
PENCIL: A Platform-Neutral Compute Intermediate Language
for Accelerator Programming

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen,
Tobias Grosser, Michael Kruse, Chandan Reddy, and

Sven Verdoolaege
INRIA

Email: first.last@inria.fr

Javed Absar, Sven van Haastregt,
Alexey Kravets, and Anton Lokhmotov†

ARM
Email: first.last@arm.com

Adam Betts, Alastair F. Donaldson, and
Jeroen Ketema

Imperial College London
Email: {a.betts,alastair.donaldson,j.ketema}@imperial.ac.uk

Róbert Dávid and
Elnar Hajiyev

Realeyes
Email: {robert.david,elnar}@realeyesit.com

Abstract—Programming accelerators such as GPUs with
low-level APIs and languages such as OpenCL and CUDA
is difficult, error-prone, and not performance-portable. Au-
tomatic parallelization and domain specific languages (DSLs)
have been proposed to hide complexity and regain performance
portability. We present PENCIL, a rigorously-defined subset of
GNU C99—enriched with additional language constructs—that
enables compilers to exploit parallelism and produce highly
optimized code when targeting accelerators. PENCIL aims to
serve both as a portable implementation language for libraries,
and as a target language for DSL compilers.

We implemented a PENCIL-to-OpenCL backend using a
state-of-the-art polyhedral compiler. The polyhedral compiler,
extended to handle data-dependent control flow and non-affine
array accesses, generates optimized OpenCL code. To demon-
strate the potential and performance portability of PENCIL
and the PENCIL-to-OpenCL compiler, we consider a number
of image processing kernels, a set of benchmarks from the
Rodinia and SHOC suites, and DSL embedding scenarios for
linear algebra (BLAS) and signal processing radar applications
(SpearDE), and present experimental results for four GPU
platforms: AMD Radeon HD 5670 and R9 285, NVIDIA
GTX 470, and ARM Mali-T604.

Keywords-automatic optimization; intermediate language;
polyhedral model; domain specific languages; OpenCL

I. INTRODUCTION

Software for hardware accelerators is currently written
using low-level APIs and languages such as OpenCL [1] and
CUDA [2], which have a steep learning curve, are laborious
and error-prone to program with, and lack performance
portability: the performance of an accelerated application
may vary dramatically across platforms. Hence, developing
software at this level is unattractive and costly.

A compelling alternative for developers is to program in
higher-level languages and to rely on compilers to automat-
ically generate efficient low level code. For general-purpose

†anton@dividiti.com

languages in the C family, this approach is hindered by the
difficulty of static analysis in the presence of pointer alias-
ing. The possibility of aliasing often forces a parallelizing
compiler to assume that it is not safe to parallelize a region
of source code, although aliasing might not actually occur
at runtime. Domain-specific languages (DSLs) can help to
side-step this problem: it is often clear how parallelism
can be exploited given high-level knowledge about standard
operations in a particular domain, such as linear algebra [3],
image processing [4] or partial differential equations [5]. A
drawback of the DSL approach is the significant effort re-
quired to implement a compiler generating highly optimized
OpenCL or CUDA code for multiple platforms.

To address the above problems, we present PENCIL, a
platform-neutral compute intermediate language. PENCIL
aims to serve both as a portable implementation language
for libraries, and as a target language for DSL compilers.

PENCIL is a rigorously-defined subset of GNU C99 that
enforces a set of coding rules predominantly related to
restricting the manner in which pointers can be manipu-
lated. These restrictions make PENCIL code “static analysis-
friendly”: the rules are designed to enable better optimiza-
tions and parallelization when translating a PENCIL program
to a lower-level program. PENCIL is also equipped with
language constructs such as assume predicates and side
effect summaries for functions, which assist with propagating
to a PENCIL compiler optimization-enabling information.

PENCIL is easy to learn, as it is C-based. It also interfaces
with non-PENCIL C code, which allows legacy applications
to be ported incrementally to PENCIL. From the point of
view of DSL compilation, PENCIL offers a tractable target:
all a DSL-to-PENCIL compiler has to do is to faithfully
encode the semantics of the input DSL program into PEN-
CIL—a PENCIL compiler takes care of auto-parallelization
and optimization for multiple accelerator targets. Because

DSL-to-PENCIL compilers have tight control over the code
they generate, they can aid the effectiveness of the PENCIL
compiler by communicating domain-specific information via
the language constructs that PENCIL provides.

