54 - 16:22:01). To support parsing properties
following code in Elektra was needed:

Ni_node mcur = NULL;
while ((mcur = Ni_GetNextChild(current , mcur)) != NULL)
{

keySetMeta (k, Ni_GetName(mcur , NULL), Ni_GetValue (mcur , NULL ));
}

Explanations of the API and other details about development of the plugins are given in [9].
Adding new templates to support new programming languages or properties often takes a similar amount

of time. For example, to add long option parsing support took less than one hour (10:53:30 - 11:33:04). The
whole template that parses command line options has 261 lines of code. Templates are written in cheetah [15]
with many utilities provided by Elektra, e.g. the fallback mechanism for C and C++ is included easily in new
templates.
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Here is a part of the template that implements the property fallback:

@set $fa = $support.fallback(info)
@if len(fa) > 0
@for $f in $fa

found = ks.lookup("$f", 0);
if (found) {

value = found.get <$support.typeof(info )>();
$support.transform($info , $fa.index($f));

}
@end for
@end if

Note that in cheetah template code (lines starting with @) is interwoven with C code. The array fa contains the
properties fallback. For every property fallback the code for a lookup invocation and the value transformation
is generated. The generated code from that template is shown in the earlier example class QuitMyappGetPolicy.

4.2 Links within a single specification

We implemented a word counting utility in C that internally relies on the links as described in this approach.
The wc tool has the following features: it counts lines, words, chars, bytes and the length of the longest line.
Without any option the tool will print lines, words and chars. With any configuration item given, it will only
print the requested counters. Such interdependencies within configuration item are easily represented with the
following links:

[/sw/wc/show/max_line_length]
type=boolean
default=false
opt=L
opt/long=max_line_length

[/sw/wc/show/no_default_args]
type=boolean
default=false
override /#0=/sw/wc/show/lines
override /#1=/sw/wc/show/words
override /#2=/sw/wc/show/chars
override /#3=/sw/wc/show/bytes
override /#4=/sw/wc/show/max_line_length

Using links avoids an implementation of the override/fallback logic in the application and has following
advantages:

Changeability: Even when multiple applications use the specification item no_default_args we only have a single
place to change the logic.

Independence: The links are available as data and can be used in any programming language or technology.

Traceability: The links exist explicitly and are traceable without program analysis.

Extensibility: Both the configuration items and the links can be extended with any desired property, e.g. opt

in the example above permits us to generate commandline parameter parsing code that accepts -L and
--max_line_length.

Performance: In a previous paper [12] we show that access of the configuration item has no overhead compared
to access of native C++ variables.

4.3 Links between applications

We implemented a minimalist editor with configurable shortcuts in C++. The tool sloccount measured 3,106
total physical source lines of code. In this case study, we confirmed that other editors do not need any modification
to share their configuration.

Elektra supports a large number of configuration file standards, including those mentioned in this paper
(JSON, XML), those supported by Augeas (e.g. apache, ssh), some basic Linux configuration files (e.g. hosts)
and various INI formats. To support a large number of standards is especially important for software integration
between applications.
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For vim and Emacs, however, none of these parser worked because their configuration file contains code.
For such situations we implemented a plugin, called regexstore, that uses regular expressions ignoring all non-
matches. In contrast to lenses regexstore only takes care of the parts of the configuration files we are interested
in and does not understand the rest of the file. Given regexstore, we are able to integrate even vim and Emacs
configuration files. Up to now, we did not find any configuration file we could not integrate and because plugins
are written in universal programming languages we argue that any way to store configuration can be integrated
into Elektra.

4.4 Benchmark Setup

We conducted the benchmarks on a hp R© EliteBook 8570w using the CPU Intel R© Core
TM

i7-3740QM @ 2.70GHz.
The operating system is GNU/Linux Debian Wheezy 7.5. We used the gcc compiler Debian 4.7.2-5. We measured
the time using gettimeofday. We executed each benchmark eleven times for the box-plots. The benchmark setup
is identical to our previous benchmark [12].

We implemented a static and a dynamic variant of our algorithm:

In the dynamic variant keys contain the properties. That means that lookupByProperty of our algorithm is a
dynamic lookup in a data structure. The application reads the specification in configuration files at runtime.
In this variant, we have to lookup every property, even if they are not available.

In the static variant the override and fallback mechanism is compiled in the application. In this variant the
code generator adds code for every link as specified. We already saw examples of this variant (the class
and the template of QuitMyappGetPolicy). Only recursive links (not used in our benchmarks) are resolved in the
same way as in the dynamic variant. That means also in this variant the specification needs to be read at
runtime. Obviously, this approach has no overhead when no links are used.

4.5 Lookup Time
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Figure 2: Lookup time in static and dynamic variant
with linear scale for 200,000 lookups.

In the first benchmark we will measure the time
needed for the lookup in the data structure. We
generated 10 variables that have 0 to 9 properties
override, e.g. the first and second configuration
items:

[/ benchmark /#0]
default =33
type=unsigned_long

[/ benchmark /#1]
default=benchmark
type=unsigned_long
override /#0=/ benchmark/override /#0

Using these configuration items we make 200,000
lookups. If we would only access the variable, we
would not have any performance overhead (with any
number of links) as described in [12]. In order to
actually measure the lookup time, we synchronize
the cache in every iteration. In Figure 2 we see the
time grows linearly for a larger number of over-
ride-properties.

For the second benchmark measuring the dy-
namic variant we use the same specification and the
same number of iterations. We see that we have a
larger overhead because of the additional lookups required for every property. In the dynamic variant even not
specified properties cause overhead.

Next to the constant difference of factor 1.8 the overhead also grows 22% faster in the dynamic variant
because of additional property lookups needed. Another drawback of the dynamic variant is, that it does not
allow compiled code to be used. Instead transformations need to be interpreted, again adding overhead. We
conclude the static variant is faster, but it has a severe problem: applications directly using the key database
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without code generation (e.g. tooling) sees not transformed, i.e. incorrect, values. To answer the question if
dynamic or static should be preferred, we have to answer the question if the lookup overhead is significant in an
application.

4.6 Overall Runtime Overhead

process 64%

kdbOpen 17%

kdbGet 11%

overhead 5%
lookup 3%

kdbGet 11%

kdbOpen 17%

lookup 3%

overhead 5%

process 64%

Figure 3: Full application using a static variant

Considering a full application, in our approach fol-
lowing steps are necessary:

kdbOpen: The bootstrapping as described in Sec-
tion 2.

kdbGet: The reading of (other) configuration files.

process: The functionality of the application.

Our setup is as follows. We benchmark the
word counting tool already described earlier with the
LATEX file document of this paper (32KB size). We
have a small configuration file that is read during
startup. We profiled the application using Callgrind
3.7.0. Only two configuration files were involved: the
bootstrapping configuration file (read during kdbOpen)
and one configuration file for the application (read
during kdbGet).

In Figure 3 we see that the processing of the file
dominates with 64%. What obviously matters is the
size of the configuration files. The transformation to an AST (using the ni plugin [9]) unfortunately is much
slower than just counting the words (by a factor of 12 on files with the same size). Because of this kdbOpen() takes
17% and kdbGet() needs 11% of the overall cycles even with a small configuration files.

Without the links in the specification the number of lookups are reduced to 9 (from otherwise 27) cascading
lookups (see the algorithm lookup in Section 2). Based on this, we know that the overhead of the links is only 5%
in this application.

4.7 Threats to Validity

The main problem of our evaluation is that the applications used are rather small. The development times are
only taken from a single project and need to be validated by additional case studies for external validity.

5 Related Work

Configuration management (CM) tools, e.g. [2] solve the problem stated in this paper differently. They copy
each value to every place as needed. This approach, however, fails to work, when the user modifies configuration
locally. Most computer systems today, however, are configured locally: mobile devices, laptops, tablets and
non-business desktop systems. CM tools will not work when no distribution system between the nodes exists.

Reuse of software components facilitates reuse of software configuration. Modern desktop environments have
a tight integration based on that principle. In this approach every software component is responsible for its own
configuration. These components enable programs to modify settings in one place and taking effect for the whole
system. Zdun [17] even argues that the concern “behavioral composition and configuration” should be treated as
a first-class entity. While this approach has many advantages, its application is often difficult (e.g. programming
language barriers) or even not possible (e.g. because of licensing issues).

Using lenses [1] as implementations allows us to quickly cover a lot of different configuration file formats, but
lenses seem to fail [7] when we need complete abstraction from the concrete syntax of the configuration file.
Type-safe lenses are only based on regular expressions and the resulting AST is very similar to the configuration
file syntax and its internal order. In our approach we do not have such a limitation because we can transform
keys to the desired structure.

Ontologies are used for sharing data. Gruber [5] describes general design criteria so that every specification
has a minimal ontological commitment, e.g. we should tolerate that one date is “1993” and the other “March
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1993”. Enforcing a canonical representation would be an encoding bias. In our approach we solve this problem
by transformations. Gruber also introduces references to uniquely identify publications. In our approach key
names cover this concept.

XPointer [4] permits us to create links within XML documents. The main difference is that they are heavily
dependent on XML technology. So they cannot be used for configuration files, where XML is not dominant.
XPointer is not able to achieve the same as the properties override, fallback and default we described in
this paper. XInclude [8] is also tied to XML technology, but different from XPointer, XInclude has an element
fallback that is similar to the property default as described in this paper. For the other properties we described,
no equivalents exist.

Context-oriented programming [12] [10] is supplementing the approach described in this paper. It allows
applications to be aware in which context they are, but does not enable them to be aware of other applications.

We are positive that possible extensions of our approach also improve safety [11].
A different type of configuration links are explained in [13] and formally developed in [14]. Similarities to our

approaches are advantages regarding specification evolution, and the potential usage for internal fallbacks as we
discussed in the evaluation. They are different because they:

– only refer from target to source specifications while Elektra supports references within specifications and
directly to configuration items,

– are evaluated during generation of configuration and therefore cannot be as flexible as Elektra’s run-time
evaluation,

– only provide propositional logic to determine selection while Elektra facilitates programming languages to
determine if transformation should be skipped, and

– seem not to support transformation rules which further limits their use.

6 Conclusion and Further Work

This paper describes a novel way to establish links between configuration items. We use data as a specification
to define abstraction and to describe access on data. This specification alone suffices to share configuration,
and even saves time in the process. As the specification is just data we can easily extend the approach to other
programming languages. Nevertheless, the specification is powerful enough to allow applications to use any
configuration item of any configuration file. Our approach avoids the introduction of a new configuration file
format. Instead, existing configuration file formats are integrated using a global abstract syntax tree.

In the benchmark we compared a static and a dynamic implementation of our approach. The lookup time is
not significant in either way, and the dynamic implementation has the advantage that it also works with tooling
that does not use the code generator. So we prefer the dynamic variant.

To answer our research question: Three properties, namely fallback, override and transform are needed
to share configuration between applications. Additionally, these links are also useful to implement fallback and
override logic within a single program. In general, using the specification is superior to hard coding logic in the
application because:

– External tools use the specification and thus present the same configuration as the application.

– The specification is enforced for every application accessing the configuration.

– It is transparent to the administrator which configuration values are to be preferred.

Currently, types need to be annotated manually for every key. As further work we plan to reconstruct the
types using the links. By reconstructing the types of the transformation rules (e.g. when Haskell and ML are
used), we will even infer transformed types. Furthermore, other transformations are waiting to be explored
and evaluated. Last, but not least, we want to evaluate techniques which allow our approach to be used for
unmodified binaries, e.g. by preloading getenv().

Our contributions are:

• Describing an approach in which applications are aware of other applications’ configurations, leveraging easy
application integration.
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• Implementing our approach for popular semi-structured data formats and Linux configuration files, down-
loadable from http://www.libelektra.org.

• Comparing a static and dynamic variant of the implementation.

• Providing experimental validation using a case study of significant complexity and evaluate performance.
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[16] J. Siméon and P. Wadler. The essence of XML. ACM SIGPLAN Notices, 38(1):1–13, 2003.

[17] Uwe Zdun. Tailorable language for behavioral composition and configuration of software components.
Computer Languages, Systems & Structures, 32(1):56 – 82, 2006.

514



Efficiency considerations in heterogeneous
cluster systems

Valon Raca and Eduard Mehofer

Faculty of Computer Science
University of Vienna, Austria

{valon.raca,eduard.mehofer}@univie.ac.at

Abstract. The importance of heterogeneous asymmetric clusters has
grown steadily over the last years. Such architectures pose new chal-
lenges with respect to execution time and energy consumption. Work
distribution for homogeneous systems has been done typically by divid-
ing the work by the number of compute nodes and assigning equal-sized
portions to each of them. Such an approach is not adequate any more for
heterogeneous systems. The amount of work has to be adjusted to the
computational power of the individual devices. Moreover, heterogene-
ity of devices raises in addition to execution time a second issue – the
energy consumed to fulfill a task. A work distribution approach could
e.g. exclude low-performing, high-energy-consuming devices from execu-
tion. Optimization in one direction only, i.e. execution time or energy
consumption, does not meet the requirements. In this paper we discuss
different work distribution approaches and report our experiences.

Keywords: heterogeneous clusters, runtime efficiency, energy efficiency

1 Introduction

The trend of using accelerators for solving time-consuming problems is contin-
uing to increase steadily. Devices such as GPUs, Intel Xeon PHI, or FPGAs
are performing much better than CPUs for many data-parallel classes of ap-
plications, thus becoming a mainstream architecture in HPC. However, hetero-
geneous systems require adequate support for handling programming obstacles
resulting from the variety of hardware characteristics of those devices. The emer-
gence of OpenCL has alleviated very much the burden of programmers dealing
with different types of devices. OpenCL provides a platform for abstracting the
hardware disparities through its transparent model which assists programmers
writing codes which can be executed on any OpenCL enabled device.

Large clusters consisting of heterogeneous computing nodes with different
computing devices provide the opportunity to scale-up the performance. OpenCL
can adapt codes for a large number of devices from different vendors, but it does
not support data transfers and coordination tasks within a cluster. In addition
libraries like MPI are required. Further, the arrangement of accelerators in clus-
ter compute nodes needs not to be symmetric. The devices can be distributed
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unevenly between the nodes resulting in an asymmetric configuration of a clus-
ter.

Work distribution for such heterogeneous, asymmetric clusters becomes a
major problem. Whereas for homogeneous clusters usually equal-sized portions
of work has been distributed to the compute nodes, this approach is not adequate
for heterogeneous systems any more. The amount of work has to be adjusted to
the computational power of the individual devices. Moreover, energy-efficiency
is another issue introduced by heterogeneous systems which is gaining increasing
attention. A work distribution approach could e.g. exclude low-performing, high-
energy-consuming devices from execution. Optimization in one direction only,
i.e. execution time or energy consumption, does not meet the requirements.
Energy-efficiency together with performance has to be taken into account in the
time-energy problem space when dealing with efficiency issues.

We consider applications with a workload that is partitioned into work pack-
ages which are assigned to devices to be processed. Our programming and hard-
ware model is described in detail in [12]. Runtime efficiency and energy efficiency
basically boils down to the problem of mapping work packages to devices. Dif-
ferent work distributing strategies are possible resulting in different solutions
exhibiting different efficiency characteristics. An assessment of a solution heav-
ily depends on the requirements of the programmer. When we optimize in two
directions, the mapping of work packages to devices results in a solution space
containing 4 distinguished solutions exhibiting optimality criteria:

– best performance: one dimensional problem–energy consumption neglected
– minimal energy: one dimensional problem–execution time neglected
– minimal energy with restrictions to performance: two dimensional problem
– best performance with restrictions to energy: two dimensional problem

In addition to the 4 solutions above, trade-off solutions between time and
energy can be considered as well. This papers discusses all the different solutions
in detail and presents the impacts in practice.

The rest of the paper is organized as follows. Section 2 outlines our pro-
gramming approach for heterogeneous, asymmetric clusters. Section 3 gives the
motivation for efficiency considerations in heterogeneous asymmetric clusters.
Optimization problems are discussed in Section 4. We survey the related work
in Section 5 and conclude with a summary in Section 6.

2 Programming Support for Heterogeneous Asymmetric
Clusters

In this section we give a brief overview of our framework [12] which supports
heterogeneous, asymmetric cluster architectures. The goal of the framework is
to assist a programmer to run an application efficiently in such an heterogeneous
environment. Our strategy to deal with such clusters is to partition the work into
work packages which are assigned to compute devices to be processed. As shown
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Efficiency considerations in heterogeneous cluster systems 3

in Fig. 1, the input is partitioned in smaller data chunks called work packages
WP1,...,WPn which are equal-sized. The size of work packages is determined by
taking various hardware and application characteristics into account like memory
capacity or peak performance.

Fig. 1: Main application processing steps

Usually the number of work packages are orders of magnitude greater than
the number of available devices in the system. This problem coupled with differ-
ent performance and energy consumption numbers for each of the devices leads
to the requirement for a strategy in distributing work packages. The different
types of mappings is realized by a dispatcher which manages the distribution of
work packages. As shown in Fig. 1, the dispatcher can perform different distri-
bution strategies (S1, S2, ...) which define different mappings; e.g. strategy S1
requires that 14 WPs are assigned to device D1, 25 WPs to D2, and so forth,
whereas strategy S2 requires that 18 WPs are assigned to device D1 and 21
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WPs to D2. The output is constructed from the partial results of the processed
work packages. The framework helps the programmer to run applications in
such heterogeneous environments without dealing with hardware configurations
or communication issues explicitly.

3 Examples for Selecting Devices and Distributing Work

As discussed above, work distribution is done by mapping work packages onto
compute devices. Hence, different mappings result in different execution times
and different power draws. Depending on whether execution time or energy con-
sumption is favored by a programmer, some mappings fit better to the needs
than others. In the following we will discuss three examples which have the com-
mon property that better performance is achieved at the cost of higher energy
consumption. Or in other words: longer execution times may help to save en-
ergy. These examples show that getting better in one dimension may degrade the
other dimension which means that an optimization has to take both dimensions
into account.

The first example is taken from a paper by Liu and Luk [11]. As shown there,
the FPGA is the most energy-efficient device for executing function SGEMM
(matrix-matrix operation C = αAB + βC) followed by GPU and CPU. Using
only the FPGA for processing SGEMM leads to the smallest amount of energy
consumption, but it may take about 40 times longer to complete than using the
GPU.

We have done a similar experiment on our PHIA cluster which consists of
8 compute nodes with devices such as NVIDIA GPUs and Intel XEON Phi
accelerators arranged in an asymmetric configuration. Our experimental results
confirm that execution time and energy consumption can be influenced to a
great extent based on the devices used in computing. In Fig. 2 we show the
execution time and energy consumption in normalized units for a molecular
analysis kernel with different problem sizes. As it is shown in Fig. 2a when
we use only most energy-efficient devices the execution time (circular markers)
increases in comparison to the program version where we use all available devices
of the system (triangular markers). The gap between the two execution scenarios
increases steadily with bigger problem sizes. However, in Fig. 2b it can be seen
that energy consumption is reduced significantly when only the most energy-
efficient devices are used in computation (circular markers). The figures show
that for all problem sizes a loss in performance is rewarded by a reduction of
energy consumption.

In addition to selecting devices for execution, the next example shows that
the distribution of work onto the selected devices plays an important role as
well. To demonstrate this, let us assume we have 5 equally-sized work packages
and two devices with the following time and energy values per work package
T = {2, 5} and E = {10, 5}, i.e. 2 and 5 time units are taken for a work package
on device 1 and 2, and 10 and 5 energy units on the devices, respectively. Further
a time constraint is specified which requires that execution should finish within

518



Efficiency considerations in heterogeneous cluster systems 5

0

1

2

3

4

5

6

7

32
k 
x 
32

k

40
k 
x 
40

k

48
k 
x 
48

k

56
k 
x 
56

k

64
k 
x 
64

k

72
k 
x 
72

k

80
k 
x 
80

4

88
k 
x 
88

k

96
k 
x 
96

k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EN
ER

G
Y 
CO

N
SU

M
PT
IO
N

GRID SIZE (POINTS)

ENERGY (all devices) ENERGY (only energy‐efficient devices)

0

2

4

6

8

10

12

32
k 
x 
32

k

40
k 
x 
40

k

48
k 
x 
48

k

56
k 
x 
56

k

64
k 
x 
64

k

72
k 
x 
72

k

80
k 
x 
80

4

88
k 
x 
88

k

96
k 
x 
96

k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EX
EC

 T
IM

E

GRID SIZE (POINTS)

EXEC TIME (all devices) EXEC TIME (only energy‐efficient devices)

(a) Execution time for all devices used vs. energy-efficient devices only

0

1

2

3

4

5

6

7

32
k 
x 
32
k

40
k 
x 
40
k

48
k 
x 
48
k

56
k 
x 
56
k

64
k 
x 
64
k

72
k 
x 
72
k

80
k 
x 
80
4

88
k 
x 
88
k

96
k 
x 
96
k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EN
ER

G
Y 
CO

N
SU

M
PT
IO
N

GRID SIZE (POINTS)

ENERGY (all devices) ENERGY (only energy‐efficient devices)

(b) Energy consumption for all devices used vs. energy-efficient devices only

Fig. 2: Performance and energy figures in our PHIA cluster for DCS
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10 time units. The following mappings of work packages onto devices are feasible
and fulfill the time constraint:

– If we assign 4 work packages to the first device and 1 work package to the
second device, the overall execution time equals to max{8, 5} = 8 units of
time, while the overall energy consumption equals to 10 ∗ 4 + 5 = 45 units
of energy consumption.

– If we assign 3 work packages to the first device and 2 work packages to the
second device, the overall execution time equals to max{6, 10} = 10 units of
time, while the energy consumption equals 10 ∗ 3 + 5 ∗ 2 = 40 units.

Both work distributions satisfy the time constraint, however the second work
distribution is more energy-efficient than the first one.

4 Different Solutions Satisfying Optimality Criteria

Best performance. In principle the best performance approach leads to a
solution where all devices are used for computation. However, there are situations
where this might lead to sub-optimal solutions. Consider a system as depicted
in Fig. 3 with four devices with different processing times for work packages as
indicated by the different lengths of the bars and 12 equal-sized work packages.
In Fig. 3a the work packages are distributed at runtime to the devices just on
request basis. Unfortunately, device 3 gets assigned the last work package 12,
since the other devices are still busy.

However, a better distribution of work packages exists as shown in Fig. 3b.
Although device 3 finished processing and is idle, it should not request another
work package, but leave it to faster devices. Thus a simple on-request work pack-
age scheduler is not sufficient and more sophisticated techniques are required.

Minimal energy. An optimization directed at achieving minimal energy con-
sumption tends to ”serialize” the execution of an application. Minimal energy
consumption means that only the most energy-efficient devices are used. As a
consequence, in an heterogeneous environment only one type of devices with best
energy-efficiency will be used. If only one instance of that device type exists in
a cluster, the application will be executed on one device only.

Minimal energy with restrictions to performance. Since the minimal en-
ergy approach yields an extreme solution, there is a need for a relaxed approach.
One possibility is to define a maximal execution time which shall be met with
minimal energy preventing in this way the ”serializing” behavior. As shown in
Fig. 4a the programmer sets a time constraint for which the most energy-efficient
distribution shall be found. All distributions below the dotted line meet the time
constraint with the circular point being the most energy-efficient one.
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(a) Simple request-based mapping (b) More sophisticated mapping

Fig. 3: Different mappings of work packages onto devices

Best performance with restrictions to energy. Similar considerations as
above lead to the definition of a maximal amount of energy which shall be met
with best execution time possible. As shown in Fig. 4b the programmer sets an
energy constraint for which the most time-efficient distribution shall be found.
All distributions left to the dotted line meet the energy constraint with the
circular point being the most time-efficient one.

Time-energy trade-off. Next we address the problem that no constraints have
been specified by the programmer. Our goal is to propose a ”good” solution by
reasoning about time-energy trade-offs.

Fig. 5a shows the set of all possible distributions and Fig. 5b the correspond-
ing Pareto front. It is reasonable to assume that a distribution of the Pareto
front with minimal distance from the origin is a good compromise between ex-
ecution time and energy consumption–the selected distribution is highlighted
with a circular point.

5 Related work

Many research efforts have been undertaken to support cluster systems, but most
of them do not address optimizations taking both execution time and energy con-
sumption into account in an heterogeneous, asymmetric hardware environment.
One of the first cluster frameworks have been developed by Duato et al. [5] for
CUDA and Barak et al. [3] for OpenCL. A more recent approach is SnuCL [8]
which enables viewing of remote devices as part of a local context, while ab-
stracting the communication between cluster nodes. libWater [6] is similar to
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8 Valon Raca and Eduard Mehofer

(a) Minimal energy with time constraint (b) Best performance with energy con-
straint

Fig. 4: Solutions with constraints

(a) All possible distributions (b) Pareto optimal distributions

Fig. 5: Set of possible solutions and Pareto front optimal solutions
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the SnuCL approach, though it provides more efficient communication between
cluster nodes, which is handled transparently by its runtime. Hybrid OpenCL
[2] is based on FOXC runtime and enables communication between different
OpenCL implementations in the context of distributed computing, while our
framework targets HPC clusters. dOpenCL [7] allows using of different compute
devices in any of the cluster nodes in a single application. It provides a central
device manager which manages the assignment of the devices. clOpenCL [1] uses
a wrapper library similar to dOpenCL targeting HPC clusters. DistCL [4] is sim-
ilar to our approach, as it intends to abstract the multiple-devices in a cluster
providing the programmer a single-device view for launching a kernel. However,
DistCL runs its experiments across a symmetric cluster and only with one GPU
per cluster. VOCL [13] provides a virtualization framework for GPU clusters us-
ing remote GPUs through proxy processes in cluster nodes. pVOCL [9] utilizes
the VOCL framework and provides means for reducing energy consumption on a
cluster. However, this approach is restricted to GPU clusters and it does not take
into account actual energy consumption of applications but it is based on a table
power model which needs to be provided by data center administrators. Whereas
the cluster approaches presented so far have their origin in OpenCL, HeteroMPI
[10] is an extension to MPI to support heterogeneous networks of computers.
HeteroMPI provides the functionality to enable an application developer to deal
with a heterogeneous environment and to realize a required behavior, but does
not support the programmer with advanced features.

6 Conclusion

In this paper we discussed in detail the problem of distributing work onto devices
of an heterogeneous, asymmetric cluster when both execution time and energy
consumption should be taken into account. We presented different distribution
strategies and discussed their implications in practice.
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Abstract. Strongly mobile agents provide a convenient abstraction mechanism
for migrating applications to the location of their data or as a container for de-
ploying computational tasks in a cloud computing environment. They are difficult
to implement on a stock Java VM, however, since it does not allow the computa-
tion state to be captured. We describe an implementation approach that translates
strongly mobile Java into weakly mobile Java in which the generated code main-
tains serializable run-time stacks for the agent threads at all times. We discuss the
optimizations that are needed for generating efficient weakly mobile code.

1 Introduction

For certain distributed applications, mobile agents (or mobile objects) provide a more
convenient programming abstraction than remote method invocation (RMI). If an ap-
plication needs to process large amounts of remote data, it may be less communication
intensive to ship the computation in the form of a mobile agent to the location of the
data than to use RMI calls to get the data and perform the computation locally. Mobile
agents are also less affected by network connectivity. While the mobile agent is com-
puting at a remote site, the home machine does not need to remain connected to the
internet, which is especially useful if the home machine is a mobile device.

In mobile agent applications, agents typically operate autonomously using one or
more threads that conceptually run within the agent. Existing mobile agent libraries
for Java, such as Aglets [11, 10] or ProActive [2], however, only provide support for
weak mobility, which allows migrating the agent object but requires that all threads
are terminated before migration. However, Strong Mobility, which allows an agent to
migrate seamlessly with running threads, would be the preferable programming ab-
straction. It allows a more natural programming style, since the logic for how and when
an agent should migrate can be expressed procedurally and since it does not require
the programmer to manually terminate all threads before migration and restart them at
the destination. It also separates the migration mechanism from the application logic.
Strong mobility, unfortunately, is difficult to implement since the Java Virtual Machine
(VM) does not provide access to the run-time stacks of threads.

In previous research, we implemented support for strong mobility as a source-to-
source translator from strongly mobile Java into weakly mobile Java [6, 20]. We also
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demonstrated that strongly mobile agents can be used as containers for deploying appli-
cations on a desktop grid [4, 5] or in the cloud [14]. They allow migrating an application
that is encapsulated within the agent without the application programmer having to be
aware of the migration.

Our mobility translator generates weakly mobile code by implementing the run-time
stack of a thread as a serializable Java data structure. Compared to other approaches to
strong mobility this has the advantage that it allows multi-threaded strongly mobile
agents without modifying the Java VM. The disadvantage, however, is that it results in
very inefficient code. Since a run-time stack is modified by the thread that owns it as
well as by a thread that wants to migrate the agent, a locking mechanism is required
to protect the integrity of the stacks. With fine-grained locking, this results in a high
run-time overhead.

In this paper, we describe an optimization framework for our mobility translator.
We present measurements for comparing the cost of different locking mechanisms. We
also present a translation approach that can improve the performance of the generated
code in exchange for a higher latency for migrations. Finally, we outline how standard
compiler optimization techniques can be used for further optimizing the code.

In the next section, we provide more background on strong vs. weak mobility. Sec-
tion 3 discusses related work on strong mobility. We explain our language and API
design in Section 4 and the details of our mobility translator in Section 5. Section 6
presents experimental results on the potential speed improvements for mobile agents
and Section 7 provides concluding remarks.

2 Background

Mobile agents and remote method invocation have the same expressive power. Any
agent program can be translated into an equivalent RMI program and vice versa. In
fact, either mechanism can be implemented on top of the other. Similar to loops and
recursion, however, some problems are more naturally expressed in one of these pro-
gramming styles.

In actual implementations, RMI is implemented on top of TCP together with object
serialization to allow objects to be sent as arguments to remote methods. An agent mi-
gration is then implemented by the agent environment on the home machine performing
a remote method invocation on the agent environment of the destination machine and
passing the agent itself as argument to the remote method. In the case of weak mobility,
only the agent object is sent to the destination. For strongly mobile agents, the execution
state must be transferred as well.

A language with support for strong mobility provides an simple mental model for
writing mobile agents. As an example, consider a network broadcast agent that prompts
the user for input, relaying the input message to a number of other host machines. Using
a Java-like language supporting strong mobility the solution is straightforward:

public void broadcast(String hosts[]) {
System.out.println("Enter message:");
String message = System.in.readln();
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for(int i = 0; i < hosts.length; i++) {
try {

dispatch(hosts[i]);
System.out.println(message);

}
catch(Exception exc) {}

}
dispose();

}

Weak mobility does not allow migration of the execution state of methods (i.e., lo-
cal variables and program counters). The dispatch operation simply does not return. In-
stead, the framework allows the developer to tie code to certain mobility-related events.
E.g., in IBM’s Aglets framework, the developer can provide callback code that will
execute when an object is first created, just before an object is dispatched, just after
an object arrives at a site, etc. Consider the above application written in an Aglets-like
framework:

private String hosts[];
private int i = 0;
private String message;

public void onCreation(String hosts) {
this.hosts = hosts;
System.out.println("Enter message:");
message = System.in.readln();

}

public void onArrival() {
System.out.println(message);

}

public void run() {
if(i == hosts.length)

dispose();
dispatch(hosts[i++]);

}

Because weak mobility does not allow the execution state to be transferred, pro-
grammers must manually store the execution state in agent fields (which are transferred)
and must reconstruct the information of where the agent is and what it needs to do next
using the event handling methods. This scatters the logic for how the agent moves from
host to host across multiple methods and, therefore, results in an unnatural and difficult
programming style.

While weak mobility is a conceptually simple mechanism and relatively straightfor-
ward to implement, it results in complex mobile agent code that may have to be written
by expert programmers. By contrast, strong mobility provides a simple programming
paradigm but it is more difficult to implement, e.g., to ensure freedom of race conditions
and deadlocks.
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3 Related Work

There are two main techniques for implementing strong mobility: modifying the Java
VM or via translation of either source code or bytecode.

Java Threads [3] , D’Agents [8], Sumatra [1], Merpati [17], and Ara [13] extend
the Sun JVM. CIA [9] modifies the Java Platform Debugger Architecture. JavaThread,
CIA, and Sumatra to not support forced migration, i.e., the ability of an outside thread or
agent dispatching an agent. Also, D’Agents, Sumatra, Ara, and CIA do not support the
migration of multi-threaded agents. NOMADS [18] uses a customized virtual machine
called Aroma that supports forced mobility and multi-threaded agent migration. The
drawback of all these approaches is that relying on a modified or customized VM make
it difficult to port and deploy agent applications. NOMADS and Java Threads are only
compatible with JDK 1.2.2 and below, D’Agents needs the modified Java 1.0 VM, and
Merpati and Sumatra are no longer supported. Furthermore, NOMADS, Sumatra, and
Merpati do not support just-in-time compilation.

WASP [7] and JavaGo [16] implement strong mobility in a source-to-source trans-
lator that constructs a serializable stack just before the migration using the exception
handling mechanism. Neither system is able to support forced mobility. Also, JavaGo
does not support multi-threaded agent migration and does not preserve locks on mi-
gration. Correlate [19] and JavaGoX [15] are implemented using byte code translation.
While they support forced mobility, they do not support multi-threaded agent migration.

Instead of using a source-to-source or bytecode translator for creating a serializ-
able stack before migration like the previous translation approaches, in our approach a
source-to-source translator ensures that serializable stacks are maintained at all times [6,
20]. This allows both forced migration and multi-threaded agent migration. Also, our
approach better maintains the Java semantics, e.g., by preserving synchronization locks
across migrations.

4 Language and API Design

Unlike a weak mobility library, which requires several event handlers and utility classes
to simplify programming of itineraries, strong mobility can be supported with a very
simple API. Our original support for strong mobility consisted simply of the interface
Mobile and the two classes MobileObject and ContextInfo. While the design
looks like a library API, it is really a language extension, since our proposed translation
mechanism compiles away the interface Mobile and the class MobileObject.

4.1 Basic Mobility Support

Every mobile agent must (directly or indirectly) implement the interface Mobile. Sim-
ilar to Java RMI, a client of an agent must access the agent through an interface variable
of type Mobile or a subtype of Mobile.

Interface Mobile is defined as follows:

public interface Mobile extends java.io.Serializable {
public void go(java.net.URL dest)
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throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

}

Like Serializable, interface Mobile is a marker interface. It indicates to a com-
piler or preprocessor that special code might have to be generated for any class imple-
menting this interface.

As explained in Section 5 below, we used the IBM Aglets library for implementing
our support for strong mobility. This is currently reflected in the list of exceptions that
can be thrown by go(). In a future version, we will add our own exception class(es) so
that the surface language is independent of the implementation.

Class MobileObject implements interface Mobile and provides the two meth-
ods getContextInfo() and go(). To allow programmers to override these meth-
ods, they are implemented as wrappers around native implementations that are trans-
lated into weakly mobile versions.

public class MobileObject implements Mobile {
private native ContextInfo realGetContextInfo();
private native void realGo(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

protected ContextInfo getContextInfo() {
return realGetContextInfo();

}
public void go(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException {

realGo(dest);
}

}

A mobile agent class is defined by extending class MobileObject.
The method getContextInfo() provides any information about the context in

which the agent is currently running, including the host URL and any system objects or
resources that the host wants to make accessible to a mobile agent.

The method go() moves the agent to the destination with the URL dest. This
method can be called either from a client of the agent or from within the agent it-
self. If go() is called from within an agent method foo(), the instruction following
the call to go() is executed on the destination host. Typically, an agent would call
getContextInfo() after a call to go() to get access to any system resources at
the destination.

A mobile agent class could then simply be defined as a subclass of class Mobile-
Object and would typically contain a thread that carries out the agent actions and
moves to remote machines when needed.

4.2 Language Extensions

In a non-mobile applications, static fields of a class are shared between all the instances
of that class. I.e., only one copy of a static field exists in the application. In a mobile
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application, when the code is migrated to a remote machine together with an agent, a
new copy of a static field will be created at the destination. Depending on the use of the
static field this may or may not be the desirable behavior. If a static field is used, say, to
count the number of instances of a class, it may be preferable to have a globally unique
field. Similar to static fields, we propose a declaration for global variables,

global int n;

such that an agent always accesses global variable on the home machine, not on the
machine the agent currently resides on.

We also propose a new language construct immobile, both as a modifier for meth-
ods and as a block of code,

immobile int foo() { ... }
int bar() { ... \immobile{ ... } ... }

that inhibits migration of an agent while it is executing immobile code. This gives pro-
grammers better control of mobility for multi-threaded agents, e.g., by postponing a
migration until a large intermediate data structure has been deallocated.

4.3 Mobile Threads and Thread Pools

In our original implementation of strong mobility for multi-threaded agents, we used
Thread and ThreadGroup objects in the strongly mobile code and generated the
wrapper classes MobileThread and MobileThreadGroup as part of the weakly
mobile code. These mobile threads were not available to programmers, though. We are
exploring a redesign of the API that would use either thread pools or executors instead
of thread groups and that would make a mobile thread API available to the programmer.
This would allow programmers to use serializable mobile threads standalone without
using agents.

Migration for mobile agents is a similar problem to checkpointing a high perfor-
mance computing application. With checkpointing, a thread is serialized and written to
disk. If the processor fails, the thread is read back in and restarted. This is the same
mechanism needed for thread migration with the disk acting as a very slow commu-
nication link. Providing an API for mobile threads and thread pools would allow our
mobility translator to be used for automatically generating checkpointing code.

5 Translation from Strong to Weak Mobility

5.1 Single-Threaded Agents

For efficiency reasons it would be desirable to provide virtual machine support for
strong mobility. However, a preprocessor or compiler implementation has the advan-
tage that the generated code can run on any Java VM, and that it is easier to implement
and to experiment with the language design.

For our initial prototype, we chose to design the translation mechanism for a pre-
processor that translates strongly mobile code into weakly mobile code that uses the
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Aglets library. For our current reimplementation, we will generate code for the ProAc-
tive library [2].

For implementing strong mobility in a preprocessor, it is necessary to save the state
of a computation before moving an agent so it can be recovered afterwards. Fünfrocken
describes a translation mechanism that inserts code for saving local variables just before
moving the agent [7]. This has the disadvantage that the go() method cannot be called
from arbitrary points outside the agent.

Our translation approach is to maintain a serializable version of the computation
state at all times by letting the agent implement its own run-time stack. This increases
the cost of regular computation as compared to Fünfrocken’s approach, but it simplifies
restarting the agent at the remote site.

5.2 Translation of Methods

For making the local state of a method serializable, we implement activation records
of agent methods as objects. For each agent method, the preprocessor generates a class
whose instances represent the activation records for this method.

An activation record class for a method is a subclass of the abstract class Frame:

public abstract class Frame
implements Cloneable, java.io.Serializable {
public Object clone() { ... }
abstract void run();

}

Activation records must be cloneable for implementing recursion as explained below.
The translated method code will be generated in method run().

For example, given an agent class C with a method foo of the form

void foo(int x) throws AgletsException {
int y = x + 1;
go(new URL(dest));
System.out.println(y);

}

(and ignoring exception handling and synchronization for simplicity) we might generate
a class Foo of activation records for foo of the form

class Foo extends Frame {
C This;
int x;
int y;
int pc = 0; // program counter

Foo(C t) { this.This = t; }
void setArgs(int x) { this.x = x; }
void run() {

if (pc == 0) { pc++; y = x + 1; }
if (pc == 1) { pc++;
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go(new URL(This.dest)); This.run1(); }
if (pc == 2) { pc++; System.out.println(y); }

}
}

The parameter and the local variable of method foo() became fields of class Foo. In
addition, we introduced a program counter field pc and a variable This for accessing
fields in the agent object.

The method run() contains the original code of foo() together with code for
incrementing the program counter and for allowing run() to resume computation af-
ter moving. Calls of agent methods are broken up into a call of the generated method
followed by This.run1(), as explained below. For allowing the agent to be dis-
patched by code outside the agent class, the program counter increment and the follow-
ing instruction must be performed atomically, which requires additional synchroniza-
tion code.

For efficiency, the preprocessor could group multiple statements into a single state-
ment and only allow the agent to be moved at certain strategic locations.

5.3 Translation of Agent Classes

An agent now must carry along its own run-time stack and method dispatch table.
The generated agent class contains a Frame array as a method table and a Stack
of Frames as the run-time stack. When calling a method, the appropriate entry from
the method table is cloned and put on the stack. After passing the arguments, the run
method executes the body of the original method foo while updating the program
counter.

Suppose we have an agent class AgentImpl of the form

public class AgentImpl extends MobileObject implements Agent{
int a;
public AgentImpl() { /* initialization code */ }
public void foo(int x) throws AgletsException { ... }

}

Since this class indirectly implements interface Mobile, the preprocessor translates it
into the following code:

public class AgentImpl extends Aglet {
int a;
Frame[] vtable = { new Foo(this) };
final int _foo = 0;
Stack stack = new Stack();

public void onCreation (Object init) {
/* initialization code */

}

public void foo(int x) {
Foo frame = (Foo) (vtable[_foo].clone());
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stack.push(frame);
frame.setArgs(x);

}

public void run1() {
Frame frame = (Frame) stack.peek();
frame.run();
stack.pop();

}

class Foo extends Frame { /* as described above */ }
}

The preprocessor eliminates interface Mobile and class MobileObject and lets
the agent class extend class Aglets.

For implementing method dispatch, the agent includes a method table vtable of
type Frame[]. The constant _foo is the index into the method table for method foo.
The field stack implements the run-time stack.

The constructor of class AgentImpl is translated into the method onCreation.
Since Aglets only allows a single Object as argument of onCreation(), any orig-
inal constructor arguments must be packaged in an array or vector by the preprocessor.

As described above, the original agent method foo() gets translated into a local
class Foo of activation records. The method foo() in the generated code implements
the call sequence: it allocates an activation record on the stack and passes the argu-
ments. The code for executing the method on the top of the stack and for popping the
activation record in method run1() is shared between all methods. A client must first
call foo() followed by a call to run1().

For resuming execution after arriving at the destination, we must also generate a
method run() inside class AgentImpl:

public void run() {
while (! stack.empty())

run1();
}

5.4 Protection of Agent Stacks

It is imperative that an agent cannot be dispatched by another thread between incre-
menting the program counter and executing the following statement. If the program
counter increment and the following statement were not executed atomically, a thread
could be dispatched after the program counter increment and incorrectly miss execu-
tion of the statement upon arrival. Since by definition this type of synchronization need
not be maintained across VM boundaries, standard Java synchronization techniques are
used. For a single-threaded agent, we simply synchronize on the agent object itself. For
method calls, we only need to protect the call to set up the activation record. The actual
execution of run1() does not need to be synchronized since by then a new activation
record with its own pc will be on top of the stack:
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synchronized(This) { pc++; go(new URL(This.dest)); }
This.run1();

For preventing the agent from being dispatched between the program counter incre-
ment and the next instruction, the call of realGo() in MobileObject.go() must
also be synchronized on the agent object.

If two agents try to dispatch one another, this synchronization code could lead to a
deadlock. For executing the statement b.go(dest), Agent a would first synchronize
on itself. Then a synchronization on b would be required to protect the integrity of b’s
stack. If similarly b would execute a.go(dest), a deadlock would result. To prevent
this, the call of realGo() is synchronized on the agent context instead of on the caller.

public class MobileObject implements Mobile {
public void go(java.net.URL dest)

throws IOException, RequestRefusedException {
synchronized(TheAgentContext) {

synchronized(this) { realGo(dest); }}
}

The only time any thread synchronizes on two objects is now in the call of realGo(),
in which case the first synchronization is on the agent context. Deadlocks are, therefore,
prevented.

This synchronization mechanism ensures that only one agent can migrate at a time.
If two agents a and b try to dispatch one another, the first one, say a, will succeed. By
the time b tries to dispatch a, a is already on a different host. The call to a.go() will,
therefore, throw an exception that must be handled by b.

5.5 Multi-Threaded Agents

Our mobility translator supports migration of multithreaded agents. Unfortunately, the
Java library classes Thread and ThreadGroup are not serializable. Therefore, for
each use of the classes Thread and ThreadGroup we need to generate a serializ-
able wrapper of classes MobileThread and MobileThreadGroup, respectively.
The go() method on an agent can be invoked by another agent in the system or by
a thread within the agent itself. The go() method calls the realgo() method to
check whether the agent is already on the move. If so, a MoveInterrupt excep-
tion is thrown. Otherwise, each MobileThread calls the interrupt() method
of the underlyingThread class. This terminates any wait(), join(), or move()
functions if they are being executed. The time remaining to completely execute these
function calls is saved so that the function can resume execution at the destination from
the point where it had been interrupted.

The next step is to call the packUp() method of the main agent wrapper of the
thread group. This in turn calls the packUp() methods of the wrappers for all the
threads and the thread groups. The underlying state of execution of each thread and
thread group is saved to the corresponding wrappers. All the threads are forced to halt
any further executions and subsequently the agent is shipped to the destination by the
dispatch() call. At the destination, the reinit() method of the main agent

534



thread group wrapper is invoked. This method calls the reinit() method of each
wrapper. The called reinit() methods create Thread or ThreadGroup objects
from their corresponding wrappers and the execution states of the threads are restored.

After the restoration of the execution states, the start() method of the main
thread group wrapper is called. This method invokes the start() methods of all the
MobileThread wrappers. Then start() method of the underlying thread is called,
which then calls the run() method of the MobileThread wrapper. The run()
method checks the stack of the MobileThread wrapper. If the stack is empty, then
the run() method of the Runnable target is called. Otherwise, the activation records
in the stack are executed.

5.6 Synchronization in Multi-Threaded Agents

An agent should not be shipped to the destination while a thread is in the middle of
executing a statement. To prevent this from happening, the program counter update and
a statement execution should be performed atomically. Neither should any two agents
dispatch each other at the same time nor should two threads within the same agent try to
move the agent simultaneously. For example, each statement in the thread is protected
by a lock mechanism as shown below:

Acquire lock;
Program counter update;
Statement execution;
Release lock;

The problem of lock synchronization for multi-threaded agents is comparable to the
readers-write problem with writers priority. Each thread in the agent is assigned a lock.
The threads that are executing statements are considered to be readers and the thread
that invokes the go() method to move the agent is considered to be the writer. After
the reader thread is done executing the statement, the lock is released and acquired by
the writer thread. When the writer thread has acquired the locks of all the readers, only
then can the agent be allowed to relocate.

The drawback by having a locking mechanism around each program counter update
and statement, is that it incurs a large overhead. On the other hand, synchronizing on an
entire agent instance reduces the degree of parallelism in the system.

5.7 Optimizations

Our translation mechanism introduces several sources of inefficiencies. Migration of a
strongly mobile agent is slower than that of a handwritten weakly mobile agent, because
the run-time stacks need to be serialized and shipped along with the agent. However,
since the expected behavior of mobile agents is that they spend a significantly larger
amount of time computing than migrating, the overhead imposed on regular computa-
tion is of much more concern. The computation overhead comes from three sources:
the locking mechanism for protecting the run-time stacks, the frequency of locking and
the associated overhead of testing and incrementing the program counter, and pushing
activation records onto the run-time stacks.
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A straight-forward optimization is to combine multiple consecutive statements, e.g.,
multiple assignments, into a single block without releasing and re-acquiring the lock
after each statement. This increases the latency slightly until a call to go() is honored
and the agent can migrate, but given the infrequency and cost of migration, even a
latency of up to 1 second would likely not be a problem for most applications.

Much of the locking overhead itself comes from insuring that writers (i.e., threads
that want to move an agent) do not starve. A readers-writer lock with reader priority
would be significantly cheaper but it could not insure freedom of starvation for writers.
Since writers occur very infrequently, it is possible to keep the stack locked for readers
by default and only allow a writer to proceed if one is pending. E.g., instead of releasing
and re-acquiring the lock, we could use

if (Writer is present) { Release lock; Acquire lock; }

using an atomic Boolean or atomic integer to test for the presence of writers.
Such a locking-scheme then allows a different code structure. Instead of having

lock-unlock pairs around statements or consecutive groups of statements, it would be
possible to have these if-conditions with unlock-lock pairs only in a few strategic places
in the code. Again, this would increase the latency until a migration can take place, but
it has the potential to drastically improve performance.

In addition, it would be possible to use standard compiler optimizations to further
reduce the run-time overhead. The overhead of maintaining the program counter for a
loop can be reduced by unrolling the loop. Inlining of methods can be used to eliminate
the expensive method call sequence. Methods that do not contain loops may not need
to be translated at all. Finally, with worst-case execution time analysis, it would be
possible to give a bound on the run-time of a method or code fragment and only generate
locking code to test for the presence of writers if the worst-case execution time is more
than the acceptable migration latency.

6 Experiments

To indicate the overhead of our translation mechanism and the potential for optimiza-
tions, we first present the results of manual optimizations and measurements that had
been performed in prior work [6]. These measurements were made on a quad-core
UltraSparc-II 296MHz processor with 1GB of memory running Solaris and using the
Sun JDK 1.4.0 Hotspot VM.

For these measurements, standard Java benchmarks were rewritten in the form of
both strongly mobile agents and Aglets. This did not involve changing the timed code
significantly. The only changes that needed to be made to the original benchmarking
code were made to avoid method calls inside expressions, since the preprocessor did
not yet handle these.

The strongly mobile agents were passed through the translator. We then used simple
manual optimization techniques to improve the performance of the translated agents.
These are: the grouping of simple statements to form logical, atomic statements; the
acquiring and releasing of locks only every 10,000 simple statements for a loop; and
the inlining of calls to simple methods that in turn do not contain method calls.
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The running times and memory footprints of the translated agents and the manually
optimized agents were compared with the equivalent weakly mobile Aglets. The results
have been presented in Table 1. A major contributor to the poor running times of the
recursive benchmark programs is the garbage collector that runs several times a second
during their execution.

Table 1. Execution time of strongly mobile agents compared to corresponding Aglets code.

Benchmark Translated Code Optimized Code
Crypt (array size: 3,000,000, no threads) 5.61X 1.23X
Crypt (array size: 3,000,000, 1 thread) 5.96X 1.30X
Crypt(array size: 3,000,000, 2 threads) 6.00X 1.41X
Crypt(array size, 3,000,000, 5 threads) 5.60X 1.31X
Linpack (500 X 500) 10.00X 1.75X
Linpack (1000 X 1000) 9.48X 1.65X
Tak (100 passes) 245.30X 220.83X
Tak (10 passes) 247.00X 213.60X
Simple recursion (sum 1–100, 10,000 passes) 68.27X 60.75X

We performed further optimzations on the Linpack benchmark, a matrix multipli-
cation implementation. The inner-most loop of Linpack is inside a dot-product method.
We manually inlined this method, and measured execution time with the inner-most
loop untranslated, and with the translated loop unrolled. The running time comparisons
are presented in Table 2.

Table 2. Potential performance improvements for inner loop transformations of strongly mobile
Linpack code relative to Aglets.

Linpack Version Untranslated Unrolled 2X Unrolled 10X
Linpack (500 X 500) 1.02X 1.21X 0.75X
Linpack (1,000 X 1,000) 1.02X 1.15X 0.76X

For finding the cheapest locking mechanisms, we performed micro-measurements
of lock-unlock pairs for several different locking mechanisms as well as using atomic
integers or Booleans as guards for a lock. These measurements were performed on a
quad-core, 2.4GHz Xeon workstation running Linux. Since all code is sequential and
to make the measurements more predictable, we disabled multi-core support, hyper-
threading, Intel Turbo Boost (overclocking), and Intel Speed Step (CPU throttling), and
turned off all network interfaces, the X window system, and unnecessary background
processes. The Java Version 1.7.0 21 and ran the measurements on the Java server VM
with the command line options -XX:CICompilerCount=1 and -Xbatch to en-
sure that the measurements are not distorted by background compilation. We took 100
measurements of 10,000 lock-unlock pairs each in a 10X-unrolled loop. The average
times are shown in Table 3.
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Table 3. Average execution time for one lock-unlock pair.

Locking Mechanism Time (ns)
Semaphore 18.32
ReentrantLock 16.41
ReentrantReadWriteLock (Read Lock) 26.77
ReentrantReadWriteLock (Write Lock) 23.84
AtomicBool (as guard for lock) 16.09
AtomicInt (as guard for lock) 15.92

As our measurements show, the cheapest combination would be to use an atomic
integer or Boolean (the difference between them is not statistically significant) as a
guard for a ReentrantLock instead of our original counting Semaphore. With
guarded locks it would be possible to generate code that unlocks and re-acquire the
lock less frequently. This, together with compiler optimizations such as not translating
inner loops or methods without loops, inlining, and loop unrolling has the potential to
reduce the overhead to less than 20% for non-recursive applications, which would be
acceptable.

7 Conclusion

We have presented a framework for translating strongly mobile Java code into weakly
mobile code. Compared to existing approaches to strong mobility, our approach has the
advantages that it allows multi-treaded agents and forced mobility, accurately maintains
the Java semantics, and can run on a stock Java VM. The disadvantage is that without
further optimizations, the run-time overhead would be prohibitively large.

The main contribution of this paper is that it presents an optimization framework
for improving the performance of the generated weakly mobile code. Preliminary mea-
surements show that with a combination of a cheaper locking mechanism and a code
structure that trades off migration latency for performance, the overhead can become
acceptably small. Finally, standard compiler optimization techniques can be used to
further improve the performance of the generated code. We are currently working on a
reimplementation of our mobility translator in the Polyglot compiler framework [12].
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Zusammenfassung. In diesem Artikel wird eine Sprache und deren
Umsetzung für die Planung optimaler Pumpensysteme zur Förderung
von Flüssigkeiten vorgestellt. Die entwickelte domänenspezifische Spra-
che beschreibt Komponenten wie z. B. Pumpen und die zugehörigen An-
forderungen. Wir beschreiben wichtige Sprachkonzepte und gehen ins-
besondere auf die Generierung eines linearen Problems zur Optimie-
rung ein. Die Optimierungsaufgabe eines solchen Systems liegt darin,
die bestmögliche Auswahl an zu installierenden Pumpen zu treffen, um
möglichst energie- oder kosteneffizient die Anforderungen zu erfüllen. Vor
und während der Generierung dieser Optimierungsaufgabe müssen Ana-
lysen ähnlich zu Programmanalysen erfolgen, um möglichst detaillierte
Fehler- und Diagnosemeldungen zu generieren.

1 Motivation

In vielen industriellen Fertigungs- und Produktionsanlagen sowie Versorgungs-
netzwerken kommen Pumpensysteme zum Einsatz. Ein Pumpensystem ist ei-
ne Anlage mit Pumpen, Rohren und diversen Armaturen, deren Zweck es ist,
Flüssigkeiten mit Anforderungen an Druck und Durchfluss über eine Distanz zu
transportieren. Eine Beispielanlange ist in Abbildung 1 dargestellt. Es gibt fest
vorgegebene Komponenten, wie Behälter und Abnahmestellen, mit spezifischen
Drücken und Durchflüssen, die entweder durch die Umgebung vorliegen oder
erst erreicht werden müssen. Das Erreichen dieser Drücke geschieht durch den
Einbau und Betrieb diverser Pumpen.

Das Betreiben von Pumpen stellt zusammen mit sonstigen Fördermethoden
wie Fließbändern 37% der in Deutschland benötigten Energie dar [12]. Daher
sollen die Anlagen möglichst so geplant werden, dass der Stromverbrauch und
die Anlagenkosten möglichst gering sind. Optimierungen von industriellen Anla-
gen können Einsparpotentiale von bis zu 90% der Pumpenenergiekosten erzielt
werden [4]. Um dieses Potential voll auszunutzen, wurde in [11] ein Verfahren
entwickelt, mit dem man optimale Pumpensysteme berechnen lassen kann. Dabei
muss ein abstraktes Pumpensystem, also sämtliche Anordnungen und Konfigura-
tionen von Pumpen und Armaturen, als mathematischen Optimierungsproblem
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Abb. 1. Beispiel eines Pumpensystemes mit verschiedenen Pumpen und Abnehmern.
Aufgabe ist es, einen Strom von der Quelle zu den Senken zu erzeugen und dabei
bestimmte Drücke bei den Abnehmern zu erzielen.

formuliert werden. Dieses besteht zu einem großen Teil aus verschiedenen Va-
riablen und Gleichungen, ist also für einen Pumpenanlagenplaner nur schwer
handhabbar. Diese müssen dort Variablen für einzelne Pumpen definieren und
aus dem Ergebnis der Optimierung herauslesen, wie die optimale Anlage be-
schaffen sein muss.

Um den Architekt der Pumpenanlage zu unterstützen und das Entwerfen ei-
ner optimalen Anlage zu einem durchgängigen Prozess zusammenzufassen, ent-
wickeln wir die domänenspezifische Sprache SHEP (Sprache für hocheffiziente
Pumpensysteme). Den zugehörigen Übersetzer entwickeln wir mit der Werk-
zeugsammlung Eli [8]. In der Sprache können Komponenten des Pumpensys-
tems, wie Rohre, Pumpen und Ventile, als Typen beschrieben werden. Die darin
geltenden physikalischen Gesetzmäßigkeiten sind bereits vordefiniert. Für das
System können nun einzubauende Komponenten bestimmt werden. Mit Ty-
pprüfungen wird dann unter anderem bestimmt, welche Komponenten des Pum-
pensystems miteinander verschaltet werden können. Die aktuelle Hauptaufgabe
des Übersetzers ist es, ein Optimierungsmodell aus der domänenspezifischen Be-
schreibung zu erstellen. Dieses wählt dann unter den möglichen Pumpen dieje-
nigen aus, welche im optimalen System eingesetzt werden sollen. Die benötigten
Aspekte des Übersetzers werden in Abbildung 2 dargestellt.

Erzeugen von linearen Problemen aus domänenspezifischen Sprachen
Hierbei kommt es im Wesentlichen darauf an, dass Verhaltensgleichungen
möglichst günstig beschrieben werden, damit die Optimierung schnell durch-
geführt werden kann. Die Attribute der einzelnen Komponenten müssen als
Variable und Parameter des Optimierungsproblems formuliert werden. Ent-
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SHEP-Modell
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(z. B. von Pumpen)
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Generieren von           
Verhaltensgleichungen

Optimierungs-
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-Modelle

Analyse von Flüssen,
Test auf Erfüllbarkeit

       Auswertung der Lösung
       Generierung Systemaufbau

Abb. 2. Übersicht über die Werkzeugkette zur Erstellung optimaler Pumpensysteme.

sprechende Gleichungen für z. B. Flusserhaltung müssen generiert und linea-
risiert werden.

Analyse des Flüssigkeitsstromes und Lösbarkeitstest Durch Vorabanaly-
sen im System werden unzulässige Verbindungen detektiert, welche die dar-
an anliegenden Drücke oder Durchflüsse nicht unterstützen. Der Test auf
Lösbarkeit ist notwendig, denn die Fehlermeldungen eines Lösers sind für
den Systemarchitekten unzureichend. Die Fehlermeldungen geben nur die
Unlösbarkeit an, ohne deutlich machen zu können, welche Druckanforde-
rung den Widerspruch ausgelöst hat. Das Wissen der Domäne kann hier
detaillierte Fehlermeldungen möglich machen.

Generieren des optimierten Pumpensystems aus der Lösung Ergebnis
des Lösers sind die Belegungen der Variablen, insbesondere der Entschei-
dungsvariablen. Diese zu interpretieren und auszuwerten ist manuell schwie-
rig und fehleranfällig. Daher müssen diese im Übersetzer gesammelt werden
und daraus das endgültige optimierte geplante Pumpensystem formuliert
werden. Dieses wird als Simulationsmodell beschrieben, um überprüfende
Berechnungen darauf durchführen zu können.

Im nächsten Abschnitt dieses Artikels werden andere Arbeiten diskutiert, die
sich mit der Generierung von Optimierungsproblemen beschäftigen. Außerdem
wird dabei die hier eingesetzte Werkzeugsammlung Eli vorgestellt. Im darauf
folgenden Abschnitt werden ausgewählte Sprachbestandteile und die dabei auf-
tretenden Typprüfungen vorgestellt. Abschließend wird auf die Übersetzung in
ein Optimierungsproblem bzw. Simulationsmodell eingegangen.

2 Verwandte Arbeiten

Die Entwicklung domänenspezifischer Sprachen wird durch diverse Werkzeu-
ge und Programmierrichtlinien unterstützt [7]. In diesem Projekt wird mit der
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Werkzeugsammlung Eli gearbeitet, um einen Übersetzer von der Systembeschrei-
bung zum Optimierungs- bzw. Simulationsmodell zu generieren [8]. Eli verfügt
über die Möglichkeiten, leicht zu erzeugende Fehlermeldungen ausgeben zu kön-
nen [3]. So kann beispielsweise angezeigt werden, an welchen Stellen des Pumpen-
systems ein geforderter Höchstdruck konstruktionsbedingt überschritten wird.
Dadurch ist es möglich, gezielt Fehlermeldungen bezüglich der Nichtlösbarkeit
des Optimierungsproblems zu erzeugen. Der Anwender sieht so direkt, welche
seiner geforderten Systembedingungen oder Verschaltungen zu Widersprüchen
führen.

Die grundlegende Formulierung der Optimierungsaufgabe und die Vorstel-
lung der Anwendungsdomäne erfolgt durch unsere Projektpartner in [11]. Dort
erfolgt die Modellierung des Problems allerdings noch direkt mit mathemati-
schen Modellierungssprachen wie AMPL [5]. Diese unterstützt zwar schon eine
Zusammenfassung von Gleichungen durch Iteration über Mengen, allerdings wird
das Optimierungsproblem immer noch mathematisch formuliert und es erfordert
ein hohes Verständnis von der Modellierung, falls man diese Umsetzen möchte.
Das ausgegebene Ergebnis kann durch die Sprache beeinflusst werden. Somit
können hier auch komplexe Ausgaben basierend auf der Lösung angezeigt wer-
den. Hilfreich bei der Modellierung in AMPL ist, dass eine Trennung von dem
beschriebenen System mitsamt der geltenden Gleichungen und den tatsächlichen
Daten erfolgt.

Dadurch ist es möglich, dass die notwendigen Gleichungen und Ausgabe-
anweisungen einmalig erstellt werden und anschließend diverse Szenarien, also
Lastprofile, umgesetzt werden können. Beim Eingeben der verwendeten Kom-
ponenten und Daten müssen die Gleichungen dann nicht nochmal verändert
werden. Allerdings ist die Möglichkeit der semantischen Prüfung stark einge-
schränkt und Vorabprüfungen auf Lösbarkeit sind quasi nicht vorgesehen. Dies
ist dadurch bedingt, dass LP-Löser eine allgemeine Software sind, welche jedes
lineare Problem bearbeiten müssen. Lineare Probleme sind eine Menge von un-
interpretierten Gleichungen und Ungleichungen, deren Bezug zum abgebildeten
Modell erst im Nachhinein erzeugt wird. Betrachtet man nur dieses, so lassen
sich schwer Rückschlüsse auf das Pumpensystem herstellen.

Strategien zur Generierung von linearen und nichtlinearen Optimierungspro-
blemen wurden in [10] untersucht. Hierbei liegt die Formulierung des Ausgangs-
problems allerdings noch nah am linearen Programm. Allerdings können damit
schon sinnvolle Unterstrukturen gebildet werden, welche die Modellierung ver-
einfachen und die Modelle lesbarer machen. Aktuellere Vorgehen beinhalten eine
Modelltransformation zur Erzeugung von linearen Problemen von abstrakteren
Modellen ausgehend [6]. Dabei wurde die selbstständige Laufzeitoptimierung von
Programmen untersucht. Aus einer domänenspezifischen Sprache, die die ein-
zelnen Implementierungen beschreibt, wird ein Optimierungsproblem erzeugt.
Auch hier erfolgt eine kombinatorische Explosion des Lösungsraumes bei der
Verwendung mehrerer Komponenten, was sich in einem Anstieg der benötigten
Rechenzeit zum Finden einer Lösung niederschlägt. Eine semantische Vorab-
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prüfung auf die Lösbarkeit des erstellten Optimierungsproblems erfolgt nicht.
Die Lösung muss manuell weiterverarbeitet werden.

Eine andere Vorgehensweise der Optimierung von Pumpensystemen kann
man z. B. in [1] finden. Hier wird die Simulationssprache modelica derart er-
weitert, dass der Löser für die Gleichungssysteme der modelica-Umgebung nicht
nur das Verhalten simuliert, sondern außerdem entsprechende Parameter op-
timiert. Der Nachteil hierbei ist, dass nur Parameter optimiert werden, nicht
ganze Strukturen von Verschaltungen wie in unserem Projekt. Es muss also di-
rekt bekannt sein, welche Pumpen in welcher Verschaltung verwendet werden.
Außerdem ist wieder ein recht hohes Verständnis der Sprache modelica sowie
ihrer Erweiterung erforderlich. Auf die Domäne der Pumpensysteme angepasste
Fehlermeldungen sind ebenfalls nur schwer möglich, weil modelica für die Model-
lierung beliebiger hybrider Systeme eingesetzt werden kann. Eine Auswertung
der Lösung entfällt, da die berechneten Parameter direkt ein Simulationsmodell
bzw. das fertige System ergeben.

Basierend auf den bisher gemachten Erfahrungen wird für das Pumpensys-
tem zunächst ein GMPL-Modell des zugehörigen linearen Optimierungsproblems
erstellt. GMPL ist eine Teilsprache von AMPL, welche für unsere Zwecke aus-
reichend und frei verfügbar ist. Entsprechende Solver findet man z. B. unter [9].
Wir verwenden die Übersetzerbauwerkzeugsammlung Eli, um einen Übersetzer
zu entwickeln, der aus unserer domänenspezifischen Sprache ein Optimierungs-
und schließlich Simulationsmodell mit den energieoptimalen Pumpen erstellt.

3 Besondere Sprachbestandteile und deren Übersetzung

Im Folgenden werden einige Sprachkonzepte herausgegriffen und näher betrach-
tet. Dabei wird das Konzept als solches vorgestellt und auf Details bei der Ge-
nerierung der zugehörigen Optimierungs- und Simulationsmodelle eingegangen.

3.1 Spezifikation von Pumpentypen

Eine Pumpe, hier speziell die Kreiselpumpe, ist eine hydraulische Komponente
zum Druckaufbau, welche in Abbildung 3 schematisch dargestellt wird. Sie be-
steht aus einem Elektromotor, der die über einen Frequenzumrichter aufgenom-
mene elektrische Energie in mechanische Energie als Drehbewegung von Rotor-
blättern umwandelt. Diese Rotorblätter drücken die Flüssigkeit in Förderrichtung
durch die Leitungen, wodurch diese dort unter Druck gesetzt wird. Der eingehen-

de Volumenstrom in m3

h bleibt erhalten, beeinflusst aber die benötigte Energie,
um Druck aufzubauen. Durch eine Regelung der eingehenden elektrischen Leis-
tung über den Frequenzumrichter kann die Rotationsgeschwindigkeit der Rotor-
blätter eingestellt werden. Die Pumpe erzeugt dann bei kleinerer Stromzufuhr
auch weniger Druck.

Die entwickelte domänenspezifische Sprache SHEP ist objektorientiert. Die
Typen der Sprache sind Pumpen, Rohre und Armaturen, welche definiert werden
können. Ein Beispiel für eine Pumpenspezifikation vom Typ PumpTypeA ist im
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Stromzufuhr
    (power)

Rotoren-
drehung
 (speed)  

 ausgehender Fluss
(flow, pressure+head)

ankommender Fluss
    (flow, pressure)

Abb. 3. Schematische Darstellung einer Kreiselpumpe. Durch Zufuhr von elektrischer
Energie am Frequenzumrichter bzw. Motor wird eine Rotation ausgelöst, die einen
Druck am Ausgang erzeugt und die Flüssigkeit fördert. Durch Regelung der Leistungs-
aufnahme werden Drehzahl und somit Druckaufbau eingestellt.

Codeausschnitt 1 zu sehen. Zur Spezifikation eines neuen Pumpentyps gehört die
Angabe der Kennlinien, eventuelle Kosten der Pumpe sowie die Spezifikation der
vorhandenen Anschlüsse der Pumpe.

1 pump PumpTypeA
c h a r a c t e r i s t i c

3 speed head f low power ;
400 1 .1 0 .00 5 . 0 0 ;

5 400 1 .05 0 .78 1 0 . 0 0 ;
400 0 .985 1 .55 1 5 . 0 0 ;

7 400 0 .83 2 .33 2 0 . 0 0 ;
400 0 .60 3 .10 2 5 . 0 0 ;

9 700 2 .94 0 .00 2 0 . 0 0 ;
700 2 .84 1 .28 2 5 . 0 0 ;

11 700 2 .645 2 .55 3 5 . 0 0 ;
700 2 .24 3 .83 5 0 . 0 0 ;

13 700 1 .63 5 .10 5 5 . 0 0 ;
// ... ... ... ...

15 c o s t s
purchase = 100 ;

17 por t s
in Flange (DN 32 , PN 10) ;

19 out Flange (DN 32 , PN 10) ;
end

Codeausschnitt 1. Spezifikation eines Pumpentyps mit dem Namen PumpTypeA,
angegebenen Kennlinien, Kosten und den vorhandenen Anschlüssen

Die Kennlinien werden in SHEP als Menge von Messpunkten angegeben.
Sie stellen das Verhältnis zwischen Durchfluss, Druckerhöhung, Stromverbrauch
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und Drehzahl der Rotorblätter dar. Grafisch dargestellt werden diese jeweils in
einzelnen Diagrammen, bei denen Kennlinien einer festen Drehzahl gezeichnet
werden, die dann den Durchfluss mit der Messgröße vergleichen. Dies wird in
Abbildung 4 dargestellt. Bei derartigen Messungen wird die Pumpe bei festen
Drehzahlen unterschiedlich großen Volumenströmen ausgesetzt. Dabei misst man
den aufgebauten Druck und den Stromverbrauch. Als Einheiten verwenden wir
Standardeinheiten.
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Abb. 4. Beispiel von Pumpenkennlinien in Relation zu einer festen Drehzahl n in
Umdrehungen pro Minute.

Bei den Kosten wird der Einkaufspreis bzw. die Installationskosten angege-
ben. Außerdem können hier andere zeitabhängige laufende Kosten, z. B. War-
tung und Stromverbrauch, mitsamt Gewichtung angegeben werden. Diese bilden
aufsummiert die ökonomischen Kosten für das System.

Anschlüsse werden mit den Schlüsselwörtern in und out gekennzeichnet. Der
Typ Flange steht für die davor definierte Anschlussart Flansch. Dieser hat einen
Durchmesser (DN) und einen zulässigen Höchstdruck (PN). Damit kann man die
Kompatibilität zu anderen Anschlüssen und zum Gesamtsystem überprüfen.

In Abbildung 5 wird die innerhalb des Übersetzers definierte Klassenhierar-
chie dargestellt. Jede Klasse verfügt über die dafür typischen Attribute und Glei-
chungen. Innerhalb der Hierarchie können neue Typen definiert werden. Beim
Erben werden dabei die Eigenschaften der übergeordneten Typen bzw. Klassen
übernommen. Anschlüsse der Komponente können weiter konkretisiert werden.
Die Klassenhierarchie wird dann in ein Teilmengenkonzept der Sprache GMPL
überführt. Die entsprechenden Klassen bleiben in ihrer Struktur erhalten.

Der Aufbau des GMPL-Modelles der oben beschriebenen Pumpe wird in Co-
deausschnitt 2 gezeigt. Den übernommenen Bezeichnern wird ein Unterstrich
vorangestellt, um etwaigen Identitäten mit vorhandenen Bezeichnern zu ent-
gehen. Der Unterstrich ist folglich am Anfang eines Bezeichners in SHEP un-
zulässig. Mit den set-Anweisungen wird die Pumpe in die Komponentenhierar-
chie eingeordnet. Anschließend erfolgen Definitionen für die benötigten Varia-
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Komponenten

Kaufpreis,
Entscheidungsvariable

Rohrleitungskomponenten

ein- und ausgehender
Anschluss (allgemein)

Flusserhaltungsgleichung

Quelle / Senke

ausgehender bzw.
eingehender
Anschluss (allgemein)

Pumpe

Druckerhöhung
interner Volumenstrom

Druckerhöhungsgleichung

Rohr

Länge
Durchmesser

Druckabfallgleichung

RioEco_120

Rotordrehzahl
Stromverbrauch
Flanschanschlüsse

Kennlinie (Tabelle)

SHEP-Modelle gmpl-Modelle

Anschlüsse

ein- und ausgehender
Anschluss (allgemein)

Flusserhaltungsgleichung

set components;

param _cost {components};
var isBought{components};

set piping_components;

Realisierung der Anschlüsse
durch Mengen

Flusserhaltungsgleichung    

set pumps

var head{pumps};
...

Druckerhöhungsgleichung

set _PumpTypeA

var speed{_PumpTypeA};
var power{_PumpTypeA}
Anschlüsse als Menge

Triangulationsgleichungen

       Übersetzung

Abb. 5. Übersicht über Hierarchie der in SHEP definierten Komponenten und dem
beschriebenen Pumpentyp PumpTypeA. Die dargestellten Einheiten repräsentieren die
Klassen mit ihrem Namen, den darin definierten Variablen und den Gleichungen. Die
Pfeile repräsentieren die Vererbungsbeziehung zwischen den Klassen.

blen, welche teils für alle Pumpen und teils nur für diesen Pumpentyp angelegt
werden. Die Kennlinien werden als zweidimensionale Mengen modelliert, welche
jeweils dem Tupel (flow, head) entsprechen. Dies ist aufgrund der Beschaf-
fenheit der Kennlinien eindeutig, da bei gleichem Volumenstrom und gleicher
Druckdifferenz auch der gleiche Energieverbrauch bzw. Rotorendrehzahl auftre-
ten muss. Diese Werte werden dann den Tupeln zugeordnet. Mit den definierten
Variablen und Parametern können schließlich die Gleichungen definiert werden,
die für alle Pumpen gleichermaßen gelten.

Die Variablen der Kennlinien werden durch andere Gleichungen miteinan-
der in Beziehung gesetzt. Um diese zu modellieren stehen verschiedene Ver-
fahren mit unterschiedlicher Laufzeit beim anschließenden Lösen des Problems
zur Verfügung. Die Wahl des Verfahrens und dessen Parameter werden beim
Übersetzungsprozess angegeben. Da es unterschiedlich detaillierte Linearisierun-
gen gibt, kann dies einen Einfluss auf das Ergebnis der Optimierung ausüben.

Bei der Generierung des Simulationsmodells in modelica können die in der
Pumpe definierten Attribute als Variablen übernommen werden. Für den Druck-
aufbau jedoch muss eine Funktion aus den Kennlinien ermittelt werden, abhängig
vom Volumenstrom und den zusätzlichen Einträgen. Diese bestimmt dann das
simulierte Verhalten der Pumpe. Der Unterschied zum GMPL-Modell ist der,
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# Definition der Menge mit deklarierten Pumpen
2 s e t pumps with in piping components ;

s e t PumpTypeA with in pumps ;
4

# Verwendete Variable
6 var power { s c ena r i o s , PumpTypeA } ;

var speed { s c ena r i o s , PumpTypeA } ;
8 var head { s c ena r i o s , pumps } ;

var f l o w { s c ena r i o s , pumps } ;
10 var p r e s s u r e p o r t { s c ena r i o s , p ip e connec to r s } ;

var f l o w p o r t { s c ena r i o s , p ip e connec to r s } ;
12

# Definition der Kennlinienparameter
14 s e t basicvalues PumpTypeA dimen 2 ; # flow, head

param basicvalue PumpTypeA speed {basicvalues PumpTypeA } ;
16 param basicvalue PumpTypeA power {basicvalues PumpTypeA } ;

18 # Eingabe der Kennlinienwerte
param : basicvalues PumpTypeA :

20 basicvalue PumpTypeA speed
basicvalue PumpTypeA power

22 := 0 .00 1 . 1 1300 5 .00
0 .78 1 .05 1300 10 .00

24 # ... ... ... ...

26 # Gleichungen fuer den Druckaufbau
P r e s s u r e I n c r e a s e {S in s c ena r i o s , P in pumps } :

28 p r e s s u r e p o r t [ S , P, ’ out ’ ]
= p r e s s u r e p o r t [ S , P, ’ i n ’ ] + head [ S , P ] ;

Codeausschnitt 2. Auszug aus dem erstellten GMPL-Code für den Pumpentyp
PumpTypeA mit den Werten der Kennlinie, auftretenden Variablen und Gleichungen.
Durch die vordefinierte Menge pumps können Gleichungen vereinfacht werden.

dass man sich bei modelica nicht auf lineare Funktionen beschränken muss, was
eventuell eine realitätsnähere Abbildung darstellt. Auch dieses geschieht über
externe Funktionen zur Interpolation und auch hier gibt es dafür mehrere Vari-
anten der Umsetzung, die gewählt werden sollten.

3.2 Spezifikation des Systems

Dem Spezifizieren des Systems entspricht das Zeichnen eines Verschaltungspla-
nes für die Pumpenanlage. Hier werden Komponenten eingebracht, benannt,
mit Parametern versehen und verbunden. Schließlich werden Anwendungsfälle
spezifiziert, die mit verschiedenen Variablenbelegungen daherkommen. Das Bei-
spielsystem wird in Abbildung 6 gezeigt. Die zugehörige Systembeschreibung
findet sich im Codeabschnitt 3.

Zunächst werden die Komponenten definiert. Dabei stehen Source und Sink

für abstrakte Quellen und Senken, um von der konkreten Umgebung unabhängige
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Abb. 6. Beispielsystem aus dem Codebeispiel 3.

1 system MySys
Source S ; // Verwendete Komponenten

3 PumpTypeA P1 ;
PumpTypeA P2 opt i ona l ;

5 Stee lP ipe R1 , R2 , R3 opt iona l , R4 op t i ona l ;
Sink T;

7 connec t i ons // Verbundene Komponenten
S −> R1 −> P1 −> R2 −> T;

9 S −> R3 −> P2 −> R4 −> T;
o b j e c t i v e

11 minimize c o s t s ; // Zielfunktion (hier: Summe aller Kosten)
s c e n a r i o s // Verschiedene Anwendungsfaelle mit Wichtung

13 s c e n a r i o S1 weight 3 :
S . out . p r e s su r e = 3 ;

15 S . out . f low = 0 . 7 8 ;
T. in . p r e s su r e = 4 . 0 5 ;

17 s c e n a r i o S2 weight 1 :
S . out . p r e s su r e = 4 ;

19 S . out . f low = 3 . 5 0 ;
T. in . p r e s su r e = 8 . 9 8 5 ;

21 end

Codeausschnitt 3. Konfiguration eines einfachen Systems, bei dem zwischen Quelle
und Senke entweder eine oder zwei parallel platzierte Pumpen liegen. Ob beide Pumpen
notwendig oder kostengünstiger sind, ergibt sich nach den angegebenen Lastprofilen in
den Szenarios.

Teilsysteme zu beschreiben. Dazwischen befindet sich eine Menge von Pum-
pen und Rohren, von denen einige optional sind, also nicht im optimalen Sys-
tem vorhanden sein müssen. Anschließend werden die Komponenten durch den
Pfeil-Operator -> miteinander verbunden. Dabei wird jeweils der ausgehende
Anschluss der linken mit dem eingehenden Anschluss der rechten Komponente
verbunden. Diese Werte beeinflussen z. B. auch den möglichen Rohrinnendruck.
Daher können sie bei fehlerhafter Zusammenschaltung das Optimierungspro-
blem unlösbar machen. Eine Analyse der Anschlüsse ermöglicht es, direkt an
den auftretenden Stellen Widersprüche kenntlich zu machen.

549



Die Zielfunktion beschreibt die zu optimierenden Kriterien. In diesem Fall
hier werden die Kosten insgesamt minimiert, es werden also die Variablen aus
den costs-Abschnitten aller Komponenten aufsummiert und diese Summe mi-
nimiert. Auch andere Zielkriterien sind hier möglich, müssen dann aber manuell
beschrieben werden.

Die Anwendungsfälle darunter beschreiben die notwendigen Anforderungen
an das System. Unterschiedliche Szenarien können z. B. Tag- und Nachtbetrieb
beschreiben, jeweils mit eigenen Ansprüchen an Druck und Durchfluss im Sys-
tem. Hier kann man durch eine semantische Prüfung fordern, dass die wichti-
gen Eingangs- und Ausgangsparameter der Quellen und Senken gegeben sind.
Wird nämlich der Volumenstrom nicht spezifiziert, so nimmt die Optimierung
möglicherweise unsinnige Werte dafür an.

Ein Auszug des erzeugten GMPL-Codes für das Beispielsystem findet sich
in Codeausschnitt 4. Komponenten werden als Elemente der entsprechenden
Typmengen definiert. Verbindungen können direkt als Tupel von zwei Kom-
ponenten und ihren Anschlüssen modelliert werden. Die Gleichungen für die
Verbindungen sind für alle Modelle gleich, werden also generiert. Gleichungen
der Szenarios können nahezu direkt übernommen werden, müssen nur syntak-
tisch angepasst werden. Für die Abbildung optionaler Komponenten wird im
Optimierungsproblem jeder Komponente die Entscheidungsvariable isBought

zugewiesen. Da jede Komponente eine Entscheidungsvariable besitzt, müssen
nichtoptionale Komponenten auch als solche gekennzeichnet werden. Die Ent-
scheidungsvariable wird dann 1 gesetzt. Die Zielfunktion wird aus der Angabe
in SHEP generiert.

Für alle optionalen Komponenten entscheidet die Optimierung, ob diese ver-
wendet werden oder nicht. Dazu tritt die Entscheidungsvariable in den verschie-
denen Gleichungen auf und macht diese ungültig, falls die Komponente nicht
benötigt wird. Diese Methoden werden in [11] beschrieben. Bei der Generierung
des Optimierungsproblems ist dabei zu beachten, dass solche Entscheidungsva-
riablen ganzzahlig sind. Dadurch nehmen sie Einfluss auf die Optimierungsge-
schwindigkeit. Die Anzahl dieser Entscheidungsvariablen hat also einen wesent-
lichen Einfluss auf die Verwendbarkeit der domänenspezifischen Sprache und
sollte deshalb so gering wie möglich gehalten werden.

4 Generierung effizienter Optimierungsprobleme

Eine Optimierungsmöglichkeit bietet die Elimination von Entscheidungsvaria-
blen für Komponenten. Im obigen Beispiel kann man die Entscheidungsvaria-
ble für P2, R3 und R4 zu einer zusammenfassen, da es sich dabei um einen
einzigen Pfad handelt. Die Pfade können durch ähnliche Verfahren wie bei der
Programmanalyse ermittelt werden. Alternativ können auch Pfade, welche einen
anliegenden Druck nicht unterstützen, gänzlich weggelassen werden.

Ein weiterer wesentlicher Punkt ist die Linearisierung nichtlinearer Aus-
drücke. In der Pumpendomäne gibt es nativ diverse nichtlineare Zusammenhänge,
z. B. beim Druckabfall. Werden die entsprechenden Gleichungen direkt in das
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1 # Komponenten des Systems als Elemente der entsprechenden Typmengen
s e t PumpTypeA with in pumps := { ’ P1 ’ } ;

3 s e t S t e e l P i p e with in p ipe s := { ’ R1 ’ , ’ R2 ’ , ’ R3 ’ , ’ R4 ’ } ;
s e t Source := { ’ S ’ } ;

5 s e t Sink := { ’ T ’ } ;

7 # Verbindungen des Systems als Tupelmenge
s e t connec t ions with in p ipe connec to r s c r o s s p ip e connec to r s

9 := { ( ’ S ’ , ’ out ’ , ’ R1 ’ , ’ i n ’ ) ,
( ’ R1 ’ , ’ out ’ , ’ P1 ’ , ’ i n ’ ) , . . . } ;

11

# Lastfälle (Szenarien) des Systems
13 s e t s c e n a r i o s := { ’ S1 ’ , ’ S2 ’ } ;

15 # Druckerhaltungsgleichung für die Verbindungen
Pres surePrese rvat ionConnect ions {S in s c ena r i o s , (U, P) in

p ipe connecto r s , (U, P, V, Q) in connect i ons } :
17 p r e s s u r e p o r t [ S , U, P] = p r e s s u r e p o r t [ S , V, Q] ;

19 # Übernommene Gleichungen der Lastfälle
equat ion S1 1 : p r e s s u r e p o r t [ ’ S1 ’ , ’ S ’ , ’ out ’ ] = 3 ;

21 equat ion S1 2 : f l o w p o r t [ ’ S1 ’ , ’ S ’ , ’ out ’ ] = 0 .78 ;
. . .

23 # Abschalten nicht benötigter Entscheidungsvariablen
S i sBought : i sBought [ ’ S ’ ] = 1 ;

25 P1 isBought : i sBought [ ’ P1 ’ ] = 1 ;
. . .

27 # Zielfunktion (aufsummierte Kosten für die gekauften Komponenten)
minimize o b j e c t i v e : sum{C in components} purchase [C] ∗

i sBought [C ] ;

Codeausschnitt 4. Auszug aus dem erstellten GMPL-Code für das im Codeausschnitt
3 vorgestellte System. Durch die vordefinierte Menge pumps können Gleichungen
vereinfacht werden.

Optimierungsproblem übernommen, so ist auch das ganze Optimierungsproblem
nichtlinear. Dieses kann dann nicht mehr so schnell und zuverlässig gelöst werden
wie ein lineares Optimierungsproblem [2]. Daher verwenden wir Linearisierungs-
techniken wie Interpolation und Substitution, um die nichtlinearen Ausdrücke
umzuformen.

Dazu zählen zunächst einfache Möglichkeiten des Übersetzerbaus wie die
Konstantenfaltung oder das Ausmultiplizieren von Ausdrücken. Bleiben nichtli-
neare Terme zurück, muss man diese durch spezielle mathematische Verfahren
annähern. Die einfachste Möglichkeit ist dabei, die Terme stückchenweise durch
lineare Funktionen zu interpolieren. Position und Anzahl der Stützstellen haben
entscheidenden Einfluss auf die Genauigkeit der Näherung. Aufgrund dieser Ab-
rundungen muss das Ergebnis der Optimierung zum Schluss gegen die Ausgangs-
gleichungen getestet werden. So kann sichergestellt werden, dass das Ergebnis
der Optimierung verwertbar ist.
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5 Zusammenfassung und Ausblick

Dieser Artikel beschreibt eine domänenspezifische Sprache zur Planung optima-
ler Pumpensysteme. Entwickelt wurde die Sprache mit dem Übersetzerbautool
Eli. Oft wiederkehrende Bauteile, wie Pumpen und Rohre, können schnell mit
ihren jeweiligen Eigenschaften beschrieben werden. Die in ihnen geltenden Ver-
hältnisse in Form von Gleichungen und Variablen sind bereits in den Sprachkon-
zepten verankert. Dadurch braucht man bei der Spezifikation einer neuen Pumpe
nur die jeweiligen Anschlüsse und Pumpenkennlinien angeben und kann sie an-
schließend für den Systemaufbau verwenden. Dieser funktioniert ähnlich einer
Programmiersprache, indem Komponenten deklariert werden können. Anschlie-
ßend kann man diese miteinander verbinden, um ein Pumpensystem aufzubauen.

Dabei geschehen ständig Prüfungen durch die syntaktische und semantische
Analyse. Darunter fallen Abfragen, welche Komponenten mit ihren Anschlüssen
überhaupt verbunden werden können und welche Variablen innerhalb einer Kom-
ponente bekannt sind. Eine besondere semantische Analyse stellt hier die Vor-
abprüfung des zu erstellenden Optimierungsproblems dar. Hierbei können Me-
thoden des Übersetzerbaus und der Programmanalyse verwendet werden. Dabei
werden die Grenzen des Flüssigkeitsflusses der Anlage iterativ ausgelotet. Die
Analyse bringt den Vorteil, dass für den Nutzer lesbare Fehlermeldungen erzeugt
werden können. Würde das Optimierungsproblem direkt von einem LP-Solver
bearbeitet werden, dann würde man für nicht lösbare Instanzen kaum Informa-
tionen erhalten und wenn dann nur über generierte Variable und Gleichungen.

Bei den auftretenden Linearisierungen für die Kennlinien und nichtlinea-
ren Ausdrücke entstehen Rundungsfehler. Daher wird zusätzlich zum Optimie-
rungsmodell auch ein Simulationsmodell erstellt, welches das modellierte System
überprüfen soll. In der Simulation werden dann die optimierten Parameter ein-
gestellt und die auftretenden Drücke und Durchflüsse getestet. Sollten hier zu
große Abweichungen auftreten, muss die Optimierung mit genaueren Linearisie-
rungen wiederholt werden.

Die Sprache wird demnächst um neue Eingabemethoden von Kennlinien er-
weitert. Diese können dann z. B. aus CSV-Dateien geladen werden, was zu einer
erhöhten Übersicht der zu schreibenden Dateien führt. Auch ist es vorstellbar,
die Kennlinien direkt als Funktion anzugeben und Stützstellen selbst zu bestim-
men. Dadurch lassen sich dann auch theoretische oder noch konstruierte Pumpen
ohne konkrete Messwerte simulieren und analysieren.

In weiteren Schritten sollen dann die Pumpen detaillierter modelliert wer-
den. Diese bestehen dann aus mehreren Bauteilen, wie Frequenzumrichter und
Motor, welche zusätzliche Einstellungsparameter ermöglichen. Dadurch ist eine
weiterführende Optimierung möglich. Auch andere Bauteile erhalten zusätzliche
Parameter, wie z. B. die Beschaffenheit des Rohres, welche Einfluss auf den dar-
in geltenden Druckabfall nimmt. Vorgefertigte Komponenten, wie z. B. spezielle
Pumpen, werden durch Bibliotheken modularisiert zugreifbar gemacht.
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[1] Johan Åkesson u. a.
”
Modeling and optimization with Optimica and JMo-

delica. Languages and tools for solving large-scale dynamic optimization
problems“. In: Computers & Chemical Engineering 34.11 (2010), S. 1737–
1749.

[2] Pietro Belotti u. a.
”
Mixed-integer nonlinear optimization“. In: Acta Nu-

merica 22 (2013), S. 1–131.
[3] Christian Berg und Wolf Zimmermann.

”
Evaluierung von Möglichkeiten
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Abstract. The semantics and the recursive execution model of Prolog
make it very natural to express language interpreters in form of AST
(Abstract Syntax Tree) interpreters where the execution follows the tree
representation of a program. An alternative implementation technique is
that of bytecode interpreters. These interpreters transform the program
into a compact and linear representation before evaluating it and are
generally considered to be faster and to make better use of resources.
In this paper, we discuss different ways to express the control flow of
interpreters in Prolog and present several implementations of AST and
bytecode interpreters.
On a simple language designed for this purpose, we evaluate whether
techniques best known from imperative languages are applicable in Prolog
and how well they perform. Our ultimate goal is to assess which interpreter
design in Prolog is the most efficient as we intend to apply these results
to a more complex language. However, we believe the analysis in this
paper to be of more general interest.

1 Introduction

Writing simple language interpreters in Prolog is pretty straightforward. The data
structures and language semantics are a natural match to the evaluatation of
programs, in particular if those are represented as trees. Selecting which predicate
to execute in order to evaluate a part of a program is done by unifying the part
of the program to be executed next with the set of rules in Prolog’s database that
implement the language semantics. Subsequent execution steps can be chosen
using logic variables that are bound to substructures of the matched node.

Although this approach to interpreter construction is a natural match to
Prolog, the question remains if it is the most efficient way to implement the
instruction dispatching logic for any language implemented in Prolog. In par-
ticular, we have developed such an interpreter [4] for the full B language and
wanted to evaluate the potential for improving its performance, by using alternate
implementation techniques.

Interpreters implemented in imperative languages, especially low-level lan-
guages, often make use of alternative techniques for implementing the dispatching
logic, taking advantage of available data structures and programming paradigms
that might be available in higher-level languages.

In this article, we try to explore if some of these techniques can be implemented
in Prolog or applied in interaction with a Prolog runtime with the goal to assess
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if the instruction dispatching for language interpreters can be made faster while
keeping the language semantics in Prolog.

In order to examine the performance of different dispatching models in Prolog,
we have defined a simple imperative language named Acol, which is described
in section 2. For Acol we have created several implementations described in
section 3, that use different paradigms for the dispatching logic. Finally, in
section 4, we present a set of benchmarks written in Acol used to evaluate the
implemented interpreters when running on SICStus and SWI Prolog.

2 A Simple Language

As a means to evaluate the different interpreter designs described in section 3,
we have defined a very simple and limited language named Acol1.

Acol is an imperative language consisting of three kinds of statements: while-
loops, if-then-else statements and variable assignments. The only supported value
type is integer. Furthermore, Acol offers a few arithmetic operators (addition,
subtraction, multiplication and modulo), comparisons (less than (or equal to),
greater than (or equal to) and equals), as well as a boolean not operator.

A simple Acol program is shown in fig. 1.

# the initial environment (i.e. input):
# base = 2
# exponent = 5

# the program
val = 1;
while exponent > 0 {

val = val * base;
exponent = exponent - 1;

}

Fig. 1: A small program

3 Interpreter Implementations

There are many ways to implement Acol, in C as well as in Prolog. Considering
several different interpreter implementation techniques, in this section we will
describe possible designs of interpreters and the closely related representations of
the Acol programs. The interpreters are based on either traversing the abstract
syntax tree representation of a program or on compiling the program to bytecode
first and evaluating this more compact representation instead.

All interpreters share the same implementation of the language semantics
exposed by an object-space API [5]. In order to keep the implementations

1 Acol is not a backronym for Acol is a computable language
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simple and compatible, they all call into the same object space. Nonetheless, the
interpreters differ very much in the representation of the program and, hence, in
the process of dispatching.

In order to discuss the differences, we will translate a small example program
shown in fig. 1 into the different representations and show an excerpt of the
interpretation logic for each paradigm. In fig. 2, the AST for the example program
is depicted.

Program

assign

id: val

int: 1

while gt
int: 0

id: 
exponent

Statements

Statements assign

id: val

mul

id: val

id: base

assign id:
exponent

sub
id: 

exponent

int: 1

Fig. 2: AST

3.1 AST Interpreter

The most natural way to implement an interpreter in Prolog is in form of an
AST-interpreter since it synergises very well with its execution model.

The data structure used for this interpreter is the tree representation of the
program as generated by the parser, the AST (abstract syntax tree). In Prolog,
the AST can be represented as a single term as shown in fig. 3. The program
itself is a Prolog list of statements. However, every statement is represented as its
own tree. Block statements, i.e. if and while, will contain a list of statements
themselves.

[assign(id(val), int(1)),
while(gt(id(exponent), int(0)),

[assign(id(val), mul(id(val), id(base))),
assign(id(exponent), sub(id(exponent), int(1)))])]

Fig. 3: Prolog representation of the AST

556



ast_int([], Env, _Objspace, Env).
ast_int([H|T], EnvIn, Objspace, EnvOut) :-

ast_int(H, EnvIn, Objspace, Env), ast_int(T, Env, Objspace, EnvOut).
ast_int(if(Cond, Then, Else), EnvIn, Objspace, EnvOut) :-

eval(Cond, EnvIn, Objspace, X),
(X == true -> ast_int(Then, EnvIn, Objspace, EnvOut)

; ast_int(Else, EnvIn, Objspace, EnvOut)).
ast_int(assign(id(Var), Expr), EnvIn, Objspace, EnvOut) :-

eval(Expr, EnvIn, Objspace, Res), Objspace:store(EnvIn, Var, Res, EnvOut).
ast_int(while(Cond, Instr, _Invariant, _Variant), EnvIn, Objspace, EnvOut) :-

ast_while(Cond, Instr, EnvIn, Objspace, EnvOut).

Fig. 4: Dispatching in a Prolog AST interpreter

The AST interpreter will examine the first element of the list, execute this
statement and continue with the rest of the list, as can be seen in fig. 4. Every
tree encountered this way is evaluated recursively.

Choosing the implementation for each node in the tree is done by unifying
the current root node with the set of evaluation rules. This approach benefits
from the first argument indexing [7] optimisation done by most Prolog systems.

3.2 Bytecode Interpreters

We have defined a simple set of bytecodes, described below, as a compilation
target for Acol programs. Based on these instructions we will introduce a series
of bytecode-interpreters that explore different implementation approaches in
Prolog and C.

As many bytecode interpreters for other languages, ours are stack-based. Some
opcodes may create or load objects and store them on the evaluation stack, e.g.
push or load. Yet others may in turn consume objects from the stack and create
a new one in return, e.g. add. Lastly, a single opcode is used to manipulate the
environment, i.e. assign. An exhaustive list is shown in table 1.

Imperative Bytecode Interpreter Usually, bytecode interpreters are written
in imperative languages, that are rather low-level, e.g. C, that allow more control
about how objects are laid out in memory and provide fine grained control over
the flow of execution.

To introduce the concept of a bytecode interpreter, we present an implemen-
tation of Acol beyond Prolog, that is purely written in C.

The bytecode is stored as a block of memory, that can be interpreted as an
array of bytes. The index of this array that should be interpreted next is called
the program counter. After that opcode is executed, the program counter is
incremented by one plus the size of its arguments. However, it may be set to an
arbitrary index by opcodes implementing jumps. Integer arguments are encoded
in reverse byte order. An example for a bytecode based on the program above is
shown in fig. 5.
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# Name Arguments Semantics

10 jump 4 bytes encoded PC jumps to new PC

11 jump-if-false 4 bytes encoded PC jumps to new PC if top element is falsey

12 jump-if-true 4 bytes encoded PC jumps to new PC if top element is truthy

20 push1 1 byte encoded integer push the argument on the stack

21 push4 4 bytes encoded integer push the argument on the stack

40 load 4 bytes encoded variable ID push variable on the stack

45 assign 4 bytes encoded variable ID store top of the stack in variable

197 mod - pop operands, push result of operation

198 mul - pop operands, push result of operation

199 sub - pop operands, push result of operation

200 add - pop operands, push result of operation

240 not - pop operand, push negation

251 eq - pop operands, push result of comparison

252 le - pop operands, push result of comparison

253 lt - pop operands, push result of comparison

254 ge - pop operands, push result of comparison

255 gt - pop operands, push result of comparison

Table 1: A bytecode for the described language

unsigned
char bc[] = {20, 1, // push integer 1 on the stack

45, 2, 0, 0, 0, // store it in variable at index 2
// (i.e. val)

40, 1, 0, 0, 0, // load the variable at index 1
// (i.e. exponent)

20, 0, // push 0
255, // greater than
11, 54, 0, 0, 0, // jump behind loop

// if condition is falsey
40, 2, 0, 0, 0, // load val
40, 0, 0, 0, 0, // load base
198, // mul
45, 2, 0, 0, 0, // store val
40, 1, 0, 0, 0, // load exponent
20, 1, // push 1
199, // sub
45, 1, 0, 0, 0, // store exponent
10, 7, 0, 0, 0, // jump to beginning of loop
0} // terminate

Fig. 5: Example bytecode in C
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while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bc[pc]) {

case JUMP:
pc = decode_arg4(arg); break;

case LOAD:
index = decode_arg4(arg);
push(stack, env[index]);
pc += 5; break;

case ASSIGN:
env[arg] = pop(stack);
pc += 5; break;

case ADD:
b = pop(stack);
a = pop(stack);
push(stack, add(a, b));
pc++; break;

// ... many further cases
}

}

Fig. 6: Dispatching logic in C

while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bc[pc]) {

case JUMP:
pc = decode_arg4(arg); break;

case LOAD:
index = decode_arg4(arg)
push(stack, env[index]);
pc += 5; break;

case ASSIGN:
index = decode_arg4(arg);
PL_put_term(env[index], pop(s));
pc += 5; break;

case ADD:
arg1 = PL_new_term_refs(3);
arg2 = arg1 + 1;
var = arg1 + 2;
PL_put_term(arg2, pop(s));
PL_put_term(arg1, pop(s));
PL_call_predicate(NULL,

PL_Q_NORMAL,
predicate_add,
arg1);

push(s, var);
pc++; break;

// ... many further cases
}

}

Fig. 7: Dispatching logic using SWI’s
C-Interface

The dispatching logic is implemented as a switch-statement, that is contained
in a loop. An excerpt of the implementation of our bytecode-interpreter in C is
shown in fig. 6. Every case block contains an implementation of that specific
opcode. After the opcode is executed, the program counter is advanced or reset
and the next iteration of the main loop is commenced.

C-Interfaces We made the digression into an interpreter written in C not only
to present the concept of bytecode interpreters. Instead, we can utilise the same
dispatching logic, but instead of calling an object space that is implemented
in C, we can use the C interfaces provided by the Prolog runtimes we consider
(SICStus and SWI) to call arbitrary Prolog predicates. This way, we can query
the aforementioned object space that contains the semantics of Acol, but is
implemented in Prolog. An excerpt when using the C interface of SWI Prolog is
shown in fig. 7.

Then, the main loop dispatches in C, but the objects on the evaluation stack
are created and the operations are executed by Prolog predicates.

Prolog Facts The main issue with bytecode interpreters in Prolog is to efficiently
implement jumps to other parts of the bytecode. With an interpreter in C, all we
have to do is re-assigning the program counter variable. Prolog, however, does
not offer arrays with constant-time indexing.
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The idiomatic way to simulate an array would be to use a Prolog list, but
on this data structure we can perform lookups only in O(n). However, there are
other representations of the program that allow jumping to another position
faster.

One way to express such a lookup in O(1) is to transform the bytecode into
Prolog terms bytecode(ProgramCounter, Instruction, Arguments). Those
terms are written into a seperate Prolog module that is loaded afterwards. The
first argument indexing optimisation then allows performing lookups in constant
time.

In contrast to an interpreter written in C, it does not perform well to encode
integer arguments into reverse byte-order arguments. Instead, we use the Prolog
primitives, i.e. integers for values and atoms for variable identifiers.

bytecode(0, 20, 1).
bytecode(2, 45, val).
bytecode(7, 40, exponent).
bytecode(12, 20, 0).
bytecode(14, 255, []).
bytecode(15, 11, 55).
bytecode(20, 40, val).
bytecode(25, 40, base).
bytecode(30, 198, []).
bytecode(31, 45, val).
bytecode(36, 40, exponent).
bytecode(41, 20, 1).
bytecode(43, 199, []).
bytecode(44, 45, exponent).
bytecode(49, 10, 7).
bytecode(54, 0, []).