We demonstrate the capabilities of PENCIL and its novel
static analysis-friendly features in a state-of-the-art polyhe-
dral compilation flow—extended with a PENCIL front-end
and implementing advanced combinations of loop and data
transfer optimizations. To this end, we consider a number
of applications with irregular, data-dependent control and
dataflow, making this the first time a fully-automatic polyhe-
dral compilation flow is capable of parallelizing a variety of
real-world, non-static-control applications. The applications,
which originate from hand-written benchmark suites or were
generated by DSL-to-PENCIL compilers, are:
• seven image processing kernels written in PENCIL and

covering computationally intensive parts of a computer
vision stack used by Realeyes, a leader in recognizing
facial emotions (http://www.realeyesit.com);

• five benchmarks extracted from the SHOC [6] and
Rodinia [7] suites and re-written in PENCIL;

• six kernels generated using the VOBLA linear algebra
DSL compiler [3];

• two signal processing radar applications generated from
code written in the SpearDE streaming DSL [8].

To assess performance portability, we present an experi-
mental evaluation of generated OpenCL code on four GPU
platforms: AMD Radeon HD 5670 and R9 285, Nvidia
GTX 470, and ARM Mali-T604. The performance results
are promising, considering the implementation efforts for
these applications and benchmarks. For example, for the
VOBLA linear algebra DSL, we were able to generate code
that has performance close to the cuBlas [9] and clMath [10]
BLAS libraries [11]. For the Realeyes image processing
benchmarks, we could match, and sometimes outperform,
the OpenCV image processing library [12].

In summary, our main contributions are:
• PENCIL, a platform-neutral compute intermediate lan-

guage for direct accelerator programming and DSL
compilation;

• a polyhedral compilation flow that leverages the fea-
tures of PENCIL to handle applications that go beyond
the classical restrictions of the polyhedral model, in-
cluding forms of dynamic, data-dependent control flow
and array accesses;

• an evaluation of PENCIL on multiple GPUs and several
real-world, non-static-control applications that were
previously out of scope for polyhedral compilation.

II. OVERVIEW OF PENCIL

PENCIL is a subset of the C99 language carefully de-
signed to capture static properties essential for implementing
advanced loop nest transformations. The language provides

constructs that help parallelizing compilers to perform more
accurate static analyses and generate efficient target-specific
code. The constructs allow communicating information that
is difficult for a compiler to extract, but that can be easily
captured from DSLs or expressed by expert programmers.

Our aim was for PENCIL to be a strict subset of C99.
However, where necessary and when no alternatives existed,
we exploited the flexibility of GNU C extensions such as
type attributes and pragmas. The pragmas were inspired by
familiar annotations for exploiting vector- and thread-level
parallelism, but retain a strictly sequential semantics.

PENCIL is not coupled to any particular compiler or target
language. However, as we have validated PENCIL using a
polyhedral compiler targeting OpenCL, we will refer to this
compiler when discussing the implementation of PENCIL.

A. Design Goals

We designed PENCIL with four main goals in mind:
Ease of analysis. The language should simplify static code
analysis to enable a high degree of optimization. The main
impact of this is that the use of pointers is disallowed, except
in specific restricted cases.
Support for domain-specific information. The language
should provide facilities that enable a domain expert or
a DSL-to-PENCIL compiler to convey domain-specific in-
formation that may be exploited by a compiler during
optimization. For example, PENCIL should allow the user
to indicate bounds on array sizes, enabling placement or
staging of arrays in the local memory of a GPU.
Portability. A standard, non-parallelizing C99 compiler
supporting GNU C extensions should be able to compile
the language. This ensures portability to platforms without
specialized PENCIL support and allows existing tools to be
used for debugging (unparallelized) PENCIL code.
Sequential semantics. The language should have a sequen-
tial semantics to simplify DSL compiler development and
direct programming in PENCIL, and, importantly, to avoid
committing to any particular parallel patterns.

In designing the PENCIL extensions to C99, we analyzed
numerous benchmarks and DSLs [13] and identified lan-
guage constructs that would be helpful in exposing par-
allelism and enabling compiler optimizations. In deciding
which language features to include, we were guided by the
principle that all domain-specific optimizations should be
performed at the DSL compiler level, while the PENCIL
compiler should be responsible only for parallelization,
data locality optimization, loop nest transformations, and
mapping to OpenCL. This means that only those proper-
ties that are useful for improved static analysis and target
mapping need to be expressible in PENCIL. Domain-specific
properties that are not useful for optimization do not have to
be conveyed and should thus not be a part of PENCIL. This
keeps PENCIL general-purpose, sequential and lightweight.

Domain Specific
Languages

OpenCL

PENCIL - Platform-
Neutral Compute

Intermediate Language

Direct PENCIL
programming
(hand written
PENCIL code)

DSL → PENCIL compilers

Optimising, auto-parallelising
PENCIL→OpenCL compiler

NVIDIA
GPUs

AMD
GPUs

ARM
GPUs

Other
accelerators

...