Fig. 8: Bytecode as Prolog facts

Figure 8 shows a module that is generated from the bytecode. The interpreter
fetches the instruction located at the current program counter, executes it and
increments the program counter accordingly. This is repeated until it encounters
a special zero instruction that denotes the end of the bytecode.

The dispatching mechanism is shown in fig. 9. Similar to an interpreter in C,
every opcode has an implementation in Prolog that calls into the object space.
Any rule of fact int is equivalent to a case statement in C.

Sub-Bytecodes Another design is based on the idea that a program is executed
block-wise, i.e. a series of instructions that is guarenteed to be executed in this
specific order. This is very simple since Acol does not include a goto-statement
that allows arbitrary jumps. From a programmer’s point of view, blocks are the
body of while-loops or those of if-then-else statements.

Instead of linearising the entire bytecode, only a block is linearised at once.
In order to deal with blocks that are contained by another block (e.g. nested
loops), two special opcodes are added. They are used to suspend the execution
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fact_int(PC, Objspace, Env, Stack, REnv) :-
generated:bc(PC, Instr, Args), % fetch the instruction
fact_int(Instr, Args, PC, Stack, Env, Objspace, REnv).

fact_int(200, _Args, PC, [Y, X|Stack], Env, Objspace, REnv) :-
Objspace:add(X, Y, Res), NewPC is PC + 1,
fact_int(NewPC, Objspace, Env, [Res|Stack], REnv).

% fact_int also has implementations of all the other bytecodes...

Fig. 9: Dispatching in the facts-based interpreter

of the current block and look up the sub-bytecodes of the contained blocks that
are referenced via its arguments. After those sub-bytecodes are executed, the
execution of the previous bytecode is resumed.

The special if-opcode references the blocks of the corresponding then- and
else- branches. After the condition is evaluated, only the required block is looked
up and executed. The other special opcode for while-loops references the bytecode
of the condition that is expected to leave true or false on the stack, as well as the
body of the loop. The blocks corresponding to condition and body are evaluated
in turn until the condition does not hold any more, so the execution of its parent
block can continue.

Similar to the facts in the interpreter above, the sub-bytecodes are asserted
into their own module to allow fast lookups.

Figure 10 shows an example that includes the special opcode for the while-
statement.

[20, 1, 45, val, % val = 1
2, 0, 1] % while (condition encoded in sub-bytecode 0,

% body encoded in sub-bytecode 1)

% Sub-bytecodes
sbc(0, [40, exponent, 20, 0, 255]).
sbc(1, [40, val, 40, base, 198, 45, val, 40, exponent, 20, 1, 199]).

Fig. 10: Bytecode with sub-bytecodes

Figure 11 shows an excerpt of the dispatching logic used for this interpreter.
The recursion in bc int2 will update the bytecode-list with its tail instead of
manipulating a program counter. Hence, in this implementation, the interpreter
can only move forward inside of a block. If it is required to move backwards in
the program, it is only possible to re-start at the beginning of a block.

3.3 Rational Trees

Based on [1], we have created implementations of an AST- and a bytecode-
interpreter for Acol that use the idea of rational trees to represent the program
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bc_int([], Env, Stack, _Objspace, Env, Stack).
bc_int([H|R], Env, Stack, Objspace, REnv, RStack) :-

bc_int2(H,R, Env, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of an if-statement
bc_int2(1, [T, E|R], Env, [Cond|Stack], Objspace, REnv, RStack) :-

(Cond == true -> subbytecodes:sbc(T, Then),
h_bc_int(Then, [], Env, Objspace, TEnv)

; subbytecodes:sbc(E, Else),
h_bc_int(Else, [], Env, Objspace, TEnv)),!,

bc_int(R, TEnv, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of a while-loop
bc_int2(2, [C, I|R], Env, Stack, Objspace, REnv, RStack) :-

subbytecodes:sbc(C, Cond),
bc_int(Cond, Env, [], Objspace, Env, [Res]),
(Res == true -> subbytecodes:sbc(I, Instr),

h_bc_int(Instr, [], Env, Objspace, T),!,
bc_int2(2, [C, I|R], T, Stack, Objspace, REnv, RStack)

; !, bc_int(R, Env, Stack, Objspace, REnv, RStack)).

bc_int2(200, R, Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res),!,
bc_int(R, Env, [Res|Stack], Objspace, REnv, RStack).

% bc_int2 also has implementations of all the other bytecodes...

Fig. 11: Dispatching on bytecodes with sub-bytecodes

being evaluated. This technique aims to improve the performance of jumps by
using recursive data structures containing references to the following instructions.

AST-Interpreter with Rational Trees Since Acol does not include a con-
cept of arbitrary jumps as used in [1], it is not possible to achieve the speed-up
described in the referenced paper. However, we can make use of the basic idea
for the representation of programs: every statement has a pointer to its successor
statement.

In our naive AST interpreter, a new Prolog stack frame is used for every level
of nested loops and if-statements. Instead of returning from each evaluation to
the predicate that dispatched to the sub-statement, we can make use of Prolog’s
tail-recursion optimisation and continue with the next statements directly.

assign(id(val), int(1),
while(gt(id(exponent), int(0)),

assign(id(val), mul(id(val), id(base)),
assign(id(exponent), sub(id(exponent), int(1)),

while(gt(id(exponent), int(0)),
...)))

end))

Fig. 12: Rational tree representation

For our example program, we generate an infinite data structure for the
while-loop depicted in fig. 12. The concept of rational trees allows us to have the
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while-term re-appearing in its own body, so it has not to be saved in a stack
frame.

The last statement end is artificially added to indicate the end of the program
so that the interpreter may halt.

Then, the dispatching logic is still very similar to the naive AST interpreter
as shown in fig. 13.

rt_int(end, Env, _, Env) :- !.
rt_int(assign(id(Var), Expr, Next), Env, Objspace, REnv) :-

eval(Expr, Env, Objspace, Res),
Objspace:store(Env, Var, Res, EnvOut), !,
rt_int(Next, EnvOut, Objspace, REnv).

rt_int(if(Cond, Then, Else), Env, Objspace, REnv) :-
eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Then, Env, Objspace, REnv)

; !, rt_int(Else, Env, Objspace, REnv)).
rt_int(while(Cond, Instrs, Else), Env, Objspace, REnv) :-

eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Instrs, Env, Objspace, REnv)

; !, rt_int(Else, Env, Objspace, REnv)).

Fig. 13: Dispatching in a rational tree interpreter

Bytecode-Interpreter With Rational Trees In Prolog, Rational trees can
also be used for bytecodes. Jumps are removed from that representation entirely.
While-loops are unrolled into an infinite amount of alternated bytecodes of the
condition and if-statements that contain the body of the loop in their then-branch
and the next statement after the loop in their else-branch. An example is shown
in fig. 14.

At first glance, it looks weird that the opcode integers are replaced by human-
readable descriptions. However, functors are limited to atoms and then there is
not much difference between atoms that contain only a number or short readable
names. We chose the latter one because they are by far more comprehensible.

push(1, assign(val, % code before the loop
load(exponent, push(0, gt( % condition (1)

if(load(val, load(base, mul(store(val, % while-body (1)
load(exponent, push(1, sub(store(exponent, % while-body (1)

load(exponent, push(0, gt( % condition (2)
if(load(val, load(base(, ....))), % while-body (2)

end)))))))))))) % end of while (2)
end)))))) % end of while (1)

Fig. 14: Bytecode with rational trees
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rt_bc_int(end, Env, Stack, _Objspace, Env, Stack).
rt_bc_int(if(Then, Else), Env, [X|Stack], Objspace, REnv, RStack) :-

(X == true -> !, rt_bc_int(Then, Env, Stack, Objspace, REnv, RStack)
; !, rt_bc_int(Else, Env, Stack, Objspace, REnv, RStack)).

rt_bc_int(push(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:create_integer(Arg, Val),!,
rt_bc_int(Next, Env, [Val|Stack], Objspace, REnv, RStack).

rt_bc_int(load(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:lookup(Arg, Env, Val), !,
rt_bc_int(Next, Env, [Val|Stack], Objspace, REnv, RStack).

rt_bc_int(add(Next), Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res), !,
rt_bc_int(Next, Env, [Res|Stack], Objspace, REnv, RStack).

% rt_bc_int implements all other opcodes as well...

Fig. 15: Dispatching in a bytecode interpreter with rational trees

The dispatching is pretty similar to the AST interpreter that utilises rational
trees, as shown in fig. 15. The main difference between those two interpreters is
that this one uses a simulated stack to evaluate terms instead of Prolog’s call
stack.

4 Evaluation

To compare the performance of the different interpreters for Acol, we selected a
set of different benchmarks. Because the language is very limited, it is hard to
design ”real-world programs”.

In this section, we present those benchmarks and compare their results. Each
program was executed with every interpreter ten times. The runtime consists
only of the time spent in the interpreter, the compilation time is excluded.

The benchmarks were run on a machine that runs a linux with a 3.19.0-25-
generic 64-bit kernel on an Intel i5-2400 CPU @ 3.10GHz. Two Prolog implemen-
tations were considered: SICStus Prolog 4.3.2, a commercial product, and SWI
Prolog 7.2.2, a free open-source implementation. All C code was compiled by gcc
4.9.2. with the -O3-flag.

Since Acol does not offer complex features, we expect that the dispatching
claims a bigger share of the runtime than the actual operations.

4.1 Benchmarks

Prime Tester The first benchmark is a naive prime tester. The program is
depicted in fig. 16. The environment was pre-initialised with is prime := 1,
start := 2, and V := 34 265 341.

Fibonacci Another benchmark is the calculation of the fibonacci sequence. How-
ever, we expect that most of the execution time will consist of the addition and
subtraction of two big numbers and that the interpreter overhead itself is rather
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while (start < V) {
if (V mod start == 0) {

is_prime := 0;
} else {

is_prime := is_prime;
}
start := start + 1;

}

Fig. 16: Prime Tester Program

i := 1; i := 1;
while i < n { while i < n {

b := b + a; b := b + a mod 1000000;
a := b - a; a := b - a mod 1000000;
i := i + 1; i := i + 1;

} }

Fig. 17: Fibonacci Programs

small. Therefore, a second version that calculates the sequence modulo 1 000 000
is included.

Again, the environment is pre-initialised, in this case with a := 0, b := 1 and
n := 400 000. To ensure a significant runtime for the second version, the input is
modified so it calculates a longer sequence, i.e. n := 10 000 000.

Generated ASTs Lastly, some programs were generated pseudo-randomly. Such
a generated AST consists of 20 to 50 statements that are uniformly chosen
from while-loops, if-statements and assignments. The body of a loop and both
branches of if-statements also consist of 20 to 50 statements. However, if the
nesting exceeds a certain depth, only assignments are generated for this block.

In order to guarentee termination, while-loops are always executed 20 times.
An assignment is artifically inserted before the loop that resets a loop counter,
as well as another assignment that increments this variable at the beginning of
the loop.

For assignments and if-conditions, a small subtree is generated. The generator
chooses uniformly between five predetermined identifiers, constants ranging from
-1 to 3, as well as additions and subtractions. If-conditions have to include exactly
one comparison operator.

The generator does include neither multiplications, because they caused very
large integers that slowed down the Prolog execution time significantly, nor
modulo operations, to avoid division by zero errors.

Three different benchmarks were generated using arbitrary seeds. Their
purpose is to complement the other three handwritten benchmarks, which are
rather small and might benefit from caching of the entire AST.
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Benchmark Interpreter SICSTus SWI

Prime Tester

AST 66.46 ± 0.32 (1.00) 438.05 ± 6.32 (1.00)

Sub-Bytecodes 85.11 ± 0.45 (1.28) 565.73 ± 27.28 (1.29)

Facts 96.77 ± 1.82 (1.46) 537.64 ± 18.03 (1.23)

C-Interface 183.58 ± 2.85 (2.76) 82.11 ± 1.77 (0.19)

AST w/ Rational Trees 67.21 ± 0.64 (1.01) 426.76 ± 20.79 (0.97)

BC w/ Rational Trees 78.32 ± 0.86 (1.18) 464.41 ± 23.69 (1.06)

Fibonacci

AST 9.99 ± 0.20 (1.00) 10.49 ± 0.32 (1.00)

Sub-Bytecodes 10.11 ± 0.05 (1.01) 11.91 ± 0.26 (1.14)

Facts 10.47 ± 0.07 (1.05) 11.63 ± 0.35 (1.11)

C-Interface 10.57 ± 0.07 (1.06) 3.86 ± 0.05 (0.37)

AST w/ Rational Trees 10.16 ± 0.10 (1.02) 10.39 ± 0.27 (0.99)

BC w/ Rational Trees 10.11 ± 0.06 (1.01) 10.72 ± 0.32 (1.02)

Fibonacci (Maxint)

AST 27.86 ± 0.52 (1.00) 191.46 ± 2.87 (1.00)

Sub-Bytecodes 35.10 ± 0.31 (1.26) 231.86 ± 10.55 (1.21)

Facts 41.42 ± 2.08 (1.49) 227.26 ± 9.98 (1.19)

C-Interface 61.63 ± 1.45 (2.21) 32.19 ± 0.72 (0.17)

AST w/ Rational Trees 28.62 ± 0.88 (1.03) 187.49 ± 7.31 (0.98)

BC w/ Rational Trees 33.23 ± 1.01 (1.19) 200.34 ± 5.38 (1.05)

Generated

AST 16.53 ± 0.02 (1.00) 131.51 ± 3.86 (1.00)

Sub-Bytecodes 24.89 ± 0.19 (1.51) 144.96 ± 2.86 (1.10)

Facts 26.00 ± 0.93 (1.57) 140.42 ± 3.19 (1.07)

C-Interface NA 15.06 ± 0.29 (0.11)

AST w/ Rational Trees 16.88 ± 0.04 (1.02) 129.03 ± 5.29 (0.98)

BC w/ Rational Trees 20.41 ± 0.10 (1.23) 139.36 ± 6.72 (1.06)

Generated2

AST 24.31 ± 0.12 (1.00) 199.75 ± 5.85 (1.00)

Sub-Bytecodes 37.26 ± 0.30 (1.53) 211.67 ± 5.09 (1.06)

Facts 38.45 ± 1.36 (1.58) 204.97 ± 7.27 (1.03)

C-Interface NA 22.65 ± 0.72 (0.11)

AST w/ Rational Trees 25.02 ± 0.06 (1.03) 193.39 ± 5.42 (0.97)

BC w/ Rational Trees 30.20 ± 0.09 (1.24) 220.79 ± 7.53 (1.11)

Generated3

AST 15.98 ± 0.04 (1.00) 124.97 ± 3.00 (1.00)

Sub-Bytecodes 24.14 ± 0.23 (1.51) 136.97 ± 3.92 (1.10)

Facts 27.93 ± 0.95 (1.75) 133.31 ± 4.39 (1.07)

C-Interface NA 14.47 ± 0.43 (0.12)

AST w/ Rational Trees 16.04 ± 0.03 (1.00) 121.68 ± 3.85 (0.97)

BC w/ Rational Trees 19.43 ± 0.08 (1.22) 128.45 ± 3.90 (1.03)

Table 2: Mean runtimes in seconds including the 0.95 confidence interval. The value
in parenthesis describes the normalised runtime (on the basis of the AST interpreter).
Fastest runtimes per benchmark and interpreter are highlighted.
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Fig. 19: Relative runtimes in SWI, normalised to the runtime of the AST interpreter

4.2 Results

The results of the benchmarks are shown in table 2. The mean value is determined
by the geometric mean as proposed by [2]. For the interpreter based on SICStus’
C-Interface, we cancelled the runs of the generated benchmarks after eight hours
without a result.

The most important result is that using either Prolog implementation, the
naive AST interpreter outperforms all of our pure Prolog implementations of
bytecode interpreters.

Figure 18 shows the results specific for SICStus Prolog. Independent of the
benchmark, all bytecode interpreters based on sub-bytecodes and on Prolog facts
are slow in comparison. The AST interpreter utilising rational trees performs
about as well as the naive AST interpreter. Surprisingly, the interpreter that
dispatches in C suffers heavy performance issues. At the time of writing, we do
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not understand the reasons but are in contact with the SICStus support to clarify
this behaviour.

The results utilising SWI Prolog are shown in fig. 19. In comparison to any
bytecode-interpreter, the AST interpreter is faster. The AST interpreter with
rational trees seems to be slightly more performant. However, the difference is
small enough to be included in the uncertainty of measurement. The dispatching
in C, however, is very fast. Depending on the benchmark, it can achieve a speed-up
by an order of magnitude.

5 Conclusion, Related and Future Work

In this paper, we presented the language Acol and multiple ways to implement
it as AST as well as bytecode interpreters. We designed several benchmarks in
order to evaluate their performance using different implementations of Prolog.

Our results suggest that if an interpreter is to be implemented in Prolog,
the implementation as an AST interpreter is very performant. Furthermore, it
does not involve any compilation overhead as it can work on the data structure
returned by the parser. Moreover, when using SWI Prolog, one can utilise C to
efficiently implement the dispatching and query Prolog predicates for the domain
logic.

In [6], Rossi and Sivalingam explored dispatching techniques in C based
bytecode interpreters, with the result that a less portable approach of composing
the code in memory before executing it yielded the best results. The techniques
discussed in [6] could be used in combination with SWI to further improve the
instruction dispatching performance in C.

An alternative for improving the execution time of a program, that was not
discussed here, is partial evaluation [3]. We intend to investigate the impact of
offline partial evaluation when compiling a subset of the described interpreters
for our benchmarks.

However, Acol is a very simple language. Additional work is required to
determine whether these findings are applicable for more complex languages.
Furthermore, a richer language facilitates the creation of more benchmarks.
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Time-predictable Computer Architecture to
Simplify Worst-Case Execution Time Analysis

Martin Schoeberl

Technical University of Denmark

Abstract. Standard processors are optimized for performing best in
the average case. Out-of-order pipelines, speculation, and several levels
of caches are example features that improve average case execution time.
However, for real-time systems we are interested in the worst-case exe-
cution time (WCET). And exactly those features that improve average
case performance are problematic for the WCET. They may increase the
WCET and they may be hard, or even impossible, to model for WCET
analysis. In this paper we present a new line of computer architecture
research where the main optimization point is for the WCET and espe-
cially to simplify WCET analysis.
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E.V.A. - Electronic Visual Analysis:
High-Performance Computing in a

Heterogeneous Environment

Dietmar Schreiner

Vienna University of Technology

Abstract. Criminal investigators dealing with matters of child pornog-
raphy are facing steadily increasing numbers of multimedia files to be
examined. In Austria, the overall number of files per year has already
exceeded 25 million. Seizure with several hundreds of thousand pictures
and videos per case are no longer unusual but have become normal. All
those files not only have to be forensically classified, but have to be
linked to each other in order to convict serial perpetrators by extract-
ing cross-case evidence. Project E.V.A. aims at developing a computer
aided methodology that simplifies the actual work of criminal investiga-
tors and provides support for complex cross-case investigations. Taking
the huge actual number of media files under investigation into account,
it becomes obvious that computing time and energy consumption will
become a serious bottleneck for a computer aided investigative method-
ology. Hence, the key research issues of our project not only cope with
algorithms of computer vision and machine learning but also with their
high performance implementation on various computing platforms like
multi-core CPUs, GPUs, and FPGAs.
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Transactional Tries?
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Abstract Software Transactional Memory (STM) immensely simplifies
concurrent programming by allowing memory operations to be grouped
together into atomic blocks. But a common problem with STM is con-
tention. Many standard data structures, when used in a transactional set-
ting, cause unreasonably high numbers of conflicts. I present a contention-
free STM data structure for Haskell: the transactional trie. It is based
on the lock-free concurrent trie, but lifted into an STM context. It uses
well-considered local side-effects to eliminate unnecessary conflicts while
preserving transactional safety.

1 Introduction

It is a widely held opinion that concurrent programming is difficult and error-
prone. Low-level synchronization mechanisms, such as locks, are notoriously
tricky to get right. Deadlocks, livelocks, heisenbugs and other issues encoun-
tered when writing complex concurrent systems are usually hard to track down
and often confound even experienced programmers.

To simplify concurrent programming, higher-level abstractions are needed.
One such abstraction is Software Transactional Memory (STM). Briefly, this
technique allows the programmer to group multiple memory operations into a
single atomic block, not unlike a database transaction. When implemented in a
high-level language such as Haskell, with its emphasis on purity and its strong
static type system, STM becomes especially powerful.

The fundamental data type of STM is the transactional variable. A TVar
stores arbitrary data, to be accessed and modified in a thread-safe manner. For
example, I might define a bank account as

type Euro = Int
type Account = TVar Euro

and then use a function like

transfer :: Account→ Account→ Euro→ STM ()

to safely — in the transactional sense — move money between accounts.

? This report is an abridged version of chapter 3 of my master’s thesis [10].
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But where do those accounts come from? If I am a bank, how do I repre-
sent the whole collection of accounts I manage, in a way that is transactionally
safe? The obvious solution, and a common pattern, is to simply use an existing
container type and put that type into a TVar:

type IBAN = String
type Bank = TVar (Map IBAN Account)

Since looking up an account from the Map involves a readTVar operation, the
Map is entangled with the transaction, and I can be sure that when transferring
money between accounts, both accounts actually exist in the bank at the time
when the transaction commits.

The drawback of this pattern of simply wrapping a Map inside a TVar is
that when adding or removing elements of the Map, one has to replace the
Map inside the TVar wholesale. Thus all concurrently running transactions that
have accessed the Map become invalid and will have to restart once they try
to commit. Depending on the exact access patterns, this can be a serious cause
of contention. For example, one benchmark running on a 16-core machine, with
16 threads each trying to commit a slice out of 200 000 randomly generated
transactions, resulted in over 1.3 million retries. That is some serious overhead!

The underlying problem is that the whole Map is made transactional, when
we only ever care about the subset of the Map that is relevant to the current
transaction. If transaction A updates an element with key k1 and transaction
B deletes an element with key k2, then those two transactions only conflict if
k1 = k2; if k1 and k2 are different, then there is no reason for either of the
transactions to wait for the other one. But the Map does not know it is part of
a transaction, and the TVar does not know nor care about the structure of its
contents. And so the transactional net is cast too wide.

The solution is to not simply put a Map, or any other ready-made container
type, into a TVar, but to design data structures specifically tailored to the needs
of transactional concurrency. In this report, I present one such data structure:
the transactional trie.

2 Background: STM in Haskell

Here are the main data types and operations of STM in Haskell:

data STM a
instance Monad STM

atomically :: STM a → IO a

data TVar a
newTVar :: a → STM (TVar a)
readTVar :: TVar a → STM a
writeTVar :: TVar a → a → STM ()

retry :: STM a
orElse :: STM a → STM a → STM a

573



Atomic blocks in Haskell are represented by the STM monad. Inside this
monad, we can freely operate on transactional variables, or TVars. We can read
them, write them and create new ones. When we want to actually perform
an STM computation and make its effects visible to the rest of the world, we
apply atomically to the computation. This function turns an STM block into
a transaction in the IO monad that, when executed, will take place atomically
with respect to all other transactions.

For example, the following code snippet increments a transactional variable
named v :

atomically $ do x ← readTVar v
writeTVar v (x + 1)

The use of atomically guarantees that no other thread can come in between
the reading and writing of the variable. The sequence of operations happens
indivisibly.

An important aspect of Haskell’s STM implementation is that it is fully com-
posable. Smaller transactions can be combined into larger transactions without
having to know how these smaller transactions are implemented. An important
tool to make this possible is the composable blocking operator retry. Conceptu-
ally, retry abandons the current transaction and runs it again from the top. In
the following example, the variable v is decremented, unless it is zero, in which
case the transaction blocks until v is non-zero again:

atomically $ do x ← readTVar v
if x ≡ 0
then retry
else writeTVar v (x − 1)

In addition to retry, there is the orElse combinator, which allows “trying out”
transactions in sequence. m1 ‘orElse‘ m2 first executes m1; if m1 returns, then
orElse returns; but if m1 retries, its effects are discarded and m2 is executed
instead.

STM is also robust against exceptions. The standard functions throw and
catch act as expected: if an exception occurs inside an atomic block and is not
caught, the transaction’s effects are discarded and the exception is propagated.

For more background on Haskell’s STM, including its implementation, see
the original STM papers [3, 2]. For a more thorough exploration of not only STM
but also other Haskell concurrency mechanisms, read Simon Marlow’s excellent
book on that topic [5].

3 Transactional Tries

The transactional trie is based on the concurrent trie of Prokopec, Bagwell,
and Odersky [8], which is a non-blocking concurrent version of the hash array
mapped trie first described by Bagwell [1].
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A hash array mapped trie is a tree whose leaves store key-value bindings and
whose nodes are implemented as arrays. Each array has 2k elements. To look
up a key, you take the initial k bits of the key’s hash as an index into the root
array. If the element at that index is another array node, you continue by using
the next k bits of the hash as an index into that second array. If that element is
another array, you again use the next k bits of the hash, and so on. Generally
speaking, to index into an array node at level l, you use the k bits of the hash
beginning at position k ∗ l. This procedure is repeated until either a leaf node is
found or one of the array nodes does not have an entry at the particular index,
in which case the key is not yet present in the trie. The expected depth of the
trie is O(log2k(n)), which means operations have a nice worst-case logarithmic
performance.

Most of the array nodes would only be sparsely populated. To not waste
space, the arrays are actually used in conjunction with a bitmap of length 2k

that encodes which positions in the array are actually filled. If a bit is set in the
bitmap, then the (logical) array contains an element at the corresponding index.
The actual array only has a size equal to the bit count of the bitmap, and after
obtaining a (logical) array index i in the manner described above, it has to be
converted to an index into the sparse array via the formula #((i − 1) ∧ bmp),
where # is a function that counts the number of bits and bmp is the array’s
bitmap. To ensure that the bitmap can be efficiently represented, k is usually
chosen so that 2k equals the size of the native machine word, e.g. on 64-bit
systems k = 6.

The concurrent trie extends the hash trie by adding indirection nodes above
every array node. An indirection node simply points to the array node under-
neath it. Indirection nodes have the property that they stay in the trie even if
the nodes above or below them change. When inserting an element into the trie,
instead of directly modifying an array node, an updated copy of the array node
is created and an atomic compare-and-swap operation on the indirection node is
used to switch out the old array node for the new one. If the compare-and-swap
operation fails, meaning another thread has already modified the array while
we were not looking, the operation is retried from the beginning. This simple
scheme, where indirection nodes act as barriers for concurrent modification, en-
sures that there are no lost updates or race conditions of any kind, while keeping
all operations completely lock-free. A more thorough discussion, including proofs
of linearizability and lock-freedom, can be found in the paper by Prokopec et al.
[8]. A Haskell implementation of the concurrent trie, as a mutable data structure
in IO, is also available [9].

The transactional trie is an attempt to lift the concurrent trie into an STM
context. The idea is to use the lock-freedom of the concurrent trie to make a
non-contentious data structure for STM. This is not entirely straightforward, as
there is a natural tension between the atomic compare-and-swap operations of
the concurrent trie, which are pessimistic and require execution inside the IO
monad, and optimistic transactions as implemented by STM. While it is possi-
ble to simulate compare-and-swap using TVars and retry, this would entangle the
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indirection nodes with the rest of the transaction, which is exactly the opposite
of what we want. To keep the non-blocking nature of the concurrent trie, the
indirection nodes need to be kept independent of the transaction as a whole,
which should only hinge on the actual values stored in the trie’s leaves. If two
transactions were to cross paths at some indirection node, but otherwise con-
cern independent elements of the trie, then neither transaction should have to
retry or block. Side-effecting compare-and-swap operations that run within but
independently of a transaction are the only way to achieve this. Alas, the type
system, with good reason, will not just allow us to mix IO and STM actions,
so we have to circumvent it from time to time using unsafeIOToSTM. We will
need to justify every single use of unsafeIOToSTM and ensure it does not lead
to violations of correctness. Still, bypassing the type system is usually a bad
sign, and indeed we will see that correctness can only be preserved at the cost
of memory efficiency, at least in an STM implementation without finalizers.

4 Implementation

The version of the transactional trie discussed in this report is available on Hack-
age at http://hackage.haskell.org/package/ttrie-0.1.2. The full source
code can also be found at http://github.com/mcschroeder/ttrie.

The module Control.Concurrent.STM.Map1 exports the transactional trie un-
der the following interface:

data Map k v
empty :: STM (Map k v)
insert :: (Eq k ,Hashable k)⇒ k → v → Map k v → STM ()
lookup :: (Eq k ,Hashable k)⇒ k → Map k v → STM (Maybe v)
delete :: (Eq k ,Hashable k)⇒ k → Map k v → STM ()

Now let us implement it. As always, we begin with some types:2

newtype Map k v = Map (INode k v)

type INode k v = IORef (Node k v)

data Node k v = Array !(SparseArray (Branch k v))
| List ![Leaf k v ]

data Branch k v = I !(INode k v)
| L !(Leaf k v)

data Leaf k v = Leaf !k !(TVar (Maybe v))

The transactional trie largely follows the construction of a concurrent trie:

1 The name of the trie’s public data type is Map, instead of, say, TTrie. The more
general name is in keeping with other container libraries and serves to decouple the
interface from the specific implementation based on concurrent tries.

2 The ! operator is a strictness annotation.
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– The INode is the indirection node described in the previous section and is
simply an IORef, which is a mutable variable in IO. To read and write IORefs
atomically, we will use some functions and types from the atomic-primops

package [6]:

data Ticket a
readForCAS :: IORef a → Ticket a
peekTicket :: Ticket a → IO a
casIORef :: IORef a → Ticket a → a → IO (Bool,Ticket a)

The idea of the Ticket type is to encapsulate proof that a thread has observed
a specific value of an IORef. Due to compiler optimizations, it would not be
safe to just use pointer equality to compare values directly.

– A Node is either an Array of Branches or a List of Leafs. The List is used in
case of hash collisions. A couple of convenience functions help us manipulate
such collision lists:

listLookup :: Eq k ⇒ k → [Leaf k v ]→ Maybe (TVar (Maybe v))
listDelete :: Eq k ⇒ k → [Leaf k v ]→ [Leaf k v ]

Their implementations are entirely standard.
The Array is actually a SparseArray, which abstracts away all the bit-fiddling
necessary for navigating the bit-mapped arrays underlying a hash array
mapped trie. Its interface is largely self-explanatory:

data SparseArray a
emptyArray :: SparseArray a
mkSingleton :: Level→ Hash→ a → SparseArray a
mkPair :: Level→ Hash→ a → a → Maybe (SparseArray a)
arrayLookup :: Level→ Hash→ SparseArray a → Maybe a
arrayInsert :: Level→ Hash→ a → SparseArray a → SparseArray a
arrayUpdate :: Level→ Hash→ a → SparseArray a → SparseArray a

I will not go into the implementation of SparseArray. It is fairly low-level and
can be found in the internal Data.SparseArray module of the ttrie package.
Some additional functions are used to manipulate Hashes and Levels. Again,
they are self-explanatory:

type Hash = Word
hash :: Hashable a ⇒ a → Hash

type Level = Int
down :: Level→ Level
up :: Level→ Level
lastLevel :: Level

577



– A Branch either adds another level to the trie by being an INode or it is
simply a single Leaf.

The one big difference to a concurrent trie lies in the definition of the Leaf.
Basically, a Leaf is a key-value mapping. It stores a key k and a value v . But
the way it stores v determines how the trie behaves in a transactional context.
Let us build it step by step:

1. Imagine if Leaf were defined exactly like in a concurrent trie:

data Leaf k v = Leaf !k v

Then an atomic compare-and-swap on an INode to insert a new Leaf would
obviously not be safe during an STM transaction: other transactions could
see the new value v before our transaction commits; and they could replace
v by inserting a new Leaf for the same key, resulting in our insert being lost.

2. We can eliminate lost inserts by wrapping the value in a TVar:

data Leaf k v = Leaf !k !(TVar v)

Now, instead of replacing the whole Leaf to update v , we can use writeTVar
to only modify the value part of the Leaf. If two transactions try to update
the same Leaf, then STM will detect the conflict and one of the transactions
would have to retry.
Of course, if there does not yet exist a Leaf for a specific key, then a new Leaf
will still have to be inserted with a compare-and-swap. In this case it is again
possible for other transactions to read the TVar immediately after the swap,
even though our transaction has not yet committed and may still abort.
This can happen without conflict because the new Leaf contains a newly
allocated TVar and allocation effects are allowed to escape transactions by
design. Reading a newly allocated TVar will never cause a conflict.

3. To ensure proper isolation, the actual type of Leaf looks like this:

data Leaf k v = Leaf !k !(TVar (Maybe v))

By adding the Maybe, we can allocate new TVars with Nothing in them. A
transaction can then insert a new Leaf containing Nothing using the compare-
and-swap operation. Other threads will still able to read the new TVar im-
mediately after the compare-and-swap, but all they will get is Nothing. The
transaction, meanwhile, can simply writeTVar (Just v) to safely insert the
actual value into the Leaf’s TVar. If another transaction also writes to the
TVar and commits before us, then we have a legitimate conflict on the value
level, and our transaction will simply retry.

Now that we have the types that make up the trie’s internal structure, we
can implement its operations. We begin with the function to create an empty
trie:
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empty :: STM (Map k v)
empty = unsafeIOToSTM $ Map<$> newIORef (Array emptyArray)

It contains no surprises, although it has the first use of unsafeIOToSTM, which
in this case is clearly harmless.

For the rest of the operations, let us assume we have a function

getTVar :: (Eq k ,Hashable k)⇒ k → Map k v → STM (TVar (Maybe v))

that either returns the TVar stored in the Leaf for a given key, or allocates a new
TVar for that key and inserts it appropriately into the trie. The TVar returned
by getTVar k m will always either contain Just v , where v is the value associated
with the key k in the trie m, or Nothing, if k is not actually present in m.
Additionally, getTVar obeys the following invariants:

Invariant 1: getTVar k1 m ≡ getTVar k2 m ⇐⇒ k1 ≡ k2
Invariant 2: getTVar itself does not read from nor write to any TVars.

Now we can define the trie’s operations as follows:

insert k v m = do var ← getTVar k m
writeTVar var (Just v)

lookup k m = do var ← getTVar k m
readTVar var

delete k m = do var ← getTVar k m
writeTVar var Nothing

The nice thing about defining the operations this way, is that correctness and
non-contentiousness follow directly from the invariants of getTVar. The first in-
variant ensures correctness. If we get the same TVar every time we call getTVar
with the same key, and if that TVar is unique to that key, then STM will take
care of the rest. And if, by the second invariant, getTVar does not touch any
transactional variables, then the only way one of the operations can cause a
conflict is if it actually operates at the same time on the same TVar as another
transaction. Unnecessary contention is therefore not possible.

All that is left to do is implementing getTVar. Essentially, getTVar is a com-
bination of the insert and lookup functions of the concurrent trie, just lifted into
STM. It tries to look up the TVar associated with a given key, and if that does not
exist, allocates and inserts a new TVar for that key. When inserting a new TVar,
the structure of the trie has to be changed to accommodate the new element.

Let us look at the code:

getTVar k (Map root) = go root 0
where

h = hash k

The actual work is done by the recursive helper function go. It begins at level
0 by looking into the root indirection node. Note that throughout the iterations
of go, the hash h of the key is only computed once.
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go inode level = do
ticket ← unsafeIOToSTM $ readForCAS inode
case peekTicket ticket of
Array a → case arrayLookup level h a of
Just (I inode2)→ go inode2 (down level)
Just (L leaf 2@(Leaf k2 var))
| k ≡ k2 → return var
| otherwise → cas inode ticket (growTrie level a (hash k2) leaf 2)

Nothing → cas inode ticket (insertLeaf level a)
List xs → case listLookup k xs of
Just var → return var
Nothing → cas inode ticket (return ◦ List ◦ (:xs))

The use of unsafeIOToSTM here is clearly safe — all we are doing is reading the
value of the indirection node. This does not have any side effects, so it does
not matter if the transaction aborts prematurely. If the transaction retries, the
indirection node is just read again — possibly resulting in a different value. It is
also possible that the value of the indirection node changes during the runtime
of the rest of the function — but that is precisely why we obtain a Ticket.

Depending on the contents of the indirection node, we either go deeper into
the trie with a recursive call of go; return the TVar associated with the key; or
insert a new TVar by using the cas function to swap out the old contents of the
indirection node with an updated version that somehow contains the new TVar.

The cas function is also part of the where clause of getTVar:

cas inode ticket f = do
var ← newTVar Nothing
node ← f (Leaf k var)
(ok, )← unsafeIOToSTM $ casIORef inode ticket node
if ok then return var

else go root 0

It implements a transactionally safe compare-and-swap procedure:

1. Allocate a new TVar containing Nothing.
2. Use the given function f to produce a node containing a Leaf with this TVar.
3. Use casIORef to compare-and-swap the old contents of the inode with the

new node.
4. If the compare-and-swap was successful, the new node is immediately visible

to all other threads. Return the TVar to the caller, who is now free to use
writeTVar to fill in the final value.

5. If the compare-and-swap failed, because some other thread has changed the
inode since the time we first read it, restart the operation — not with the
STM retry, which would restart the whole transaction, but simply by calling
go root 0 again.

All that is remaining now are the functions given for f in the code of go.
Given a new Leaf, they are supposed to return a Node that somehow contains
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this new Leaf. In the case of the overflow list, this is just a trivial anonymous
function that prepends the leaf into the List node. The insertLeaf function does
pretty much the same, except for Array nodes:

insertLeaf level a leaf = do
let a ′ = arrayInsert level h (L leaf ) a
return (Array a ′)

In case of a key collision, things are a slightly more involved. The growTrie
function puts the colliding leaves into a new level of the trie, where they hopefully
will not collide anymore:

growTrie level a h2 leaf 2 leaf 1 = do
inode2 ← unsafeIOToSTM $ combineLeaves (down level) h leaf 1 h2 leaf 2

let a ′ = arrayUpdate level h (I inode2) a
return (Array a ′)

combineLeaves level h1 leaf 1 h2 leaf 2

| level > lastLevel = newIORef (List [ leaf 1, leaf 2 ])
| otherwise =
case mkPair level h (L leaf 1) h2 (L leaf 2) of
Just pair → newIORef (Array pair)
Nothing→ do

inode ← combineLeaves (down level) h1 leaf 1 h2 leaf 2

let a = mkSingleton level h (I inode)
newIORef (Array a)

The use of casIORef here is once again harmless, as combineLeaves only uses IO to
allocate new IORefs. The mkPair function for making a two-element SparseArray
returns a Maybe, because it is possible that on a given level of the trie the two
keys hash to the same array index and so the leaves cannot both be put into
a single array. In that case, another new indirection node has to be introduced
into the trie and the procedure repeated. If at some point the last level has been
reached, the leaves just go into an overflow List node.

5 Memory efficiency

While the transactional trie successfully carries over the lock-freedom of the
concurrent trie and keeps the asymptotic performance of its operations, it does
have to make a couple of concessions regarding memory efficiency.

The first concession is that when looking up any key for the first time, the
lookup operation will actually grow the trie. This is a direct consequence of using
getTVar to implement the trie’s basic operations. If getTVar does not find the
Leaf for a given key, it allocates a new one and inserts it. One might wonder if
it is possible to implement a lookup function that does not rely on getTVar. The
following attempt is pretty straightforward and appears to be correct at first
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glance — although you might already guess from its name that something is not
quite right:

phantomLookup :: (Eq k ,Hashable k)⇒ k → Map k v → STM (Maybe v)
phantomLookup k (Map root) = go root 0

where
h = hash k

go inode level = do
node ← unsafeIOToSTM $ readIORef inode
case node of
Array a → case arrayLookup level h a of

Just (I inode2)→ go inode2 (down level)
Just (L (Leaf k2 var))
| k ≡ k2 → readTVar var
| otherwise → return Nothing

Nothing → return Nothing
List xs → case listLookup k xs of
Just var → readTVar var
Nothing → return Nothing

The problem with this simple implementation is that under certain circum-
stances it allows for phantom reads. Consider the following pair of functions:

f = atomically $ do v1← phantomLookup k
v2← phantomLookup k
return (v1 ≡ v2)

g = atomically (insert k 23)

Due to STM’s isolation guarantees, one would reasonably expect that f always
returns True. However, sometimes f will return False when g is run between the
two phantomLookups in f . How is this possible? If you start out with an empty
trie, then the first phantomLookup in f obviously returns Nothing. And it does so
without touching any TVars, because there is no TVar for k at this point. Only
when running g for the first time, will a TVar for k be created. The transaction
inside f will now happily read from this TVar during the second phantomLookup
and will not detect any inconsistencies, because this is the first time it has seen
the TVar. This problem does not only occur on an empty trie, but any time
we look up a key that has not previously been inserted. The only remedy is to
ensure that there is always a TVar for every key, even if it is filled with Nothing,
which is exactly what the implementation of lookup using getTVar does.

Granted, it seems as if these kinds of phantom lookups might not occur
regularly in practice, and even if they did, they would probably cause no great
harm. The overhead of always allocating a Leaf for every key that is ever looked
up, on the other hand, seems much more troublesome. However, phantomLookup
exhibits exactly the kind of seldom-occurring unexpected behavior that results
in bugs that are incredibly hard to find. And having a lookup function that grows
the trie is really only an issue in two cases:
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1. when we expect the keys we look up to not be present a significant amount
of the time; then a transactional trie is probably really not the right data
structure. Although if one were to use phantomLookup instead of lookup, and
if in this particular scenario phantom lookups are actually acceptable, then
using a transactional trie could still be feasible.

2. when a malicious actor purposefully wants to increase memory consump-
tion, i.e. a classic denial-of-service attack; then one can again counteract
this by using phantomLookup, limited to those places that are susceptible
to attack. For example, a login routine in a web application could first use
phantomLookup to check if the user actually exists, before continuing with
the transaction. Here the phantom lookup does not matter, because if the
user does not exist the transaction is aborted anyway.

Thus, it makes sense to have the behavior of lookup be the default and provide
phantomLookup for those select scenarios where it is actually an improvement.

The other trade-off the trie has to make regarding memory efficiency, is that
the delete operation does not actually remove Leafs or compact the trie again.
It merely fills a Leaf’s TVar with Nothing. This frees up the values associated
with the keys, which is the major part of a trie’s memory consumption, but it
does not delete the keys or compress the structure that has emerged in the trie,
which might now be suboptimal given the trie’s current utilization.

Again, for the common use case, this might not be a problem. Very often, we
do not want to actually delete certain data, but merely mark it as deleted; or
maybe delete the data, but mark the associated keys as having been previously
in use in order to prevent reusing them. Think of unique user IDs, for example. In
such a scenario, the overhead of the trie not actually deleting Leafs disappears.3

6 Evaluation

I empirically evaluated the transactional trie against similar data structures,
measuring contention, runtime performance and memory allocation. The bench-
marks were run on an Amazon EC2 C3 extra-large instance with Intel Xeon E5-
2680 v2 (Ivy Bridge) processors and a total of 16 physical cores. Under compar-
ison were three hashing-based container types: a transactional trie; a HashMap
from the unordered-containers library [11], wrapped inside a TVar; and the
STM-specialized hash array mapped trie from the stm-containers library [13].

The same random Text strings are used as keys for each container. Each
benchmark consists of a number of random STM transaction. The transactions

3 For the cases where we do want the trie to always be as compact a representation
of its data as possible, there is an unsafeDelete operation, which really does remove
Leafs and compresses the trie again. Alas, as its name suggests, unsafeDelete is
not transactionally safe. It can be made safe by using an STM extension called
finalizers. For a thorough description of finalizers and how they can be used to make
unsafeDelete safe, see [10].

583



125 ms

250 ms

500 ms

1 s

2 s

1 2 4 6 8 10 12 14 16

1

10

100

1 k

10 k

100 k

1 M

1 2 4 6 8 10 12 14 16

250 MB

500 MB

1 GB

2 GB

1 2 4 6 8 10 12 14 16

200 000 transactions

1–5 operations per transaction

ti
m

e

25% of each operation

re
tr

ie
s

a
ll
o
ca

ti
o
n

unordered-containers
stm-containers

ttrie

Figure 1. Benchmark comparing STM data structures
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are split evenly over the number of threads in use. The time it takes to complete
all transactions for a particular container is measured using the criterion and
criterion-plus libraries [7, 12], which calculate the mean execution time over
many iterations. To measure contention, the transactions are run again using
the stm-stats library [4] to count how often the STM runtime system has to
restart transactions due to conflicts. Finally, the transactions are run once more
to measure the total amount of allocated memory, using GHCs built-in facilities
for collecting memory usage statistics. The benchmark was compiled using GHC
7.8.3. For more details about test data generation and the exact benchmark
setup, see the ttrie source distribution.

Figure 1 shows the results of a benchmark performing 200 000 random STM
transactions, where each transaction performs 1–5 operations. Each operation
(insert, lookup, update or delete) occurs equally likely in the mix of operations
per transaction and the containers are prefilled with 1 000 000 entries.4

As we can see from the number of retries, the transactional trie exhibits no
contention; the handful of retries it has to perform — 5 in the worst case — are
due to legitimate conflicts. This is in stark contrast to unordered-containers

and stm-containers: here, the number of spurious retries vastly overshadows
the legitimate conflicts. In the worst case, the TVar-wrapped HashMap has to
retry more than 1.3 million times for the 200 000 transactions to succeed. The
run-time performance of unordered-containers begins to rapidly degrade at
4 threads, which is when the number of retries first exceeds the number of
transactions.

Overall, ttrie is 2–4 times faster than stm-containers, allocating only a
third of the memory; and 1.3–8.6 times faster than unordered-containers,
allocating almost 10 times less memory.
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Abstract. The Sequentially Constructive Language (SCL) is a mini-
mal synchronous language that captures the essence of the Sequentially
Constructive Model of Computation (SCMoC), a recently proposed ex-
tension of the classical synchronous model of computation. The SCMoC

uses sequential scheduling information to increase the class of construc-
tive (legal) synchronous programs. This facilitates the adoption of syn-
chronous programming by users familiar with sequential programming in
C or Java, thus simplifying the design of concurrent reactive/embedded
systems with deterministic behavior. The theoretical foundations of the
SCMoC are fairly well covered by now, and also the upstream compilation
from SCCharts (a Statechart dialect) and SCEst (a variant of Esterel)
to SCL. In this paper, we focus on how to compile SCL down to data-flow
equations, which ultimately can be synthesized to hardware or executed
in software.

1 Motivation & Related Work

Reactive systems are characterized by their regular interaction with the envi-
ronment, typically under real-time constraints. Physical time is conceptually di-
vided into a sequence of discrete ticks, and during each tick, the reactive system
reads inputs from the environment, processes them according to some inter-
nal system state, and then updates the system state and produces outputs to
the environment. Reactive systems may implement safety-critical applications
where determinate behavior is essential. However, they often entail concurrent
threads of control and interact through shared memory, which makes deter-
minacy challenging. This has motivated the development of synchronous lan-
guages [3], which have been used successfully in the industry since the 1990s,
e. g., for the development of avionics software or power plant control. Edwards [4]
and Potop-Butucaru et al. [11] provide good overviews of compilation challenges
and approaches for concurrent languages, including synchronous languages.

Synchronous languages achieve determinacy for concurrent systems by the
synchrony hypothesis, which abstracts from computation time and thus assumes
outputs to occur synchronously with the inputs they react to. This is achieved by
demanding unique, stable values for all shared variables throughout each tick.
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This simplifies formal reasoning, and has a natural, physical analogy of well-
defined, stable voltages on all wires on a hardware circuit. We thus say that a
synchronous program is causal, or constructive, if and only if it corresponds to a
circuit where all wires have well-defined voltages for all possible inputs and all
possible internal states, independent of variations in signal propagation delays
in an actual hardware realization.

This Synchronous Model of Computation (SMoC) for concurrent program-
ming contrasts with, e. g., the programming model offered by Java or Posix
threads. There the outcome of a program with concurrent threads that share
variables may depend on run-time scheduling decisions out of control of the
programmer. In Java, achieving determinacy often requires additional, brittle
constructs such as semaphores, monitors, barrier synchronizations etc. [9].

However, the classic realization of the synchrony hypothesis comes with re-
strictions that may be difficult to realize, in particular for novice programmers
used to imperative languages such as C or Java. Specifically, the requirement
that shared variables cannot change within a tick may come as a surprise. For
example, a construct such as “if (x) { x = false }” would be forbidden in the clas-
sical SMoC, because x could be true and false within a tick. Instead, one could
write for example “if (pre(x)) { x = false }” which states that if x was true in the
previous tick, then set it to false in the current tick. This, however, would intro-
duce an artificial tick boundary in a computation that conceptually has nothing
to do with the passage of physical time. Conversely, the computation in question
is purely sequential, with an obvious order of computation: first the test whether
x is true, second the possible assignment to false. Thus there is no race condition
between the read and the write of x, and a compiler should have no difficulty to
produce determinate code.

The desire to combine the foundations and nice properties of synchronous
languages with instantaneous memory updates has motivated the development
of the Sequentially Constructive model of computation (SCMoC) [17,1]. The basic
idea is to use any sequential scheduling information in the program to schedule
computations in a determinate fashion, and to use a particular scheduling pro-
tocol to order concurrent variable accesses. The SCMoC may still reject certain
programs as not being sequentially constructive, such as “fork x=y par y=x join”,
where the SCMoC does not know how to order the concurrent accesses to x and
y and which is therefore not determinate. However, the SCMoC accepts many
more programs than the SMoC.

The SCMoC is formally defined with the Sequentially Constructive Graph
(SCG), which is textually represented as the Sequentially Constructive Language
(SCL). The SCL is rather low-level and very simple yet rich enough to be used
as an intermediate language for compiling higher-level languages that want to
build on the SCMoC. So far, two such higher-level languages have been proposed.
The first language is Sequentially Constructive Statecharts (SCCharts) [15], a di-
alect of Harel’s statecharts [7]. The second language is Sequentially Constructive
Esterel (SCEst) [12], an extension of Esterel [11].
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(a) Transformations of the
high-level compilation as
presented before [10]. The
intermediate result of the
high-level synthesis is an
SCG.

(b) Transformations of the
low-level data-flow synthesis.

Fig. 1. Single-Pass Language-Driven Incremental Compilation (SLIC) approach trans-
forming SCCharts to code.

Outline and Contributions

The original paper on SCCharts [15] briefly sketched two approaches to compile
SCL further into software or hardware, namely the data-flow approach and the
priority-based approach. We here present the data-flow approach in detail.

In Sec. 2 we explain the SCL and recapitulate definitions that are impor-
tant for the remainder of the paper. The previously presented compilation chain
(cf. Fig. 1) shows that the data-flow approach transforms from the generated
SCG to a sequentialized variant and then eventually into code. This transforma-
tion is executed in several steps depicted in Fig. 1b. Each step is described in
Sec. 3, which is the technical core of this paper. We here follow the Single-Pass
Language-Driven Incremental Compilation (SLIC) approach [10] where every
step is executed as a Model-to-Model (M2M) transformation, which facilitates a
modular compilation chain.

We have validated our compilation chain with a range of test cases. This
includes fairly extensive use in the class room. In Sec. 4 we report on a medium-
sized railway project that uses the data-flow approach to synthesize a railway
controller. We conclude in Sec. 5.
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Fig. 2. Matrix showing the entire mapping throughout the transformation process from
SCCharts to circuits.

2 The Sequentially Constructive Language (SCL)

This section gives an overview of SCL. It only gives the necessary explanation
to understand the data-flow transformations. We refer to the sequentially con-
structive foundations [17] for a more formal and wider introduction.

The minimal SCL is adopted from C and Esterel. The concurrent and sequen-
tial control-flow of an SCL program is given by an SCG, which acts as an internal
representation for elaboration, analysis and code generation. Rows two and three
of Fig. 2 present an overview of SCL and SCG elements and the mapping between
them. SCL is a concurrent imperative language with shared variable communica-
tion. Variables can be both written and read by concurrent threads. Reads and
writes are collectively referred to as variable accesses. SCL programs consist of
one or more sequentially ordered statements with the following abstract syntax
of statements

s ::= x = e | s ; s | if (e) s else s | l: s | goto l | fork s par s join | pause

where x is a variable, e is an expression and l ∈ L is a program label. The state-
ments s comprise the standard operations assignment, the sequence operator,
conditional statements, labelled commands and jumps.

The sublanguage of expressions e used in assignments and conditionals is not
restricted. However, we rule out side effects when evaluating e. Our notion of
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sequential constructiveness is based on the idea that the compiler guarantees a
strict “initialize-update-read” (iur) execution schedule during each macro tick.
The initialize phase is given by the execution of a class of writes which we
call absolute writes (e. g., “x = 1”), while the update phase consists of executing
relative writes where scheduling order does not matter (e. g., “x += 2” and “x +=3”
can be scheduled in any order, with the same result). All the read accesses, in
particular the conditional statements which influence the control-flow, are done
last.

2.1 SCG Representation

An SCG is a labelled graph G = (N,E) whose statement nodes N correspond
to the statements of the program, and whose edges E reflect the sequential
execution ordering and data dependencies between the statements. Nodes and
edges are further described by various attributes. A node n is labelled by the
statement type. Nodes labelled with x = e are referred to as assignment nodes,
those with if (e) as condition nodes, all other nodes are referred by their statement
type (entry nodes, exit nodes, etc.). Fig. 2 sketches how SCG elements correspond
to an SCL program. A technical report [16] describes this mapping in detail.

Every edge e has a type e.type that specifies the nature of the particular
ordering constraint expressed by e. Edges that follow the initialize-update-read
schedule are labeled iur -edges. iur -edges combined with the sequential control-
flow edges are termed instantaneous edges. An SC-schedule is a subset of in-
stantaneous edges of an SCG. A structural SC-schedule is an SC-schedule that
is solely derived by analysis of the program structure. A program for which the
structural SC-schedule is acyclic is structurally acyclic SC, abbreviated SASC.
The data-flow approach presented here requires that the SCG is SASC; this, for
example, forbids any loops that are instantaneous, i. e., where the loop body is
not interrupted by a tick boundary.

2.2 The ABO Example

The ABO example shown in Fig. 3a illustrates the concepts of core SCCharts,
namely synchronous ticks, concurrency, deterministic scheduling of concurrent
shared variable accesses, and sequential overwriting of variables.

The execution of an SCChart is divided into a sequence of logical ticks. The
interface declaration of ABO states that A and B are boolean inputs, which are
initialized by the environment at the beginning of each tick, as well as outputs,
which are fed back to the environment at the end of each tick. O1 and O2 are
boolean outputs, which here are initialized to false, and which are persistent
from one tick to the next.

Initially, the system is in state WaitAB, which consists of regions (threads)
HandleA and HandleB. HandleA stays in the initial state WaitA until the boolean
input A becomes true. Then it sets B and O1 to true and transitions to state
DoneA, which is final and hence terminates HandleA. Similarly, WaitB waits for
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(a) Core SCChart ABO.

-A

A,
B,O1

O1

B

B,
O2

-A
A,B,
O2

(b) Possible execution
traces, with inputs
above the tick time line
and outputs below.

(c) The SCG. Basic blocks (BBs) are
denoted as (purple) rectangles, denoted
with their guards; gi guards BB i. The
data dependence on B (dashed arrow)
splits BB 7 into two scheduling blocks.

1 module ABO
2 input output bool A, B;
3 output bool O1, O2;
4 {
5 O1 = false;
6 O2 = false;
7

8 fork
9 HandleA:

10 if (! A) {
11 pause;
12 goto HandleA;
13 }
14 B = true;
15 O1 = true;
16

17 par
18 HandleB:
19 pause;
20 if (! B) {
21 goto HandleB;
22 }
23 O1 = true;
24

25 join ;
26

27 O1 = false;
28 O2 = true;
29 }

(d) SCL code.

Fig. 3. The ABO example, illustrating the Core SCChart features [15].

B to become true, sets O1 to true, and transitions to final state DoneB. Once
both HandleA and HandleB have terminated, WaitAB is left, O1 is set to false, O2
to true, and state GotAB is entered. The dashed edge denotes the transition to
DoneA to be immediate, meaning that HandleA does not pause for a tick before
it is ready to detect the transition trigger. In contrast, the transition to DoneB
in HandleB is delayed and thus does not get triggered in any tick in which WaitB
is entered.

Two possible execution traces are shown in Fig. 3b. The first trace begins with
A set to true by the environment in the initial tick. This triggers the transition
to DoneA and sets both B and O1 to true. As this is the initial tick, the non-
immediate transition from WaitB to DoneB does not get triggered by the B. In
the next tick, all inputs are false, no transitions are triggered, and O1 stays at
true. In the third and last tick, B then triggers the transition to DoneB, which
sets O1 to true, but sequentially afterwards, O1 is set to false again as part of
the transition to GotAB, which is triggered by the termination of HandleA and

592



HandleB. Hence, at the end of this tick, only O2 will be true because the SCMoC

allows O1 to be overwritten sequentially. The second trace illustrates how A in
the second tick triggers the transitions to DoneA as well as to DoneB, hence
emission of B and O2 and the termination of the automaton.

3 Data-Flow M2M Transformation

As depicted in Fig. 1 the transformation of the SCG mapped from a normalized
SCChart to a sequentialized SCG is done in several distinct steps. Following the
SLIC approach [10] every step is executed as an M2M transformation. This section
explains each of these steps, namely dependency analysis, basic block arrangement,
guard creation, scheduling, and sequentialization. For the subsequent analyses we
assume that superfluous fork-join-constructs, i. e., containing only one thread,
and dead code were removed.

3.1 Dependency Analysis

The analysis of dependencies between different expressions is done straight-
forwardly. Every assignment and conditional in the program is checked for vari-
able accesses. The type of the access is stored during the compilation. For each
pair of accesses it is determined if the access is concurrent and/or confluent.
Confluence means that the scheduling order does not matter, as is the case for
example for the aforementioned relative writes.

All non-concurrent (confluent or non-confluent) dependencies are handled
according to the sequential control-flow, whereas concurrent accesses are sched-
uled following the “initialize-update-read” protocol. According to Sec. 2.1, SCL

programs that contain immediate dependency cycles are not constructive and
are rejected.

In the ABO example applying the dependency analysis reveals one concurrent
dependency as depicted in Fig. 4a. The concurrent dependency is shown as
green, dashed line between the two threads connecting the B = true assignment in
HandleA with the B conditional of HandleB. Furthermore, there are several other
dependencies indicated by the red solid edges. These dependencies would cause
conflicts in a purely concurrent context if they were not confluent. However, in
ABO they can be executed sequentially. For example, the assignment to O1 at
the top before the fork gets always executed before the assignment to O1 after
the join.1

1 Non-conflicting non-concurrent dependencies are normally not shown in our tool
chain. Here, we activated the visualization to demonstrate the dependency analy-
sis. However, concurrent non-confluent dependencies, which represent conflicts, are
always shown.
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(a) The SCG of ABO after ex-
ecuting the dependency trans-
formation. All dependencies are
visible. However, the red solid
edges, which would cause con-
flicts in a concurrenct context,
are unproblematic because they
either can be solved sequentially
or are confluent.

(b) The SCG of ABO after proceeding with the BB

and guard creation transformations. The nodes are
encapsulated in their SB and, hence, BB. Each BB

has its guard expression attached.

Fig. 4. Transformation of the SCG following the SLIC approach executing the depen-
dency, the basic block, and the guard creation transformations.

3.2 Basic Block Arrangement

The data-flow compilation approach converts all control flow, be it sequential
or concurrent, into a flat sequence of guarded commands. As a consequence,
we cannot handle instantaneous loops with this code generation approach, as
mentioned before. A guarded command is a statement that gets executed in the
current tick if and only if a specific guard evaluates to true in the current tick;
guards have a unique value throughout each tick.
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To economize on the number of guards, we make use of the standard concept
of Basic Blocks (BBs). In our setting BBs denote sets of statements that are
executed together in a tick, i. e., either all or none of them are executed in a
tick. Thus, all statements within a BB may share the same guard. The following
rules, defined in a more formal way elsewhere [13], define BBs:

– A BB begins if the SCG representation of that statement has two or more
incoming control-flow edges.

– A BB ends with a statement that forks the SCG control-flow and hence, has
two or more outgoing control-flow edges. The last instruction of a thread
may also be the closure of a BB.

– BBs are split at pause statements.
– SCG fork nodes close a BB, whereas join nodes start a new one.
– Any statement of a given program can only be included in one BB at any

time.

The statements in a BB are not necessarily executed atomically, in the sense
that BBs of concurrent threads may be interspersed with each other in order
to satisfy dependencies induced by shared variables. Therefore, we may further
divide each BB in Scheduling Blocks (SBs). With the BBs defining what set of
instructions becomes active in the current tick, the SBs take the dependencies
into account and define when a particular instruction set is executed, thus,
defining the execution order. Therefore, a SB subdivides a BB if an incoming
dependency edge targets an instruction inside the BB because the scheduler
might want to reschedule here.

The arrangement of the blocks for the ABO example is depicted in Fig 4b.
Building the blocks according to the rules imposed earlier in this section, each
instruction is included in a SB directly surrounding it. The SB itself is included
in a BB. In ABO most BBs only comprise one SB. A BB containing two SBs can
be seen at the top of HandleB marked with the guard g7. This block gets divided
due to the dependency found in Sec. 3.1.

3.3 Guard Creation

In every tick instance a BB may be active or inactive. The activity state of a BB

depends on previous BBs and is called the guard of the BB. The BB determines
the guard expression, whereas the SB defines the order of execution as described
in Sec. 3.2.

Simple Guards directly depend on their predecessors. The guard of the first block
in an SCL program depends on the GO start signal of the environment usually
emitted at the initialization or reset of the program. Outgoing control-flows of
a BB may serve as guard expressions, or activators, for succeeding BBs. Thus, a
guard is a disjunction of all preceding activators and evaluates to true as long
as one incoming activator is true. Generally speaking, a BB is active, if and only
if at least one of its guard expressions is active in the same tick.
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Not all BBs need an own guard if their order of activation is determined
statically at compile-time. Therefore, we use standard compiler techniques such
as copy propagation [2] to reduce the amount of needed unique guards.

The guards generated for the ABO example are shown in Fig. 4b. Each BB

has caption lines at the top. The first line shows the guard of the block and
the guard expression generated for this block is displayed in the second line.
For instance, the first block of ABO is named g0. Since it is the first block of
the program, it gets activated once the program starts (and at every reset).
Therefore, the guard expression is equal to the GO signal of the environment.
Another example is g8 in HandleB. Here, the guard depends on its predecessor g7.
Furthermore, the BB of g8 is a successor of the true branch of the conditional
in the block of g7 which evaluates to true if B is true. Therefore, the guard
expression of g8 is g7 & B.

Notice that the BB of g7 includes two SBs due to the incoming dependency
edge. SBs are named like their parent BB and suffixed alphabetically after the
first one. As explained in Sec. 3.2, the scheduler may reschedule between any
two SBs. However, as both SBs live inside the same BB, the guard expression
of both SB are identical as explained earlier. The guard expression of g7 is
pre(g6) meaning that it is set to the activation status of g6 in the tick before.
This implements a tick boundary, and we also say that a program resumes the
execution at the depth here if it was paused at the surface in the preceding tick.

Also, the effects of the copy propagation can be seen in the figure. SB g1
in HandleA will immediately become active after program activation because it
solely depends on g0. Hence, the GO signal also triggers this block.

Complex Guards cannot simply depend on their direct predecessors. In SCL pro-
grams, forked threads must be joined at some point in time. The join instruction
will not proceed unless each thread has finished. Hence, a BB including a join
node only activates if all preceding threads are terminated and at least one
of them exited in the actual tick instance. Each thread status is signaled by
an empty flag which describes whether or not a thread is inactive. All empty
flags are combined in a conjunction together with a combination of exit codes
that signal whether at least one thread terminated in this tick instance. The
empty flag is combined with the GO signal of the preceding circuit to detect
active instantaneous threads. BBs that are responsible for joining threads are
also called synchronizer. The construction of the synchronizer is done similar to
the synchronizer circuit described in Compiling Esterel [11].

In the ABO example the BB with guard g9 is activated by a complex guard
expression. The conjunction consists of three parts. The first two parts (g2 e1
| g2) & (g8 e2 | g8) indicate if the threads HandleA and HandleB are inactive or
terminated in this tick. g2 and g8 are the SBs that are active if their thread is
exited in this tick because they include the corresponding exit node. The empty
flags, suffixed with ex, are set to true if the registers, i. e., pause instructions,
are inactive. To activate the block with the join node, at least one thread must
have been exited in this tick. Therefore the third part (g2 | g8) is checked.
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(a) The SCG after the scheduling
transformation depicting the route the
scheduler has chosen. Here, only one
context switch is necessary.

(b) The SCG after the sequentialization
transformation showing the code that will be
executed within the main loop of the reactive
tick cycle.

Fig. 5. Transformation of the SCG following the SLIC approach executing the schedul-
ing and sequentialize transformations.

3.4 Scheduling

In the scheduling step (cf. Fig. 1) the transformation returns a valid schedule for
the given program if one exists. Therefore, the blocks, and hence their included
instructions, are ordered topologically according to their guard expressions and
with respect to any dependencies between the blocks. This may result in arbitrar-
ily many context switches between threads. However, to support any low-level
analysis on threads that may be executed later on, it is desirable to perform as
few switches between threads as possible. One example for a low-level analysis is
a worst-case execution time (WCET) analysis. Hints about superfluous context
switches can be found in our work towards interactive timing analysis [5]. Here,
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any context switch results in the insertion of an so called timing program points.
As these points may influence measurements, one should not include more than
necessary.

The schedule chosen for ABO can be seen in Fig. 5a. The bold purple arrow
depicts the path chosen as schedule. As one would expect the program starts at
the first entry node. Then, at the fork, the scheduler chooses to proceed with
HandleA. It switches to HandleB not until HandleA has finished and proceeds to
the join after both threads completed.

This is not the only possible schedule. Nevertheless, every valid schedule will
produce the same deterministic output [17]. It would have been valid to start
with HandleB and then switch to HandleA. However, the scheduler could not have
finished HandleB completely as it has done with HandleA because HandleB depends
on HandleA due to the conditional node testing B. Therefore, beginning the other
way around would lead to more context switches.

3.5 Sequentializing

Finally, from the schedule we can derive the sequentialized program. Therefore,
the guards created before are written in the order defined by the scheduler. If an
SB contains assignments they must be executed if the BB is active. Hence, these
are added to the sequentialized program guarded by the guard of their block.

The fully sequentialized program for the ABO program is shown in Fig. 5b.
One will recognize the guard expressions from Fig. 4b. Here, they are ordered
according to the schedule depicted in Fig. 5a. Whenever a guard is responsible
for any assignments, a conditional is added which holds the guard as condition.
For instance, at the beginning of the program g0 is set to the GO signal of the
environment. Hence, it will be true in the first tick and therefore O1 and O2 will
be initialized with false. If A is also true in the first tick, B and O1 are set to true.
However, as described in Sec. 2.2 the join g9 is not activated because HandleB
cannot reach its exit node in g8 in the first tick. g8’s expression is g7 & B and
g7 depends on pre(g6). Thus, g6 must have been active in the tick before so that
HandleB may terminate in the actual tick. This is not possible in the first tick.

Fig. 5b also depicts the empty flags g2 e1 and g8 e2 needed for the synchro-
nizer. As discussed in Sec. 3.3 these indicate whether a thread is inactive in
the actual tick. Therefore, they negate the status of the concurrent depth nodes
which abstractly resemble registers. The complex guard expression is then con-
structed as explained earlier in Sec. 3.3. The sequentialized program is now
ready to be deployed. It can be translated to various languages such as C, Java
or VHDL. Deployment to hardware requires the final deployment step to apply
an SSA transformation to the variables used in the program if they are written
more than once [8].

4 Experimental Results

In summer term 2014 we launched a student project [14] where the task was
to build an SCCharts based controller for a rather large model railway system.
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(a) Hiding complexity by using Extended SC-
Charts features: Expansion of SCCharts features
down to sequentialized SCG elements gives an
idea of the complexity of this model [14].

(b) Tickets as opened and closed in
the bug tracker during the period
of this project validating main-
tainability and extendability of the
model based SLIC compiler ap-
proach [14].

Fig. 6. The SCCharts SLIC based compilation approach turns out to be practically
usable even for complex models and to be maintainable and extendable.

The model railway system consists of a total track length of 127 meters split
into 48 individually controllable block segments with 28 switch points. The final
controller is able to drive 11 trains simultaneously with integrated dead-lock
and live-lock avoidance. The controller fully expands to 135,000 states, 152,000
transitions and 17,000 concurrent regions after eliminating all reference states by
a reference state compiler transformation. 1,628 states were modeled manually
together with 2,219 transition and 183 concurrent regions. Compared to David
Harel’s Wristwatch [7], which was considered a complex statechart back in 1986,
we would also call the SCCharts model railway controller at least a medium-size
real-world complex system. It compiles using the presented tool chain in 2-3
minutes and generates about 650,000 lines of C code. Still the response time of
the running controller was measured to be smaller than 2ms on a standard PC.

We measured the number of model elements for the SCCharts model railway
controller example at every intermediate stage of the SLIC compile chain (cf.
Fig. 1). Fig. 6a shows the result and suggests how much complexity of the re-
sulting sequentialized SCG model could be hidden by using Extended SCCharts
features for modeling the complex behavior of this controller. The students were
not only using our SCCharts compiler tool chain but also struggling with teething
troubles of our early prototype compiler. That resulted in many bug reports es-
pecially in the middle of the project when the students started modeling. As
Fig. 6b attests we were able to quickly resolve most of the problems without
introducing more new problems. This circumstance validates maintainability of
the model based SLIC approach used for the compiler. Additionally new fea-
ture requests like reference state expansion arose during the project and could
be integrated into the existing compiler validating extendability of our overall
approach.
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5 Conclusions

As discussed before [10] being able to quickly prototype a modular compiler that
is easy to validate and to customize prompted us to follow the SLIC approach.
The SLIC approach showed that it is possible to use model-driven aspects to
build a compiler that is also fairly compact and efficient. Following this route we
here presented SLIC transformation rules for the data-flow approach, one of the
two proposed low-level methods for generating code for SCCharts [15]. Similar
to the high-level SCCharts transformation rules, the SCL transformations obey
the proposed pattern:

– The compilation steps are M2M transformations where the resulting model
contains all information. There are no other, hidden data structures.

– The intermediate transformation steps are in the same language. We just
apply a sequence of language operations, that added one analyses result at
a time.

We see numerous directions for future work. For example, we want to use
existing simulation tools to evaluate the activity state of each guard during run-
time. Hence, feeding the information back to the simulator and using the M2M

transformation information of the SLIC approach, it should be possible to dis-
play each active area of the SCCharts on modelling level. Synchronizing threads
as explained in Sec. 3.3 becomes difficult when dealing with instantaneous feed-
back loops. There are possibilities to handle such a feedback in the data-flow
approach as long as at least one thread is delayed to prevent instantaneous cy-
cles. We would like to further investigate possibilities to handle feedbacks and
implement these in our tool chain. Another active area is that of interactive tim-
ing analysis [6], where we investigate how to best preserve timing-information
across M2M transformations. The main advantage of our approach is its interac-
tivity. Nonetheless we envision a fully automatic compilation process including
the possibility to include our compiler in scripts (e. g., a Makefile) or using it
online in the Web. Another important question is how much parallelism should
we derive from the initial concurrency modeled by the modeler. Allowing pro-
grams to be executed partly in parallel without full sequentialization is ongoing
research.
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Zusammenfassung. In Java war es bisher nötig alle Typen von Me-
thoden explizit anzugeben. Oftmals lassen sich Typen aber auch ohne
direkte Angabe berechnen. Dazu haben wir ein System entwickelt, das
bisher nur die Typen berechnen konnte und Java-ähnlichen Code erzeugt
hat. Um den Code zu kompilieren, musste der Code so verändert wer-
den, dass insbesondere die Klassenparameter verändert werden, was dazu
führte, dass alle Deklarationen und new-Aufrufe ebenfalls angepasst wer-
den mussten. Durch die nun eigenständige Bytecode-Generierung ist eine
durchgängige Compilation in unserer Umgebung möglich.

1 Einleitung

Im Rahmen mehrerer Forschungsarbeiten wurde ein neuartiger Java Compiler
entwickelt, der Typinferenz in Java ermöglicht[1]. Mithilfe von Algorithmen wird
dabei der Typ eines gegebenen Ausdrucks rekonstruiert, sodass auf die explizite
Angabe von Typen verzichtet werden kann[2].

Im Jahr 2013 wurde der von dem neuartigen Java Compiler eingesetzte Ty-
pinferenzalgorithmus erweitert und auf die neueste Java Version 8 angepasst.
Ein zentrales Feature, das von Java 8 neu eingeführt wurde, stellen Lambda-
Ausdrücke dar. Hierbei handelt es sich um ein Sprachkonstrukt, das von der funk-
tionalen Programmierung inspiriert ist[3]. Dadurch wird in Java die Möglichkeit
geschaffen, namenlose Methoden zu definieren und diese einer Variable zuzuwei-
sen, die anschließend beispielsweise auch als Parameter an eine andere Methode
übergeben werden kann[4].

Unter Verwendung des entwickelten, neuartigen Compilers wird angestrebt,
die Schreibweise und die Syntax der Lambda Ausdrücke noch stärker an das
funktionale Programmierparadigma, wie es zum Beispiel in Haskell vorzufinden
ist [5], anzunähern. Dazu soll innerhalb der Lambda-Ausdrücke ebenfalls Typin-
ferenz zum Einsatz kommen.

Nachfolgend wird ein Code-Beispiel dargestellt, das zunächst aufzeigt wie
dessen Implementierung in Java 8 aussieht und anschließend demonstriert welche
Vereinfachungen durch den neuartigen Compiler erreicht werden sollen:
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Beispiel in Java 8:

1 class Bytecode <B> {
2 Function <B, B> id = (B x) -> x;
3 }

Beispiel mit Vereinfachungen durch neuartigen Compiler:

1 class Bytecode {
2 id = x -> x;
3 }

Diese Schwachpunkte werden durch den neuartigen Compiler und der darin
mitgelieferten Typinferenz beseitigt. Wie in der zweiten Umsetzung zu sehen
ist, entfällt bei dessen Einsatz die explizite Angabe der generischen Typen. Bei
der Verwendung des Lambda-Ausdrucks wird durch den Typinferenzalgorithmus
automatisch der korrekte Typ inferiert und eingesetzt. Dabei wird zusätzlich
ermöglicht, dass für jeden Ausdruck individuell ein variabler Typ vergeben wer-
den kann. Der von der Typinferenz erzeugte Code sieht demnach folgendermaßen
aus:

1 class Bytecode {
2 <B> Function <B,B> id = (B x) -> x;
3 }

Die zugrundeliegende Motivation ist es, das in Haskell charakteristische Kon-
strukt der Typvariablen zur Definition von Funktionen, die für alle möglichen
Variablentypen gültig sind, in Java abzubilden. Es soll somit realisiert wer-
den, dass stets mit einem möglichst allgemeinen Typen gearbeitet wird. Da-
durch wird schließlich eine dynamische Handhabung von variablen Typen in
Java ermöglicht.

Ein erster Ansatz wäre den nach Typinferenz erzeugten Java Code durch
den Standard Java-Compiler zu übersetzen. Da der Standard-Java aber kei-
ne generischen Typvariabeln für Attribute kennt, ist auf alle Fälle eine Code-
Transformation nötig. Man könnte die Typvariablen als generische Typen der
Klasse definieren, was den Nachteil hätte, dass alle new-Aufrufe angepasst wer-
den müssten. Oder man könnte die generischen Typvaraibeln durch Object er-
setzen. Wir haben uns für die direkte Erzeugung von Bytecode entschieden, auch
weil zukünftige Erweiterungen, dann einfacher zu realisieren sind.

2 Ähnliche Arbeiten

Es gibt verschiedene Bibliotheken, die der Analyse, Manipulation und Erzeugung
von Bytecode dienen. Für die Generierung des Bytecodes innerhalb des neuar-
tigen Compilers wurde die Nutzung unterschiedlicher Bibliotheken abgewogen.

Eine der in Erwägung gezogenen Bibliotheken ist Jasmin[6]. Allerdings hat
sich herausgestellt, dass diese Bibliothek nicht für die Erzeugung des Byteco-
des geeignet ist. Die Ursache liegt darin, dass der zu übersetzende Code in der
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Jasmin spezifischen Syntax vorliegen müsste, aus der schließlich der Bytecode er-
zeugt wird. Da der Code innerhalb des neuartigen Compilers nicht in der Jasmin
Syntax vorliegt, konnte diese Bibliothek nicht verwendet werden.

Außerdem wurde ebenfalls das Framework ASM in Betracht gezogen, um die
Erzeugung des Bytecodes innerhalb des neuartigen Compilers zu realisieren[7].
ASM zeichnet sich dadurch aus, dass es besonders schnell beim Parsen des By-
tecodes ist[8]. Die Nutzung dieses Frameworks ist darauf ausgerichtet, dass auf
einer tiefen Ebene ohne Abstrahierungsgrad gearbeitet wird. Dafür stellt ASM
viele Funktionen bereit.

Eine weitere Bibliothek, die für die angestrebte Generierung von Bytecode
in Frage kommt, ist BCEL[9]. Charakteristisch für BCEL ist, dass vorgefertigte
Konstrukte mitgeliefert werden, die von der konkreten Erzeugung des Bytecodes
abstrahieren. Ein Beispiel dafür stellt die InstructionFactory dar[10]. Dadurch
muss der Entwickler nicht auf der untersten Ebene arbeiten und der Einstieg in
die Nutzung der Bibliothek wird somit vereinfacht.

Schlussendlich wurde die Bibliothek BCEL für die Erzeugung des Bytecodes
im neuartigen Java Compiler ausgewählt, da die Geschwindigkeitsvorteile, die
ASM bieten würde, in diesem Fall nicht die höchste Priorität haben. Ausschlag-
gebend waren vielmehr die von BCEL zur Verfügung gestellten abstrakten Kon-
strukte, die die Bytecode-Generierung insgesamt einfacher gestalten. Dadurch
sollte eine schnelle und erfolgreiche Einarbeitung begünstigt werden.

3 Bytecode-Generierung mit BCEL

In Java wird Quellcode mit Hilfe des Compilers in binäre Klassendateien um-
gewandelt. Diese Klassendateien werden auch als Bytecode bezeichnet. Oftmals
soll in bereits bestehende Javaprogramme eingegriffen werden, um beispielswei-
se eine Performanzsteigerung herbeizuführen oder Java parametrisierte Typen
hinzuzufügen. Um diese Aspekte zu realisieren, muss der bestehende Java Com-
piler oder die Java Virtual Machine verändert werden. Ein viel effizienterer und
plattformunabhängiger Weg ist, den vom Compiler erzeugten Bytecode manuell
anzupassen. Dies ist ein Weg, den viele Informatiker gehen. Allerdings sind deren
Lösungen oft projektabhängig und selten wiederverwendbar.

Die Byte Code Engineering Library (BCEL)[9] ist ein von der Apache Or-
ganisation gesponsertes Projekt. BCEL wird von Apache selbst als Werkzeug-
satz bezeichnet, welcher Klassen und Schnittstellen zur statischen Analyse und
Veränderung von Java Bytecode zur Verfügung stellt.

BCEL stellt drei Pakete zur Verfügung: Eines, welches Klassen beinhaltet,
die statische Einschränkungen der Klassendateien realisieren und nicht für Byte-
code Modifikationen gedacht sind. Eines, welches erlaubt, dynamisch JavaClass-
oder Methodenobjekte zu generieren und modifizieren. Und das letzte, welches
diverse Code Beispiele und Werkzeuge, beispielsweise zum Anzeigen von Klas-
sendateien, bereitstellt. Die für dieses Projekt vorrangig verwendeten Teile der
Bibliothek sind ClassGen, MethodGen und diverse InstructionHandles. Sie bil-
den die Abstraktionsebene zwischen Abstrakter Syntax und dem endgültigen
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Bytecode. Sie speichern alle zur Bytecodegenerierung benötigten Informationen.
Die Eintragung dieser Informationen in eine Classfile übernimmt im Anschluss
das Framework. So kann BCEL beispielsweise den Konstantenpool eigentständig
aus den gegebenen Informationen generieren. Im Folgenden werden die verwen-
deten Klassen genauer betrachtet:

– ClassGen liefert eine abstrakte Sicht für die dynamische Kreation und Trans-
formation von Klassendateien. Hauptsächlich ist ClassGen für die Einhal-
tung der Beschränkungen von Java, wie die fest gecodeten generic Bytecode
Adressen, zuständig. Auch MethodGen und ConstantPoolGen für die Rea-
lisierung von jeweils Methoden und Konstantenpool, sind in diesem Teil der
Bibliothek zu finden. Folgende Abbildung 1 zeigt ein UML Diagramm des
ClassGen der Bibliothek.

Abb. 1. UML of ClassGen[9]

– MethodGen wird verwendet, um Methoden der zu kompilierenden Klasse
dem ClassGen hinzuzufügen. Des Weiteren vereint MethodGen alle vorhan-
denen InstructionHandles zu einer InstructionList.

– Viele der InstructionHandles stammen ursprünglich aus der InstructionFac-
tory. Dieser Teil der Bibliothek soll die Generierung von Variablen, unter
anderem von Konstanten, vereinfachen, indem bestimmte Instruktionen be-
reits vorgegeben werden. Die InstructionHandles an sich bilden den in diesem
Projekt kleinsten Teil der BCEL Bibliothek. Sie werden für die Generierung
von Bytecode für lokale sowie globale Variablen verwendet und schreiben

605



entsprechende Variablen mit Befehlen wie beispielsweise iconst 1 (schreibt
die Konstante 1) in den Konstantenpool.

4 Vorgehensweise mit Hilfe von BCEL

Im Folgenden soll nun die Implementierung einer Methode zur Bytecode-Generierung
innerhalb des neuartigen Java Compilers betrachtet und erläutert werden.

Im Syntaxbaum des neuartigen Compilers ist eine ähnliche Struktur zu fin-
den, welches eine analoge Übertragung und Implementierung von BCEL ermöglicht.
Zunächst wird die übergreifende Klasse Class.java des Compilers bearbeitet. Auf
der gleichen Ebene in BCEL findet sich das ClassGen, welches innerhalb die-
ser Klasse den Hauptbestandteil für die Bytecode-Generierung bildet. Es wird
zunächst also eine genByteCode- Methode implementiert, welche in der Lage ist,
das ClassGen in eine Klassendatei zu schreiben. Dafür wird ein neues Class-
Gen deklariert, welches die dafür typischen Parameter, wie im vorigen Kapitel
beschrieben, enthält. Diese Parameter sind dynamisch gestaltet, sodass bei Nut-
zung des Compilers die korrekten Daten des Programms des Anwenders in die
Paramter eingetragen werden. Des Weiteren wird ein Konstantenpool erzeugt,
welcher mit den Daten aus ClassGen gefüllt wird. Das ClassGen selbst wird
an die unteren Hierarchieebenen des Compilers weitergegeben. Innerhalb dieses
Compilers besteht die nächste Hierarchieebene aus Feldern. Entsprechend wer-
den diese iteriert, sodass das ClassGen in allen Feldern gefüllt wird und wieder
an die Class.java übergeben wird, welche als Ergebnis eine komplette Klassen-
datei zurückgibt. Nachfolgende Abbildung 2 soll den Zusammenhang zwischen
den im Folgenden erläuterten Klassen veranschaulichen.

Die Felder, die innerhalb dieses Projektes die interessantesten sind, sind Me-
thoden, umgesetzt in Method.java, beziehungsweise Konstruktoren. Der Parser
des neuartigen Compilers unterscheidet nicht zwischen Methode und Konstruk-
tor. Aus diesem Grund wird eine Methode, sollte sie die Kriterien eines Kon-
struktors erfüllen, nach dem Parsen in Constructor.java zu einem Konstruktor
umgewandelt. Constructor.java erbt entsprechend von Method.java. Also muss
in Method.java nun eine genByteCode-Methode implementiert werden. Die gen-
ByteCode-Methode in Method.java sieht wie folgt aus: Als Übergabeparameter
wird die ClassGen übergeben. Dieses ClassGen ist das in Class.java erstellte,
welches durch Method.java gefüllt wird. Der Konstantenpool des ClassGen wird
lokal gespeichert. Es werden eine InstructionFactory, welche das ClassGen und
den Konstantenpool übergeben bekommt, und eine InstructionList erzeugt.
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Field

Method
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- InstructionList

+ genByteCode()

+ genByteCode()
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- Method Gen 

- ClassGen
- ConstantPoolGen

+ genByteCode()

+ genByteCode()

Abb. 2. Klassendiagramm

Diese werden im Verlauf der Methode verwendet beziehungsweise gefüllt. An-
hand eines Objektes der Klasse Class.java kann im weiteren Verlauf der Name
der Klasse, zu welcher die zu kompilierende Methode gehört, ausgelesen werden.
Dies geschieht innerhalb der Erzeugung eines MethodGen. MethodGen braucht
als Parameter die Access Flags, den Rückgabewert der Methode, deren Argu-
mente, den Namen der Methode, den Namen der Klasse, zu welcher die Metho-
de gehört, die InstructionList und den Konstantenpool. Eine Methode besitzt
immer mindestens einen Block, welcher durch geschweifte Klammern gekenn-
zeichnet ist. Der zur Methode zugehörige Block wird im nächsten Schritt in eine
lokale Variable des Typs Block gespeichert. Anhand dieses Blocks kann die In-
structionsList gefüllt werden, indem die genByteCode-Methode auf dem Block
aufgerufen wird und das ClassGen dabei übergeben. Die resultierende Instruc-
tionList wird nun der Methode angefügt mit Hilfe des append -Befehls. Außerdem
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wird geprüft, ob der Block überhaupt irgendwelche Statements enthält. Sollte
dies nicht der Fall sein, oder aber das letzte verfügbare Statement keine Instanz
des Return-Typs besitzen, wird hier manuell ein void (leer) zurückgegeben und
an der InstructionList angefügt. Anschließend wird noch ein dynamischer Stack
für diese Methode gesetzt, welcher seine Größe durch die InstructionList be-
stimmt. Zuletzt wird die Methode dem ClassGen hinzugefügt. Folgender Code
Abschnitt zeigt die eben erläuterte Implementierung zunächst in Class.java und
anschließend in Method.java.

1 /* genByteCode in Class.java
2 */
3 private InstructionFactory _factory;
4 private ConstantPoolGen _cp;
5 private ClassGen _cg;
6

7 public ByteCodeResult genByteCode () throws IOException {
8

9 _cg = new ClassGen(name , superClass.get_Name (), name + ".java",
Constants.ACC_PUBLIC , new String [] { });

10 _cp = _cg.getConstantPool ();
11 _factory = new InstructionFactory(_cg , _cp);
12

13 for(Field field : this.fielddecl){
14 field.genByteCode(_cg);
15 }
16

17 ByteCodeResult code = new ByteCodeResult(_cg);
18 return code;
19 }
20 /* genByteCode in Method.java
21 */
22 @Override
23 public void genByteCode(ClassGen cg) {
24 ConstantPoolGen _cp = cg.getConstantPool ();
25 InstructionFactory _factory = new InstructionFactory(cg , _cp);
26 InstructionList il = new InstructionList ();
27 Class parentClass = this.getParentClass ();
28

29 MethodGen method = new MethodGen(Constants.ACC_PUBLIC , this.getType ().
getBytecodeType (), org.apache.bcel.generic.Type.NO_ARGS , new String
[] { }, this.get_Method_Name (), parentClass.name , il , _cp);

30

31 Block block = this.get_Block ();
32 InstructionList blockInstructions = block.genByteCode(cg);
33

34 il.append(blockInstructions);//Die vom Block generierten Instructions an die
InstructionList der Methode anfügen

35

36 if (block.get_Statement ().size() == 0) { il.append(_factory.createReturn(
org.apache.bcel.generic.Type.VOID)); }

37 else {
38 if (!( block.get_Statement ().lastElement () instanceof Return)) { il.

append(_factory.createReturn(org.apache.bcel.generic.Type.VOID));
}

39 }
40

41 method.setMaxStack (); //Die Stack Größe automatisch berechnen lassen (erst nach dem
alle Instructions angehängt wurden)

42

43 cg.addMethod(method.getMethod ());
44

45 }
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Nun wurden bereits zwei höhere Hierarchieebenen des Compilers betrach-
tet. Der bereits erwähnte Block bildet die nächst niedrigere Hierarchieebene.
Blöcke werden innerhalb des Compilers in Block.java umgesetzt. Blöcke sind
selbstständig nicht existenzfähig, da leere geschweifte Klammern in Java kei-
ne Bedeutung besitzen. Entsprechend müssen diese gefüllt werden - Mit Hilfe
von Ausdrücken, welche im Compiler durch Statements ausgedrückt sind. Block
erbt von Statement und besitzt eine eigene genByteCode-Methode, welche eine
InstructionList zurückgibt, die durch die Iteration über Statement gefüllt wird.
Statement bildet den in diesem Projekt kleinsten, bearbeiteten Bestandteil des
Compilers und damit auch die niedrigste, bearbeitete Hierarchieebene.

Damit die Abläufe der Interaktionen zwischen den in Abbildung 2 dargestell-
ten Klassen klar werden, stellt nachfolgende Abbildung 3 ein Sequenzdiagramm
dieser Klassen zur Verfügung.

User Compiler Class Method Block Statement

loop [foreach Method]

start()

genByteCode()

genByteCode()

genByteCode()

genByteCode()

loop [foreach Statement]

Abb. 3. Sequenzdiagramm

5 Fazit und Ausblick

Zum Zeitpunkt dieser Arbeit lässt sich abschließend sagen, dass ein Grundgerüst
zur Vervollständigung und Erweiterung der Bytecode-Generierung erstellt wur-
de. Dieses Grundgerüst beinhaltet die Existenz einer Methode zur Bytecode-
Generierung in allen dazu notwendigen Klassen. Aufgrund der zeitlichen Be-
grenzung des vorliegenden Projektes sowie der Unvollständigkeit der Parser-und
Typinferenz-Funktionalitäten, auf die die Bytecode-Generierung aufbaut, sind
nicht alle dieser Methoden funktionsfähig.

Zukünftige Projekte können auf dieser Arbeit aufbauen. Anpassungen am
ausgegebenen Bytecode des Compilers sind nun leicht möglich. Zuvor konnte
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der neuartige Compiler zwar Typen im Java Quellcode inferieren und einsetzen,
aber nicht eigentständig Bytecode erzeugen. Diesen Schritt musste ein Standard
Java Compiler übernehmen wodurch kein Einfluss auf das Kompilat möglich
war.

Dies ermöglicht unter anderem die Einführung von echten Generischen Typen
in den Bytecode [13].
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Abstract. In this paper we sketch how Active Continuous Quality Con-
trol (ACQC) can be adapted to Learning-based Cross-platform Confor-
mance Testing (LCCT), i.e. to a method which is tailored to validate
the preservation of behavioral equivalence after migration. Our method
is designed to be applied e.g. after adaptations or technological switches
in terms of operation system, programming language, execution environ-
ment, third-party components, optimizations, new access methods to the
application, or API changes of third-party services. Technically, LCCT
is based on a combination of our approach to higher-order integration
of user-level test blocks with active automata learning in our learning
framework LearnLib. Its impact has been shown by revealing migration-
specific bugs typically stemming from browser-specific functionality.
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1 Introduction

Web Layer Web Service Interface

Business Logic Layer

Internet

Browser Web service

Persistence Layer
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enterprise application OCS
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Fig. 2. The new dynamic SIB pattern
of the jABC.
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Modern software systems, in particular when successful, undergo continuous
change and therefore require a continuous accompanying quality control at the
system level. This is especially true for multi-layered component-based systems
(see Fig. 1) in real-world scenarios, which can easily be changed by updating or
exchanging components and their implementations [6]. Today’s testing technol-
ogy does not sufficiently address this problem as it requires enormous ongoing
manual effort. E.g., keeping regression test suites or test models up to date is
very costly, which is the major hurdle for model-based testing [30] to enter in-
dustrial practice. Recently, automata learning technology has been proposed to
reduce the manual effort of the required test/model adaptation process. In [32]
we presented Active Continuous Quality Control (ACQC), an approach that
seamlessly integrates learning into the software evolution process in order to ar-
rive at a truly continuous quality control. ACQC uses an incremental variant
of active automata learning technology in order to closely monitor and steer
the evolution of applications throughout their whole life-cycle with minimum
manual effort. Key to this approach is the combination of the common practice
of a periodic, e.g. daily, system build with a fully automatic testing process,
performed and controlled via incremental active automata learning [24].

In this paper we sketch how ACQC can be adapted to Learning-based Cross-
platform Conformance Testing [18] (LCCT), i.e. to a method which is tailored
to validate the preservation of behavioral equivalence after migration [2]. Our
method is designed to be applied e.g. after adaptations or technological switches
in terms of operation system, programming language (e.g. reimplementation of
legacy software), execution environment (e.g. application server), third-party
components (e.g. database vendor, relational versus noSQL databases, or access-
layer to the data-base), optimizations (e.g. caching or clustering), new access
methods to the application (e.g. a RESTful API [4]), or API changes of third-
party services (like Facebook, Twitter, or Google Maps). Technically, we com-
bine our approach to higher-order integration of user-level test blocks with ac-
tive automata learning in our learning framework LearnLib [14, 21]. Its impact
has been shown by revealing migration-specific bugs typically stemming from
browser-specific functionality.

In contrast to ACQC, where maintaining the stability of a common abstrac-
tion layer via a common learning alphabet during the evolution of the System
Under Learning (SUL) as well as the cross-version reuse of information during
the learning process was essential, these issues are not critical for LCCT. Rather,
the third issue of ACQC, providing a correct mapping between the abstract level
of learning and the concrete implementation, needs to be flexibilized for LCCT
to deal with the platform specific versions of implementations. We employ the
dynamic service integration feature of the jABC, our graphical application devel-
opment framework [28] to elegantly solve this problem via higher-order test-block
integration [19]. This allows us to realize LCCT elegantly as a learning process
accompanied by a dynamic comparision of the platform-specific versions of the
learned models. In essence, one could understand LCCT as an iteration between
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multiple learning phases which terminates when no differences are detected any-
more:

– Hypothesis models for the various platform versions are learned indepen-
dently.

– The differences between these hypothesis models are exploited to construct
distinguishing traces which are used to trigger a new learning phase.

In this extended abstract we will focus on the mapping of abstract test sym-
bols to concrete test-block implementations and its realization within the jABC,
while we defer the presentation of the iterative LCCT process to the extended
version of this paper. For a detailed elaboration of the technical details of dy-
namic service binding please refer to [18].

In the following, we will therefore first sketch the jABC including its pragmat-
ics, before we address the higher-order test block generation in Sec. 3, followed
by a short paragraph about model extrapolation in Sec. 4, a brief discussion of
our example scenario in Sec. 5, and our conclusions in Sec. 6.

2 Extreme Model-Driven Design in the jABC

The user-level test blocks are realized in the jABC [13], a framework for service-
oriented development that allows users to create services and applications easily
by composing reusable building blocks into (flow-) graph structures that are
both formally well-defined as well as easy to read and build. These building
blocks are called Service Independent building Blocks (SIBs) in analogy to the
telecommunication terminology [25], in the spirit of the service-oriented com-
puting paradigm [11] and of the one thing approach [29], an evolution of the
model-based lightweight coordination approach of [12] specifically applied to
services.

On the basis of a large library of SIBs, the user builds models for the de-
sired system in terms of hierarchical Service Logic Graphs [26] (SLG). SLGs are
semantically interpreted as Kripke Transition Systems (KTS ), a generalization
of both Kripke structures (KS ) and labeled transition systems [15] (LTS ) that
allows labels both on nodes and edges.

The service integration into the graphical process model design framework
jABC is realized via dynamic service binding (see Fig. 2) that supports domain-
specific (business) activities [3].

Dynamic service integration is technically achieved by directly binding a ser-
vice in form of a Java method to an activity, denoted by a dynamic SIB. This is
realized by considering services as first-class objects and therefore introducing a
type-safe second-order context for exchanging services of a service graph at the
parameter level, a step reminiscent of higher-order functions in functional pro-
gramming languages [23]. The type-safe second-order context is a mapping from
a tuple consisting of a name (e.g. ‘userController’) and type information (e.g.
UserController) to a Java object (at runtime). Each entry in this mapping is
called a context variable. Activities read and write values from context variables.
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3 Higher-Order Test Block Integration

We apply the dynamic service integration [17] approach of the jABC framework
to active automata learning. This provides us with the necessary flexibility to
infer comparable models via automata learning for validating platform migra-
tions.

Enabling dynamic service integration does not require any implementation
of adapters for mapping of activities to services, as domain-specific activities
are instead modeled hierarchically as SLGs themselves on the basis of low-level
services:

– Services are provided as methods of a Java class or interface (i.e. a remote
enterprise bean (EB)1, a RESTful- or a Selenium service respectively), ab-
stracting from technical details. These are integrated via dynamic SIBs in
low-level graphs, which are absolutely unaware of the process models.

– A fully configured instance of a subclass of the service class or interface is
read from the context as input to the corresponding dynamic SIB, and the
configured method is executed2 as the control-flow reaches the activity.

– Available SIB libraries in terms of low-level graphs allow application experts
to build high-level, coarse-grained, and domain-specific test blocks.

Being organized in taxonomies, these SIB libraries can easily be discovered and
(re)used for building complex process models, the aforementioned service logic
graphs (SLG).

4 Test-Based Model Extrapolation

In our setting, active automata learning [24] may be interpreted as a systematic
test generation framework that interrogates the SUL and extrapolates an appro-
priate corresponding (hypothesis) model. For learning reactive systems, like e.g.,
a web-services or, as in our example scenario, complete web applications, Mealy
machine models have turned out to be the target model of choice. These can
efficiently be learned using the LearnLib [20, 21, 14, 10], our framework for ac-
tive automata learning. LearnLib3 provides different active learning algorithms
and optimization strategies for handling counterexamples, filter techniques that
allow reducing the number of executed tests through domain knowledge [1, 8],
further optimizations like parallelization [7], and, since recently [9], a space op-
timal version, which is also particularly well-suite to support the comparison
phase of LCCT.
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Fig. 3. The low-level SLGs dynami-
cally accesses the remote EB or REST-
ful API of the OCS.

Fig. 4. The low-level SLGs dynami-
cally accesses the web interface of the
OCS via Selenium.

5 Example Scenario

The Online Conference Service (OCS) [16] is a multi-layered enterprise applica-
tion (see Fig. 1) where, in particular, the presentation layer (frontend) is sepa-
rated from the business logic (backend). The API of the backend is partitioned
into controller interfaces for every type of entities modeling the domain of the
OCS like a conference, a paper, or a report. A derived controller class implements
the different actions that are possible on the respective objects, e.g., ‘create a

1 A Java EE technology to execute enterprise services remotely via Remote Method
Invocation (RMI).

2 We support both interpreted execution using the Java Reflection API [5] and full-
code generation executing the method directly (i.e. type-safe) in the generated code.

3 LearnLib is available at http://www.learnlib.de
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user’. The used input symbols (cf. the edge labels in Fig. 5 in order to identify
the abbreviations) are as follows:

SP Submit Paper : An author submits a paper to the conference but does not pro-
vide a document file. Since the number of papers in a conference is negligible
for the overall workflow, we allow only one paper submission per conference.

UD Upload Document : An author uploads a document file for the previously
submitted paper.

DD Download Document : The PC Chair downloads a document file of a paper.
BD Bidding : A PC Member submits a bidding for a paper.
SA Special Assignment : The PC Chair assigns a PC Member as reviewer iff the

member has bided for the paper.
SR Submit Report : A reviewer submits a report for a paper.
ES End Submission: The PC Chair stops the submissions phase. From now on

it is not possible to submit any new papers. This will also start the bidding
phase and all PC Members will be able to submit biddings for papers.

EU End Upload : The PC Chair stops the upload phase. It is no longer possible
to upload documents to papers.

EB End Bidding : The PC Chair stops the bidding phase. Members of the pro-
gram committee are no longer allowed to bid for papers.

EA End Assignment : The PC Chair stops the assignment phase. From now on it
is not possible to assign reviewers to papers. This will also start the review
phase during which all reviewers are able to submit a report to an assigned
paper.

The respective symbols will be successfully executed if all prerequisites are ful-
filled. As in classical testing the membership queries have to be executed inde-
pendently. In automata learning this is realized via a so-called reset that puts
the SUL in a predefined state as all queries have to begin in the start state of the
hypothesis automaton. In the case study the reset for every membership query
creates a new conference and employs exactly one PC chair, PC member, and
author. Since the number of papers in a conference is negligible for the overall
workflow, we furthermore allow only one paper submission per test run.

In order to faithfully capture true web-based user behavior, we realized an
alternative implementation of these controllers, denoted by web-test controllers,
using the web-test framework Selenium [22]. These controllers, which truly mimic
users operating the OCS via a browser, implement the same controller interface
than their backend counterpart, and should ideally also have the same impact.

We have used our approach to dynamic service binding (cf. Sec. 3), in order
to obtain variants of test blocks for the same API (controller interface) repre-
senting different implementations. This allowed us to dynamically exchange the
implementation, i.e. remote EB or RESTful API (see Fig. 3) and the browser
instrumentation (see Fig. 4) via higher-order service integration, and therefore
to efficiently and elegantly coordinate the learning and comparison of the two
platform-specific models.

Its impact has been shown by revealing migration-specific bugs typically
stemming from browser-specific functionality as shown in Fig. 5. It shows an
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Fig. 5. Differences between learned models regarding the bidding [32].

excerpt of such an automaton of an OCS version with a bug in the security logic
in the backend, which has been intercepted in the presentation layer. So it was
not apparent by inspecting the presentation layer, only. For better readability
we have omitted the output symbols (namely success and error) of the Mealy
machine as well as the error edges (failed execution), since they are all reflex-
ive. This is due to the rollback mechanism of the OCS, so that all erreneous
executions have no impact on the state of the system.