Portable performance across a range of platforms

 autotuning
Direct OpenCL
programming

Figure 1. A high level overview of the PENCIL compilation flow

Figure 1 gives a high level overview of a typical PENCIL
usage scenario. First, a program written in a DSL is trans-
lated into PENCIL. Some domain-specific optimizations may
be applied prior to or during this translation, while delay-
ing target-specific optimizations to later compilation stages.
Second, the generated PENCIL code is combined with hand-
written PENCIL that implements library functions; PENCIL
is used here as a standalone language. The combined code
is then optimized and parallelized. Finally, highly optimized
OpenCL code is generated. The generated code is autotuned
through profiling-based iterative compilation.

B. PENCIL Coding Rules

We detail the most important restrictions imposed by
PENCIL from the point of view of enabling GPU-oriented
compiler optimizations. For more details, see [14], [15].

Pointer restrictions. Pointer declarations and definitions
are allowed in PENCIL, but pointer manipulation (including
arithmetic) is not, except that C99 array references are
allowed as arguments of functions. Pointer dereferencing
is also not allowed except for accessing C99 arrays. These
restrictions essentially eliminate aliasing problems, which is
important for parallelization and data movement between the
different address spaces of accelerators such as GPUs.

No recursion. Recursive function calls are not allowed, as
they are forbidden in languages such as OpenCL.

Sized, non-overlapping arrays. Arrays must be declared
using the C99 variable-length array syntax [16], and the
declaration of each function argument that is of array type
must use pencil_attributes, a macro expanding to the
C99 restrict and const type qualifiers followed by the
static keyword (see Figure 4). During optimization, the
PENCIL compiler thus knows the length of each array (in
parametric form), and knows that arrays do not overlap.

Structured for loops. A PENCIL for loop must have a
single iterator, invariant start and stop values, and a constant
increment (step), where invariant means that the value does

not change in the loop body. Precisely specifying the loop
format avoids the need for sophisticated induction variable
analyses which may fail under unpredictable conditions.

A further guideline—which is not mandatory as it cannot
be statically checked in general—is that array accesses
should not be linearized. Linearization obfuscates affine
subscript expressions, hindering effective compilation. Mul-
tidimensional arrays should be used instead.

PENCIL also supports OpenCL scalar builtin functions
such as abs, min, max, sin, cos, using a target-independent
and explicitly typed naming scheme (using suffixes to dis-
tinguish between float and double builtins).

C. Assume Predicates

We now describe assume predicates, the first main con-
struct introduced by PENCIL. The other new constructs—
the independent directive, summary functions, and the
__pencil_kill function—follow in Sections II-D–II-F.

An assume predicate, written __pencil_assume(e),
with e a Boolean expression, indicates that e is guaranteed
to hold whenever the control flow reaches the predicate. This
knowledge is taken on trust by the PENCIL compiler, and
may enable generation of more efficient code. If e is violated
during execution, the semantics of the PENCIL program
is undefined. This is not checked at runtime, but optional
runtime checking, for debugging, could be provided. In the
context of DSL compilation, an assume predicate allows a
DSL-to-PENCIL compiler to communicate high level facts.

The general 2D convolution example of Figure 2 illus-
trates the use of __pencil_assume. This image processing
kernel calculates the weighted sum of the area around
each input pixel using a kernel matrix kern_mat for the
weights. The convolution code is part of an image processing
benchmark from Realeyes (see also Section IV-A).

In Realeyes’s production environment, the size of the
kern_mat never exceeds 15×15, as indicated by the assume
predicates. While the image processing experts know this,
without the predicates the compiler must assume that the
kernel matrix can be arbitrarily large. When compiling for a
GPU target the compiler must thus either allocate the kernel
matrix in the GPU’s global memory rather than in fast local
memory, or must generate multiple variants—one to handle
large kernel matrix sizes and another for smaller kernel
matrix sizes—selecting between variants at runtime. Instead,
the __pencil_assume statements in the code communicate
limits on the size of the array, allowing the compiler to store
the whole array in local memory.

D. The Independent Directive

The independent directive is used as a loop annotation,
and is semantically similar to the equally named High
Performance Fortran directive [17]. The directive indicates
that the result of executing the loop does not depend on
the execution order of the data accesses from different loop

1 #define clampi(val, min, max) \
2 (val < min) ? (min) : (val > max) ? (max):(val)
3

4 __pencil_assume(ker_mat_rows <= 15);
5 __pencil_assume(ker_mat_cols <= 15);
6

7 for (int i = 0; i < rows; i++)
8 for (int j = 0; j < cols; j++) {
9 float prod = 0.0f;

10 for (int e = 0; e < ker_mat_rows; e++)
11 for (int r = 0; r < ker_mat_cols; r++) {
12 row = clampi(i+e-ker_mat_rows/2, 0, rows-1);
13 col = clampi(j+r-ker_mat_cols/2, 0, cols-1);
14 prod += src[row][col] * kern_mat[e][r];
15 }
16 conv[i][j] = prod;
17 }

Figure 2. PENCIL code for general 2D convolution

iterations. As such, the accesses from different iterations
may be executed in parallel.