The thick line followed by a thick dotted line in Fig. 5 shows that a member
of the program committee may bid for reviewing a paper right after submission,
although this should be possible after ending the submission phase (ES), only.
This issue has also been found by our active continuous control (ACQC ) ap-
proach [32]. However, in contrast to LCCT, ACQC tests the business logic only
and therefore does not search for differences between frontend and backend, but
it has been able to find the version which introduced the issue in the backend.
Thus these are different test approaches that complement each other.

6 Conclusion and Future Work

With ACQC we have presented a novel approach to quality control that employs
incremental active automata learning technology in order to periodically infer
evolving behavioral automata of complex applications accompanying the devel-
opment process. In this extended abstract we have presented the adaptation
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of ACQC to Learning-based Cross-platform Conformance Testing (LCCT), an
approach specifically designed to validate successful system migration. Key to
our approach is the combination of (1) adequate user-level system abstraction,
(2) higher-order test-block integration, and (3) learning-based automatic model
inference and comparison. LCCT employs second-order, type-safe execution se-
mantics for (test) process models, which allows one to dynamically exchange the
binding of functionality/test blocks at runtime. The impact of our approach has
been illustrated along testing the conformance of the presentation layer and the
business logic layer of Springer’s Online Conference Service OCS in [18].

Complex multi-layered component-based systems can be subjected to rapid
evolution, up to the point of exchanging components at runtime [31], a pro-
cess which is called “online evolution”. We are currently investigating how to
extend our static approach, which focuses on managing changes that occur be-
tween system releases, to an approach capturing the effects of hierarchy [27] and
self-adaptation. We think that it will be seen that our higher-order modeling
approach is tailor-made for this purpose.
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The Data-Flow Perspective on Static
Single-Assignment Form

Baltasar Trancón Y Widemann and Markus Lepper
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Abstract. The static single-assignment (SSA) form is a low-level in-
termediate representation of computer programs. It has been designed
to make the analysis and transformation of imperative code easier, by
providing just the right amount of referential transparency of local vari-
ables. That SSA does its job fairly well is proven by its central use in
many current state-of-the-art compilers. But the situation is something
of a paradox. The languages that are translated to SSA typically possess
many features that quite defy its purpose: Mutable arrays and objects
with reference semantics on the one hand; concurrency and non-local
control flow on the other. We take a fresh look at the design principles
of SSA from the perspective of a domain-specific, semantically rigorous
paradigm, namely total functional synchronous data-flow programming,
embodied in the prototypic language Sig. We demonstrate that the ex-
pressivity of SSA is far more complete and foundational there. The same
form has many interpretations, in notably as a data-flow diagram, the IR
of a functional program, and both an intensional (Z schema-like) and a
propositional definition of element-wise denotational semantics. We also
demonstrate how the single operation particular to SSA, the phi node,
naturally suggests semantically rigorous solutions to two principal se-
mantical problems of the data-flow approach, namely initialization and
control flow. Both are necessary for real-world applications, but notori-
ously ill-supported in many established practical programming systems.
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Zusammenfassung. In diesem Beitrag werden die Sensibilisierung der 

Entwickler für guten Code und die Integration von Qualitätsaspekten in einen 

Software-Entwicklungsprozess in der Informatik-Ausbildung vorgestellt. Für 

eine langfristige und erfolgreiche Verankerung des Themas Code-Qualität als 

Entwicklungsziel sind mehrere Vorgehensschritte notwendig. Neben den 

passend gewählten Werkzeugen zur statischen Codeanalyse, Metriken und 

Grenzwerte spielen eine hohe Motivation und Konzepte für die Beseitigung der 

gefundenen Mängel eine entscheidende Rolle für die Qualität des Codes und die 

Entwicklung eines besseren Programmierstils. 

1 Einleitung 

Das Software-Praktikum (SoPra) ist eine Bachelor-Veranstaltung, die in den ersten 

Semestern des Informatik-Studiums stattfindet. In der Realität sind die Studierenden, 

die diese Veranstaltung besuchen, zwischen 3. und 10. Semester. Im SoPra setzen die 

Studierenden in Software-Projekten die Inhalte der Software-Technik in die Praxis um. 

Erst im SoPra kommen die in den vorangehenden Veranstaltungen gelernten 

Techniken, Vorgehensmodelle und Konzepte der Programmiersprachen gemeinsam 

zum Einsatz. Die Studierenden setzen verschiedene Aspekte der Software-Entwicklung 

wie Planen, Modellieren mit UML, Programmieren und Testen um. 

Die zufällig zusammengesetzten Achtergruppen bearbeiten gleichzeitig dieselben 

Aufgaben und werden dabei von Betreuern bzw. Betreuerinnen, die den 

Entwicklungsprozess gut kennen, unterstützt. Das Sopra wird dreimal im Jahr 

durchgeführt und es nehmen jeweils etwa 60-80 Studierende teil. Im einem SoPra 

werden jeweils zwei Projekte durchgeführt. Das erste Projekt ist meist eine 

Verwaltungsaufgabe. Im zweiten Projekt müssen die Studierenden oft ein 

Computerspiel realisieren. Das SoPra hat insgesamt einen Arbeitsumfang von etwa 180 

Zeitstunden. Die Modellierung mit UML wird mit dem Tool Astah [1] durchgeführt. 

Zur Realisierung der Projekte wird die objektorientierte Programmiersprache Java 

eingesetzt. Die Programmierumgebung basiert auf Eclipse, in das einige nützliche 

Plugins integriert sind, wie z.B. Subclipse für den SVN-Zugriff und der 

WindowBuilder für die Gestaltung der grafischen Benutzungsschnittstelle. 

Erst in der Zusammenarbeit im Team und der Umsetzung der Software-

Entwicklungstechniken wird klar, wie wichtig die Lesbarkeit, die Verständlichkeit und 

die gute Wartbarkeit des entstehenden Programms sind. Trotzdem hat eine erste 

Messung (siehe Kapitel 3) mit Hilfe eines Werkzeugs zur statischen Code-Analyse 

gezeigt, dass für die Studierende die Qualität des Codes nicht im Fokus steht. Ein Grund 

dafür mag sein, dass in den vorangehenden Veranstaltungen der Schwerpunkt nicht auf 
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Code-Qualität liegt. Auch im SoPra versuchen die Studierenden in erster Linie für sie 

neue Technologien kennenzulernen und funktional korrekte Programme zu schreiben.  

Die erste durchgeführte Analyse von studentischen Projekten [2] hat gezeigt, dass 

typische Mängel in folgenden Bereichen zu finden sind: 

 Namensgebung und Java-Konventionen 

 Komplexität und Länge der Methoden 

 Verantwortlichkeit und Länge der Klassen 

Mehr Details über die festgestellten Mängel sowie über die verwendete Metriken und 

Grenzwerte werden im Kapitel 2 vorgestellt. 

1.1 Vorgehensweise 

Um in der Lehrveranstaltung Software-Praktikum langfristig und nachhaltig für alle 

Jahrgänge von Studierenden die Erhöhung der Qualität des implementierten Codes zu 

gewährleisten, müssen in mehreren Iterationsschritten qualitätsverbessernde 

Maßnahmen in den Entwicklungsprozess integriert werden. Das nachfolgend 

vorgestellte Vorgehen orientiert sich an dem Plan-Do-Check-Act-Zyklus (PDCA) [3]. 

Gemäß des PDCA-Zyklus (siehe Abb. 1) wird eine Iteration geplant und durchgeführt. 

Danach werden die Ergebnisse überprüft und diskutiert. Anschließend folgt die nächste 

Iteration. 

 

 

 

Abbildung 1: PDCA-Zyklus 
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In jedem Zyklus werden die Iterationsschritte wiederholt und die nächsten Ziele 

definiert. Wir beschreiben drei Zyklen, die zur Verbesserung der Codequalität 

durchgeführt wurden, bis erste gute Ergebnisse zu sehen waren. 

Der Aufbau des Beitrags orientiert sich an dieser Vorgehensweise. In Kapitel 2 

werden zunächst die Zielsetzung und Planung der ersten Iteration behandelt. Dann 

folgen in Kapitel 3 die Darstellung der ersten Messung, die Diskussion der Ergebnisse 

und die auf dieser Basis getroffenen Maßnahmen zur tieferen Verankerung des Themas 

Code-Qualität bei den studentischen Entwicklern. In der zweiten Iteration, die in 

Kapitel 4 vorgestellt wird, zeigen die getroffenen Maßnahmen leider keine positive 

Wirkung. Erst in der dritten Iteration, beschrieben in Kapitel 5, sind die neuen 

Maßnahmen erfolgreich. Es gelingt uns, das Thema Code-Qualität vom Anfang des 

Projekts an in den Fokus zu rücken. Der Beitrag schließt mit einem Fazit. 

2 Zielsetzung und Planung 

Gemäß der Goal-Question-Metrik-Methodik (GQM) [4] wurden als Erstes die Ziele für 

bessere Code-Qualität auf Basis typischer gefundener Mängel in studentischen 

Projekten definiert. Um diese Ziele zu erreichen, werden Fragen formuliert. 

Anschießend werden Metriken ausgewählt, mit deren Hilfe diese Fragen beantwortet 

werden können.  

In seinem Buch Clean Code [5] präsentiert Robert Martin als erfahrener Software-

Entwickler eine Fülle von typischen Qualitätsmängeln. Für unsere Veranstaltung 

wurden davon diejenigen ausgewählt, die häufig in studentischen Projekten 

vorkommen, die für die Studierenden leicht verständlich sind und die mit Tool-

Unterstützung möglichst gut zu entdecken und zu beheben sind. 

Für die Suche nach Mängeln in den studentischen Projekten wurde die Tool-

unterstützte statische Code-Analyse angewendet. Diese können die Studierenden in der 

Implementierungsphase von Anfang an einsetzen, auch wenn der Code noch nicht 

kompilierbar ist. Tools zur statischen Code-Analyse bieten die Möglichkeit, gezielt 

nach verschieden Mängeln zu suchen und selbstdefinierte Grenzwerte zu verwenden. 

Selbstverständlich können die Messungen nicht völlig automatisiert durchgeführt 

werden. Der Code und insbesondere die Fundstellen müssen genau angeschaut werden, 

da solche Tools z.B. humorvolle oder sinnlose Bezeichner, die in studentischen 

Projekten häufig vorkommen, nicht finden können.  

Das im SoPra verwendete Werkzeug zur statischen Code-Analyse ist PDM [6]. Aus 

den vielen zur Verfügung stehenden Tools zur statischen Code-Analyse, die sich 

teilweise sehr ähnlich sind, haben wir PMD gewählt, da PMD benutzerfreundlich und 

für Anfänger geeignet ist. 

Auf Basis von typischen Defiziten in studentischen Projekten und den 

Ausbildungszielen im Bereich der Software-Qualität wurden für PMD eigene Regeln 

definiert [2]. Diese werden im XML-Format notiert und stehen allen 

GruppenbetreuerInnen sowie den Studierenden zur Verfügung. Wie bereits erwähnt, 

wurden die Ziele auf der Basis der Analyse der studentischen Projekte [2] und des 

Buches Clean Code [Mar09] festgelegt. Die gewählten Metriken und Grenzwerte 

orientieren sich am Projektumfang, den typischen Mängeln in studentischen 

Programmen sowie den in die Literatur [5, 6, 7, 8] vorgestellten Grenzwerten. In der 
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Literatur sind auch Statistik-basierte Grenzwerte zu finden, die z. B. nicht einfach 

übernommen werden können, da der in studentischen Projekten geringere Umfang und 

die geringere Erfahrung in Betracht gezogen werden müssen. 

Die ausgewählten Qualitätsaspekte werden in die drei Gruppen Bezeichner, 

Methoden und Klassen eingeteilt. Angegeben sind jeweils außerdem die zur Messung 

verwendeten Metriken und die gewählten Grenzwerte. 

2.1 Bezeichner 

Eine gute Bezeichnerwahl ist von großer Bedeutung für die Lesbarkeit und die 

Verständlichkeit des Programmcodes. Die Analyse der studentischen Projekte hat 

gezeigt, dass die Studierende dazu neigen, kurze, wenig sinnvolle oder humorvolle 

Bezeichner zu wählen, was den Regeln für hohe Code-Qualität widerspricht.  

Die Entdeckung der schlechten Bezeichner erfolgt mit Hilfe von PMD. Das 

Werkzeug prüft die Länge der Bezeichner. Da erfahrungsgemäß kurze Bezeichner 

inhaltlich nicht aussagekräftig sind, ließen wir die vier oder weniger Zeichen langen 

Bezeichner vom Tool herausfiltern.  

Die Bezeichner müssen auch manuell, stichprobenartig kontrolliert werden. Auch 

wenn die Bezeichner gemäß der Regeln für die Länge gewählt wurden und die Java-

Konventionen eingehalten werden, können sie dennoch sinnlos oder humorvoll sein, 

oder missverständliche Information liefern. 

Auch die Einhaltung der Java-Konventionen zur Namensgebung kann von 

Werkzeugen zur statischen Code-Analyse größtenteils kontrolliert werden. PMD kann 

nicht erkennen, ob der Bezeichner einer Methode mit einem Verb anfängt, PMD kann 

aber z.B. feststellen, ob ein Klassenbezeichner mit einem Großbuchstaben beginnt. 

2.2 Methoden 

Die Länge der Methoden und die zyklomatische Komplexität werden ebenso mit dem 

Werkzeug zur statischen Code-Analyse untersucht. Aufgrund der von uns definierten 

Regeln erkennt PMD Methoden als mangelhaft, die länger als 40 LOC (Lines of Code) 

sind, wobei die Kommentare und die leere Zeilen mitgezählt werden. Nach Martin [5] 

dürfen die Methoden nicht länger als vier Zeilen sein, wobei jede Schleife nur eine 

Zeile Code beinhalten darf. McConnell [7] sagt, dass eine Methode zwischen 100 und 

200 Zeilen haben darf. Der gewählte Grenzwert von 40 LOC ist für den relativ 

geringeren Umfang der Projekte und noch unerfahrene Entwickler akzeptabel und führt 

zu Methoden, die überschaubar sind, so dass Fehler schnell und einfach gefunden 

werden können.  

Die Komplexität von Methoden als wichtiger Aspekt der Code-Qualität wird häufig 

in Form der zyklomatischen Komplexität gemessen. Diese lässt sich mit Hilfe von 

Tools zur statischen Code-Analyse leicht kontrollieren. Für die Analyse der 

studentischen Projekte wurde der Grenzwert von 10 von PMD übernommen [6]. Dieser 

darf nicht überschritten werden.  

Neben der zyklomatischen Komplexität und der Länge der Methoden wurde die 

Anzahl der Parameter untersucht. Wenn die Anzahl der Parameter einer Methode vier 

überschreitet, dann meldet PMD nach den von uns definierten Regeln die Stelle als 

mangelhaft. Martin [5] sieht eine maximale Länge von drei vor, wobei drei Parameter 
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nur in Ausnahmefällen akzeptabel seien. PMD sieht in den mitgelieferten Regeln einen 

Maximalwert von 10 vor.  

Eine Parameterliste darf nicht zu lang sein, weil diese schwer zu verstehen und zu 

benutzen wird. Außerdem ändern sich solche Listen beim Implementieren ständig. Die 

Nutzung vieler Parameter kann dazu führen, dass die Parameter des gleichen Typs 

verwechselt werden können. Lange Parameterlisten können auch zur Entstehung von 

redundantem Code führen. [9] 

2.3 Klassen 

Ebenso wie lange Methoden müssen auch lange Klassen vermieden werden, um eine 

hohe Übersichtlichkeit und eine gute Testbarkeit und Wiederverwendbarkeit zu 

erreichen. Die Länge der Klassen sowie die Anzahl der Klassen hängt laut [8] vom 

Projektumfang ab. Da der Projektumfang im SoPra nicht so hoch ist, haben wir in den 

SoPra-Regeln festgelegt, dass PMD eine Klasse als zu lang erkennen soll, wenn diese 

mehr als 400 LOC hat. Standardmäßig ist hierfür bei PDM 1000 Zeilen eingestellt [6]. 

Bei der Messung soll auch geprüft werden, ob eine Klasse zu viel Verantwortung 

übernimmt, man spricht dann von einer Gott-Klasse. Die Definition von Gott-Klassen 

und die Kriterien, die die Entdeckung unterstützen, wurden von Lanza und Marinescu 

[8] übernommen.  

PMD erkennt eine Gott-Klasse, wenn alle folgenden Kriterien verletzt sind: 

 Die Summe der zyklomatischen Komplexität aller Methoden einer Klasse 

(WMC - Weighted Method Count) darf den Grenzwert von 47 nicht 

überschreiten. 

 Die Anzahl der direkten Zugriffe einer Klasse auf die Attribute anderer 

Klassen (ATFD – Access To Foreign Data) darf nicht höher als 5 sein. 

 Die dritte Metrik (TCC - Tight Class Cohesion) misst die Rate der direkt 

gekoppelten public-Methoden einer Klasse geteilt durch die maximale Anzahl 

der Verbindungen der Methoden. Dieser Wert sollte 0,33 nicht unterschreiten. 

Nur wenn er höher als 0,33 ist, wird nach der Definition von Lanza und 

Marinescu [8] die gewünschte Kohäsion der Methoden gewährleistet. 

Zwei Methoden sind als verbunden anzusehen, wenn sie auf die gleichen 

Instanzvariablen einer Klasse zugreifen. Innerhalb einer Klasse sollten die Methoden 

eine hohe Kohäsion besitzen. Andernfalls kann man die Methoden leicht auf zwei 

Klassen aufteilen. 

3 Die erste Messung 

Die erste Messung fand im Ferien-SoPra im SS 14 statt. Die Studierenden wussten beim 

Programmieren nicht, dass der Programmcode untersucht wurde. Nach der Messung 

am Ende des SoPras wurden die festgestellten Mängel den Gruppen detailliert 

präsentiert. Die Gesamtergebnisse sind in Abbildung 2 dargestellt. 
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Abbildung 2: Gesamtergebnis im Freien-SoPra im Sommer 2014 

Zu sehen sind die von den Gruppen jeweils insgesamt erreichten Punkte. Jede Gruppe 

startet mit einem Pluspunkte-Konto von 95 Punkten, aufgeteilt in die oben definierten 

drei Kategorien (Bezeichner, Methoden und Klassen) und „Sonstiges“. Bei jedem 

gefundenen Verstoß wird für die entsprechende Kategorie ein Punkt abgezogen. 

In Bezug auf den Qualitätsaspekt Bezeichnerwahl haben wir folgendes festgestellt. 

Wie bereits erwähnt, misst das Tool PMD die Länge der Bezeichner, über deren 

Aussagekraft das Tool keine Entscheidung treffen kann. Deshalb müssen die 

Fundstellen manuell geprüft werden. Wir haben Bezeichner gefunden, die zwar kurz, 

im Aufgabenkontext aber sinnvoll sind, wie z.B. “Zug” oder “Game” als 

Klassenbezeichner. Diese werden nicht als Mängel betrachtet. Bei anderen Bezeichnern 

der Art “m1”, “m2” oder “p” fehlt die Aussagekraft, und sogar mit gutem 

Kontextwissen sind sie schlecht zu verstehen. Derartige Bezeichner werden gerne für 

Methodenparameter und lokale Variable verwendet. 

Die erste Messung ergab außerdem, dass die Java-Namenskonventionen von den 

Studierenden weitgehend eingehalten wurden. In der Kategorie Namensgebung blieben 

deshalb trotz oft schlechter Bezeichnerwahl einige Punkte erhalten. 

Auffällig war, dass einige Gruppen nur zwei bis drei Methoden mit zu hoher 

zyklomatischer Komplexität in ihrem Projekt hatten, wohingegen andere Gruppen sehr 

viele derartige Methoden entwickelt haben. Eine Gruppe hatte eine Methode mit einer 

zyklomatischen Komplexität von 67 geschrieben. 

Die Methoden, die von PMD als zu komplex erkannt wurden, waren auch 

diejenigen, die offensichtlich zu lang waren. Im Programmcode der Gruppe 9 wurde 

vom PMD eine Methode mit 186 Zeilen und einer zyklomatischen Komplexität von 49 

entdeckt. 

Lange Klassen sind im SoPra eher selten, da der Projektumfang nicht so groß ist. 

Die erste Messung hat gezeigt, dass viele Klassen, die von PMD als zu lang erkannt 

wurden, auch als Gott-Klassen identifiziert wurden. Die längste Klasse hatte 992 LOC. 

Diese Klasse hat auch die Gott-Klasse-Regel von Lanza und Marinescu [8], die in 

Kapitel 2.3 vorgesellt ist, verletzt. WMC betrug 126, beim Grenzwert von 47, ATFD 
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war fast 10-fach größer als der Grenzwert und TCC erreichte etwa 0.042. In dieser 

Klasse wurden auch auskommentierter und unbenutzter Code gefunden, wie z.B. 

Parameter, Attribute sogar ganze Methoden. Diese „Baustellen“ wurden auch als 

Mängel notiert.  

Zum Punktabzug haben auch die schlechte Sortierung der Komponenten in den 

Klassen sowie tief verschachtelte if-Anweisungen geführt. 

3.1 Analyse der Ergebnisse 

Im Rahmen der ersten Messung wurden viele der bei der Planung angenommenen 

Mängel [10] festgestellt, was für die passende Wahl der betrachteten Qualitätsaspekte, 

der Metriken und des Code-Analyse-Werkzeugs spricht. Da nicht nur die Auswahl der 

Metriken, sondern auch die der passenden Grenzwerte sehr wichtig für die 

Qualitätsmessung und die Erreichbarkeit der Ziele sind, liefert die Evaluation auch 

Information darüber, ob die Grenzwerte gut gewählt und erreichbar sind. Die 

Erreichbarkeit der Ziele ist eine Voraussetzung für die Akzeptanz der Messung, die 

Erhöhung der Motivation und zur Verbesserung des Programmierstils der Entwickler. 

Ein Grund für die weitgehende Einhaltung der Java-Konventionen kann die 

Zusammenarbeit im Team beim Erstellen der UML-Modelle sein, aus denen die Java-

Code-Rahmen generiert werden. Weiterhin stellten wir besonders viele einbuchstabige 

Bezeichner bei den Parametern in Programmteilen fest, die von Einzelpersonen erstellt 

wurden. Diese Programmteile wurden bis dahin keinem definierten Code-Review-

Prozess unterzogen.  

Nach unseren Erfahrungen in studentischen Projekten sind die langen Methoden 

auch diejenigen, die eine hohe zyklomatische Komplexität aufweisen.  

Alle festgelegten Grenzwerte haben sich als geeignet erwiesen, da sie von 

Studierenden eingehalten werden konnten. Auch die ausgewählten Metriken haben sich 

aus unserer Sicht für das Ziel bewährt, die Lesbarkeit und Verständlichkeit des Codes 

zu steigern, da sie den Studierenden überwiegend gut vermittelbar waren.  

3.2 Modifikationen 

Die Ergebnisse der Messungen und damit die erreichte Code-Qualität wurden 

allerdings nicht als zufriedenstellend angesehen. Folgende Maßnahmen wurden 

deshalb getroffen:  

 Das Thema Code-Qualität wird von Anfang an in den Ablauf den SoPras 

integriert.  

 Die Messung wird in der Einführungsveranstaltung angekündigt.  

 Zur weiteren Verankerung des Themas Code-Qualität wurden Diskussionen 

mit den Studierenden über ihre Ergebnisse nach dem ersten Projekt geplant. 

 Außerdem wird als flankierende Maßnahme stärker auf das Thema 

Refactoring eingegangen. Den Studierenden wird in einer Präsentation 

gezeigt, wie man die in Eclipse vorhandenen Refactoring-Techniken einsetzt. 

 Zusätzlich wird den Studierenden im SoPra-Wiki [11] Lernmaterial in Form 

von Tutorials zu den Themen PMD, Clean Code und Refactoring zur 

Verfügung gestellt.  
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Unter Refactoring [9] versteht man Techniken, die zur Verbesserung des Quellcodes 

zu verwenden sind, wobei aber die Funktionalität bestehen bleibt. Da man nicht davon 

ausgehen kann, dass studentischer Programmcode absolut mängelfrei ist, werden 

Refactoring-Techniken zu jedem von uns als besonders relevant betrachteten 

Qualitätsbereich eingeführt. 

3.2.1 Refactoring für Bezeichner 

Die Qualitätsaspekte Namensgebung und Java-Konventionen sind für die Studierende 

sehr einfach zu realisieren, weil diese gut nachvollziehbar und Mängel leicht zu 

beseitigen sind. Mit Hilfe der Refactoring-Technik Rename lassen sich alle Bezeichner 

schnell und ohne großen Aufwand verbessern. Ein Beispiel dafür ist, dass ein Mitglied 

der Siegergruppe 2 (s. Abb. 2) alle kurzen Bezeichner mit Hilfe von Rename vor der 

Messung ersetzt hat. Deswegen hat diese Gruppe in diesem Bereich die volle Punktzahl, 

wogegen andere Gruppen keinen Punkt behalten konnten.  

3.2.2 Refactoring für Methoden 

Die Lesbarkeit, die Komplexität und die Länge der Methoden können mit den 

Refactoring-Techniken Extract Method oder Extract Local Valiable verbessert werden. 

Durch Extract Lokal Variable wird ein Ausdruck durch eine neue lokale Variable 

ersetzt. Durch Extract Method wird ein Block von Anweisungen einer Methode in eine 

neue Methode ausgelagert. Diese Technik kann auch eingesetzt werden, um die 

Verständlichkeit des Codes zu erhöhen, z.B. wenn ein Teil der Methode gut 

kommentiert werden muss, damit die Funktionalität besser verstanden wird. [9] 

Allerdings ist der Aspekt Refactoring für Methoden nicht so einfach umzusetzen. 

Ob die Funktionalität erhalten geblieben ist, muss deshalb durch Tests überprüft 

werden. Durch Extract Method entsteht ein neuer Sichtbarkeitsbereich für Instanz-

Variable und Parameter. Wenn beispielsweise mehrere lokale Variable in dem Bereich, 

der zum Extrahieren markiert ist, deklariert und ihnen Werte zugewiesen werden, ist 

Extract Method nicht anwendbar.  

Die Anzahl der Parameter lässt sich mit Hilfe von Introduce Parameter Object 

reduzieren. Auf dieser Weise wird eine neue Klasse erzeugt und mehrere Parameter 

einer Methode lassen sich durch ein Objekt dieser Klasse ersetzen. So wird aber nicht 

unbedingt eine bessere Lesbarkeit und Übersichtlichkeit gewährleistet, da durch das 

Erzeugen von neuen Klassen die gesamte Struktur geändert wird.  

In studentischen Projekten sind auch Literale zu finden, meist in Form von 

konkreten Zahlenwerten in Bedingungen. Diese sind bei der Fehlersuche oder Wartung 

schwer zu verstehen, selbst wenn Kontextwissen vorhanden ist. Mit Hilfe von Extract 

Constant-Refactoring können die Zahlen einfach durch eine statische finale Variable 

mit aussagekräftigem Bezeichner ersetzt werden. Dadurch wird der Code 

verständlicher und auch wartungsfreundlicher. 

3.2.3 Refactoring für Klassen 

Die Beseitigung einer Gott-Klasse oder einer zu langen Klasse kann erreicht werden, 

indem durch das Verschieben von Methoden ein geeigneter Teil des Codes in eine 
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andere Klasse verschoben wird. Zur Reduzierung der Länge und der Komplexität der 

Klasse können Extract Class oder Move der richtige Weg sein. Das Aufspalten einer zu 

langen Klasse in zwei kann durch Extract Class erreicht werden. Das ist leider oft mit 

großem Aufwand verbunden, deshalb muss man sich fragen, ob sich der Aufwand lohnt 

[9]. 

Für die Sortierung der Komponenten in einer Klasse und die Beseitigung von 

unbenutztem Code gibt es keine speziellen Refactoring-Techniken. Diese Mängel 

müssen manuell behoben werden. Extract Method kann verwendet werden, um der 

redundanten Code zu beseitigen. 

4 Die zweite Messung 

Im zweiten Einsatz zur Integration der Qualitätsaspekte in den Entwicklungsprozess im 

WS 14/15 wurde das Thema „Clean Code“ eingeführt, die Messung von Anfang an 

angekündigt und erläutert, nach welchen Mängeln bei der Analyse gesucht wird und 

wieso. Tutorials zur statischen Code-Analyse und Refactoring wurden bereitgestellt. 

4.1 Analyse der Ergebnisse 

Die Ergebnisse der Messung sind im Vergleich zu denen im SS14 trotz aller getroffenen 

Maßnahmen immer noch nicht besser. Bei der Präsentation und Diskussion der 

Ergebnisse des ersten Projekts zeigten sich die Studierenden durchaus einsichtig. 

Dennoch waren auch die Ergebnisse des zweiten Projekts im WS 14/15, die in 

Abbildung 3 dargestellt sind, nicht besser als die im ersten Projekt und die des 

vorangehenden Software-Praktikums im ersten Zyklus (siehe Abb. 2). 

Die knappe Zeit im Projekt wird offenbar lieber in das schöne Aussehen der 

Benutzungsschnittstelle, in komplexe Algorithmen und noch mehr Funktionalität als in 

statische Code-Analyse und Refactoring investiert. Weiterhin scheint bei den 

studentischen EntwicklerInnen das Ziel, eine hohe Code-Qualität zu erreichen, eine 

deutlich geringere Priorität als ein schönes User-Interface und die Funktionalität des 

Programms zu besitzen.  

Es reicht offenbar nicht aus, auf die Einsicht der Studierenden zu vertrauen. Obwohl 

die Betreuer bereits für das Thema sensibilisiert waren, konnten sie bei den Gruppen 

die tägliche Code-Analyse und mehr Sorgfalt im zweiten Projekt nicht erreichen. Die 

Studierenden haben zwar eine Code-Analyse am Ende des Projekts durchgeführt, als 

es kaum noch Zeit mehr gab und viele Mängel sich nicht mehr so leicht, z. B. mit Hilfe 

von einfachen Refactorings, beseitigen ließen, so dass viele Mängel erhalten blieben. 
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4.2 Modifikation 

Die GruppenbetreuerInnen sollen frühzeitig mit den Gruppen zusammen Messungen 

der Code-Qualität durchführen und die Studierenden auf potenzielle Fehler und Mängel 

aufmerksam machen. Sie sollen mit den Gruppen diskutieren, wie man potentielle 

Mängel frühzeitig erkennen kann oder wie sich diese mit Hilfe von Refactorings 

beseitigen lassen, um die Motivation der Studierenden zu erhöhen. 

Da es offenbar nicht ausreicht, über die Möglichkeit von Qualitätsmessungen und 

Maßnahmen zur Qualitätsverbesserung informiert zu sein, muss ein anderer Weg 

beschritten werden. Die Studierenden müssen “gezwungen” werden, die vorhandenen 

Tools und Techniken selbst auszuprobieren und anzuwenden. 

5 Die dritte Messung 

In der Einführungsveranstaltung wird das Thema Code-Qualität angesprochen. Die 

Studierenden führen eigenständig Messungen mit PMD und dem SoPra-Regelsatz 

durch. Die GruppenbetreuerInnen weisen wiederholt auf die Relevanz der Code-

Qualität für das Projekt hin. 

Nach dem ersten Projekt folgte eine Diskussion der Ergebnisse der durchgeführten 

Messungen mit den Gruppen und mit den BetreuerInnen. Vorschläge zur Vermeidung 

der festgestellten Mängel werden gesammelt. 

Die Studierenden werden nach dem ersten und vor dem zweiten Projekt 

aufgefordert, die gefundenen Mängel mit Hilfe von Refactoring-Techniken zu beheben 

und einen Bericht darüber zu verfassen. Wenn das Verwenden von Refactoring nicht 

erfolgreich war, mussten die Studierenden dies schriftlich begründen. Viele Mängel 

insbesondere im Bereich der Namensgebung ließen sich problemlos z.B. durch das 

Abbildung 3: Gesamtergebnis im WS-SoPra 14/15 
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Refactoring Rename beheben. Um die Länge der Methoden zu verkürzen und ihre 

Komplexität zu verringern konnte das Refactoring Extract Method oft erfolgreich 

eingesetzt werden. In manchen Fällen waren die Studierenden trotz ihrer Bemühungen 

zur Beseitigung der Mängel nicht in der Lage, dann konnten sie gut erklären, woran sie 

gescheitert waren. 

Insbesondere zeigte sich in den zugesandten Berichten, dass die Studierenden trotz 

offensichtlicher Anstrengungen damit überfordert waren, die Gottklassen im 

Nachhinein zu beseitigen. Lange Parameterlisten wurden wie vorgesehen durch 

Introduce Parameter Object beseitigt. Die neu entstandene Struktur des 

Programmsystems wurde allerdings auch von den Studierenden kritisiert. 

Insgesamt zeigte sich, dass die Mängel teilweise nur schwer behebbar waren und 

sich trotz Einsatz mehrerer Refactorings im Nachhinein nicht mit vertretbarem 

Aufwand beseitigen ließen. 

Diese praktische eigene Erfahrung der Studierenden und der Einsatz dieser 

didaktischen Methoden haben dazu geführt, dass sich die Entwicklerteams bereits in 

der Modellierungsphase des zweiten Projektes Gedanken über eine gute 

Bezeichnerwahl und die Vermeidung von langen Methoden, langen Parameterlisten 

und Gott-Klassen gemacht haben. Bei dem Implementieren haben einige Gruppen 

versucht, der Regel vom Martin [5] zu folgen, dass eine Methode nur vier Zeilen lang 

sein sollte.  

 

Abbildung 4: Gesamtergebnis im Freien-SoPra im Winter 2015 

5.1 Analyse der Ergebnisse 

Abbildung 4 stellt das Gesamtergebnis des zweiten Projekts im Ferien-SoPra nach WS 

14/15 dar. Ein Vergleich der Werte in Abbildung 1 bis 4 zeigt, dass die besten 

Ergebnisse bei der vorerst letzten Iteration erzielt wurden. Besonders auffallend ist, 

dass die Ergebnisse aller Gruppen sehr hoch sind (zwischen 69 und 92). 

Hervorzuheben ist, dass sich lange Parameterlisten nur noch bei Gruppe 4 finden. 

Die Hälfte der Gruppen konnte Methoden mit erhöhter zyklomatischer Komplexität 

vermeiden. 
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Aber fast alle Gruppen hatten immer noch Gott-Klassen. Das waren in der Regel 

die Klassen, die die Strategie der Spiele realisieren. 

Mängel in den anderen Bereiche, die in Kapitel 2 vorgestellt worden sind, waren 

kaum noch zu finden.  

5.2 Modifizieren 

Die Auswertung der letzten durchgeführten Messung hat gezeigt, dass die Ergebnisse 

besser geworden sind, so dass wir von einer Verankerung des Themas Code-Qualität 

von Anfang der Entwicklung an durch die eingeführten didaktischen Maßnahmen 

ausgehen können. Dennoch sind noch einige Veränderungen in Bezug auf die Metriken 

notwendig. 

Da die absoluten Methoden- und Klassenlängen gemessen wurden, gab es kritische 

Anmerkungen und Diskussionen zu den Messergebnissen. Dementsprechend besteht 

die Gefahr von adaptivem Verhalten, wie z. B. die Reduzierung der Kommentare. Um 

das zu vermeiden, wird bei der zukünftigen Messungen die Metrik NCSS (Non 

Commenting Source Statements) verwenden. Diese lässt Kommentare und die leere 

Zeilen unberücksichtigt. 

Die Definition der Gott-Klassen ist für die Studierenden schwer zu verstehen und 

einmal entstandene Gott-Klassen sind durch Refactoring schwer zu beseitigen. Deshalb 

ist es notwendig, dass zu lange Klassen und zu komplexe Methoden bereits bei der 

Modellierung vermieden werden. Oft lässt sich schon bei der Modellierung erkennen, 

dass eine Klasse oder eine Methode zu viel Verantwortung übernimmt. Finden sich 

mehrere dieser Methoden in einer Klasse, so ist die Gefahr einer Gott-Klasse sehr groß.  

6 Fazit 

Eine langfristige Integration von Qualitätsaspekten konnte durch die Anwendung von 

didaktischen Maßnahmen in mehreren Iterationszyklen gewährleistet werden. Ein 

wichtiges Ergebnis ist, dass sich in einem modellbasierten Entwicklungsprozess eine 

hohe Code-Qualität mit vertretbarem Aufwand nur erreichen lässt, wenn dieses Ziel 

von den EntwicklerInnen bereits während der Modellierungsphase beachtet wird. Die 

Beseitigung von Mängeln am Ende der Implementierungsphase, wenn ein Tool zur 

statischen Code-Analyse auf die Mängel aufmerksam macht, ist nicht wirklich 

zielführend. Am Ende des Projekts ist einerseits die Zeit immer knapp und andererseits 

hat sich gezeigt, dass die Behebung mancher Mängel sehr aufwendig ist und 

Programmieranfänger überfordert. Komplexe Änderungen müssen durch die erneute 

Durchführung der Funktionstests überprüft werden. Komplexe Refactorings verändern 

die Struktur des Systems und können weitere Refactorings notwendig machen. So 

entstehen Kettenreaktionen, denen Programmieranfänger nicht gewachsen sind, und 

die Motivation der Studierenden leidet darunter. 

Code-Qualität lässt sich also nur erreichen, wenn dieses Ziel von Anfang an verfolgt 

wird.  
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Zusammenfassung Das E-Learning/E-Assessment-System autotool ist
eine Online-Plattform zur semantischen Bewertung von studentischen
Lösungen von Übungsaufgaben und gestattet auch das zufällige Gene-
rieren von Aufgabeninstanzen.
Ich verwende diese Plattform für einen Teil des Übungsbetriebes zur Vor-
lesung Prinzipien von Programmiersprachen und berichte über Design,
Implementierung und Erfahrung mit Aufgabentypen zur polymorphen
Typisierung, zur denotationalen Semantik rekursiver Definitionen, zur
(approximierten) Spur-Semantik imperativer Programme, sowie zu dy-
namischen und statischen Ketten bei lokalen Unterprogrammen.

1 Einleitung

In der Vorlesung Prinzipien von Programmiersprachen geht es um Syntax, Se-
mantik und Pragmatik programmiersprachlicher Konzepte und ihrer Realisie-
rungen. Welche Übungsaufgaben sollte man dazu stellen?

Naheliegend sind Bastelarbeiten in verschiedensten realen Programmierspra-
chen. Oft sind dabei aber die jeweils betrachteten Konzepte nicht in Reinform
vorhanden und die Studenten werden durch nebensächliche Sprachspezifika ab-
gelenkt. Die reale Sprachvielfalt täuscht auch, denn unter der Oberfläche findet
man doch oft nur das imperative objektorientierte Paradigma, und die Betrach-
tung der (n+ 1)-ten Instanz davon bringt dann nicht mehr viel neues.

Nützlich sind vielmehr Aufgaben zur isolierten Behandlung jeweils einer
Idee. Ich realisiere solche Aufgaben als Semantikmodule für mein E-Learning/E-
Assessment-System autotool [RW02]. Für jeden Aufgabetyp definiert dabei man
eine problemspezifische Sprache. Dabei ist die Syntax entweder uniform (und
entspricht der Syntax von Daten-Termen in Haskell) oder an eine bekannte Spra-
che angelehnt (z.B. Methodendeklarationen in Java). Die Semantik wird durch
einen aufgabenspezifischen Interpreter realisiert. Dieser verarbeitet die studen-
tische Einsendung und liefert (sofort) diese Informationen:

– Einsendung ist richtig oder falsch bzgl. Aufgabenstellung
– wenn richtig, eine Meßgröße (z.B. Eingabegröße) für eine Highscore-Wertung
– wenn falsch, eine Spur der ausgeführten Rechnung (Probe) mit Teilschritten.
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Der Einsender soll aus der Fehlermeldung (Spur der Probe) und dem Wissen aus
der Vorlesung erschließen, wie die Einsendung zu reparieren ist, und kann das
innerhalb der vorgesehenen Bearbeitungsfrist beliebig oft versuchen. autotool un-
terscheidet sich damit grundlegend von E-

”
Learning“-Systemen, bei denen doch

nur überprüft wird, ob an vorgegebenen Stellen Kreuzchen gemacht wurden.
Die Erfahrung zeigt, daß die Studenten vor allem die sofortigen, ausführli-

chen und nachvollziehbaren Rückmeldungen des Systems schätzen und die sich
daraus ergebende Möglichkeit, zu beliebiger Tages- (und Nacht-)Zeit Aufgaben
zu bearbeiten.

Zu vielen Aufgabentypen gibt es Instanzen-Generatoren. Diese erzeugen nach
einstellbaren Parametern verschiedene, aber ähnlich schwere Aufgabeninstanzen
eines Typs. Jeder Student erhält eine eigene Aufgabeninstanz und kann deren
Lösung deswegen nicht bei anderen abschreiben.

Für Aufgaben mit gemeinsamer Instanz kann eine öffentliche (und pseud-
onymisierte) Highscore-Liste geführt werden, in der allen richtigen Einsendun-
gen nach der Meßgröße sortiert werden und jene mit übereinstimmenden Werten
nach Einsendezeitpunkt. Wer einen vorderen Platz in dieser Liste ergattern will,
wird auch niemanden abschreiben lassen.

Im vorliegenden Bericht beschreibe ich einige der von mir entwickelten, imple-
mentierten und in Vorlesungen angewendeten Aufgabentypen zu Prinzipien von
Programmiersprachen. Dabei gebe ich jeweils an, welchem Zweck die Aufgabe
dienen soll, dann eine exakte Spezifikation von Aufgabenstellung und Korrekt-
heit der Lösung, sodann ein Beispiel für eine Aufgabeninstanz mit Lösung. Es
folgen jeweils Beispiele für Systemantworten bei inkorrekten Einsendungen, denn
das ist der wohl der häufigste Anwendungsfall und somit ein wesentlicher Be-
standteil des Lernprozesses. Beispiel-Aufgaben können ausprobiert werden unter
https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=213.

Der hier vorgelegte Artikel erscheint ähnlich in den informellen Pre-Procee-
dings des Workshops E-Learning Leipzig 2015.

Ich bedanke mich bei Hans-Gert Gräbe für nützliche Diskussionen zu Vor-
stufen dieses Aufsatzes sowie bei vielen Teilnehmern meiner Vorlesungen in den
letzten Jahren für den (unfreiwilligen) Test der Aufgaben.

2 Aufgabe: Polymorphe Typisierung

Die parametrische (generische) Polymorphie ist ein wichtiges Hilfsmittel zur
Software-Wiederverwendung. Polymorphe Typen werden oft für Collections ver-
wendet, der Typparameter ist dann der Elementtyp.

2.1 Spezifikation

– Instanz: eine polymorphe Signatur und ein Typ T
– Einsendung: ein Term t
– Bedingung: t ist korrekt typisiert und hat Typ T .
– Highscore-Parameter: die Größe von t
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Die Syntax ist sehr stark an Java angelehnt. Bei jedem Aufruf einer Methode
mit polymorphem Typ müssen jedoch alle Typargumente explizit angegeben
werden — auch wenn das in Java (meist) inferiert werden könnte.

Bei gegebener monomorpher Signatur bilden die korrekt typisierten Terme
eine reguläre Baumsprache. In polymorphen Signaturen ist die Lage viel kompli-
zierter, man kann etwa die Lösung eines Postschen Korrespondenzproblems in
der Typ-Ableitung kodieren. Das ergibt anspruchsvolle Highscore-Aufgaben. . . .

2.2 Beispiel mit Lösung

Gesucht ist ein Ausdruck vom Typ Fozzie<Kermit, Kermit>

in der Signatur

class S {

static <T2> Piggy<Piggy<Animal>> statler ( Piggy<T2> x

, Piggy<T2> y );

static <T2> Kermit waldorf ( Piggy<T2> x );

static Piggy<Fozzie<Animal, Animal>> bunsen ( );

static <T2, T1> T1 chef ( Piggy<Piggy<T2>> x

, Piggy<Piggy<T1>> y );

static <T2> Fozzie<Kermit, T2> rowlf ( T2 x , Animal y );

}

Der Zieltyp ist der Resultattyp von S.<Kermit>rowlf. Um das aufzurufen,
braucht man einen Kermit (erhält man von waldorf, dessen Argumenttyp ist
egal, also kann man bunsen() nehmen) und ein Animal:

S.<Kermit>rowlf(S.<Fozzie<Animal, Animal>>waldorf( S.bunsen()) ,

S.<Animal,Animal>chef(

S.<Fozzie<Animal,Animal>>statler( S.bunsen(),S.bunsen() ),

S.<Fozzie<Animal,Animal>>statler( S.bunsen(),S.bunsen() ) ) )

2.3 Typische Fehlermeldungen

berechne Typ für Ausdruck: S.<Fozzie<Animal, Kermit>>statler (S.bunsen (),

S.bunsen ())

Name statler hat Deklaration:

static <T2> Piggy<Piggy<Animal>> statler ( Piggy<T2> x, Piggy<T2> y )

die Substitution für die Typ-Parameter ist

listToFM

[ ( T2 , Fozzie<Animal, Kermit> ) ]

die instantiierte Deklaration der Funktion ist

static Piggy<Piggy<Animal>> statler ( Piggy<Fozzie<Animal, Kermit>> x

, Piggy<Fozzie<Animal, Kermit>> y

)

prüfe Argument Nr. 1

berechne Typ für Ausdruck: S.bunsen ()
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Name bunsen hat Deklaration:

static Piggy<Fozzie<Animal, Animal>> bunsen ( )

Ausdruck: S.bunsen ()

hat Typ: Piggy<Fozzie<Animal, Animal>>

Argument-Typ stimmt mit instantiierter Deklaration überein?

Nein.

2.4 Instanzen-Generator

Hier die Konfiguration des Generators, mit der obige Instanz erzeugt wurde:

Conf

{ types_with_arities = [ (Kermit,0), (Animal,0), (Piggy,1) , (Fozzie,2) ]

, type_variables = [ T1 , T2 ]

, function_names = [ statler , waldorf , bunsen, chef, rowlf ]

, type_expression_size_range = ( 1 , 4 ) , arity_range = ( 0 , 2 )

, solution_size_range = ( 6 , 12 ) , generator_iterations = 500

, generator_retries = 10

}

Bei der Generierung einer Instanz wird zunächst eine Signatur gewürfelt und
dann korrekt typisierte Terme in dieser Signatur der Größe nach aufgezählt.
Dieser Vorgang wird einigemale wiederholt und schließlich die Instanz gewählt,
die den gewünschten Parametern am nächsten kommt.

3 Aufgabe: Semantik rekursiver Programme

Die operationale Semantik beschreibt die Rechenschritte, mit denen ein Pro-
gramm ausgewertet wird. Die denotationale Semantik ordnet den Bezeichnern
eines Programmtextes mathematische Objekte zu. Den Unterschied kann man
für (gegenseitig) rekursive Definitionen von Funktionen so erklären: operational
ist ein Programm ein Ersetzungssystem, denotational beschreibt es Funktionen.
Wenn man Glück hat, sind diese eindeutig und total.

In Sonderfällen besitzen rekursive Gleichungssysteme eine explizite Darstel-
lung der Lösung durch einfache arithmetische Funktionen und Verzweigungen.
Zum Beispiel zeigt man für g(n) = if n > 0 then 2 + g(n − 1) else 1 leicht
g(n) = 2n+1. In ausgesuchten anderen Fällen [Knu91] ist das ebenfalls möglich,
aber überhaupt nicht offensichtlich.

3.1 Spezifikation

– Instanz: ein Gleichungssystem E, möglicherweise rekursiv, für unbekannte
Funktionen f1, . . . , fn,

– Einsendung: explizite arithmetische Ausdrücke A1, . . . , An

– Bedingung: die Substitution σ : f1 7→ A1, . . . ist eine Lösung von E
– Highscore-Parameter:

∑ |Ai|
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Die Bedingung ist nicht entscheidbar, deswegen wird wiederholt getestet.
Beim Test wird nicht die Einsendung mit einer bekannten Lösung verglichen,
sondern die eingesandte Substitution σ wird auf alle Gleichungen von E ange-
wendet und die dabei entstehenden Gleichungen zwischen arithmetischen Aus-
drücken werden getestet — und das geht schnell. Selbst wenn E rekursiv ist,
findet beim Testen einer Einsendung keinerlei Rekursion statt.

Es ist Sache des Aufgabenstellers, darauf zu achten, daß das Gleichungs-
system eine geschlossen darstellbare Lösung besitzt. Eindeutige Lösbarkeit ist
nicht erforderlich.

3.2 Beispiel mit Lösung

Die Takeuchi-Funktion kann so beschrieben werden:

Deklarieren Sie Funktionen mit den folgenden Eigenschaften.

wobei die Variablen über alle natürlichen Zahlen laufen:

{forall x y z . t (x , y , z ) ==

if x <= y then y

else t (t (x - 1 , y , z ) ,

t (y - 1 , z , x ) ,

t (z - 1 , x , y ))

;}

Eine explizite Lösung lautet

{ t(x,y,z) =

if x <= y then y else if y <= z then z else x ;}

3.3 Typische Fehlermeldungen

gelesen: {t (x , y , z) = if x <= y then y else z ;}

nicht erfüllte Bedingungen:

Constraint: forall x y z .

t (x , y , z ) == if x <= y

then y

else t (t (x - 1 , y , z ) ,

t (y - 1 , z , x ) ,

t (z - 1 , x , y ))

;

Belegung: x = 3 ; y = 2 ; z = 1 ;

dabei berechnete Funktionswerte:

t (3 , 2 , 1) = 1

t (2 , 2 , 1) = 2

t (1 , 1 , 3) = 1

t (0 , 3 , 2) = 3

t (2 , 1 , 3) = 3
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4 Aufgabe: Approximierte Spur-Semantik

Gegenstand ist die Semantik von imperativen Programmen als Menge von mögli-
chen Ausführungen (Spuren) und deren Anwendung beim Feststellen der Äqui-
valenz verschiedener Arten der Programmablaufsteuerung (wie Schleifen und
Sprünge).

4.1 Spezifikation

– Instanz: ein imperatives Programm P , eine Beschreibung von erlaubten Steu-
erbefehlen, z.B.

”
nur While (kein Goto)“,

”
nur Goto (kein While)“.

– Einsendung: ein imperatives Programm Q,
– Bedingung: Q hat erlaubte Struktur und ist spur-äquivalent zu P
– Highscore-Parameter: Größe von Q

Programme bestehen dabei aus abstrakten elementaren Befehlen. Diese sind
benannt, aber ihre Semantik ist nicht spezifiziert. Die Programmablaufsteue-
rung benutzt boolesche Kombinationen abstrakter Zustandsprädikate. Diese sind
ebenfalls nur benannt, aber nicht spezifiziert.

Eine Spur ist eine Folge von Paaren von Zustand und Befehl. Ein Zustand ist
eine Zuordnung von Prädikat-Namen zu Wahrheitswerten. Die Spuren des Pro-
grammes if P then A; B; sind [(P,A), (P,B)], [(P,A), (not P, B)] und
[(not P,B)]. Dadurch wird modelliert, daß jede Bedingsauswertung nebenwir-
kungsfrei ist und jede Befehlsausführung jede Zustandsinformation zerstört. Die
Menge der Spuren eines Programmes ist in diesem Modell effektiv regulär und die
Spuräquivalenz damit entscheidbar. Sind die so definierten Spursprachen von P
und Q gleich, so sind alle Instantiierungen von P und Q als konkrete imperative
Programme äquivalent.

Unter diesem strengen Äquivalenzbegriff kann nicht jedes Goto-Programm
in ein äquivalentes While-Programm transformiert werden, da man keine (boo-
leschen) Variablen zur Verfügung hat, um Wissen über frühere Zustände abzu-
legen.

4.2 Beispiel mit Lösung

Gesucht ist ein Programm,

das äquivalent ist zu

{foo : while (a)

{while (b)

{p;

if (c) continue foo;

q;}}}

und diese Bedingungen erfüllt

And [ Flat , No_Loops ]

Lösung:
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{foo : if (!a) goto foo_end;

bar: if (!b) goto bar_end;

p;

if (c) goto foo;

q;

goto bar;

bar_end: skip;

goto foo;

foo_end: skip;}

4.3 Typische Fehlermeldungen

gelesen: {foo : if (! a) goto foo_end;

bar : if (! b) goto bar_end;

p;

if (c) goto bar;

q;

goto bar;

bar_end : skip;

goto foo;

foo_end : skip;}

Ist Spursprache des Programms aus Aufgabenstellung

Teilmenge von Spursprache des Programms aus Ihrer Einsendung ?

Nein. Wenigstens diese Wörter sind in

Spursprache des Programms aus Aufgabenstellung

, aber nicht in

Spursprache des Programms aus Ihrer Einsendung :

[ [ ( state [(a,True),(b,True),(c,True)] , Execute p )

, ( state [(a,False),(b,True),(c,True)] , Halt ) ] ]

5 Aufgabe: Statische und dynamische Ketten

Zur Verwaltung von Unterprogramm-Aufrufen benutzt man Frames, die durch
Zeiger verbunden sind. Der dynamische Vorgänger eines Frames ist der Frame des
aufrufenden Unterprogramms und wird zur Programmablaufsteuerung benötigt.
Der statische Vorgänger ist der Frame des textuell umgebenen Unterprogramms
(genauer: der Frame, in dem die Closure konstruiert wurde) und dient dem
Zugriff auf die Werte lokal gebundener Namen.

Lokalen Unterprogramme (Lambda-Ausdrücke) in Sprachen wie C#, Javas-
cript und Java unterstreichen die Bedeutung dieses Konzeptes auch in der soge-
nannten Mainstream-Programmierung.

Die Übungsaufgabe besteht darin, einen Programmtext so zu vervollständi-
gen, daß bei Ausführung eine vorgegebene Struktur aus dynamischen und stati-
schen Zeigern entsteht.
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Die Programme werden in (stark eingeschränktem) Java-Script notiert. Es
gibt lokale Unterprogramme, formale Parameter und lokale Variablen, aber keine
Bedingungsauswertung.

5.1 Spezifikation

– Instanz: ein gerichteter Kanten-2-gefärbter Graph G = ({1, . . . , n}, E1, E2),
ein Lücken-Programmtext S

– Einsendung: ein vollständiges Programm P
– Bedingung: P paßt zu S und bei Ausführung von P entstehen der Reihe nach

die Frames 1, . . . , n mit statischer Vorgänger-Relation E1 und dynamischer
Vorgänger-Relation E2.

– Highscore-Parameter: Größe von P

Tatsächlich sind nicht viele Graphen G so realisierbar. Jede Kante zeigt in die
Vergangenheit und ist unveränderlich. Sowohl der statische als auch der dynami-
sche Teilgraph sind also Bäume. Deren Gestalten können sich jedoch erheblich
unterscheiden.

5.2 Beispiel (ohne Lösung)

Ersetzen Sie im Programm

{ missing ; missing ; missing ; }

jedes ’missing’ durch eine Deklaration oder einen Ausdruck,

so daß nach höchstens 25 Auswertungsschritten

die Anweisung ’halt’ erreicht wird

und die Frames dann folgende Verweise enthalten:

Frame 1 : dynamischer Vorgänger 0 , statischer Vorgänger 0 ;

Frame 2 : dynamischer Vorgänger 1 , statischer Vorgänger 1 ;

Frame 3 : dynamischer Vorgänger 1 , statischer Vorgänger 1 ;

Frame 4 : dynamischer Vorgänger 3 , statischer Vorgänger 2 ;

Frame 5 : dynamischer Vorgänger 1 , statischer Vorgänger 4 ;

Diese Aufgabe ist lösbar — probieren Sie es!

5.3 Typische Fehlermeldungen

Häufige semantische Fehler in Einsendungen sind: es wird ein nicht deklariertes
(nicht sichtbares) Unterprogramm aufgerufen; der Frame-Graph stimmt nicht
mit G überein. — Beispiel (Ausschnitte):

gelesen: { f = function ( ) { halt ; };

g = function ( y ) {

h = function ( i ) { i ( ); }; h ( f );

};

g ( 42 ); }
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Schritt 1 (in Frame 1)

beginne Auswertung von function ( ) { halt ; }

Ergebnis von Schritt 1 ist

ValClosure { link = 1

, body = function ( ) { halt ; } }

Schritt 2 (in Frame 1)

beginne Auswertung von

function ( y ) { h = function ( i ) { i ( ); }; h ( f ); }

Ergebnis von Schritt 2 ist

ValClosure { link = 1

, body = function ( y )

{ h = function ( i ) { i ( ); }; h ( f ); }

}

...

Dieser Speicherzustand wird erreicht: Store

{ step = 11

, max_steps = 25

, store = listToFM

[ ( 1 , Frame { number = 1, dynamic_link = 0, static_link = 0 , ... } )

, ( 2 , Frame { number = 2, dynamic_link = 1, static_link = 1, ... } )

...

]

}

...

der dynamische Vorgänger soll 1 sein:

Frame { number = 3 , dynamic_link = 2 , static_link = 2 }

6 Bemerkungen zur Implementierung

Abschließend betone ich einige technische Aspekte bei der Realisierung der vor-
gestellten Aufgaben sowie deren Auswirkungen auf die Didaktik.

Die Implementierungssprache des autotool ist Haskell [Mar10]. Die hohe Aus-
drucksstärke und Typsicherheit der Sprache erleichtert (eigentlich: ermöglicht)
das effiziente Schreiben von Parsern und Interpretern für domainspezifische (d.h.
hier: aufgabenspezifische) Sprachen — und hat weitere Vorteile.

Studentische Einsendungen erfolgen ausschließlich in textueller Form, es gibt
absichtlich keinerlei Unterstützung für grafische Editoren, jedoch folgende textu-
elle Eingabehilfen: Das Texteingabefeld ist typisiert. Aus dem Typ der Eingabe
wird der zu benutzende Parser bestimmt (realisiert mit parsec [LM01], bei Syn-
taxfehlern werden automatisch die möglichen nächsten Token angezeigt) sowie
(durch compile-time reflection mit Data.Typeable) ein URL erzeugt und ange-
zeigt, der auf die API-Dokumentation des Eingabetyps verweist. Diese wurde mit
haddock [MW10] erzeugt und enthält Verweise auf die tatsächlichen Quelltexte.
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Studenten werden dadurch angehalten, Typdeklarationen und Quelltext zu
lesen und sollen dabei erkennen, daß beides sehr weitgehend den Definitionen
an der Tafel entspricht. Sie werden damit auch auf die (optionale) Compilerbau-
Vorlesung [Wal13] vorbereitet, wo sie domainspezifische Interpreter selbst schrei-
ben.

Literatur

Knu91. Donald E. Knuth. Textbook Examples of Recursion. http://arxiv.org/abs/
cs/9301113, 1991.

LM01. Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-27, Department of Computer
Science, Universiteit Utrecht, 2001.

Mar10. Simon Marlow. Haskell 2010 Language Report. https://www.haskell.org/

onlinereport/haskell2010/, 2010.
MW10. Simon Marlow and David Waern. Haddock User Guide. https://www.

haskell.org/haddock/, 2010.
RW02. Mirko Rahn and Johannes Waldmann. The Leipzig autotool System for

Grading Student Homework. In Michael Hanus, Shriram Krishnamurthi,
and Simon Thompson, editors, Functional and Declarative Programming in
Education (FDPE 2002), 2002. http://www.informatik.uni-kiel.de/~mh/

publications/reports/fdpe02/.
Wal13. Johannes Waldmann. M****** in der Compilerbauvorlesung. In 30. Workshop

der GI-Fachgruppe Programmiersprachen und Rechenkonzepte, Bad Honnef,
2013. http://www.imn.htwk-leipzig.de/~waldmann/talk/13/fg214/.

644



Access Control for Weakly Consistent Data Stores

Mathias Weber and Annette Bieniusa

University of Kaiserslautern, Germany
{m_weber, bieniusa}@cs.uni-kl.de

Abstract. Information systems have become distributed over large dis-
tance networks to serve an ever-increasing demand for fast data ac-
cess at global scale. This trend lead to a growing popularity of NoSQL
data stores as they provide better performance and response times in
the distributed setting than standard relational databases. To achieve
these properties, these data stores sacrifice consistency guarantees for
the data stored in favor of availability and robustness under network
failures and partitions. Consequently, it is more difficult to secure such
systems against unauthorized data access without introducing perfor-
mance bottlenecks. Due to the weak consistency guarantees, it became
much harder to build access control systems coupled with the data store
because the policies are replicated and can become inconsistent. Using
a separate strongly consistent system to implement access control seems
more feasible, but this architectural design adds additional complexity
and results in performance loss and single points-of-failure.
In this paper, we outline the challenges when building access control
systems for distributed information systems based on weakly consistent
data stores. Based on a formal model, we present a solution that cor-
rectly applies access control policies. It guarantees convergence of policy
modifications that are concurrently issued at different datastore replicas.

Keywords: access control, security, weak consistency

1 Introduction

Traditionally, information systems where built in a centralized fashion with a
single replica of all data. Information systems today are distributed all over the
globe to provide fast response times and low latency. However, the techniques for
developing information systems has drastically changed in the last years. This
change was triggered by new trends such as the Internet of Things and Industry
4.0 as well as the rapid growth of the Internet.

These demands have lead to an increasing popularity of weakly consistent
data stores. The main focus of these data stores is availability and fast response
times they achieve by sacrificing the strong consistency guaranties that are at
the core of traditional relational database systems. One consequence of this sac-
rifice is that the semantics of data stores have become more complex because
weaker consistency guaranties allow more interleaving of operations, which leads
to surprising behavior developer might be unaware of. Recently[4, 5, 12, 13],
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Replicated Data Types have gained a lot of interest, partly also in industry. But
the question of how to implement access control on weakly consistent data stores
is an open question.

Access control systems guarantee that every action performed adheres to a set
of rules, which can be dynamically changed at runtime. In traditional systems,
this guarantee can be enforced by relying on a central server. This server fixes
a total order of the operations which avoids conflicts. Using such a centralized
architecture is not possible in a highly available, globally distributed system
that requires low latency. A central access control server introduces a severe
bottleneck and increases the total latency of all actions in the system. To reduce
the latency we can sacrifice part of the consistency guarantees offered by the
access control system. Gilbert and Lynch [8] have shown that high availability,
partition tolerance and strong consistency cannot be achieved by any distributed
system at the same time. This theorem is also known as the CAP theorem. One
possible solution is to not handle the policies by a central server, instead they
are replicated to different servers. This introduces a security threat since the
rules can be modified on different servers in non-consistent ways. The access
restrictions are based on the local copy of these policies, which can be outdated.

We show the importance of the causal relation between data operations and
access control operations for the correctness of an access control system (Section
3). We describe the design-space of access control systems for weakly consistent
data stores with replication (Section 4). We created a formal model for such
a system which works applicative and achieves convergence of the policies of
different replicas and sketch the most important proofs of the model includ-
ing the proof of eventual consistency (Section 5). The model is formalized in
Isabelle/HOL.

2 Information System Model

Data

State

Access

Control

State

write

read

read/check
grant/revoke

Replica 2 Replica 3

Replica 1

Fig. 1. Overview of the system model

We model an information system as a set of replicas where each replica repre-
sents a server with a local copy of the data managed by the information system.
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Figure 1 shows an overview of the system. The replicated data consists of the
data state and the access control state. The data state consists of the cooperative
operations which make up the state of the part of the world represented in the
information system. The state can be accessed using read and write operations.
The access control state consists of access control policies, which influence the
decision of the access control system. Policies in the access control state can be
changed using the grant and revoke operations, which grant and revoke rights
of a user to read and modify the data state and to grant or revoke rights of other
users. In addition, the current set of policies can be inspected and system oper-
ations can be checked for compliance with the current policies using the check
operation. Each replica has a local access control system allowing or disallowing
execution of local operations on the replica. The decision of the access control
system is only based on the local copy of the access control state. We assume
the level of rights to be the level of replicas which means in order to restrict
the rights of individual users each user has to work on his/her own replica. A
generalization of this model to individual users and more complex access control
policy patterns such as groups is left as future work.

Operations performed by a replica are broad-cast to the other replicas using
messages. Each messages can be uniquely identified and caries only a single data
or access control operation. Sending and receiving messages is asynchronous, so
the sending replica does not wait for the message to be accepted by all replicas.
To simplify things we assume reliable transport of messages, which means mes-
sage loss has to be compensated on the network level, and full replication, that
is every replica has a full copy of the data available.

3 Causal Consistency

To illustrate the importance of the causality of operations we start with an
example system. Consider a social network where users can create a personal
page, galleries for uploaded pictures and it is possible to invite friends to look at
your personal data. By default, the system denies access to your personal page
to all users. Other users can be added to a friend list. Users on this friend list
have full access to all personal data including the posts on the personal page as
well as all galleries.

Anne has an existing list of friends. One of these friends is Paul. After a heated
discussion with Paul, Anne removes him from her friend list before uploading
her new photos of the last party. Anne does not want Paul to have access to her
new photos after removing him as a friend.

There is a causal relation between the remove operation of Paul and the
upload of the new photos. In a system with strong consistency guarantees, it
would not be possible for Paul to access the new photos as long as he is not
readded to the friend list of Anne. When considering a replicated system which
does not retain the causal relation between operations, there might be a server
that receives the upload of the photos before the update of the friend list. This
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R1

R2

revoke(u1, o, read) write(u2, o) read(u1, o)

read(u1, o)
t

X
Fig. 2. Undesired semantics because of causality violation.

gives Paul the possibility to access the new photos before the change to the
friend list of Anne is known to this local server.

As we see in the example above, it is important for the correctness of an ac-
cess control system to preserve the causal relation between operations. We can
distinguish several cases: (1) an operation on some data is performed because
it is allowed by the current policies of the system; (2) the application computes
new values based on the data state it sees in the system; and (3) the applica-
tion changes the policies of the access control system based on previous policy
changes.

Case (1) sketches the usual operation of the system: The data operations in
the system are checked by the access control system to comply with the current
policies. Only operations allowed by the access control policies may be performed
by the system.

Case (2) describes the normal operation of the system without access control.
Every computation reads values from the system, computes new values and
enters them into the system. This relation between the values read and the
values entered should be kept intact by the data store.

The last case (3) is how access control policies evolve. The initial state of
the access control system consists of an initial set of policies. These policies can
be adapted over time, for example because responsibilities and roles of persons
change.

The causality between data operations can be loosened depending on the data
types used and the guarantees needed by a specific application. Loosening the
causality between access control policy changes and data operations invalidates
the guarantees an access control system should offer.

4 Distributed Access Control

When designing an access control system for a distributed system there are some
issues that cannot be avoided. We sketch these issues and their influence on the
access control system.

As discussed in Section 3, the causal relation between access control policy
changes and data operations have to be retained. The problem is illustrated in
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Fig. 3. Possible inconsistencies because of local decision.

Figure 2. There are existing data stores that offer causal consistency guaranties
such as SwiftCloud [9] and Antidote [1]. Therefore, we can assume in our model
of the access control system that the data store offers causal consistency as
an option and will not go into the details of implementing causal consistency
for the access control system. Even though the causal relation between access
control operations and data operations is important, it is not sufficient for the
convergence, and thus for the correctness of the access control system.

Since the access control state is local to the replica and synchronized using
message broadcast, the access control state of different replica is temporarily
inconsistent. Figure 3 shows such a scenario. Replica R1 performs an operation
which revokes the right of user u to perform write operations on object o. This
change of the access control policies is transmitted to replica R2 using a message.
While this message was not yet accepted by R2, u tries to write to o, which is
accepted by R2 according to the current local version of the policies. If the same
operation would have been performed on R1, the access control system on R1
would have denied the operation. When the revoke message arrives at R2, it
becomes clear that the access control state was inconsistent.

To avoid such inconsistencies, there are two possible solutions. Receiving the
revoke operation on R2 could result in undoing of the write operation. This
approach is favored by Cherif et al. [6] and Samarati et al. [10] and is known as
optimistic approach. Alternatively, the write operation takes priority over the
revoke operation, since the revoke was not yet accepted while executing the
write on R2 and cannot easily be undone. This interprets the write operation
as if it would have happened before the revoke operation. This approach needs
access to the history of previous access control policies, since R1 has to check
the validity of the write operation before accepting it1.

One design decision to be made for a replicated access control system is
whether to trust the other replicas or to put the trust only in the access control
policies. When not trusting in the correctness and reliability of replicas, the
broadcast messages have to be checked and accepted by the local access control
system in order to protect the system from malicious actions. On the other hand,
expecting the replicas to be distrusted makes it possible to place replicas in an

1 We expect the data state to converge with the help of a different strategy such as
convergent replicated data types
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Fig. 4. Missing checks of remote messages.

untrusted environment such as the computer of a user. Figure 4 shows a simple
attack scenario. An attacker u can run a manipulated replica which sends a
forged message to replica R. Using this message, u can try to grant himself the
right to read a secret object, even though u might not have the right to perform
this policy change. If the message was accepted by R, this would lead to a set
of access control policies which would grant a future read access to the secret
object by u until the policies are repaired. This inconsistency is not acceptable
with respect to the semantics of the access control system. Wobber et al. [14]
describe a system that uses public and private key certificates to achieve trust
in policies changes. A different way is to only accept policy changes that can be
deduced to be allowed by the default policy set and already accepted changes.

The access control state has to converge on all replicas. Since the policies are
changed locally and forwarded asynchronously, we cannot directly avoid incon-
sistent changes to the policies by different replicas. Other systems [6, 10] solve
this problem by assigning one replica as the owner of an object. Only the owner
replica can make the final decision about policy changes regarding the object
owned. Since we want to support partitioning for the network, we have to follow
a different direction. If, for example, we consider groups in social networks, the
members of these groups may be distributed over the world and specific replicas
may be separated because of network errors. Fixing a replica which may change
the membership of a group would lead to unacceptable down-times.

If we accept that multiple replicas may change the access control policies for
each object we also have to accept that there will be a window where the policies
will not be consistent. The messages that distribute these changes to the access
control state of remote replicas can arrive in any order because of the concurrent
nature of the system and the delay caused by the network. Therefore we need
a merge algorithm that incorporates remote changes into the local policies such
that the outcome on all replicas is the same after processing all pending messages.
We call this property the convergence of the access control state.

The naive approach of just accepting policy changes as they arrive at a replica
can lead to different decisions on two replicas. Figure 5 shows the problem. The
messages have to be extended by meta-data which allows to order the messages
and this order is the same on all replicas.

650



R1

R2

revoke(u, o, write)

grant(u, o, write)

write(u, o)

write(u, o) t

X

Fig. 5. Merging Policy Changes

5 Access Control Model for Distributed Information
Systems

In the previous section we described the design space of implementing an access
control system for globally distributed replicated information systems. In the
following, we present a solution.

5.1 Formal Model of the Data Store

Replicas r ∈ R

Data operations opD ∈ OpD = R×OT × N
Admin. operations opAC ∈ OpAC = AOT ×R×OT × N
Messsages msg ∈M = R×OpD ∪OpAC

Global State gs ∈ R×RS × opDeps

Replica state rs ∈ RS = OpD × P (OpAC)×M × P (M)

Dependencies opDeps :: M 7→ P (M)

Operation Type ot ∈ OT

Adm. Context actx ∈ N
Adm. Op. aot ∈ AOT = {Grant,Revoke}

Fig. 6. Definitions used in the formal model

The over-bars symbolize sequences. For example ms ∈ M stands for a se-
quence of messages where the ith element can be accessed by ms@i.

We assume the set of replicas to be fixed, meaning neither can new replicas be
added to the system nor can existing replicas be removed. Further, we simplify
the model by assuming that each user works on his/her own replica.
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State The global data store state gs consists of a set of replica (replicas(gs)),
their local states (replicaState(gs)) as well as the operation dependencies (called
operationDeps(gs)). The operation dependencies is a mapping from a message
m to the set of messages deps that m causally depends on. The local state
of a replica consists of the data state (persistentOps(ls)), in form of a list of
data operations that have been performed on the replica, and the access con-
trol state (admOps(ls)), in form of a set of administrative operations or policy
changes performed on the replica. In addition to that, the local state also con-
sists of a list of accepted message (acceptedMessages(ls)) and an incoming queue
(incomingQueue(ls)), the queue of messages that have been sent by other repli-
cas but were not yet accepted by the replica. The incoming queue is modeled
as a set to reflect the non-determinism involved in transferring messages over a
switching network. In this way the order in which the broadcast messages are
handled by each replica is not fixed by the incoming queue.

Operations A data operation opD = (r, ot, actx) consists of the origin replica
r the operation was first performed on, the operation type ot, which can also
include the target object of the operation, and the administrative context actx.
The administrative context is needed by the access control system to determine
the policy that allowed this operation on the origin replica. An administrative
operation opAC = (aot, r, ot, actx) consists of the type of the administrative oper-
ation aot, either Grant or Revoke, the replica r and operation type ot this policy
change regulates and the administrative context. The messages distributing the
changes to other replicas are data messages msgD = (r, opD) and administra-
tive messages msgAC = (r, opAC) and each consist of the sending replica and
the operation to be transfered. We assume that each message can be uniquely
identified and from the models point of view no message is sent or received twice.

Initial State When starting-up for the first time, the system is in its initial
state, which means all replicas are in initial local state, there are no dependencies
between messages and the policies are equal for all replicas. These initial policies
can for example state that the root-user (in our case the root-replica) may assign
rights to other users (replicas) and all other users have no rights at all. A replica
is in initial local state if the data state and the access control state is empty and
no messages have been accepted and the incoming queue is empty.

Access Control Policies Before we come to the steps such a system can make we
first have to clarify what the access control policies are. The default policies apply
when no other policy in admOps(ls) applies for the operation on the replica. The
access control policies of a replica state is the set of default policies plus the set
of administrative operations processed by a replica

acPolicies(ls) = defaultPolicies∪ admOps(ls)

Each administrative operation carries an administrative context which is an
element of a totally ordered kind such as the natural numbers. This context is
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like a version number for policy updates. The relevant policy for an operation
on a replica relevantPolicy(r, ot, ls) is a policy p = (aotp, rp, otp, actxp) where
rp = r and otp = ot and

p ∈ acPolicies(ls) ∧
∀ (aot′p, r

′
p, ot

′
p, actx

′
p) ∈ acPolicies(ls). (r′p = r ∧ ot′p = ot) =⇒ actxp ≥ actx′p

In other words: The relevant policy is the policy in the set of the access control
policies with the greatest access control context. A data message is allowed to
be sent by a replica sendOK(ls,msgD) where msgD = (r, opD) and opD =
(r, ot, actx) if the relevant policy for this message allows the operation in the
current administrative context

relevantPolicy(r, ot, ls) = (Grant, r, ot, actx)

The operation is performed on r and broadcast to the other replicas.
A administrative message is allowed to be sent by a replica sendOK(ls,msgAC

where msgAC = (r, opAC) and opAC = (aot, r, ot, actx) if the relevant policy is
the inverse of the operation

relevantPolicy(r, ot, ls) = (¬aot, r, ot, actx− 1)

The inverse of Grant is Revoke, ¬Grant = Revoke and the other way round
¬Revoke = Grant.

The allowing policy for a data message allowingPolicy(msgD) where msgD =
(r, opD) and opD = (r, ot, actx) is the corresponding policy (Grant, r, ot, actx).
r in this case is the replica which originally executed the operation first and
also the sender of the corresponding message. The allowing policy for an ad-
ministrative messages allowingPolicy(msgAC) where msgAC = (r, opAC) and
opAC = (aot,R, ot, actx) is (¬aot, r, ot, actx− 1). This means an administrative
operation may only be performed if the inverse policy with the previous ad-
ministrative context is already part of the current policy set. This construction
enforces that the administrative context is monotonically increasing for each
policy change and therefore makes each relevant policy unique. A message is
allowed to be processed processOK(ls,msg) if the allowing policy is in the local
access control policy set allowingPolicy(msg) ∈ acPolicies(ls).

We expect the data store to be causally consistent. A data store is causally
consistent if for all messages accepted by a replica all dependencies have been
accepted before. We write l@i to denote the ith element of list l.

causallyConsistent(gs) ≡
∀r ∈ replicas(gs),∀rs = replicaState(gs, r),∀m1, i.m1 = acceptedMessages(rs)@i,

∀m2 ∈ operationDeps(gs,m1).∃i′ < i. acceptedMessages(rs)@i′ = m2

A message is causally ready on a replica if all its dependencies have already
been accepted.
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causallyReady(gs,msg, ls) ≡ ∀m ∈ operationDeps(gs,msg)

∃i. acceptedMessages(rs)@i = m

Steps With these definitions we can define the possible steps how the system
can evolve: When doing a step from one global state to the next gs −→ gs′, we
can either accept a message from the incoming queue gs

accept−−−−→ gs′, or a replica
can perform an operation and send a new broadcast message gs

send−−−→ gs′. A
message msg may only be accepted by a replica r with replica state rs if

msg ∈ incomingQueue(rs) ∧ causallyReady(gs,msg, rs)∧
acceptMessage(msg, rs, rs′) ∧ processMessage(msg, rs, rs′)

The message may only be accepted if it is causally ready and currently in
the incoming queue. It is accepted by removing it from the incoming queue and
appending it to the list of accepted messages of the replica.

acceptMessage(msg, rs, rs′) ≡
acceptedMessages(rs′) = acceptedMessages(rs) + [msg]∧
incomingQueue(rs′) = incomingQueue(rs)− {msg}

The system processes the message only if the message is allowed to be pro-
cessed. Otherwise the effect of the message is not visible on the receiving replica.
If the message is allowed to be processed, the operation of a data message is
added to the data state and the administrative operation of an administrative
message if added to the set of access control policies.

processMessage(msgD, rs, rs′) ≡ processOK(rs,msgD) =⇒
persistentOps(rs′) = persistentOps(rs) + [opD]

processMessage(msgAC , rs, rs
′) ≡ processOK(rs,msgAC) =⇒

acPolicies(rs′) = acPolicies(rs) ∪ {opAC}
A message msg may only be sent by a replica r with replica state rs if

msgSender(msg) = r∧
sendOK(rs,msg)∧
broadcast(gs, r,msg)∧
acceptedMessages(rs′) = acceptedMessages(rs) + [msg]∧
incomingQueue(rs′) = incomingQueue(rs)∧
processMessage(msg, rs, rs′)∧
operationDeps(gs′,msg) = set(acceptedMessages(rs))
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Replica r has to be registered as the sender of the message, so the message
has the form msg = (r, op) where op is either a data operation or an administra-
tive operation. Message may only be sent and therefore operations on the replica
only be performed if they are allowed by the local policies sendOK(rs,msg). If
the permission is granted, the message is locally accepted and processed and
broadcast to the other replicas. Broadcasting in our case means to add the mes-
sage to the incoming queue of all other replicas. The operation dependencies of
the message are registered to be all the messages that have been accepted by
the replica at the time of sending the message.

5.2 Properties of the Data Store

Next, we want to show that the system we have described using the above model
is causally consistent. For this, we first show an intermediate lemma.

Lemma 1. If the global state gs is causally consistent, message msg is causally
ready on replica r, r accepts the message and the resulting state is gs′, then gs′

is also causally consistent.

Proof. Because gs is causally consistent, we know that for each message m that
has been accepted by each replica, the dependencies of m have already been
accepted before m. Only r accepts a new message and for all other replicas the
list of accepted messages stays the same and the operation dependencies are not
changed between gs and gs′. So, regarding the other replicas that systems stays
causally consistent. Accepting msg on r means appending msg to the end of the
list accepted messages of r

acceptedMessages(replicaState(gs′, r)) =

acceptedMessages(replicaState(gs, r)) + [msg]

For the prefix of the list that consists of the accepted messages in gs, we
known, that all dependencies have already been accepted in this sublist. It re-
mains to show that the newly added message msg does not break the causal
consistency. Because we known that msg is causally ready, we also known that
the operation dependencies of msg have already been accepted by r, which is
the definition of causally ready. This also means that each message in the set
of operation dependencies can be found in the list of accepted messages of r, so
adding msg to the end of the list of accepted message does also not break causal
consistency. Thus we can follow that gs′ is also causal consistent. ut

Next we can use Lemma 1 to show that steps on the system will not break
causal consistency.

Lemma 2 (Causal Consistency Preservation). If we start in a causal con-
sistent state gs and do a step gs −→ gs′, then gs′ is also causal consistent.
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Proof. Case 1 (gs accept−−−−→ gs′ accept a message msg on replica r). We assumed
gs to be causal consistent and we known from the definition of accepting a
message that this message needs to be causally ready. It follows from Lemma 1
that accepting a causally ready message msg in a causal consistent state gs
yields a causal consistent state gs′.

Case 2 (gs send−−−→ gs′ send a message msg by replica r). The operation depen-
dencies are changed in gs′, the dependencies of msg are set to all messages
already accepted by r. So we would have to recheck all accepted messages for all
replicas. But we known that all message can be uniquely identified and that msg
is a fresh message. This means that none of the replicas have already accepted
msg before. In addition, we known that the other replicas except for r do not
directly accept msg, but instead have msg in their incoming queue first. From
this, we can deduce that causal consistency cannot be broken for the replicas
other than r.

In case of r we know, that the replica accepts msg which means we append
msg to the end of the accepted messages of r.

acceptedMessages(replicaState(gs′, r)) =

acceptedMessages(replicaState(gs, r)) + [msg]

We know thatmsg can not be the prefix of the accepted message that is equal
to the previously accepted messages because it is a fresh message. Thus this prefix
cannot break causal consistency. It is left to show that appending msg does not
break causal consistency. We know that the operation dependencies of msg are
set to the messages currectly accepted by r, acceptedMessages(replicaState(gs, r)).
Now we have to show that each of these messages have already been accepted
by r in gs, which is trivial to see. Thus we have shown that gs′ is causal consis-
tent. ut

From Lemma 2 we can deduce the correctness of the whole system with
respect to causal consistency.

Theorem 1. The data store as described in our model is causally consistent.

Proof. By induction on the evaluation steps. ut

The last important concept is that of the messages known to a replica. For
the list of messages accepted by a replica we can show that all messages are
accepted only once per replica. This means we can treat the list of accepted
messages as a set. This reinterpretation is done by the set(. . .) operator. The
incomingQueue is already treated as a set to model non-determinism of message
transport. The set of messages known to a replica is the set of messages accepted
by the replica plus the set of messages in the incoming queue

knownMessages(ls) ≡ set(acceptedMessages(ls)) ∪ incomingQueue(ls)
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We can show that all replicas know the same messages by induction over the
steps performed.

Lemma 3. If all replicas known the same messages in gs and we do a step from
gs to gs′ gs→ gs′, then all replicas know the same messages in gs′:

∀r1, r2 ∈ replicas(gs). knownMessages(replicaState(gs, r1)) =

knownMessages(replicaState(gs, r2))∧
gs→ gs′ =⇒

∀r1, r2 ∈ replicas(gs′). knownMessages(replicaState(gs′, r1)) =

knownMessages(replicaState(gs′, r2))

Proof. We again distinguish which kind of step can be made

Case 1 (gs accept−−−−→ gs′ accept a message msg on replica r). The accepting replica
r removes msg from the incoming queue and adds it to the accepted messages.
The known messages stay the same. The known messages of the other replicas
also stay the same since their state does not change. ut

Case 2 (gs send−−−→ gs′ send a message msg on replica r). The messages msg is
directly processed by r and added to the accepted messages. The other replicas
get msg in their incoming queue. Overall, msg is added to the known messages
of all replicas and therefore the known messages of all replicas are the same. ut

5.3 Properties of the Access Control System

Based on the model of the data store we construct the model of the access control
system. We show some interesting properties of the access control policies before
proving the convergence of the access control state on all replicas.

The access control state is monotonically increasing, old policies are not
removed and changes are done by adding the changed policies to the access
control state. This can be seen by looking at the possible steps and how messages
are accepted by replicas. These changed policies are considered before the old
ones when looking for the relevantPolicy.

Using this monotonicity of the access control state, we can show that all
known messages can be processed by the sender of the message.

Lemma 4. All known messages msg ∈ knownMessages(gs) are allowed to be
processed by the original sender of the message.

Proof. We show the property by induction over the steps starting in the initial
state is.

Case 1 (Initial state). In the initial state none of the replicas have accepted any
messages and the incoming queues are empty. This means that there are no
known messages yet, so the property hold trivially.
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The proofs for the steps can be split-up into two cases, accepting a message
and sending a new message:

We assume state gs can be reached from the initial state is by arbitrarily
many steps is→∗ gs and that all known messages in gs can be processed by the
sender on the message

∀m ∈ knownMessages(gs). r = sender(m) =⇒ processOK(r,m)

Case 2 (gs accept−−−−→ gs′ accept a message msg on replica r). We have to show
that all known messages can be accepted by their sender in gs′ after processing
msg on r. By using that the access control state is monotonically increasing we
know that the access control policies in gs are a subset of the access control
policies in gs′. We have already seen in the proof of Lemma 3 that the set of
known messages does not change during accepting a message. Being allowed to
process a message means that the allowing policy is in the access control policies
of the replica trying to process the message, in our case the original sender of the
message. Since the known messages are the same and the access control policies
of gs are a subset of the access control policies of gs′ for all replicas that means
that the sender is still allowed to process the message.

Case 3 (gs send−−−→ gs′ send a message msg by replica r). In this case have
to distinguish the previously known messages knownMessages(gs) and msg,
which is added as a new message knownMessages(gs′) = knownMessages(gs) ∪
{msg}. We can use the same reasoning as in the accepting case to show that
knownMessages(gs) can be processed by their sender in gs′. What is left to show
is that msg can be processed by its sender. We know that the sender of msg
is r and that msg is allowed to be sent by r. Hence, the allowing policy is the
relevant policy in the access control policies of r for the operation performed,
which means that the allowing policy is in the access control policies of r. Thus,
the known messages in gs′ are all allowed to be processed by their sender. ut

Using the causal consistency of the data store, we can transfer the property
of being able to accept the message to the receiver.

Theorem 2. All messages are allowed to be processed by the receiving replica
once the message is causally ready.

Proof (sketch). The proof uses Lemma 4 which states that the sender is allowed
to process the message. This also means that the policy allowing to process
the message is available on the sending replica and therefore gets registered
as a dependency of the message to be sent. When another replica r wants to
accept message msg, it has to wait until the message is causally ready. Thus all
dependencies of msg have been accepted by the replica before accepting msg
itself. This makes sure that the message msgAC carrying the policy change that
allowed sending the msg has been accepted by r before accepting msg. We can
show that the state of the replica is valid, meaning all accepted messages have
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also been processed by the replica and the effects of the messages have been
materialized in the state. Because in a valid state the message msgAC has been
processed before processing msg the allowing policy is part of the access control
policies of r. This policy then allows processing msg so all messages are allowed
to be processed by the receiving replica.

Theorem 2 can be used to show the convergence of the access control state.
For the state to converge, no new messages may be sent and the pending mes-
sages have to be accepted meaning a system converges in a state where all known
messages have been accepted. In Theorem 2 we have shown that all accepted mes-
sages are processed by the replicas. This in combination with the set-semantics
of the access control state leads to convergence.

6 Conclusion

In this paper, we presented the design-space of access control systems for weakly
consistent data stores. We showed a formal model of an access control system
for causally consistent data stores. One of the main results is that the causally
between data operations and access control operations is important for the cor-
rectness of the access control system. In addition, we have shown that an ap-
plicative model in contrast to the optimistic models proposed by Cherif et al. [6]
and Samarati et al. [10] still works without undoing processed operations and
still the policies of all replicas eventually converge to a common state.

These results are still rather theoretical and abstract. The next steps will be
to develop an access control model inspired by popular models like role-based
access control [7, 11] or an authorization logic [2, 3] based on the lower-level
model we presented. An implementation of such as system will be based on
Antidote [1], a causal-consistent data store developed by the SyncFree Project
2.

2 https://syncfree.lip6.fr/

659



References

[1] SyncFree/antidote (Jul 2015), https://github.com/SyncFree/antidote
[2] Abadi, M.: Logic in access control. In: 18th Annual IEEE Symposium of

Logic in Computer Science, 2003. Proceedings. pp. 228–233. IEEE Comput.
Soc (2003)

[3] Bauer, L.: Access Control for the Web via Proof-Carrying Authorization.
Ph.D. thesis, Princeton University (2003)

[4] Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M.: An optimized
conflict-free replicated set. arXiv.org (2012)

[5] Burckhardt, S.: Principles of Eventual Consistency. Foundations and Trends
in Programming Languages 1(1-2), 1–150 (2014)

[6] Cherif, A., Imine, A., Rusinowitch, M.: Practical access control management
for distributed collaborative editors. Pervasive and Mobile Computing 15,
62–86 (2014)

[7] Ferraiolo, D., Kuhn, R.: Role-Based Access Control. In: In 15th NIST-NCSC
National Computer Security Conference. pp. 554–563 (1992)

[8] Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News 33(2), 51
(2002)

[9] Preguica, N., Zawirski, M., Bieniusa, A., Duarte, S., Balegas, V., Baquero,
C., Shapiro, M.: SwiftCloud: Fault-Tolerant Geo-Replication Integrated all
the Way to the Client Machine. In: 2014 IEEE 33rd International Sym-
posium on Reliable Distributed Systems Workshops. vol. abs/1310.3, pp.
30–33. IEEE (Oct 2014)

[10] Samarati, P., Ammann, P., Jajodia, S.: Maintaining Replicated Authoriza-
tions in Distributed Database Systems. Data Knowl. Eng. 18(1), 55–84
(1996)

[11] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Ac-
cess Control Models. IEEE Computer 29(2), 38–47 (1996)

[12] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive
study of Convergent and Commutative Replicated Data Types. Research
Report RR-7506 (Jan 2011)

[13] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free Repli-
cated Data Types. Proceedings of the 13th International Conference on Sta-
bilization, Safety, and Security of Distributed Systems pp. 386–400 (2011)

[14] Wobber, T., Rodeheffer, T.L., Terry, D.B.: Policy-based access control for
weakly consistent replication. In: Morin, C., Muller, G. (eds.) European
Conference on Computer Systems, Proceedings of the 5th European confer-
ence on Computer systems, EuroSys 2010, Paris, France, April 13-16, 2010.
pp. 293–306. ACM (2010)

660
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Abstract. Ein großer Teil der zur Zeit verwendeten Softwaresysteme
sind nach dem Prinzip der Service-orientierten Architektur aufgebaut.
Diese Softwaresysteme bestehen aus einzelnen Services oder Diensten,
die mehr oder weniger stark miteinander kommunizieren, um so zum
Beispiel einen komplexen Geschäftsprozess realisieren können. In unserer
Arbeit zeigen wir anhand eines Beispiels, dass durch die Kommunika-
tion der Services das Terminierungsverhalten des Systems beeinträchtigt
werden kann. Wir identifizieren diese Schwachstellen und stellen An-
forderungen bezüglich der Terminierungsanalyse in Service-orientierten
Systemen auf. Weiterhin betrachten wir bestehende Methoden zur Ter-
minierungsanalyse und bewerten den möglichen Einsatz dieser Analysen
in Service-orientierten Systemen und stellen erste Lösungsansätze vor.
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Zusammenfassung. Anforderungsbeschreibungen für eine technische
Domäne sollen in einer Sprache verfasst werden, die Mehrdeutigkeiten
eliminiert, und die automatisch durch einen Übersetzer überprüft wer-
den kann. Dieser Übersetzer soll die konsistente Verwendung von Namen
mittels Namensanalyse und die korrekte Kombination von in einem Glos-
sar definierten Begriffen mittels Typanalyse überprüfen.

1 Einleitung

Natürliche Sprache ist in vielen Projekten der Ausgangspunkt zur Modellie-
rung von Anforderungen. Um ein Anforderungsmanagement umzusetzen, das
alle Phasen eines Projekts umfasst, müssen diese natürlichsprachlichen Anfor-
derungen durch die Werkzeuge mit einbezogen werden. Rückverfolgbarkeit von
der Implementierung zurück, nicht nur bis zur ersten formalen Beschreibung,
sondern bis zur textuellen Beschreibung, kann dann auch Anforderungen von
Stakeholdern erfassen, die nicht mit formalen Modellbeschreibungen umgehen
können. Wenn natürliche Sprache von automatisierten Werkzeugen behandelt
wird, dann gewinnt der Prozess zudem an Geschwindigkeit, Zuverlässigkeit und
Reproduzierbarkeit.

Für die Verarbeitung von natürlichsprachlichen Texten wird oft auf heuris-
tische und probabilistische Techniken zurückgegriffen. Probabilistische Techni-
ken versprechen, die Analyse eines Textes dann zuverlässig durchzuführen, wenn
man sie auf einem hinreichend großen Datensatz (Korpus) trainiert. Doch wie
sich Stakeholder nicht über Begrifflichkeiten einigen können, so gibt es auch Ab-
weichungen zwischen den Annotationen in den Korpora und den Autoren der
Anforderungsdokumente einer technischen Domäne. Je umfangreicher der Kor-
pus ist, desto wahrscheinlicher ist es, auf Interpretationen zu treffen, die für die
Domäne nicht relevant sind und unnötige Mehrdeutigkeiten einführen, die Feh-
ler verschleiern. Eine hoher Anteil an falsch-positiven Interpretationen (Falsches,
das als richtig erkannt wird) ist die Folge.

Wir beschreiben in Abschnitt 3 die konkrete Syntax einer kontrollierten Spra-
che, welche die Syntax natürlicher Sprache (Deutsch) imitiert. Die Syntax basiert
* Diese Arbeit wurde im Rahmen des vom Bundesministerium für Bildung und For-

schung (BMBF) geförderten Forschungsprojekts „ELSY“ (Nr. 16M3202D) erstellt.
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2 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

auf der Idee der Schablonen, und setzt sie als Grammatik um, statt es bei einer
Menge von best-practice Formulierungsrichtlinien zu belassen. Aus dieser Gram-
matik erzeugen wir einen Parser, der Teil eines Übersetzers ist.

In den Abschnitten 4 und 5 beschreiben wir Namensanalyse und Typprü-
fung, die dazu dienen, die Konsistenz innerhalb der Anforderungsbeschreibung
abzusichern.

Die Ziele dieser Arbeit sind:

– Eindeutigkeit der textuellen Formulierung herzustellen und Mehrdeutigkeit
natürlicher Sprache zu eliminieren,

– Überprüfbarkeit der Beschreibung herzustellen, vollständig und automatisch,
statt heuristisch oder per Hand,

– Konsistenz der Beschreibungen sicherzustellen, durch Typanalyse statt best-
practice Regeln

– Lesbarkeit der Texte zu erhalten, statt eine formale Syntax zu benutzen, die
Stakeholder ohne Einarbeitung ausschließt.

2 Verwandte Arbeiten

Eine kontrollierte Sprache, wie wir sie in dieser Arbeit vorstellen, ist im Allge-
meinen eine natürliche Sprache, der gewisse syntaktische und semantische Ein-
schränkungen auferlegt sind. Dadurch wird eine kontrollierte Sprache noch nicht
zu einer formalen Sprache. So sind Schablonen [Hull u. a., 2005; Rupp, 2014]
Vorlagen für den organisierten Satzaufbau, um Anforderungstexte zu schreiben,
die für Dritte leichter lesbar sind.

Leichtes Deutsch wird von öffentlichen Einrichtungen auf deren Webseiten
eingesetzt, um Inhalte barrierefrei für Personen mit Verständnisschwierigkeiten
zu transportieren. Einfache Sprache verfolgt ebenfalls dieses Ziel und ist für
Nicht-Deutsch-Muttersprachler entwickelt worden.

Rechtschreibprüfungs-Programme als Bestandteil von Textverarbeitungs-Pro-
grammen vergleichen im einfachsten Fall Wörter mit einem Wörterbuch. Es gibt
weiter auch solche, dich auch die Grammatik überprüfen, z.B. auf Basis von
link grammars von Lachowicz u. a. [2015]. Rechtschreibprüfungsprogramme dür-
fen nicht zu viele Fehlermeldungen produzieren, da Nutzer das Programm sonst
schnell als zu empfindlich und untauglich abtun. Daher zeigen sie weniger po-
tentielle Fehler an (mehr falsch-Positive, weniger Negative).

Die Prädikat-Argument-Struktur der Präpositionalphrasen in konkreter Syn-
tax ist der Prädikatenlogik bzw. Prolog nachempfunden. Kuhn u. Bergel [2014]
zeigten in einem Experiment an Studentengruppen, dass Gruppen, die Aussagen
in natürlicher Sprache verarbeiten sollten, genauer und schneller arbeiteten, als
Gruppen, die dieselben Aussagen in Form von Prolog-Statements erhielten. Die
Prädikat-Argument-Struktur ist auch Grundlage der konstruierten natürlichen
Sprache Lojban Cowan [2000].

Circe [Ambriola u. Gervasi, 2006] ist ein Übersetzer, der Anforderungs-
beschreibungen in natürlicher Sprache (Italienisch) auf heuristische Art ana-
lysiert und in der Lage ist, Transformationen nach UML, ER-Diagramm oder
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ASM durchzuführen. Die Grammatik des Eingabetextes ist nicht beschränkt;
der Übersetzer unterzieht den Text einem part-of-speech-tagging, und führt dann
iterativ eine Bewertung einer Menge von Regeln auf den klassifizierten Token
durch, woraus sich eine Punktwertung für jede mögliche Regelanwendung er-
gibt, wendet die am besten bewertete Regel an, und wiederholt den Vorgang bis
ein Terminierungskriterium erreicht ist. Die Regeln beziehen sich auf Attribute
(tags) der Token, die aus der syntaktischen Analyse oder aus Regelanwendungen
stammen können. Beispiele zeigen Regeln, die ein Typsystem beschreiben. Die
Regeln können durch die Benutzer verändert werden und sind in einer speziellen
formalen Syntax verfasst.

[Farfeleder, 2012] beschreibt in seiner Dissertation ein Verfahren zur Trans-
formation von natürlicher Sprache in Schablonen auf Englisch (boilerplates) für
die Domäne der eingebetteten Systeme. Ausgangspunkt sind vorliegende Texte,
die durch halbautomatische, überwachte Transformation in eine Form gebracht
werden soll, die besser analysierbar ist, d.h. deren Analyse weniger korrigieren-
de Eingriffe benötigt. Die Schablonen werden benutzt um daraus Informationen
über die Sicherheit des modellierten Systems zu gewinnen (safety analysis).

3 Kontrollierte natürliche Sprache

In dieser Arbeit entwickeln wir eine Sprache, die das Aussehen natürlicher Spra-
che besitzt, und wählen die syntaktischen Einschränkungen so, dass wir eine
formale Sprache erhalten. Dadurch bleibt die Lesbarkeit für Dritte ohne Vor-
kenntnisse erhalten. Auf dieser Sprache führen wir in späteren Abschnitten Kon-
sistenzprüfungen mittels Namensanalyse und Typprüfung durch und definieren
zu diesem Zweck ein domänenspezifisches Glossar. Die größte Schwierigkeit bei
Projekten, die natürliche Sprache verarbeiten (natural language processing, NLP)
besteht in dem Anspruch der Nutzer, das Chaos an überladenen Bedeutungen
und Sonderfällen, das wir als natürliche Sprache bezeichnen, mit gleicher oder
besserer Präzision und Vorhersagekraft verarbeiten zu können. Diese Arbeit er-
hebt nicht den Anspruch, natürliche Sprache vollständig abzudecken. Der Anteil
an natürlichsprachlichen Ausdrücken, der von unseren Konsistenzprüfungen ab-
gelehnt wird (falsch-Negative) ist daher groß im Vergleich zu NLP-Parsern. Im
Gegenzug streben wir an, den Anteil an Ausdrücken, der nicht korrekt ist, und
der trotzdem akzeptiert wird (falsch-Positive) zu eliminieren . Dies gelingt uns
durch die Einschränkungen, die wir treffen1.

Die Merkmale unserer kontrollierten Sprache, auf die wir anschließend im
Einzelnen eingehen werden, sind:

– Prädikat-Argument-Struktur wie in Prädikatenlogik (Abschnitt 3.1)
– Unterscheidung Definition und Benutzung durch Artikel (determiner) (Ab-

schnitt 4)
– Bedingte Anforderungen (Wenn-Dann) (Abschnitt 3.2)
– Zusammenfassen der Zeitformen (Abschnitt 3.3)
1 zu beachten sind einige Spezialfälle; siehe Abschnitt 3.4
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4 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

Morphologie verwerfen Eine Grundannahme der konkreten Syntax ist, dass
wir, wo möglich, auf morphologische Informationen (Beugung, Deklination) ver-
zichten wollen. Diese Informationen sind inhärent unzuverlässig, weil durch die
Entwicklung der Sprache viele Fälle entstanden sind, in denen syntaktisch identi-
sche Terme für semantisch unterschiedliche Konzepte verwendet werden müssen.
Dies gilt für Artikel (der Mann, Nominativ; der Frau, Genitiv), Substantive (An-
zeige, wie Bildschirm; Anzeige, wie Gerundium zu anzeigen) und Verben (schnel-
len, wie hervorschnellen; schnellen wie Partizip 2 Plural von schnell). Morpho-
logische Information erlaubt im Allgemeinen keine eindeutige Klassifizierung.
Wir verwerfen daher Informationen über Singular oder Plural, grammatisches
Geschlecht und Deklination von Substantiven, Adjektiven und Artikeln (Fälle).
Die Konjugation von Verben klassifizieren wir in 2 Klassen entsprechend der
Zeitform und verwerfen die Information über Zahl und Person.

3.1 Prädikat-Argument-Struktur

Unbedingte Anforderungssätze bilden den Grundbaustein für Schablonen in der
konkreten Grammatik. Die Struktur der Anforderungssätze, die wir in unserer
kontrollierten Sprache erlauben, ähnelt der von Prädikaten in Prädikatenlogik.
Für Benutzer ohne Kenntnis von Prädikatenlogik ist dies jedoch nicht zu erken-
nen und nicht erforderlich.

Ein Anforderungssatz in kontrollierter Sprache könnte wie im folgenden Bei-
spiel lauten:

Der Benutzer „Anlagenfahrer“ soll das System „Pumpe“ über das Be-
dienterminal innerhalb 1 Minute hochfahren können.

Die konkrete Grammatik dieses Satzes besteht aus einer Verbalphrase (VP) mit
mehreren Präpositionalphrasen (PP):

VP ::= ( PP | Modalverb )* Prädikat Modalverb? .
PP ::= Präposition? Artikel? Prädikat Bezeichner? .

Präposition, Artikel und Bezeichner sind optional. Die Bestandteile des Bei-
spielsatzes lassen sich wie in Tabelle 1 aufteilen.

Präposition Artikel Prädikat Bezeichner Modalverb
PP Der Benutzer Anlagenfahrer

Modal soll
PP das System Pumpe
PP über das Bedienterminal
PP innerhalb 1 Minute

Prädikat hochfahren
Modal können
Tabelle 1. Beispiel Prädikat-Argument-Struktur, zeilenweise zu lesen
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In der Praxis sind Sätze meist kürzer und enthalten weniger Präpositionen.
Im Anhang befindet sich ein Ausschnitt aus einem technischen Handbuch und
seine Übersetzung in unsere Sprache.

Präpositionen Präpositionen sind eine endliche Mengen von Wörtern (closed
set). Wir setzen sie ein als Beschriftung (label), um die Argumente eines Prädikats
einer semantischen Rolle, d.h. einem der Parameter des Prädikats zuzuordnen.
Dieses sogenannte semantic role labeling ist ein Teilproblem von NLP und wird
i.d.R. heuristisch bzw. probabilistisch gelöst (Palmer u. a. [2010]). Wir tragen
der Beweglichkeit in der natürlichen Sprache dadurch Rechnung, dass wir das
freie Verschieben von Argumenten mit unterschiedlichen Beschriftungen erlau-
ben, fordern aber, dass Argumente mit der gleichen Beschriftung der Reihenfolge
folgen, wie sie für das jeweilige Prädikat im Glossar definiert wurde. Diese Re-
gelung betrifft am häufigsten die leere Beschriftung (ε), die für Argumente ohne
Präposition angenommen wird.

Beispiel2:

(1) Der Benutzer soll die Pumpe mit einem Fördermedium füllen.
(2) Der Benutzer soll mit einem Fördermedium die Pumpe füllen.
(3) Die Pumpe mit einem Fördermedium soll der Benutzer füllen.

In Prädikatschreibweise:

(1) füllen(Benutzer,Pumpe,~mit:Fördermedium)
(2) füllen(Benutzer,~mit:Fördermedium,Pumpe)
(3) füllen(Pumpe,~mit:Fördermedium,Benutzer)

Die Sätze (1) und (2) erzeugen eine äquivalente Prädikatstruktur, da die Rei-
henfolge von Benutzer und Pumpe erhalten bleibt. Bei Satz (3) ist dies nicht der
Fall.

Präpositionen sind gelegentlich Kontraktionen unterworfen, z.B. wird von+dem
zu vom. Wir lösen diese Kontraktionen vor der Typprüfung auf, so dass Verbde-
finitionen nicht auf kontrahierte Varianten Rücksicht nehmen müssen.

Artikel Artikel sind eine endliche Menge vonWörtern. Wir setzen sie zusammen
mit Präpositionen als syntaktischen Trenner für die Argumente eines Prädikats
in einer Liste von Präpositionalphrasen (PP) ein. Wir verwerfen die Information
über den grammatischen Fall (Kasus) aus dem Artikel, da diese nicht zuverlässig
ist. Zulässige Artikel bzw. sogenannte determiner sind:

– unbestimmte Artikel (ein, eine)
– bestimmte Artikel (der, die, das)
– Kardinalzahlen (1,2,...)
– Negationen (kein, keine)
2 vgl. erster Satz im Anhang A.2; Prädikat im Aktiv ergänzt um Benutzer
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6 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

Wir benutzen unbestimmte Artikel, um eine definierende Instanz eines Be-
zeichners zu kennzeichnen, und bestimmte Artikel und Kardinalzahlen, um be-
nutzende Instanzen zu kennzeichnen (siehe auch Abschnitt 4). Negationen wirken
als definierende Instanzen.

Prädikate Das Prädikat als Argument deklariert den a-posteriori Typ des dar-
auffolgenden Bezeichners. Existiert kein Bezeichner, so wird ein anonymer Be-
zeichner angenommen. Im aktuellen Gültigkeitsbereich muss dann genau ein
Bezeichner vorhanden sein, der sich an den deklarierten Typ anpassen lässt.
Ist kein solcher Bezeichner oder mehrere vorhanden, handelt es sich um einen
Typfehler.

Das Prädikat als Verb konstituiert einen typisierten Ausdruck. Der Typ der
Argumente (PP des Satzes) wird gegen die Typen der für das jeweilige Literal
deklarierten Parameter geprüft (laut Glossar). Die Argumente werden entspre-
chend ihrer Beschriftungen (labels) sortiert; die Reihenfolge gleich beschrifteter
Argumente jedoch nicht verändert.

Bezeichner Bezeichner verbinden die Menge von Anforderungen untereinander.
Bezeichner sind optional; wenn sie entfallen wird eine anonyme Referenz erzeugt,
die einen im Gültigkeitsbereich eindeutigen Typ besitzen muss, über den sie
identifiziert wird. Wir unterscheiden definierende und benutzende Instanzen von
Bezeichnern und führen eine Namensanalyse durch (siehe Abschnitt 4).

Modalverben Modalverben im Satz beschreiben das Merkmal der Variation
für die Anforderung. Wir unterscheiden:

– Soll-Anforderungen
– Kann-Anforderungen
– Darf-Nicht-Anforderungen
– Tun

Die Art des Modalverbs beschreibt die, ob ein Variationspunkt für die betreffen-
de Anforderung erstellt wird: Eine Kann-Anforderung impliziert mehrere Um-
setzungsmöglichkeiten, während eine Soll-Anforderung strikt nach genau einer
Umsetzung verlangt. Eine Darf-Nicht-Anforderung bezeichnet eine negative Ab-
hängigkeit im Anforderungsgraphen, so dass die bezeichnete Anforderung nicht
erfüllt sein darf, wenn die bezeichnende Anforderung erfüllt sein soll.

Das Modalverb tun dient behelfsweise bei der Umformulierung von einer
Zeitform in eine andere (Abschnitt 3.3). Sätze mit diesem Modalverb werden
wie Sätze ohne Modalverb, d.h. Bedingungen, behandelt.

3.1.1 Relativsätze Relativsätze dienen in unserer Sprache der Verkürzung
der Beschreibung. Statt zwei getrennte Hauptsätze hintereinander zu schreiben,
kann ein Argument eines Satzes gewissermaßen inline durch eine Beschreibung in
einem Relativsatz näher bestimmt oder näher beschrieben werden. Relativsätze
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sind syntaktischer Zucker und können zu separaten Hauptsätzen umgewandelt
werden. Wir unterscheiden zwei Arten von Relativsätzen:

– beschreibende Relativsätze
– bestimmende Relativsätze

Beschreibende Relativsätze müssen ein Modalverb (kann,soll,..) enthalten. Sie
werden in separate Anforderungen übersetzt. Bestimmende Relativsätze sind
Relativsätze, die kein Modalverb enthalten; sie werden in eine Bedingung über-
setzt. Auf diese Weise kann eine Anforderung zu einer bedingten Anforderung
werden, auch ohne die explizite Wenn-Dann-Syntax zu verwenden (Abschnitt
3.2).

Relativsätze sind ein Kompromiss zwischen der Normalform, die nur aus
Hauptsätzen besteht, und der gebräuchlichen Schriftsprache, die Bedingungen,
Anforderungen und zugehörige (implizierte) Prädikate in ein einziges Partizip
zwängt. Eine übliche (aber nach unserer Syntax nicht zulässige) Präpositio-
nalphrase könnte lauten:

Die kapazitiven Lasten

Die PP muss umformuliert werden, in eine der beiden Varianten:

Die Lasten, die kapazitiv sind, ...
Die Lasten, die kapazitiv sein sollen, ..

Die erste Variante, wenn eine bestimmende Wirkung (nur solche Lasten, die ka-
pazitiv sind) beabsichtigt ist, und die zweite, wenn eine beschreibende Wirkung
(Lasten, die außerdem immer kapazitiv sein sollen) beabsichtigt ist.

Relativsätze ziehen leider einige Schwierigkeiten bezüglich der Argumentrei-
henfolge nach sich, die wir in Abschnitt 3.4 betrachten.

3.2 Bedingte Anforderungen

Eine Anforderungsbeschreibung untergliedert sich im Allgemeinen in einen Glossar-
Teil, der für alle Projekte innerhalb einer Domäne (eines Gewerks) gültig ist und
vorab erstellt wird, sowie einen Anforderungs-Teil, der projektspezifisch ist.

Eine Anforderung besteht im Allgemeinen aus einer Bedingung, unter der sie
zu erfüllen ist, und einer Konsequenz, der beschreibt, was zu erfüllen ist:

Anforderung ::= (Bedingungen 'dann')? Konsequenz .
Bedingungen ::= Bedingungen 'und' 'wenn' VP | 'Wenn' VP .
Konsequenz ::= VP .
Anforderung ::= Bedingungen 'dann' ':' Spiegelstriche .
Spiegelstriche ::= Spiegelstriche '-' VP | '-' VP .

Wird keine Bedingung angegeben, so soll die Konsequenz universell gültig
sein.
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Bedingungen (Wenn) beschreiben eine zur Laufzeit erfolgte Zustandsände-
rung („ist gestartet“), oder eine Eigenschaft (Invariante, „ist aus Holz“),
oder eine Modell-Variante („kann aus Holz sein“). In der konkreten Syn-
tax können sie statt eines „echten“ Modalverbs auch den Platzhalter „tun“
enthalten.

Konsequenzen (Dann) beschreiben eine Anforderung und deren Modus (soll/
muss, kann/muss-nicht, darf-nicht). In der konkreten Syntax müssen sie im-
mer ein Modalverb enthalten.

Durch eine Art von Relativsätzen – bestimmende Relativsätze – können Anfor-
derungen um eine Bedingung erweitert werden, ohne dass die charakteristischen
Schlüsselwörter wenn und dann vorhanden sind (siehe Abschnitt 3.1.1). Dies ist
ein Kompromiss zu Lasten der einfachen Lesbarkeit und zu Gunsten der leichten
Transformierbarkeit bestehender Anforderungen (mit Nebensätzen) in solche der
kontrollierten Sprache.

Ein Erweiterung, von der wir im Beispiel im Anhang Gebrauch machen, sind
Spiegelstriche anstatt der Konsequenzen, die vermeiden, dass die Bedingung in
jedem Satz wiederholt werden muss.

3.3 Zeitformen

Für die Beschreibung von Systemverhalten erachten wir eine Beschreibung des
Zustands zeitlich relativ zu Operationen, die auf ihn einwirken können, für er-
forderlich. Wir wollen daher in 3 Zeitformen unterscheiden:

Vorzeitigkeit < Die durch das Verb angegebene Handlung hat noch nicht
stattgefunden (entspricht Futur 1).

Gleichzeitigkeit = Die Handlung findet gerade statt (entspricht Partizip 1).
Nachzeitigkeit > Die Handlung ist abgeschlossen (entspricht Perfekt).

Durch Kombination von Zeitformen und Passiv ergibt sich eine Vielzahl von
gebeugten Verbformen. Die gebeugten Verbformen sollen auf eine Normalform
reduziert werden. Die Tabelle zeigt die Kombinationsmöglichkeiten von Zeit-
form und Aktiv/Passiv. Die Bestimmung der Zeitform ist nicht heuristisch, nur
unübersichtlich.

Die Tabelle 2 unterstrichenen Varianten sind verboten, denn:

=[d]: Aussagesätze sind keine Anforderungen
<[d]: Anforderungen dürfen nicht rückwirkend formuliert sein
† Vertauschen von unmarkierten Argumenten ohne Passiv verändert die Se-
mantik ohne die Syntax anzupassen (Artikel, sog. determiner werden verwor-
fen)

Anhand der Information über das Modalverb (soll, kann, tun oder keines) lässt
sich aus dem Hilfsverb (werden usw.) die Zeitform eindeutig bestimmen, wie in
Tabelle 3 dargestellt.

Aus den normalisierten Zeitformen und dem Wenn-Dann-Kontext lässt sich
die folgende Semantik ableiten:
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Zeitform Aktiv Passiv
Anforderung (<[d]) Der A soll das B dem C geben. Das B soll dem C durch A

gegeben werden.
:::::::::::
Anforderung

:::::
(=[d]) :::

Der
::
A

::::
gibt

:::
das

::
B

::::
dem

::
C.

:::
Das

::
B

::::
wird

::::
dem

::
C
:::::
durch

::
A

:::::::
gegeben.

:::::::::::
Anforderung

:::::
(>[d]) :::

Der
::
A

:::
soll

::::
das

:
B
:::::

dem
:
C
:::::::

gegeben
:::::
haben.

:::
Das

::
B

:::
soll

::::
dem

::
C
:::::
durch

::
A

::::::
gegeben

:::::::
worden

::::
sein.

Zukunft (<[w]) (Wenn) der A das B dem C geben
(soll)

(Wenn) das B dem C durch A
gegeben werden (soll)

Gegenwart (=[w]) (Wenn) der A dem B das C gibt
(soll)

(Wenn) das B dem C durch A
gegeben wird

Perfekt (>[w]) (Wenn) der A dem B das C
gegeben hat

(Wenn) das B dem C durch A
gegeben wurde/worden ist

Verb ohne unmarkiertes Akkusativobjekt: keine Passivform vorhanden
Anforderung (<[d]) Das A soll dem B gleichen.

:::::
†Dem

::
B

:::
soll

:::
das

::
A

::::::::
gleichen.

::::
Dem

::
A

:::
soll

:::
das

::
B
::::::::::
gleichen(d)

::::::
werden.

Zukunft (<[w]) (Wenn) das A dem B gleichen
(soll)

:::::::
†(Wenn)

::::
dem

::
B

:::
das

::
A

:::::::
gleichen

::::
(soll)
::::::
(Wenn)

::::
dem

::
A

:::
das

::
B
::::::::::
gleichen(d)

::::::
werden

::::
(soll)

Gegenwart (=[w]) (Wenn) das A dem B gleicht (soll)
:::::::
†(Wenn)

::::
dem

::
B

:::
das

::
A

::::::
gleicht

::::::
(Wenn)

:::
das

::
A
::::
dem

::
B
::::::::
gleichend

:::
ist

Perfekt (>[w]) (Wenn) das A dem B geglichen
hat

:::::::
†(Wenn)

::::
dem

::
B

:::
das

::
A

::::::::
geglichen

:::
hat
::::::
(Wenn)

:::
das

::
A
::::
dem

::
B
::::::::
gleichend

::::::
gewesen

:::
ist

Adjektiv-Prädikat (ohne Objekt):
Anforderung (<[d]) Das A soll aktiv sein. Das A soll aktiv werden.

Zukunft (<[w]) (Wenn) das A aktiv sein soll (soll) (Wenn) das A aktiv werden (soll)
Gegenwart (=[w]) (Wenn) das A aktiv ist (soll) (Wenn) das A aktiv geworden ist

Perfekt (>[w]) (Wenn) das A aktiv war (Wenn) das A aktiv gewesen ist
Tabelle 2. Zeitformen in Kombination mit Passiv-Aktiv-Formen

Zeitform Aktiv Passiv
Anforderung (<[d]) soll + Infinitiv soll + Partizip + werden
:::::::::::
Anforderung

:::::
(=[d]) ::::::

Präsens
::::::
werden

::
+

:::::::
Partizip

:::::::::::
Anforderung

:::::
(>[d]) ::::::

Partizip
:::

+
::::::
haben.

::::::
Partizip

:::
+

::::::
worden

::::
sein.

Zukunft (<[w]) (Wenn) Infinitiv (soll) (Wenn) Partizip + werden (soll)
Gegenwart (=[w]) (Wenn) Präsens (soll) / (Wenn)

Infinitiv + tun (soll)
(Wenn) Partizip + werden (soll)

Perfekt (>[w]) (Wenn) Partizip + haben (Wenn) Partizip +
wurden/worden sind

Tabelle 3. Zusammenfassung Zeitformen
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10 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

– Anforderung (<[d]): Definition einer Nachbedingung
– Zukunft (<[w]): Introspektion (reflection) einer Anforderung
– Gegenwart (=[w]): Prüfen einer Invariante (über einen Zeitverlauf)
– Perfekt (>[w]): Auslösen eines Ereignisses/Signals/Callbacks

3.4 Spezialfälle der konkreten Syntax

Obwohl die konkrete Syntax so einfach wie möglich gehalten wurde, kann sie
nicht alle mehrdeutigen Formulierungen natürlicher Sprache unterbinden. Rela-
tivpronomen sind im Allgemeinen nicht geeignet, um die beabsichtigte Position
eines Arguments in der Parameterliste festzustellen, wie das folgende Beispiel
zeigt:

Die Pumpe, die das System steuert.

Soll hier die Pumpe das (Fluid-)System steuern, oder durch das (Steuer-)System
gesteuert werden? Da das Relativpronomen fest an erster Stelle des Relativsatzes
steht, sind Konventionen notwendig, um die korrekte Reihenfolge der Argumente
herzustellen.

In diesem Abschnitt stellten wir die konkrete Syntax einer kontrollierten
Sprache vor, die Lesbarkeit von natürlicher Sprache erhält und die Vorausset-
zungen für Überprüfbarkeit wie eine formale Sprache bereitstellt.

4 Namensanalyse

Wir wollen eine Namensanalyse durchführen, um sicherzustellen, dass Objek-
te, die bei der Beschreibung von Prozessen herangezogen werden, zuvor selbst
beschrieben wurden. Diese Vollständigkeitsprüfung ist Teil unseres Ziels, natür-
liche Sprache automatisiert überprüfbar zu machen. Die im vorangegangenen
Abschnitt vorgestellt Syntax liefert die Grundlage dazu.

Um eine Namensanalyse auf Ebene der Bezeichner, die Bestandteil der Prä-
positionalphrasen (PP) sind, müssen wir unterscheiden zwischen definierenden
und benutzenden Bezeichnern. Wir erlauben kein Verdecken (shadowing) von Be-
zeichnern; mehrmalige Definitionen eines Bezeichners mit dem gleichen Namen
sind Fehler. Den Bezeichnern wird bei ihrer Definition der Typ des vorangestell-
ten Prädikats zugewiesen.

Wir unterscheiden zwischen Definition und Benutzung anhand des Artikels:

Definition Eine Pumpe P1 ...
Benutzung Die Pumpe P1 ...

Unbestimmte Artikel (ein, eine, usw.) definieren einen Bezeichner, bestimmte
Artikel (der, die, das, usw.) und Kardinalzahlen (1,2, usw.) greifen benutzend
auf einen Bezeichner zu.
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Anonyme Bezeichner Im Sprachgebrauch wird eine Instanz regelmäßig nicht
benannt, wenn der Typ ein Objekt eindeutig identifiziert.

Es ist möglich, den Bezeichner in einer Präpositionalphrase auszulassen. Der
Übersetzer erzeugt dann eine anonyme Referenz mit dem deklarierten Typ. Auf
diese anonyme Referenz kann über den Typ zugegriffen werden, wenn dieser
im Gültigkeitsbereich eindeutig ist. Ist ein anonymer Bezeichner nicht eindeutig
über den Typ identifizierbar, liegt ein Fehler vor. Eine Ausnahme bilden implizite
Bezeichner für Verben im folgenden Abschnitt.

Beispiel3:

Wenn eine Pumpe in Betrieb genommen werden soll, dann ...
... die Pumpe muss mit einem Fördermedium gefüllt sein.

Im ersten Beispielsatz wird ein anonymer Bezeicher b1 für Pumpe erzeugt. Im
zweiten Satz kann auf diesen anonymen Bezeicher b1 zugegriffen werden, da b1
der einzige Bezeichner vom Typ Pumpe ist, der außerdem keine Untertypen hat4.

Verben erzeugen anonyme Bezeichner Unsere Syntax erlaubt keine Ad-
verbien, Adjektive oder andere vorangestellten Modifikatoren. Trotzdem ist es
notwendig, Prozesse näher zu beschreiben. In natürlicher Sprache dienen Adver-
bien diesem Zweck; eine Konvention, um für Verben direkt bei deren Gebrauch
mit einen Bezeichner zu benennen, hat sich in natürlicher Sprache nicht her-
ausgebildet. Vermutlich liegt dies daran, dass Menschen eher überladene Verb-
bedeutungen dynamisch auflösen als für jeden Zweck neue Verben zu kreieren.
Im technischen Kontext wollen wir aber genau das tun, um anhand der Literale
ihre Bedeutung unterscheiden zu können – und nicht anhand des Kontextes, was
immer das auch sein mag.

Wollen wir Verben modifizieren, können wir die nur tun, indem wir sie als
Argumente innerhalb eines anderen Satzes benutzen. Für jede Benutzung eines
Verbs erzeugt unser Übersetzer implizit einen anonymen Bezeichner. Im Gegen-
satz zu implizit deklarierten Argumenten, ist es kein Fehler, wenn ein impliziter
Bezeichner, der auf ein Verb verweist (erkennbar anhand seines a-priori Typs),
nicht eindeutig einer Instanz zugeordnet werden kann. In diesem Fall wird die
zuletzt erzeugte Instanz gewählt und eine Warnung ausgegeben. Grund ist, dass
syntaktisch keine direkte Möglichkeit besteht, Bezeichner für Verben zu dekla-
rieren.

Beispiel:

Die Pumpe muss angeschlossen werden1.
Der Frequenzumrichter muss angeschlossen werden2.
Das Anschließen2 (..) muss vorschriftsmäßig sein.

3 siehe Abschnitt A.2, erster Absatz
4 siehe Diagramm der Typhierarchie in Abbildung 2 im Anhang
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12 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

Das Verb angeschlossen werden erzeugt zwei anonyme Instanzen. Dem Verb ist
im Glossar der Typ Anschließen zugewiesen5. Mittels dieses Typs wird auf die
(zuletzt) im zweiten Satz deklarierte Instanz zugegriffen. Der Übersetzer erzeugt
dazu eine passende Warnung, dass der anonyme Bezeichner mehrere Kandidaten
hatte, um auf eventuelle Fehler in der Reihenfolge der Sätze aufmerksam zu
machen.

5 Typsystem

Wir wollen eine Typanalyse durchführen, um sicherzustellen, dass gleich be-
nannte Objekte auch die gleiche Sache bezeichnen. Dazu vergleichen wir den
deklarierten Typ bei der Definition eines Bezeichners mit dem deklarierten Typ
bei dessen Benutzung. Weiterhin vergleichen wir in Abschnitt auch die dekla-
rierten (a-priori) Typen mit den von der Umgebung erwarteten (a-posteriori)
Typen. Diese Konsistenzprüfung ist ein weiterer Schritt zu unserem Ziel, natür-
liche Sprache überprüfbar zu machen.

Das Glossar ist die Sammlung aller Typdeklarationen, die durch den Domä-
neningenieur geschrieben werden sollen. Das Glossar soll für die Domäne relevan-
ten Klassen von Objekten (Pumpen, Systeme, Nachrichtenarten, Anschlussarten,
usw.), von Merkmalen (energieeffizient, schnell, blau, usw.) und von Prozessen
(anschalten, benachrichtigen, anschließen, usw.) als Typdeklarationen enthalten.
Das Typsystem kann in der Definitionstabelle des Übersetzers abgelegt werden.
Die Typdeklarationen unterscheiden sich von und werden ergänzt durch die De-
finition von Verben, die wir in Abschnitt 5.3 erläutern.

5.1 Typdeklarationen

Typdeklarationen bilden den benutzerdefinierten Teil der abstrakten Syntax der
domänenspezifischen Anforderungssprache. Typdeklarationen beschreiben, was
man linguistisch als Konzepte bezeichnen würde. Sie sind Äquivalenzklassen, die
Verben, Adjektive und Substantive zu Prädikaten zusammenfassen. Im nicht-
benutzerdefinierten Teil der abstrakten Syntax befinden sich z.B. die Interpre-
tation der Modalverben (soll, kann) aus Abschnitt 3.1. Eine einfache Typdekla-
ration für ein Substantiv lautet z.B.:

Eine Pumpe ist ein System.
Ein System ist ein Objekt

Diese Deklaration deklariert den Typ Pumpe und setzt ihn zugleich in Untertyps-
beziehung zum Typ System. Der Typ Objekt ist vordefiniert und gemeinsamer
Obertyp aller Substantive in unserer Sprache. Verben und Adjektive induzieren
ebenfalls Typen und benötigen daher eine Typdeklaration:
5 Verbdefinition in Abschnitt 5.3, Glossardefinition in Abschnitt A.2.1; der erste Bei-

spielsatz wurde ergänzt
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Eine Inbetriebnahme ist ein Prozess.
Eine Vorschriftsmäßigkeit ist ein Merkmal.

Wir deklarieren zunächst ausschließlich das Gerundium (die substantivierte Form)
als Typ. Diese benötigen wir um Verben und Adjektive selbst näher beschreiben
zu können. Später definieren wir Aliase für die Substantivierungen, um Verben
und Adjektive als Prädikat eines Satzes verwenden zu können.

In Fällen wie Pumpen, in denen der Plural eines Substantivs mit dem Ge-
rundium eines Verbs zusammenfällt, muss darauf geachtet werden, eine Variante
der Substantivierung zu wählen, für die keine Typkollisionen vorliegen. Dank
der Namensanalyse fallen solche Fälle auch bei nachträglichen Ergänzungen auf.
Dies ist möglich, da Substantive, Verben und Adjektive jeweils einen eigenen ge-
meinsamen Obertyp besitzen. Das Typsystem verfügt über einen gemeinsamer
Top-Typ > aller Typen, dessen Literal der aber nicht als Obertyp deklariert
werden kann.

Fest vordefinierte Typen im Typsystem sind:

– Objekt
– Prozess
– Merkmal

5.2 Untertypen und Polymorphie

Wir wollen Synonyme für Wörter benutzen können. Weiter wollen wir Bezeichner
zusammen mit einem Verb benutzen können, ohne ihren exakten Typ benennen
zu müssen. Dann können wir ihre Definition nachträglich und modular verän-
dern, ohne jede Benutzung abändern zu müssen. Verben sollen nicht überladen
werden müssen um eine Überbestimmung in ihren Parametertypen auszuglei-
chen.

Wir erlauben daher die Definition von Obertypen bei der Deklaration eines
Typs, also:

Eine Pumpe ist ein Objekt.

Dies deklariert den Typ Pumpe als Untertyp des Typs Objekt.
Obertypen können mehrfach deklariert werden:

Eine Pumpe ist ein Objekt.
Eine Pumpe ist ein System.

Dies deklariert den Typ Pumpe als Untertyp sowohl zu Objekt als auch System.
Die so deklarierten Obertypen werden zu einer Menge zusammengefasst. Nach
Aufsammeln aller Typdeklarationen in der Anforderungsbeschreibung

Die Syntax für Untertypsdeklarationen lautet:

TDecl ::= PP ('ist'|'sind') PP '.'
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14 Typprüfung und Namensanalyse für textuelle Anforderungsbeschreibungen

5.3 Verbdefinitionen

Verben besitzen in der Regel mehrere Parameter (Valenz) von unterschiedlichem
Typ. Die Typen dieser Parameter sollen deklariert und durch unseren Übersetzer
geprüft werden. Die Argumente einer Verbalphrase können zudem mit Präposi-
tionen beschriftet sein (siehe Abschnitt 3.1). Die Anzahl der Parameter, ihr Typ
und ihre Beschriftung werden in der Verbdefinition festgelegt. Die Verbdefinition
konstruiert daraus einen zuvor deklarierten Typ .

Verben sowie Adjektive, deren Partizipien das Prädikat eines Satzes bilden
können (z.B. energieeffizient sein), benötigen zudem Aliase für verschiedene Fle-
xionsformen (Beugungen). Ein einzelnes Verb oder Adjektiv umfasst 3 Unterty-
pen: eine für jede Zeitform (siehe Abschnitt 3.3).

Die konkrete Syntax für Typdeklarationen und Verbdefinitionen lautet:

VDef ::= PP ('ist'|'sind') ':' VP '.'

Zu beachten ist, dass der Obertyp aus Lesbarkeitsgründen bei Verbdefinitio-
nen auf der rechten Seite des ist steht.

Beispiel6:

Ein Füllen ist: die Pumpe soll mit einem Fördermedium gefüllt sein.
Ein Betreiben ist: der Frequenzumrichter kann als Generator betrie-

ben werden.

In Abschnitt 3.1 haben wir erklärt, Präpositionen als Beschriftungen für Ar-
gumente von Verben zu benutzen. Diese Beschriftungen sind spezifisch für jedes
Verb. Sie können spezifisch für jede Konjugationsform definiert werden; in der
Regel sind sie jedoch für alle Konjugationen jeweils in der Aktiv- und der Passiv-
Form eines Verbs identisch (betreiben bzw. betrieben werden).

Bei der Definition von Verben wird die Namensanalyse außer Kraft gesetzt:
die Form des Artikels wird ignoriert.

Repräsentation in der Definitionstabelle Aus den im Beispiel gezeigten
Definitionen leiten wir die in Tabelle 4 dargestellte Repräsentation in der Defi-
nitionstabelle ab.

5.4 Typberechnungen

Wir definieren Typen als Mengen von Eigenschaften. Sei E die Grundmenge aller
atomaren Eigenschaften (die Literale der Typnamen), und sei ein Typ A ⊆ E
eine Teilmenge aller möglichen Eigenschaften, dann ist die Berechnung, ob der
A Untertyp v von B ⊆ E ist, abbildbar auf die Teilmengeneigenschaft:

A v B ⇔ closure(A) ⊇ closure(B)

6 siehe Abschnitt A.2.1, Glossareinträge 7 und 16
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id VName VType VLabels VArgs

#1 gefüllt sein Ausgeben {ε⇒#2, mit⇒#3}
#2 [Pumpe]
#3 [Fördermedium]
#4 betrieben werden Betreiben {ε⇒#5, als⇒#6}
#5 [Freqenzumrichter]
#6 [Generator]
Tabelle 4. Verben gefüllt sein und betrieben werden in der Definitionstabelle

Dazu sammeln wir zuerst alle Typdeklarationen durch den Übersetzer auf,
bilden den transitiven Abschluss über die Obertypsrelation (Abschnitt 5.2), und
das Ergebnis als closure(A) für jeden Typ A in der Definitionstabelle. Enthiel-
ten A und B zuerst nur eine konkrete Eigenschaft, nämlich die Mitgliedschaft
im Typ ihres Namens, d.h. A = {a}, B = {b} mit a, b ∈ E, so ergänzt die
Abbildung closure :: E → E alle diejenigen Eigenschaften, die in Obertypen
von A bzw. B enthalten sind. Das Typsystem bildet einen Verband mit den
Operationen Typerweiterung t und kleinster gemeinsamer Obertyp u , > = ∅,
⊥ = E. Der gemeinsame Obertyp > = ∅ ist die Schnittmenge aller atomaren
Eigenschaften; der gemeinsame Untertyp aller Typen ⊥ = E ist die Vereinigung
aller atomaren Eigenschaften, also die Menge aller möglichen Eigenschaften. Für
domänenspezifische Anwendungen kann es sinnvoll sein, Kriterien für den ge-
genseitigen Ausschluss von Eigenschaften zu definieren. Da wir in dieser Arbeit
keine Codegenerierung betrachten, ist es unerheblich, ob ⊥ tatsächliche Werte
repräsentieren kann.

Wird ein Verb im Text aufgefunden, wird seine Definition aus der Defini-
tionstabelle als erwarteter (a-posteriori) Typ geladen. Der a-priori Typ ist die
Liste der PP. Um zu überprüfen, ob der a-priori Typ auf den a-posteriori Typ
anpassbar ist, wird die Liste der PP von links nach rechts darauf überprüft, ob
sich das jeweilige Paar von Beschriftung (label) und Argument in der Definition
des Verbs findet. Dabei wird mittels einer Hilfsfunktion die Multiplizität von
Präpositionen (Beschriftungen) berechnet und daraus der a-posteriori Typ für
das jeweilige Argument mit dem benutzten Parameter bestimmt.

Beispiel:

Ein Ausgang ist ein Anschluss. Ein Anschluss ist ein Objekt. Die
Lasten sind eine Last. Eine Last ist ein Objekt. Ein Anschließen ist ein
Prozess.

Eine Untertypsbeziehung wird für diesen Ausschnitt des Glossars (siehe Abbil-
dung 1 und Abschnitt A.2.1) wiefolgt berechnet:

Ausgang v Anschluss

m
{Ausgang,Anschluss,Objekt} ⊇ {Anschluss,Objekt}
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>

Objekt

Anschluss

Ausgang

Last

Lasten

Merkmal Prozess

Anschließen

Abb. 1. Ausschnitt der Typhierarchie

Multiplizität von Argumenten Mehrfach auftretende Beschriftungen behan-
deln ihre Argumente positional; unterschiedliche Beschriftungen können dagegen
beliebig untereinander vertauscht werden. In der Regel muss nur das unbeschrif-
tete ε-Argument mehrfach auftreten. Seltener findet sich noch ein mehrfaches
Auftreten des Präposition von, durch oder zwischen in einem Satz. Wir behan-
deln alle Präpositionen gleich, und erlauben eine beliebige Anzahl an Wiederho-
lungen.

6 Schlussfolgerungen und Ausblick

Der Beitrag dieser Arbeit zur Unterstützung der Anforderung besteht in folgen-
den Punkten: zuerst definieren wir eine Grammatik für Schablonen zur Anforde-
rungsbeschreibung. Aus der Grammatik erzeugen wir einen Parser, um syntak-
tische Korrektheit zu automatisch überprüfen, statt lediglich best-practice Regeln
zu befolgen (Abschnitt 3). Wir führen eine Namensanalyse auf Bezeichnern (be-
nannten Argumenten von Verben) durch (Abschnitt 4). Weiter führen wir eine
Typprüfung auf Bezeichnern und Parametern von Verben durch (Abschnitt 5.3),
um deren richtige Kombination sicherzustellen. Die Syntax für Typdeklarationen
ist eine Teilmenge der natürlichen Sprache (Deutsch), genauso wie die Syntax
für Terme (Anforderungen), und das obwohl Typdeklarationen ein Konzept sind,
das in natürlicher Sprache nicht vorkommt. Damit erhalten wir ein Werkzeug,
das das Schreiben von konsistenten Anforderungsdokumenten maßgeblich ver-
einfachen kann.

Diese Arbeit beschreibt Maßnahmen zur Konsistenzsicherung und -prüfung
für die textuelle Form von Anforderungen, jedoch nicht für den Entwurf, den die
Anforderungen beschreiben. Die kontrollierte Sprache sollte daher eingebettet
werden in ein System zur Analyse der Zusammenhänge zwischen Anforderun-
gen. Da die Zusammenhänge zwischen Anforderungen ebenfalls in natürlicher
Sprache geschrieben werden (Bedingte Anforderungen, Modalverben) können
die dafür notwendigen Informationen entweder aus der abstrakten Syntax ent-
nommen oder mittels Codegenerierung für eine Zwischensprache zur Anforde-
rungsmodellierung in ein Zwischenformat ausgeben werden.

Codegenerierung soll die Anbindung der Anwendungsspezifikation an andere
Artefakte des Entwicklungsprozesses (z.B. VHDL-Code in technischen Syste-
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men) ermöglichen, die einen höheren Grad an Verfeinerung aufweisen, als sich
dies sinnvoll in natürlicher Sprache beschreiben lässt. Dazu stellt man idealerwei-
se eine bidirektionale Korrespondenz mittels Parser und Codegenerator für die
Zielsprache her, so dass Änderungen (am Entwurf bzw. der Implementierung) in
beide Richtungen propagiert werden können.

Für die weitere Entwicklung des gesamten Ansatzes, natürliche Sprache für
domänenspezifische Modellierung einzusetzen, ist es interessant, einen Blick auf
andere Domänen zu werfen als die in dieser Arbeit fokussierten technischen Sys-
teme. Interessante Domänen sind z.B. die Softwareentwicklung (starke Ähnlich-
keit zu technischen Systemen), Kochrezepte (schablonenbasierte Syntax, nicht-
technischer Natur) oder juristische Texte (fokussiert auf Syntax und Äquivalenz
auf Termebene anstatt abstrakter Assoziation).

Das vorgestellte Typsystem basiert auf expliziten Deklarationen. Hier wäre
stattdessen der Einsatz von Typinferenz möglich.

Danksagung Diese Arbeit entstand im Rahmen des vom Bundesministerium
für Bildung- und Forschung (BMBF) geförderten Forschungsprojekts ELSY (Nr.
16M3202D).
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A Praxisbeispiel

Wir zeigen am Beispiel der Betriebs-/ Montageanleitung des PumpDrive2 [KSB,
2014], einem Frequenzumrichter zur Steuerung von Pumpenaggregaten, wie die
kontrollierte Sprache zur Modellierung von Anforderungen eingesetzt wird.

In Abschnitt A.1 ist der Originalausschnitt wiedergegeben. Danach folgt in
Abschnitt A.2 der in kontrollierte Syntax umformulierte Text. Abschnitt A.2.1
enthält das daraus erarbeitete Glossar. In Abbildung 2 ist die deklarierte Ty-
phierarchie abgebildet.

A.1 Original-Abschnitt: 7 Inbetriebnahme / Außerbetriebnahme7

Vor Inbetriebnahme müssen folgende Punkte sichergestellt sein:

– Pumpe ist entlüftet und mit Fördermedium gefüllt.
7 vgl. [KSB, 2014] S. 48
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– Pumpe wird nur in Auslegefliessrichtung durchströmt, um einen generatori-
schen Betrieb des Frequenzumrichters zu vermeiden.

– Ein plötzliches Anfahren des Motors bzw. des Pumpenaggregats verursacht
keine Schäden an Personen und Maschinen.

– Es sind keine kapazitiven Lasten z.B. zur Blindstromkompensation an den
Ausgängen des Geräts angeschlossen.

– Die Netzspannung entspricht dem für den Frequenzumrichter zugelassenen
Bereich.

– Der Frequenzumrichter ist vorschriftsmäßig elektrisch angeschlossen (⇒ Ka-
pitel 5.4 Seite 21)

– Freigaben und Startbefehle, die den Frequenzumrichter starten können, de-
aktiviert sind (siehe Digitaleingänge DI-EN Digitaler Freigabe-Eingang und
DI1 Anlagenstart).

– Am Leistungsmodul des Frequenzumrichters liegt keine Spannung an.
– Der Frequenzumrichter bzw. das Pumpenaggregat darf nicht über die zuge-

lassene Nennleistung belastet werden.

A.2 Abschnitt 7 in kontrollierter Syntax

Wenn eine Pumpe in Betrieb genommen werden soll, dann:

– die Pumpe muss entlüftet sein
– die Pumpe muss mit einem Fördermedium gefüllt sein
– die Pumpe darf nicht entgegen Auslegefliessrichtung durchströmt werden
– der Frequenzumrichter darf nicht als Generator betrieben werden.

Wenn die Pumpe in Betrieb genommen werden soll, und wenn ein Motor ange-
fahren wird, dann:

– keine Schäden dürfen an Personen verursacht werden
– keine Schäden dürfen an Maschinen verursacht werden.

Wenn die Pumpe in Betrieb genommen werden soll, dann dürfen keine Lasten,
die kapazitiv sind, an den Ausgängen, die durch den Frequenzumrichter besessen
werden, angeschlossen sein. Eine Blindstromkompensation soll eine Last, die
kapazitiv sein soll, beschreiben.

Die Netzspannung muss dem Bereich, für den der Frequenzumrichter zuge-
lassen ist, entsprechen.

Der Frequenzumrichter muss angeschlossen werden. Das Anschließen, das die
Elektrizität betrifft, muss vorschriftsmäßig sein.

Wenn die Pumpe in Betrieb genommen werden soll, dann:

– die Freigaben, die den Frequenzumrichter starten können, müssen deaktiviert
sein

– die Startbefehle, die den Frequenzumrichter starten können, müssen deakti-
viert sein

– am Leistungsmodul, das durch den Frequenzumrichter besessen wird, soll
keine Spannung anliegen.
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Der Frequenzumrichter darf nicht oberhalb der Nennleistung, für die der Fre-
quenzumrichter zugelassen ist, belastet werden.

Das Pumpenaggregat darf nicht oberhalb der Nennleistung, für die das Pum-
penaggregat zugelassen ist, belastet werden.

A.2.1 Notwendige Glossareinträge für Abschnitt 7
Hinweis: die Typen Objekt, Merkmal und Prozess sind vordefiniert, siehe Ab-

schnitt 5.1.

Eine Pumpe ist ein System.
Eine Inbetriebnahme ist: die Pumpe soll in Betrieb genommen werden8. Eine

Inbetriebnahme ist ein Prozess. Ein Betrieb ist eine Inbetriebnahme.
Ein Entlüften ist: die Pumpe soll entlüftet werden. Ein Entlüften ist ein

Prozess.
Ein Füllen ist: die Pumpe soll mit einem Fördermedium gefüllt sein. Ein

Füllen ist ein Prozess. Ein Fördermedium ist ein Material. Ein Material ist ein
Objekt.

Ein Durchströmen ist: die Pumpe kann entgegen der Auslegefliessrichtung
durchströmt werden. Ein Durchströmen ist ein Prozess. Eine Auslegefliessrich-
tung ist eine Richtung. Die Richtung ist eine Regel. Eine Regel ist ein Objekt.

Ein Betreiben ist: der Frequenzumrichter kann als Generator betrieben wer-
den. Ein Betreiben ist ein Prozess. Ein Frequenzumrichter ist ein System. Ein
Generator ist ein System. Ein System ist ein Objekt.

Ein Anfahren ist: der Motor soll angefahren werden. Ein Anfahren ist ein
Prozess. Ein Motor ist ein System.

Ein Verursachen ist: Die Schäden an einem Objekt können verursacht werden.
Ein Verursachen ist ein Prozess. Die Schäden sind ein Objekt. Die Personen sind
ein Objekt. Die Maschinen sind ein Objekt.

Eine Kapazitivität ist: die Lasten können kapazitiv sein. Eine Kapazititivät
ist ein Merkmal. Die Lasten sind eine Last. Eine Last ist ein Objekt.

Ein Besitzen ist: durch den Frequenzumrichter können die Ausgängen beses-
sen werden. Ein Besitzen ist ein Prozess. Die Ausgängen sind ein Ausgang. Ein
Ausgang ist ein Anschluss. Ein Anschluss ist ein Objekt.

Ein Anschließen ist: die Lasten können an den Ausgängen angeschlossen sein.
Ein Anschließen ist ein Prozess.

Ein Beschreiben ist: eine Blindstromkompensation kann eine Last beschrei-
ben. Ein Beschreiben ist ein Prozess. Eine Blindstromkompensation ist ein Pro-
zess.

Ein Entsprechen ist: die Netzspannung muss einem Bereich entsprechen. Ein
Entsprechen ist ein Prozess. Die Netzspannung ist eine Spannung. Die Spannung
ist ein Objekt. Ein Bereich ist eine Regel.
8 Das Verb lautet genommen; wir bilden es auf das Prädikat Inbetriebnahme ab
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Ein Zulassen ist: für einen Bereich ist ein Frequenzumrichter zugelassen. Ein
Zulassen ist ein Prozess.

Ein Anschließen ist: der Frequenzumrichter kann angeschlossen sein. Ein An-
schließen ist ein Prozess.

Eine Vorschriftsmäßigkeit ist: das Anschließen muss vorschriftsmäßig sein.
Eine Vorschriftsmäßigkeit ist ein Merkmal.

Ein Anschließen ist: die Elektrizität kann angeschlossen sein. Die Elektrizität
ist ein Objekt.9

Ein Starten ist: die Freigaben können den Frequenzumrichter starten. Ein
Starten ist ein Prozess. Die Freigaben sind eine Freigabe. Eine Freigabe ist eine
Regel.

Ein Starten ist: die Startbefehle können den Frequenzumrichter starten. Die
Startbefehle sind ein Startbefehl. Ein Startbefehl ist ein Ereignis. Ein Ereignis
ist ein Objekt.

Ein Deaktivieren ist: die Freigaben können deaktiviert sein. Ein Deaktivieren
ist ein Prozess.

Ein Deaktivieren ist: die Startbefehle können deaktiviert sein.
Ein Anliegen ist: am Leistungsmodul soll eine Spannung anliegen. Das An-

liegen ist ein Prozess. Ein Leistungsmodul ist ein Objekt. Eine Spannung ist ein
Objekt.

Ein Besitzen ist: ein Leistungsmodul kann durch den Frequenzumrichter be-
sessen wird.

Ein Belasten ist: der Frequenzumrichter kann oberhalb einer Grenzleistung
belastet werden. Ein Belasten ist ein Prozess. Eine Nennleistung ist eine Leis-
tung. Eine Leistung ist eine Grenzleistung. Eine Grenzleistung ist eine Grenze.
Eine Grenze ist ein Wert. Ein Wert ist ein Objekt.

Ein Belasten ist: das Pumpenaggregat kann oberhalb einer Grenzleistung
belastet werden.

9 betrifft/betreffen ist ein Platzhalter-Verb, das durch sein erstes Argument, das ein
Prozess sein muss, ersetzt wird
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Abb. 2. Typhierarchie für Abschnitt 7
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Die Entwicklung paralleler Programme hat in den vergangenen Jahren stark
zugenommen. Dazu haben insbesondere das Aufkommen von Programmierspra-
chen die Parallelität direkt unterstützen und die zunehmenden Verfügbarkeit
paralleler Hardware beigetragen. Parallele Programmierung ist jedoch komplex
und daher fehleranfällig. Statische Analysen können den Programmierer zur Ent-
wicklungszeit auf mögliche Fehlerquellen aufmerksam machen und ihn damit bei
der Entwicklung unterstützen.

In den letzten Jahren wurden Erreichbarkeitsprobleme für Varianten dyna-
mischer Pushdown Netzwerke (DPN) [1], als abstraktes Modell für den Kontroll-
fluss paralleler rekursiver Programme, untersucht. DPN sind eine Erweiterung
von Kellerautomaten, die mehrere parallel arbeitende Stacks modellieren, deren
Anzahl sich zu Laufzeit dynamisch ändern kann. Im Gegensatz zu der Unent-
scheidbarkeit von Erreichbarkeit für starke Synchronisationsprimitive [2] bleibt
Entscheidbarkeit erhalten wenn Synchronisation durch well-nested Locking [3]
realisiert wird. Dies kann um zusätzliche einfache Joins erweitert werden [4].
Alternativ ist Erreichbarkeit auch für contextual Locking und einfache Joins
entscheidbar [5].

Wir erweitern zunächst das Modell aus [4] um ausdruckstärkere Joins und
zeigen, dass Erreichbarkeit präzise entscheidbar bleibt. Hierzu adaptieren wir
die automatenbasierten Techniken aus [4] und zeigen, dass die Menge kriti-
scher Ausführungen durch eine reguläre Menge von Bäumen dargestellt werden
können. Erreichbarkeit kann damit durch den Leerheitstest eines Baumautoma-
ten überprüft werden.

In einem zweiten Schritt präsentieren wir eine Möglichkeit, unter Verwendung
des obigen Resultats, Datenflussanalysen für sequentielle Programme auf paral-
lele Programme zu erweitern. Verschiedene existierende Ansätze [6,7,8] basieren
auf der Idee einzelne Prozesse in einem parallelen Programm zu betrachten und
interferierende Operationen paralleler Prozesse als zusätzliche Operationen in
die Datenflussanalyse einfließen zu lassen. Aufbauend auf dieser Idee entwickeln
wir ein Framework für Datenflussanalysen in dem wir die Erreichbarkeitsanalyse
für DPN verwenden um die Interferenz zwischen Prozessen in parallelen Pro-
grammen zu approximieren. Zu diesem Zweck konstruieren wir eine Folge von
Abstraktionen, im Kontext von Abstrakter Interpretation [9], die es uns erlau-
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ben einzelne sequentielle Prozesse zu betrachten und gleichzeitig ein DPN zu
extrahieren mit dem wir Interferenzen extrahieren können.

In Kombination erhalten wir eine Vorgehensweise um Datenflussanalysen für
sequentielle Programme auf parallele Programme zu erweitern.
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Abstract. Comprehension of C programs can be a challenging task, es-
pecially when they contain pointer-based dynamic data structures. Based
on prior experience with our tool dsOli1, we report on work in progress
concerning a new dynamic analysis for automated data structure iden-
tification that targets C source code. Our technique first applies a novel
abstraction on the evolving memory structures observed at runtime for
discovering the building blocks of complex data structures. By analyzing
the interconnections between the building blocks, we are then able to
identify trees, doubly-linked lists, skip lists, as well as relationships be-
tween these such as nesting. We give preliminary results from a prototype
implementation, which aims to provide a natural language description of
the identified data structures. This information will benefit software de-
velopers when code must be comprehended or modified.

1 Introduction

C programs are notoriously difficult to comprehend, and this is especially true
for legacy or low-level code, e.g., that found in OSs or device drivers. In such
situations it is not uncommon to see programmers employ complex usages of
pointers, types and memory allocation to achieve the desired behavior or effi-
ciency. These constructs are often used to implement the dynamic data structures
of a program, and thus data structures can form a major obstacle in program
comprehension, optimization and verification. To partially alleviate this obsta-
cle we propose a dynamic analysis for automatic identification of dynamic data
structures in C programs.

The essence of our analysis is to first discover the building blocks of complex
data structures, which are essentially singly linked lists (SLLs), and then to
analyze any relationships that exist between the lists. Lists may be either tightly
connected, where they comprise some part of a more complex data structure, e.g.,
the two lists running in reverse directions through a doubly-linked list (DLL),
or loosely connected, where they describe relationships between specific data
structures, e.g., the parent-child relationship found in nested lists.

The identification of dynamic data structures is made challenging due to ma-
nipulation operations that temporally transform a stable shape into a degenerate
shape. For example, consider how the key feature of a DLL is broken during the
insertion of a node; if one were to inspect the shape at such an intermediate state,
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then it may be difficult to give the correct label, i.e., name of the data struc-
ture. Approaches such as dsOli1 [11] and DDT [7] handle this by trying to find
data structure operation boundaries, while MemPick [5] attempts to perform
identification only in the quiescent periods of a data structure. In both cases,
identification is performed when one can be reasonably sure the data structure
has a stable shape.

In our work we include degenerate shapes but override their influence by ob-
serving the context in which a shape appears. Context arises from two sources:
structural repetition, which occurs when there exist many structures performing
the same role, e.g., the multiple child lists found in parent-child nested lists,
and temporal repetition, which occurs when the same structures exist over mul-
tiple program time steps. By discovering evidence for specific occurrences of data
structures and then reinforcing this evidence through structural and temporal
repetition, our approach enables identification even when temporary degener-
ate shapes are encountered. To illustrate the utility of our approach, we track
variables that represent entry points to dynamic data structures and aim to an-
notate these with natural language descriptions of the reachable data structure,
e.g., “Entry point p points to a skip list with a parent child nesting to DLLs”.

The remainder of this paper is organized as follows. In Sec. 2 we discuss
the complexities of data structures in C heaps, which motivates many of the
design decisions we have made for dsOli2. Sec. 3 describes our approach from a
high level with an illustrative example, and in Sec. 4 we dive into the details. We
report preliminary results in Sec. 5 obtained from our prototype implementation,
and finally present conclusions and future work in Sec. 6.

Related Work. Our dynamic analysis aims to identify data structures but
provides no soundness guarantee. In contrast, modern shape analysis tools, such
as Predator [4] and Forester [6], are sound and employ symbolic execution to
learn shape predicates that allow memory safety to be checked automatically. In
particular, Forester summarizes repetitive graph structures with forest automata
to handle skip lists and trees. However, neither approach can handle the recur-
sion commonly found in tree operations, and as their focus is memory safety,
it is not clear how naturally the learnt shape predicates fit the goal of program
comprehension.

The dynamic analyses HeapDbg [8] and ARTISTE [3] represent multiple
concrete data structure nodes with a single abstract node, which is in turn
checked for interesting shape properties. Our approach shares much in common
with the techniques of HeapDbg: their summarization process employs structural
and temporal repetition, but as the process is conservative, temporal joins force
the label of an abstract node to be reduced to the most general available. While
this works for HeapDbg’s tree label, Artiste includes DLLs and, if temporal joins
were to be performed, then the precision of the DLL label would be lost.

MemPick [5] functions on object code and excels in distinguishing different
types of trees. In contrast, we require source code but handle skip lists and
produce a much richer description of the connections between data structures.
Finally, dsOli1 [11] and DDT [7] go beyond all these approaches in that they
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Fig. 1. Complexities of C heaps: (a) custom allocator, (b) cache efficient
list [2], (c) Linux kernel DLL [1], (d-f) skip lists where building block lists
are indicated by bold gray arrows. Examples of (d) and (e) appear in
tests/skip-list/jonathan-skip-list.c and tests/forester-regre/test-f0021.c

of Predator [4], respectively.

also seek to discover the operations that manipulate the data structures. DDT
accomplishes this by assuming that data structures are accessed via well-defined
interface functions, while dsOli1 employs a machine learning approach to locate
repetitive code segments indicative of operations. Compared to dsOli1, we cur-
rently don’t consider operations but do expand the variety of data structures
that are in-scope considerably.

2 Heap Usage in C Programs

The type safety of modern programming languages such as Java and C# con-
strains the actions that a programmer may take and results in programs having
relatively well structured heaps. However, in languages frequently used for OS
programming such as C, where pointer arithmetic and type casting may be freely
applied and memory management is in the hands of the programmer, the heap
can be formed in a more ad-hoc manner. In this section we describe some of
the challenging C code we have seen in practice that leads us to this conclusion,
and in the next section we outline how our approach copes with this challenge.
Firstly, we briefly introduce the notion of a points-to graph, which describes a
snapshot of program memory by representing memory chunks, i.e., stack/global
variables and dynamically allocated memory, as vertices and pointers as edges.

A typical assumption is that a memory chunk represents a single node of
a data structure; however, in practice this is broken in a number of situations.
Firstly, if a custom memory allocator is employed, but memory chunks are de-
tected at the level of the system memory allocator, then it may be the case that
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multiple nodes of potentially multiple data structures appear in the same mem-
ory chunk (Fig. 1(a)). Secondly, cache-efficient data structures combine mul-
tiple nodes into a single memory chunk to enhance performance (Fig. 1(b)).
Thirdly, head nodes of multiple lists may be embedded in the same memory
chunk (Fig. 1(c)). This is common practice with the cyclic DLL type struct

list head employed by the Linux kernel [1], which is designed to be embedded
inside another struct. Given this cyclic property, a natural interpretation is to
treat the head node uniformly with the remainder of the list. This gives rise
to an alternative view, i.e., as a list where the nodes occupy memory chunks
of varying sizes. In the above case, a list of length n consists of one node in a
memory chunk of type t1 and n − 1 nodes each in a memory chunk of type t2.
Macros are provided that allow the outer struct to be reached from a list head
struct via pointer arithmetic and casting.

The key insight to model all of the above situations uniformly is to relax
the assumption that a list linkage offset should occur at a fixed offset from the
memory chunk start address. Thus, it is necessary to track lists in terms of
their linkage rather than in terms of memory chunk type. In the next section we
show how our approach handles this by determining the minimal subregions of
memory chunks needed to establish list linkage.

Now that we have discussed the complexities surrounding list formation, we
turn to how lists are connected. A connection may be made either by overlay,
where at least one node from each list occupies the same memory chunk, or
by indirection, where there exists a pointer, or a chain of pointers, from the
memory chunk holding the node of one list to a memory chunk holding a node
of another list. To illustrate this we consider possible skip list constructions.
Firstly, if the number of levels are known a priori, then it is common to employ
a memory chunk with an array of linkages, where the array element at index i
represents the linkage to the next node at level i (Fig. 1(d)). Thus, in situations
where multiple levels run through the same node, these are connected by overlay.
Secondly, all nodes in the skip list may be of the same type; in other words, each
memory chunk has a next pointer to the next node of the level it represents and
a down pointer to the level below (Fig. 1(e)). Since all nodes are of the same
type, atomic lists are formed both in the horizontal and vertical directions and
are again connected by overlays. Lastly, consider a skip list where each level
is represented by a node of different type (Fig. 1(f)). Since only the horizontal
linkage forms lists, the downward link is an indirect connection between lists.

In the next section we show how our approach uniformly handles the va-
riety of implementation techniques that may be employed by firstly gathering
evidence and then employing structural and temporal repetition to consolidate
the acquired evidence.

3 Overview of our Approach

In this section we give an overview of our approach and provide motivation
with the simple example in Fig. 2, which also shows our approach as a pipeline.
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Table 1. Memory structures (with abbreviations) in-scope for our approach, plus the
number of strands required for discovery and the priority in the identification phase.
Memory structures typically have several implementations, in the case of Head/Tail
Pointers this affects the category. Sharing denotes two lists which share a downstream
cell sequence, while intersecting lists is a catch-all for any pair of connected strands.

Data # Strands Priority Connection # Strands Priority
Structure Required Required

(Cyclic) SLL 1 - Head/Tail Ptrs. (HT) 1 or 2+ 3
(Cyclic) DLL 2 1 Parent Pointers (PP) 2+ 4
Tree 2+ 2 Intersecting Lists (IL) 2 7
Skip List (SL) 2+ 5 Nesting (N) 2 8
Grid 2+ 6 Sharing 2 9

The example shows two time steps in the construction of a SLL of DLLs; note
that at time step t, there exists a degenerate DLL child. In favor of a succinct
explanation, details are delayed until Sec. 4.

We commence from the classic definition of an SLL, which is a sequence of
memory chunks all of the same type, where the entirety of each chunk constitutes
one node in the list. A subset of pointers between these chunks fulfill a linkage
condition, which states that all pointers originate at the same linkage offset from
the start of the chunk and terminate at the start address of the next chunk.

Strands. To handle the scenarios outlined in Sec. 2, we relax the notion
that the nodes of the list occupy the whole memory chunk, and instead try to
discover what we term strands, which will form the basic building blocks of the
structures we seek to identify. A strand represents a sequence of subregions of
memory chunks, each termed a cell, such that the same linkage condition can be
established between the cells. Thus, the linkage offset is now given relative to
the start address of a cell. Strands (Si) are indicated by bold arrows in Fig. 2(a).

Strand Connections. Our approach is driven by relationships between
strands, which we term strand connections. Each strand connection describes
exactly one way in which the cells of two strands are related, hence multiple
strand connections between a pair of strands are possible. Merging strand con-
nections that describe the same relationship will be of key importance in the
accumulation of evidence, and we define strand connections with offsets relative
to the cells in order to handle the scenarios of Sec. 2. We construct a strand
graph where vertices represent strands and edges represent strand connections,
see Fig. 2(b). Since only two time steps of the program are considered in the
illustrative example, it is unsurprising that both strand graphs have the same
structure. For now note that strand connections with the same edge style denote
the same relationship type; for example, the DLL strands form a bi-directional
overlay connection, while two kinds of uni-directional indirect connections are
formed between the parent SLL and each child DLL.

Memory Structures. We use the term memory structure to speak col-
lectively about data structures and connections between data structures, i.e.,
both the tight and loose connections mentioned in Sec. 1. The list of memory
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Fig. 2. Left: the pipeline of our approach, right: the illustrative example of Sec. 3.
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structures in-scope for our approach are given in Table 1 and are categorized
based on the number of strands required for their discovery. For example, a DLL
requires exactly two strands to be discovered, while a skip list requires two or
more strands. We now refer to memory structures requiring one or two strands
as Category 1/2 and those requiring more than two as Category 2+. We will see
later that memory structures in the Category 2+ are discovered at a later stage
of the approach than those in Category 1/2.

Evidence Gathering. When a strand connection is found we immediately
determine the supporting evidence for that strand connection for each Category
1/2 memory structure. The evidence is weighted by the number of cells and
connections between cells that must be present for that memory structure to be
correctly identified. Essentially, our goal is to count the number of things that
have gone “right” for such a memory structure to exist and use this for evidence.
For example, the weight of evidence gathered for nested lists on overlays, where
the strands must only intersect in one memory chunk, is much weaker than that
for DLLs, where the strands must form a very specific connection. Non-zero
evidence is shown on the strand connections of Fig. 2(b). The degenerate DLL
in the first time step has an evidence count of 2 for Intersecting Lists (IL); in
this case, evidence is simply the number of overlay connections between the cells
of each strand. When the DLL regains the correct shape at time t+ 1, it has an
evidence count of 9 based on the length of both composite strands (3 + 3) and
the number of intersection points (3). Strand connections describing nesting (N)
have an evidence count of 1 as the connection is made by a single pointer.

Structural Repetition. The primary use of structural repetition is to
group elements of the strand graph that perform the same role within one pro-
gram time step. This grouping is realized via a merge algorithm that results in a
folded strand graph and, since this contains merged strand connections, it serves
to reinforce the evidence of Category 1/2 memory structures. Observe in Fig. 2(c)
that the vertices have now become sets of strands. Merging partially addresses
the problem of degenerate shapes, i.e., if strands with the correct shape can be
grouped with those having degenerate shapes, then the majority can override
the minority. The correct shape is generally in the majority since degenerate
shapes are produced by manipulations that typically only have a local effect. In
Fig. 2(c), this is seen between strands {S2, S4} and {S3, S5} at time t.

With the folded strand graph to hand, the identification of Category 2+
memory structures begins. For any suitable subgraph in the folded strand graph,
it is checked if that subgraph has the property required of the corresponding
Category 2+ memory structure. If found to be true, all strand connections that
comprise that memory structure record the associated evidence.

Temporal Repetition. To track the temporal behavior of a memory struc-
ture and enable the identification of temporal repetition, we must determine
which strands represent the same atomic component of a data structure over
multiple time steps. This is a very difficult task to do globally as lists will be
split, joined, created and deleted at runtime, and any labeling system will end up
with some amount of discontinuity. Instead, we tackle this problem by consider-
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ing the labeling from the point of view of each entry point separately, since entry
points are inherently stable over their lifetimes. For each time step that an entry
point exists, we extract the subgraph of the folded strand graph reachable from
that entry point. The subgraphs are then merged into an aggregate strand graph,
and thus temporal repetition is identified whenever multiple graph elements are
merged together. Naturally, the evidence embedded in those elements is also
merged and, hence, evidence for both Category 1/2 and Category 2+ memory
structures is reinforced, further reducing the effect of degenerate shapes. Vertices
of this graph become abstract descriptions of the original strands in terms of their
linkage conditions (lc). The aggregate strand graph is shown in Fig. 2(d); note
that the evidence for the DLL shape is overwhelming.

Identifying Memory Structures. The final barrier for memory structure
identification arises from the fact that there may be several possible interpreta-
tions of the aggregate strand graph. We resolve this as follows: we first set the
label of each strand connection in the aggregate strand graph to the one with
the most evidence and set the label of all vertices to be SLL (Fig. 2(e)). We then
group graph elements according to the priorities given in Table 1 and assign a
textual label to the group. For example, DLLs have priority 1, so strand con-
nections labeled DLL and their associated strands are grouped first (Fig. 2(f)).
These elements then form an atomic vertex in subsequent groupings. Ultimately,
we end up with a graph (Fig. 2(g)) of one atomic vertex with a textual label
describing the whole data structure reachable from the entry point.

4 Details of our approach

We now formalize the concepts presented in the illustrative example of Sec. 3.

4.1 Memory Abstraction

To identify the data structures employed by the program we reconstruct a se-
quence of points-to graphs 〈Gpt0 , . . . , Gptn 〉 from an execution of the program un-
der analysis. This reconstruction is enabled by first instrumenting the program,
which results in the runtime capture of program events such as pointer writes
and dynamic memory (de)allocation. The result of the program event at time
step t is captured by Gptt , where 1 ≤ t ≤ n and Gpt0 is empty.

Definition 1. A points-to graph Gpt = (V, E) is a directed graph comprising
a vertex set V representing memory chunks and an edge set E ⊆ V ×N× V ×N
representing pointers.

An edge (vs, as, vt, at) ∈ E captures the points-to relationship between two
memory chunks established by a pointer with source address as, encapsulated
by vertex vs, and target address at, encapsulated by vertex vt. A memory chunk
is either a heap chunk (a memory region returned from dynamic memory alloca-
tion, e.g., malloc) or a stack/global chunk. Our points-to graphs only consist of
reachable memory, so if a leak occurs, then all unreachable chunks are removed.
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Fig. 3. Details of (a) a strand S = ((t, o), (Cl, Cc)), (b) an overlay strand connection

S1
wx←→ S2 and (c) an indirect strand connection S1

yz−→ S2. Memory chunks have black
outline, cells are dashed, and strands are indicated with large transparent arrows.

All memory chunks are typed with standard C types, and a heap chunk
becomes typed when it is accessed by a non void * pointer. Usages of a memory
chunk must be typed consistently, i.e., if a memory address a is accessed via
pointer types t1* and t2*, then t1 and t2 must be structurally equivalent.
Since structs may be nested, and thus multiple structs may start at an address,
the function type(a) returns the set of types starting at address a.

Definition 2. A stack/global chunk v ∈ V is an entry point if it (a) contains
any pointer variable with a target address in the heap or (b) contains a strand
cell (e.g., holds the “head” node in a list).

We begin the formalization of a strand using a pointer that establishes a
linkage condition between two cells, see Fig. 3(a) for details in the following.
Set operators with a bar, ∈̄, ⊆̄ and ∩̄, function on memory ranges, e.g., a ⊆̄ b
determines if the range of a is included in the range of b.

Definition 3. A cell c is a subregion of a memory chunk, i.e., ∃v ∈ V : c ⊆̄ v,
which begins at address c.bAddr and ends at address c.eAddr.

Definition 4. A linkage condition L = (t, o) exists between two cells cs
L−→ ct

with cell type t and linkage offset o if:

∃( , as, , at) ∈ E : as ∈̄ cs ∧ at = ct.bAddr ∧ o = as − cs.bAddr

∧ t ∈ type(cs.bAddr) ∩ type(ct.bAddr) ∧ cs ∩̄ ct = ∅.

We are interested in the maximal linkage condition, i.e., choose L such that

the length of the sequence of cells c1
L−→ c2

L−→ c3 . . . is maximized. If more than
one maximal L exists, then we choose the one with the type t of smallest size.

Definition 5. A strand S = (L,C) represents the sequence of cells C captured
by a maximal linkage condition L. The cell sequence C = (Cl, Cc) is divided into
an optional linear start Cl and an optional cyclic tail Cc, although at least one
must be non-empty. When both sequences are non-empty, the following holds:
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∀i ∈ [1..|Cl| − 1] : Cl[i]
L−→ Cl[i + 1] ∧ Cl[|Cl|] L−→ Cc[1]

∧ ∀i ∈ [1..|Cc| − 1] : Cc[i]
L−→ Cc[i + 1] ∧ Cc[|Cc|] L−→ Cc[1].

Strands are created to capture every unique sequence of cells and are not
destroyed unless all their component cells cease to exist.

As the key to our approach is the reinforcement of evidence via grouping
elements that perform the same role, we must ensure that identical strand con-
nections may be found and grouped wherever possible. Thus, due to the issues
of Sec. 2, all strand connection parameters (w, x, y and z in the following) are
given relative to the cells, linkage pointers and target addresses, i.e., quantities
that are independent of a cell’s position in a memory chunk (see Figs. 3(b) &
(c)). It is for this reason that the strand connections of Fig. 2 are drawn with
different line styles, those with the same style have identical parameters. Lastly,
note that indirect connections can be generalized to sequences of pointers.

Definition 6. A strand connection S1
α S2 describes exactly one way in

which a subset of the cells of S1 are related to a subset of the cells of S2. A con-

nection is defined by the cells that establish the relationship: pairs(S1
α S2) =

{(c1, c2) ∈ cells(S1)×cells(S2) : c1
α c2}. The relationship between cell pairs

(and by extension between strands) may be (a) overlay c1
wx←→ c2 if vertex(c1) =

vertex(c2) with parameters w = (c2.bAddr + linkageOffset(S2)) − c1.bAddr
and x = (c1.bAddr + linkageOffset(S1)) − c2.bAddr. Alternatively, (b) indi-

rect c1
yz−→ c2 if ∃e = (vs, as, vt, at) ∈ E : vs 6= vt ∧ vs = vertex(c1) ∧ vt =

vertex(c2) and there is no linkage condition on e. In this case, the parameters
are: y = as − c1.bAddr and z = (c2.bAddr + linkageOffset(S2))− at.

To uniquely track the strands reachable from an entry point over multiple
time steps, we introduce entry point connections for each type of entry point
given in Def. 2. These are essentially specialized strand connections, where the
starting offset is given from the memory chunk’s start address and is therefore
absolute. Thus, when a chain of strand connections are followed by their relative
offsets, the chain is still uniquely identifiable due to the absolute offset of the
initial entry point connection.

Definition 7. An entry point connection vep
xy−→ S from an entry point

vep ∈ V of type Def. 2(a) to a cell c ∈ cells(S) via a non-linkage condition
edge e = (vep, as, vt, at) ∈ E is defined by two parameters: x = as−vep.bAddr and

y = (c.bAddr+linkageOffset(S))−at. An entry point connection vep
z−→ S from

an entry point vep ∈ V of type Def. 2(b) to a cell c ∈ cells(S) such that c ⊆̄ vep
is defined by one parameter: z = (c.bAddr + linkageOffset(S))− vep.bAddr.

Definition 8. A strand graph Gs = (Vs, Es) is composed of a vertex set v ∈
Vs, where v represents either a strand or an entry point, and an edge set e ∈ Es,
where e represents either a strand connection or an entry point connection.
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4.2 Evidence Discovery and Reinforcement

With the strand graph for each time step to hand, we proceed to discover and
reinforce evidence for the memory structures of Table 1.

Definition 9. A memory structure M = (L,Pshape, Parea, E) has a label L,
a shape predicate Pshape to enable discovery of L, an area condition Parea that
describes on which graph elements Pshape is checked, and an evidence count E.

An area condition serves two purposes, firstly, to limit the number of locations
that a shape predicate must be checked, and secondly, to expose to the shape
predicate only the subset of graph elements necessary for discovery. Such ele-
ments include the set C′, containing the cells of all strands mentioned in the area
condition, and the set E ′, containing all edges that form the linkage of the strands
and all pointers included in strand connections mentioned in the area condition.
For Category 1/2 memory structures, Parea simply limits whether Pshape applies
to strands connected by an overlay or an indirect strand connection; however,
later we will present a shape predicate employing C′ and E ′.

During the construction of the strand graph, for each strand connection
matching Parea, the associated shape predicate Pshape is tested. If found to be
true, then the pair (L,E) is added to the strand connection identified by Parea.
We now give concrete examples of these concepts for selected Category 1/2
memory structures:

L = sharing, Parea = S1
xy←→ S2 ∧ x = y,E = |pairs(S1

xy←→ S2)|, Pshape = true

L = intersectingLists, Parea = S1
α S2, E = |pairs(S1

α S2)|
Pshape = |pairs(S1

α S2)| ≥ 1 ∧ ¬dll(S1
α S2) ∧ ¬ . . .

L = dll, Parea = S1
xy←→ S2, E = |pairs(S1

xy←→ S2)| ∗ 3

Pshape = |cells(S1)| = |cells(S2)| = |pairs(S1
xy←→ S2)|

∧ let ( , (C1
l , C

1
c )) = S1 ∧ ( , (C2

l , C
2
c )) = S2 in C1

c = C2
c = ∅

∧ ∀i ∈ [0..length(S1)− 1] ∃(c1, c2) ∈ pairs(S1
xy←→ S2) :

C1
l [i + 1] = c1 ∧ C2

l [length(S2)− i] = c2

Sharing describes two lists that share a downstream cell sequence, while
intersectingLists is a catch-all predicate that matches any pair of connected
strands. As such, most memory structures must be explicitly excluded in its
Pshape to prevent unnecessary evidence being produced. While sharing and
intersectingLists generate evidence in the number of connection points be-
tween the two strands, the dll predicate requires two strands to be connected in
a specific way and, thus, uses the length of each strand summed with the num-
ber of connection points as evidence. Lastly, note that dll is easily extended to
cyclic DLLs by requiring S1 and S2 to have cyclic cell sequences and checking
that, under some cyclic permutation of those sequences, the DLL property holds.

With the evidence for Category 1/2 memory structures added to the strand
graph, we proceed to identify structural repetition via Alg. 1. This serves two
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Fig. 4. Tree example: (a) points-to graph, (b) strand graph and (c) folded strand graph.

purposes in our approach. Firstly, it reinforces evidence of Category 1/2 data
structures and, thus, alleviates the degenerate shape problem. Secondly, it par-
tially groups the graph elements of Category 2+ data structures, which facilitates
their discovery.

Algorithm Sketch 1. Structural repetition is found by successively locat-
ing strands of the strand graph that conceptually perform the same role, and
then merging them. Any duplicate strand connections that result from the strand
merge are also merged, thus summing any associated evidence. Two strands S1

and S2 are merged if they have the same linkage condition L and there exists a

merge point S3 with strand connections S3
α S1 ∧ S3

α S2. A strand connec-
tion between S1 and S2 is forbidden unless it describes sharing. Alternatively,
two strands S1 and S2 are merged if they appear in a disjoint partition of the
strand graph, where the only connections between strands of that partition de-
scribe sharing. After all merges are performed, the result is a folded strand graph.

Definition 10. A folded strand graph Gfs is a summarization of a strand
graph. The vertices now represent entry points or sets of strands. Edges represent
entry point connections or merged strand connections.

Area conditions for the discovery of Category 2+ data structures may de-
scribe sets of strands, and for convenience these memory structures are discov-
ered in the folded strand graph. Consider the binary tree shown in Fig. 4(a),
which has strands covering the left and right linkages; the associated strand
graph is shown in Fig. 4(b). This data structure displays high structural repe-
tition and, in the folded strand graph Fig. 4(c), the strands have been grouped
into two classes representing the left and right linkages. As can be seen in the
following, Parea for a binary tree recognizes the shape of Fig. 4(c) exactly:

L = BinaryTree, Parea = S1 xy←→ S2, E = |pairs(S1 xy←→ S2)|
Pshape = let ∃E ′1, . . . , E ′n : E ′ = ∪· ni=1E ′i ∧ ∃C′1, . . . , C′n : C′ = ∪· ni=1C′i in

∀i ∈ 1..n ∃croot ∈ C′i :
(@( , , , at) ∈ E ′i : at ∈ croot)
∧ |{( , as, , ) ∈ E ′i : as ∈ croot}| ∈ {0, 1, 2}
∧ ∀c ∈ C′i − croot : |{( , , , at) ∈ E ′i : at ∈ c}| = 1
∧ |{( , as, , at) ∈ E ′i : as ∈ c ∧ at ∈ C′i − {croot}| ∈ {0, 1, 2}

697



The shape predicate employs the sets C′ and E ′ that result from Parea to
ensure that irrelevant pointers are excluded from the shape test. However, due
to the folding of structural repetition, it is possible that Parea locates multiple
trees. This could occur if, e.g., many trees were nested under an SLL. To handle
this, Pshape first partitions C′ and E ′ into n trees using the disjoint union operator
∪· , where C′i and E ′i represent the elements of tree i. Then, for each i, a root croot
is found with no incoming pointer in E ′i , and the non-root cells C′i − croot are
checked for a suitable number of incoming and outgoing edges in E ′i .

If Pshape is found to be true for a Category 2+ data structure, then all
strand connections mentioned in Parea have (L,E) added. Since the label and
evidence may be distributed over multiple elements of the folded strand graph,
L is parameterized to ensure the graph elements of that memory structure can
be recovered. However, for a binary tree such a parameterization is unnecessary.

To find temporal repetition we must locate strands that perform the same
role over multiple time steps. As mentioned previously, we do not attempt a
global solution and instead solve the problem from the point of view of each
entry point, where that local solution is represented as follows:

Definition 11. An aggregate strand graph Gasep is composed of edges de-
scribing strand connections and vertices, of which one, vep, will represent the
entry point and the remainder will represent linkage conditions.

Algorithm Sketch 2. Temporal repetition observed by an entry point ep is
computed as follows. For each time step t in ep’s lifetime, we extract the subgraph
of Gfst reachable from vep, which results in a subgraph set G. To abstract over
multiple time steps, we relabel all vertices that represent strands in the graphs of
G to include only the associated linkage condition, which, unlike strands, is time
step independent. The subgraphs in G are merged together in time step sequence,
where the result of the last merge Gasep is merged with the next subgraph Gnext ∈ G
and Gasep is initially empty.

To perform the merge, vep of each graph is placed in correspondence, and
then an inexact graph match is computed. Vertices may be in correspondence
if they have identical linkage conditions, while edges may be in correspondence
if the strand connections (including parameters) are identical. Graph elements
in correspondence imply that temporal repetition has been discovered, and nat-
urally the merge also sums any associated evidence. Elements of Gnext not in
correspondence are simply transfered with their associated evidence to Gasep.

The identification algorithm is then applied to each Gasep, resulting in a natural
language string. However, due to space limitations we refer the reader to the
informal description of this process presented at the end of Sec. 3.

5 Preliminary Results

We have prototyped our approach using a combination of CIL [10] (approx. 1K
LOC OCaml & 600 LOC C) to inject instrumentation into C source code, and
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Table 2. Preliminary results obtained from our prototype implementation.

Example Runtime Memory Evidence Count % Supp. # Agg.
(s) (GB) / % Opp. Merges

Binary Tree 10.3 2.70 Tree: 102, Nesting: 21 83%/17% 16
Linux DLL [1] 9.7 1.76 CDLL: 60, IL: 52, DLL: 6 51%/49% 20
Wolf DLL [12] 71.4 2.86 DLL: 1410, IL: 220 87%/13% 123
Skip list with

107.2 2.84
SL: 24793, N: 487, Tree: 48 98%/2%

101
DLL Children DLL: 345, IL: 2 99%/1%

Scala (approx. 7.5K LOC) to perform the offline analysis. All experiments were
run on an Intel i7-4800MQ with 32GB of RAM. We applied the prototype to
four examples, the first three of which are self-written: a binary tree, an example
exercising the cyclic Linux DLL [1], a skip list with child DLLs and a textbook
DLL implementation [12]. We have made the source code of our self-written
examples available at http://www.david-white.net/kps15.zip.

In Table 2 we report the runtime and memory usage of the offline analysis,
although we note that currently no optimization has been performed and we store
much redundant data. To simplify presentation of the results, we give details for
only the longest running entry point of each example. In the evidence column we
list all the non-zero evidence counts for each discovered memory structure, and in
the following column we give the ratio of evidence supporting the correct data
structure name versus that opposing. In each example, the evidence suggests
the correct memory structure, which is shown in bold. For the example with
multiple data structures, we separate out the evidence for each sub structure
into a separate row. Lastly, in column # Agg. Merges, we show the number
of merges that were performed by Algorithm 2 to produce the aggregate strand
graph, which gives a rough indication of the rate at which evidence was gathered.

All examples are synthetic in the sense that they only manipulate, often just
one, data structure. Since real world programs perform other tasks besides data
structure manipulation, their data structures typically spend a smaller propor-
tion of the runtime in degenerate states. Therefore, although the examples are
quite simple, they effectively represent the worst case for our evidence based
analysis. This is especially true for the Linux DLL example, which has approxi-
mately three time steps of intersecting lists for every one time step where the full
DLL is present, resulting in only 51% evidence supporting a DLL. Behavior more
typical of a real-world program can be seen in the skip list with nested DLLs
example. This is due to building the skip list first, which is then held in a stable
shape while child DLLs are added. This stable portion generates overwhelming
evidence for the skip list.

6 Conclusion

We have presented dsOli2, a dynamic analysis that automatically identifies the
dynamic data structures appearing in a C program during execution. By decom-
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posing complex structures into strands and then analyzing the resulting strand
connections, we are able to identify many data structures typically appearing in
C heaps such as (cyclic) singly and doubly linked lists, trees, skip lists and re-
lationships between data structures such as nesting. In contrast to related work
that tries to avoid degenerate shapes [11, 7, 5], we permit these in our analysis
and employ evidence based on structural complexity that is reinforced by struc-
turally and temporally repetitive heap structures to override degenerate shapes.
Preliminary results appear to support this method of dealing with degenerate
shapes, and does not require the discovery of data structure operations or qui-
escent periods.

Ultimately, we aim to use the output of dsOli2 in a number of applications
beyond program comprehension, including informing formal verification (which
has already been studied in the context of dsOli1 and VeriFast [9]) and reverse
engineering, which would be possible after we permit object code as input.
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Abstract. Dynamic program analyses, such as profiling, tracing and
bug-finding tools, are essential for software engineering. Unfortunately,
implementing dynamic analyses for managed languages such as Java
is unduly difficult and error-prone, because the runtime environments
provide only complex low-level mechanisms. Currently, programmers
writing custom tooling must expend great effort in tool development
and maintenance, while still suffering substantial limitations such as
incomplete code coverage or lack of portability. Ideally, a framework
would be available in which dynamic analysis tools could be expressed
at a high level, robustly, with high coverage and supporting alternative
runtimes such as Android. We describe our research on an “all-in-one”
dynamic program analysis framework which uses a combination of
techniques to satisfy these requirements.

Keywords: Dynamic program analysis, Java, Android

1 Introduction

Have you ever wanted to climb inside your program to see it executing? Modern,
managed platforms such as the Java Virtual Machine (JVM) expose a variety of
low-level interfaces for instrumenting and profiling code, but obtaining high-level
insight remains frustratingly difficult.

Developers of large, complex systems have a continual need to optimize, test,
debug and comprehend their systems’ behavior. For example, when investigating
performance, we might want to count objects allocated by allocation site (alloca-
tion profiling), log entry and exit to certain methods (method tracing), count
caller–callee invocation frequencies (call-graph edge profiling), flag lines of code
as covered or not (code coverage), and so on. These are all dynamic program
analyses, offered by various off-the-shelf tools. Since complex programs vary in
what methods are of interest, how allocation sites should be grouped together,
how much context sensitivity is appropriate, and so on, programmers often require
more tailored analyses. Therefore programmers nevertheless frequently customize
their tooling, by grappling with the VM’s low-level interfaces.
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The basic such interface offered by a JVM is bytecode instrumentation. Using
an API called JVMTI [12] and a bytecode library such as ASM (http://asm.ow2.
org), the tool author rewrites the program’s assembly-level bytecode instructions
as they are loaded. This is intricate and error-prone: it must add analysis logic,
but otherwise avoid interfering with the program’s execution. It’s also insufficient:
some events (e.g. object allocation) occur not only in bytecode but also internally
within the VM, requiring a separate set of callbacks. Using JVMTI is both
difficult and commonplace, as revealed by hundreds of Stack Overflow questions.

Bytecode instrumentation has the appealing property that the analysis and the
program share a virtual machine. The core of the analysis can therefore be written
in Java or another familiar language, and is dynamically optimized together with
the program. Unfortunately, this also creates a fundamental tension between
coverage and isolation. The analysis inevitably interferes with the program’s
behavior, since it shares the same core classes. The consequences range from the
typically harmless (class initializers run in a different order after instrumentation)
to the surprisingly deadly: infinite recursion, state corruption or deadlock. The
usual escape route is to leave core libraries uninstrumented, sacrificing coverage.

Is there a better way? Ideally, we would like a high-level programming model
that abstracts away from bytecode. We would also like high coverage, allowing
the instrumentation of core classes without risk of interference. The analysis
should also be portable to any JVM and perhaps other VMs such as Dalvik (used
in the Android operating system).

Our research has produced an “all-in-one” analysis framework that achieves
these goals. As we’ll see, it comprehensively takes care of the incidental complex-
ities of developing custom dynamic analyses, allowing programmers to focus on
the essentials.

2 Writing Dynamic Analyses is Hard

Let’s examine a real-world example. JaCoCo [5] is a code coverage tool reporting
which classes, methods and lines of code were touched during a given program
execution. It maintains arrays of flags on a per-class basis, and instruments appli-
cation code to set flags as control reaches the corresponding points. This is easy
to state, but not easy to implement: JaCoCo’s core and runtime implementation
amounts to about 2000 logical lines of Java. Much of this code is devoted to
manipulating bytecode instructions. Mixed in with this is the primary concern of
creating and updating the arrays.

The extract in Figure 1 shows the kind of code involved. In-
strumentation is done using the ASM bytecode library. Similar li-
braries include Shrike (http://wala.sourceforge.net/wiki/index.php/
Shrike_technical_overview), which offers a patch-like abstraction on bytecode,
and Javassist [4], which integrates into the Java class-loading infrastructure.

The intention of this code is simple: getting a local reference to a system-wide
array of flags corresponding to the lines of code covered. The array is retrieved
via Java’s system properties object; notice how a canned bytecode sequence for
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// in SystemPropertiesRuntime
public int generateDataAccessor(final long classid , final String classname,

final int probecount, final MethodVisitor mv) {
mv.visitMethodInsn(Opcodes.INVOKESTATIC, ”java/lang/System”,

”getProperties”, ”()Ljava/ util /Properties ;”, false );

// Stack [0]: Ljava/ util /Properties ;

mv. visitLdcInsn (key);

// Stack [1]: Ljava/lang/String ;
// Stack [0]: Ljava/ util /Properties ;

mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, ”java/util/Properties”,
”get”, ”(Ljava/lang/Object;)Ljava/lang/Object;”, false );

// Stack [0]: Ljava/lang/Object;

RuntimeData.generateAccessCall( classid , classname, probecount, mv);

// Stack [0]: [Z

return 6; // Maximum local stack size is 3
}

Fig. 1: Direct bytecode instrumentation in JaCoCo [5]
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calling System.getProperty() is spliced in by manually assembling bytecode (“visit”
means “append instruction to the output buffer”) and explicitly managing the
operand stack.

We can also see the potential for interference problems. The library method
System.getProperties() might itself be instrumented. To avoid infinite recursion,
we need to arrange for the instrumentation to call an uninstrumented version of
it. Alternatively, we could exclude the method from instrumentation entirely (as
is done by JaCoCo), but then we would not measure its coverage. In general, this
sharing of library state between program and instrumentation risks modifying
the program behavior in unforeseeable ways, depending on the internals of the
library [6].

These difficulties motivate a different approach. Developing a dynamic analysis
involves writing two different kinds of code. Some code does instrumentation—
inserting logic into the base program, to collect low-level observations. Other
code does analysis, turning these observations into the high-level output desired
by the user. In most cases, the inserted code is simple: it collects contextual
information at the insertion site (e.g., the index of the bytecode instruction that
has been hit, which class and method it is in, etc.). By contrast, the analysis
might perform complex computations to aggregate and filter the output.

Ideally, therefore, analyses would be written in an ordinary, powerful, general-
purpose programming language. Instrumentation, by contrast, inserts only simple
code, but requires some specialized notation to specify what information to
collect and when. Mixing instrumentation and analysis tends to make both kinds
of code unnecessarily complex [1]. In our example, the array retrieved by the
getProperties() call in Figure 1 is really part of the analysis—it is used to aggregate
code coverage events—yet is being dealt with by instrumentation. We would like
a design that keeps the two separate.

Although the inserted code is simple, inserting it is not. This is a problem
of meta-programming—modifying the structure of another program. It must
transform arbitrary bytecode to collect the required information (what) at the
required points (where) while otherwise faithfully preserving its semantics. Nor-
mally, instrumentation is viewed as a special case of program transformation, and
programmed by manipulating free-form lists of instructions. Although flexible,
this is needlessly onerous, since instrumentation seeks only to add behavior, not
modify it. Rather than manipulating raw instructions, we require a carefully
designed set of primitives which express addition of code straightforwardly.

We find inspiration for these primitives in aspect-oriented programming
(AOP) [7], and its notions of join points (dynamic points in execution) and
advice (code snippets inserted into existing code). It is possible to use an existing
aspect-oriented language like AspectJ for some instrumentation tasks, but this
suffers numerous limitations: AspectJ cannot instrument core library classes
(conservatively avoiding interference problems) and lacks definitions for many of
the intra-procedural control-flow join points commonly used in analyses, such as
basic block entry/exit.
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If we specify instrumentation using aspect-like primitives, how does this
integrate with the analysis code? One way is to treat a dynamic analysis as a
(potentially distributed) event-processing system. This decouples the two kinds of
code, and abstracts away from instrumentation mechanisms. There is a natural
mapping from event-processing concepts onto dynamic program analysis.

Events. Events reify specific moments in the execution of the base program, along
with relevant contextual information. Events are produced by instrumentation
and consumed by analysis.

Producers. An event producer is a unifying abstraction of various program
instrumentation mechanisms. For example, on the JVM we have two mechanisms:
bytecode instrumentation and JVMTI agent callbacks [12].

Consumers. An event consumer is a unifying abstraction of analysis code. An
analysis specifies only which events it requires, not how they are collected. It
consumes these events and generates output useful to the application developer.

3 The ShadowVM Framework

The ShadowVM framework is the “all in one” system we have built to implement
our vision of simple custom dynamic analyses. It lets developers retain Java as
the primary development language. By separating instrumentation from analysis,
it offers a higher level of abstraction than bytecode instrumentation. Figure 2
illustrates how it realizes dynamic analyses as distributed event-processing sys-
tems. The base program executes in the observed VM, where instrumentation
produces events. The framework delivers these to the analysis, executing in the
separate ShadowVM.

Producer programming model. In the observed VM, instrumentation produces
events that are required by the analysis. We adopt the aspect-oriented pro-
gramming model of DiSL, a domain-specific language embedded in Java [9]. It
expresses instrumentation using the abstractions of markers, guards and snippets.
Markers identify points in execution, which guards may filter. Snippets, analogous
to advice in AOP, are small fragments of Java code targeting the Event API.
This API accepts events for delivery to the analysis.

Events may be constructed from primitive values, strings, object identities,
and a selection of data types identifying locations in code: classes, method names,
and marker-defined identifiers such as basic block IDs. A library of ready-made
markers and snippets is provided to generate common bytecode events, such as
method entry/exit, basic-block entry/exit, object allocation, or field read/write.

VM-internal events, not corresponding to bytecodes, are denoted by the unit
of resource whose lifetime they relate to: objects, threads, or the VM itself. The
framework generates events marking the disposal of resources, often useful as
triggers for analyses to clean up internal state or output results.
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Fig. 2: Overview of the ShadowVM framework.

Consumer programming model. All analysis state and computation occurs in the
ShadowVM, using facilities of the shadow API [8, 14]. Its basic abstraction is
the shadow object. Logically, any object in the base program has a corresponding
shadow in the analysis. In practice, shadows are created on demand. When an
object is first passed to the Event API, it is tagged with a unique 64-bit number,
and a shadow object is created, recording this identifier and the base object’s
class. Beyond this, shadow objects’ state is user-defined, consisting of an arbitrary
key-value map. This may be used to store analysis-specific data (e.g. timestamps,
flags, etc.) and/or the real object’s contents (by observing field writes; library
code is provided). Many performance-oriented analyses do not require object
contents. Shadow strings are a special case: for convenience, they replicate the
base string contents.

Event notifications are delivered as method invocations on an analysis class
loaded in the ShadowVM, somewhat similar to remote method invocation. The
analysis developer controls the interface of this class, so each kind of event
corresponds to a method of specific signature. Generally, the developer supplies
instrumentation, typically chosen from a library, to generate these events. In
the case of lifetime events, the developer simply implements a system-defined
interface corresponding to the desired kinds of lifetime events—object death,
thread termination, or exit of the observed VM—signaling to the framework
that it must generate these events. (On the JVM, these events are generated by
registering JVMTI callbacks.)

Configuration issues. For use cases where only specific packages must be instru-
mented, the developer may define a “scope” (set of classes to instrument) and/or

706



a global exclusion list. Wildcards are supported, e.g., exclude "java.*". In
the absence of these, all bytecode is subject to instrumentation; unlike other
systems, our system safely supports this. Additionally, each instrumentation can
be guarded by conditions that are evaluated at instrumentation time, referring
to any property of the class/method being instrumented.

4 Supporting the Android Platform

Android is a Linux-based multi-user operating system. Applications are written
in Java, and executed in the Dalvik Virtual Machine (DVM). The DVM lacks
certain features that enable implementation of the ShadowVM framework on the
JVM, most notably a tool interface akin to JVMTI. Extending the ShadowVM to
support Android therefore required overcoming various conceptual and technical
challenges.

Multi-process application support. Although written in Java, Android applications
adhere to a particular component model, and expose multiple entry points. By
default, the components of a single application execute in a single DVM, but
any component can be configured to execute in a separate DVM, distributing
the application across address spaces. An analysis observing an Android applica-
tion therefore needs to handle events from multiple VM instances. ShadowVM
enables this by associating the observed events and object identities with a “VM
context” provided to the analysis with each delivered event (Figure 2b). New
DVM instances are spawned from a bootstrap VM (the Zygote), requiring the
ShadowVM to replicate shadow objects from the zygote’s shadow into its new
child. Replication of any custom data associated with shadow objects in the
parent VM is handled by the analysis, but this only concerns objects that were
exposed to the analysis during initialization of the system classes in the Zygote.

Inter-process communication events. Android applications execute in a private
sandbox. Each application has its own data, and can communicate and ex-
change data with other applications or services through the Binder inter-process
communication (IPC) mechanism. The communication follows a synchronous
client-server model, transferring control flow between client and server with each
request and response. To enable observation of multi-process applications and
their interactions with the wider system, the ShadowVM framework on Android
expands the range of VM-internal events to include the low-level IPC operations
that Android applications use for communication and control transfer.

Tool interface essentials. On the JVM, JVMTI is used to instrument classes on
load and to implement the generation of VM-internal object, thread, and VM
lifecycle events. DVM lacks any similar tool interface, so we needed to modify
the DVM to provide the essential subset of JVMTI features. This includes object
tagging, hooks in the garbage collector (when freeing tagged objects) and in
various other places (e.g., class loading, IPC, thread creation and termination,
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etc.). Our modifications to DVM are encapsulated in well-defined interfaces,
making them portable to the new Android Runtime (ART, from the recent
Android 5.0 release).

Bytecode transformation and class loading. The DVM implements a register-based
machine, and works with bytecode converted from the stack-based Java bytecode.
Working directly with Dalvik bytecode would place an added burden on analysis
developers, requiring platform-specific instrumentations to enable development of
multi-platform analyses. We avoid this by converting the Dalvik bytecode to Java
bytecode for instrumentation, and converting it back for execution (Figure 2a).
Unlike the JVM, which loads individual classes as streams of bytes, the DVM
loads multiple classes at a time by mapping a class archive directly into memory.
This forces us to instrument classes in batches before they are mapped into
memory, to preserve transparency of load-time instrumentation.

5 Example Analyses

To illustrate the framework, we implemented the functionality of the popular
code coverage tool JaCoCo [5] using ShadowVM. The upper part of Figure 3
shows the code snippets for branch event producer (instrumentation) and branch
event consumer (analysis). The instrumentation assigns each branch a dedicated
number for indexing, and emits an event indicating which branch is taken. This
code illustrates our aspect-oriented primitives: Java attributes mark a snippet
(a static method) with places where it should be inserted (here before and after
branches). The extra “synthetic” local boolean is inserted into each method body
and used to select only the taken branches. Although snippets appear as static
methods within a Java class, this is simply a convenient container for annotated
fragments of code and auxiliary definitions (like the synthetic local). It is never
loaded nor instantiated, and is used only by the instrumentation engine.

The snippet produces an event consisting of a string and an integer, uniquely
identifying the branch. The analysis maintains a simple data structure tracking
taken branches, updated in reaction to the events received.

The bottom part of Figure 3 compares the original JaCoCo with the Shad-
owVM version. While both versions support the JVM and the DVM, only the
ShadowVM version allows code coverage analysis of core library classes. Moreover,
our framework enables a more compact implementation of both instrumentation
and analysis; overall, the ShadowVM version has fewer than 19% of the logical
lines of code of the original JaCoCo.

We also implemented the object-lifetime analyzer ElephantTracks [13] with
ShadowVM. The original ElephantTracks is implemented as a native JVMTI
agent in C to avoid interference. With ShadowVM, the tool can be implemented
in pure Java. The original ElephantTracks only runs on Java 6, whereas the
ShadowVM version also supports Java 7, Java 8, and the DVM. Overall, the
ShadowVM version has fewer than 24% of the logical lines of code of the original
ElephantTracks.
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Support Lines of Code

JVM DVM Full Coverage Producer Consumer

Original JaCoCo Yes Yes No 1389 570

ShadowVM JaCoCo Yes Yes Yes 281 82

Original ElephantTracks Only Java 1.6 No Yes 6668 2770

ShadowVM ElephantTracks Yes Yes Yes 608 1628

    @SyntheticLocal
    static boolean encounterBranch = false;

    @Before (marker = BranchMarker.class)
    static void beforeBranchInstruction () {
        encounterBranch = true;
    }

    @AfterReturning (marker = IfThenBranchMarker.class)
    static void thenBranch (final CodeCoverageContext c) {
        if (encounterBranch) {
            CodeCoverageAnalysisProxy.branchTaken (
                c.classIdentifier (),
                c.methodIdentifier (), 
                c.branchIndex ());
            encounterBranch = false;
        }
    }

    @AfterReturning (marker = IfElseBranchMarker.class)
    static void elseBranch (final CodeCoverageContext c) {
        if (encounterBranch) {
            CodeCoverageAnalysisProxy.branchTaken (
                c.classIdentifier (),
                c.methodIdentifier (), 
                c.branchIndex ());
            encounterBranch = false;
        }
    }

Event Producer Event Consumer

public class CodeCoverageAnalysis implements 
  VmExitListener {

    public void branchTaken(ShadowString classID,
                            ShadowString methodID, 
                            int branchIndex) {
        ... // Update coverage profile 
            // to corresponding method
    }
    ...

    @Override
    public void onVMExit (Context context) {
        ... // Dump coverage profile of the process
    }

}

Fig. 3: Top: JaCoCo on ShadowVM; bottom: original JaCoCo and ElephantTracks
versus our implementations on ShadowVM

In summary, ShadowVM reduces development effort for many analysis tools,
thanks to its high-level programming model, multi-platform support and built-in
comprehensive bytecode coverage.

6 Discussion

Any practical system makes certain trade-offs in its design and implementation.
We conclude this paper with a discussion of the strengths and limitations of our
framework.

6.1 Benefits and Deployment Scenarios

Expressiveness, isolation and complete bytecode coverage. Our approach satisfies
the goals we identified at the start of the paper. It offers a favorable trade-off
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between a high-level programming model and expressiveness. By deploying the
analysis in a separate process, interference with the observed application is
minimized, and analyses can observe code in core classes, right from the earliest
“bootstrapping” stages of VM execution.

Multi-platform analysis. With our framework, all user code is portable: an analysis
written for Java applications also supports Android applications out-of-the-box.
Our framework also offers multi-process support, such that one analysis process
can handle the events of multiple observed JVMs and DVMs. This provides a
sound basis for analyzing distributed systems.

Parallelism and available resources. Because the event-consuming part of an
analysis executes in a separate VM, our framework implicitly parallelizes the
execution of the observed application and the analysis. Since the analysis VM
can be deployed on a different machine than the observed VM, our approach
minimizes the extra memory requirements on the observed VM. This enables
heavyweight analysis even on resource-constrained devices.

6.2 Limitations

Users of our dynamic program analysis framework need to be aware of the
following limitations, which our ongoing research is addressing.

Overhead. Since the event-producing and event-consuming parts of an analysis are
separate processes, some communication overheads are incurred. We refer to [8]
for a performance evaluation of our framework. The implementation of object
tagging in standard JVMs proves a bottleneck; this is used to assign globally
unique identities to objects that are captured in events, and is stressed heavily
by our system.

DVM quirks. For the analysis of Android applications, a version-specific patch
needs to be applied to the DVM first. The conversion between JVM and Dalvik
bytecode introduces some bias in metrics related to individual bytecodes or basic
blocks. For example, the basic block size may change upon bytecode conversion.

Event ordering. Concurrency raises some subtle issues in event processing. Our
framework supports different event ordering semantics (particularly, global order
and per-thread program order [8]), to cater to different analyses’ requirements.
However, it does not guarantee that the occurrence of an event and the generation
of the event happen atomically. Consequently, the happens-before relationship
within an observed VM may not always be preserved. Other program analysis
frameworks suffer from the same limitations, independently of whether they
perform the analysis within the observed VM or in a separate process.
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Native code. Our system cannot observe execution in native code, unlike
whole-program dynamic instrumentation systems such as Valgrind [11] or
DynamoRIO [2]. These offer instrumentation interfaces at the level of portable
intermediate code—much lower-level than our approach. Also, they provide no
way to recover a source-level view of a Java program’s state in terms of objects,
fields, methods, etc.. Systems such as DTrace [3], which instrument native code
at both user and kernel levels, face in-kernel isolation problems analogous to
those we face in the observed VM. The solutions are similar: to avoid interference,
DTrace instrumentation traps to a wait-free code path (analogous to our snippets)
which buffers data (events) for hand-off to a sandboxed consumer (the analysis),
while sharing no state with the rest of the kernel.

Synchronous analysis. In our system, events are processed remotely and asyn-
chronously by the analysis. This gives the analysis no opportunity to “go back”
and inspect more program state than it was initially passed. Instead, all the
required state must be captured up-front in the instrumentation. Thus, Shad-
owVM is not suited for implementing interactive debuggers. Furthermore, the
analysis cannot synchronously request a heap dump. We could request the heap
dump only later, when it may not show the relevant features. Alternatively, we
could maintain a “shadow heap” in the analysis, by observing all events that
change the object graph (i.e., field writes). However, this usually exhibits high
overhead. Also, changes to the object graph in native code (e.g., through the JNI,
upon object cloning, or upon deserialization) are not captured by our current
implementation, meaning the shadow heap may not be completely accurate.

6.3 Availability

Our program analysis framework is public available as an open-source software
project hosted on OW2 (http://disl.ow2.org/). The current release DiSL 2.1
includes both DiSL and ShadowVM; it has been endorsed by the SPEC Re-
search Group and included in their tool repository (http://research.spec.
org/tools/overview/disl.html). A detailed tutorial helps getting started
with DiSL [10]. DVM support is currently available as a prototype (http:
//goo.gl/LKmVxf); it will be part of the forthcoming DiSL 3.0 open-source
release.
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