In practice, independent is used to indicate that a loop
has no loop carried dependences. The directive can also
be used when some dependences exist but the user wants
to ignore them. In such cases the execution order of the
data accesses may have to be constrained using specific
synchronization constructs. Examples include reductions im-
plemented via atomic regions, and the use of low-level
atomics to give semantics to so-called “benign races”, where
the same value is written to a location by multiple threads in
parallel. It may be necessary to invoke external non-PENCIL
functions to enable parallelization of an algorithm that can
tolerate arbitrarily-ordered execution of intermediate steps.

The independent directive has an effect only on the
marked loop, not on any nested or outside loops. It accepts
a reduction clause, the purpose of which is to enable paral-
lelization of loops whose only dependences are on variables
into reductions are computed. For brevity we do not discuss
this clause further.

Figure 3 shows a code fragment of our PENCIL imple-
mentation of the breadth-first search benchmark from the
Rodinia [7] benchmark suite. The benchmark computes the
minimal distance from a given source node to each node
in the input graph. The algorithm maintains a frontier and
computes the next frontier by examining all unvisited nodes
adjacent to the nodes in the current frontier. All nodes in a
frontier have the same distance from the source node.

The for loop of Figure 3 can be parallelized because
each node in the current frontier can be processed indepen-
dently. This creates a possible race condition on the cost

and next_frontier arrays, but this race condition can
be ignored, because all conflicting threads will write the
same value. By specifying the independent pragma, the
programmer guarantees that the race condition is benign,
enabling parallelization.

E. Summary Functions

The effect of a function call on its array arguments is
usually derived from analyzing the called function. In some

/* Examine nodes adjacent to current frontier */
#pragma pencil independent
for (int i = 0; i < n_nodes; i++) {
if (frontier[i] == 1) {
frontier[i] = 0;
/* For each adjacent edge j */
for (int j = edge_idx[i];

j < edge_idx[i] + edge_cnt[i]; j++) {
int dst_node = dst_node_index[j];
if (visited[dst_node] == 0) {
/* benign race: threads write same values */
cost[dst_node] = cost[i] + 1;
next_frontier[dst_node] = 1;

}
}

}
}

Figure 3. PENCIL code fragment for breadth-first search

cases, the results of such an analysis may be too inaccurate,
and in the extreme case, when no code is available, the
compiler must conservatively consider the possibility that all
elements of each array argument are accessed. To mitigate
this problem, PENCIL allows the user to associate a summary
function with each function. A summary function has a
signature identical to the function it is associated with, and
the association informs the PENCIL compiler that it may
derive the memory accesses from the summary function.

In practice, summary functions are used to describe the
memory access patterns of library functions called from
PENCIL code (and whose source code is usually not avail-
able for analysis), and of non-PENCIL functions called from
PENCIL code, as they may be difficult to analyze otherwise.
To associate a summary function with a function foo(),
a programmer uses the attribute pencil_access(name),
where name is the name of summary function describing
the accesses of foo().

Summary functions are not executed, but only used for
analyzing memory footprints: A summary function must
access the same memory elements as the function it is
associated with, or an over-approximation thereof. Providing
a summary function can enable more precise static analysis
than the default conservative assumption that all elements of
all array arguments can be accessed. In general, a summary
can be simpler than the function it summarizes: it only
needs to capture sets of accesses, not their order and number
of occurrences. As an example, if a function were to be
executed on a processor having no direct access to main
memory, the compiler could use its summary to determine
the memory elements that would need to be marshaled into
and out of the function (cf. [18]).

The functions __pencil_use and __pencil_def are
designed to be used in summary functions to mark memory
accesses. A call to __pencil_use(A[e]) indicates that a
read from array A at index e may occur, while a call to
__pencil_def(A[e]) indicates that a write to array A at
index e must occur.

For writes, may information can also be conveyed by

__attribute__((pencil_access(summary_fft32)))
void fft32(int i, int j, int n,

float in[pencil_attributes n][n][n]);

int ABF(int n, float in[pencil_attributes n][n][n]) {
// ...
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
fft32(i, j, n, in);

// ...
}

void summary_fft32(int i, int j, int n,
float in[pencil_attributes n][n][n]) {

for (int k = 0; k < 32; k++)
__pencil_use(in[i][j][k]);

for (int k = 0; k < 32; k++)
__pencil_def(in[i][j][k]);

}

Figure 4. Code from Adaptive Beamformer, illustrating summary functions

using a __pencil_maybe predicate, which evaluates to a
Boolean value unknown at compile-time. More specifically,
the conditional
if (__pencil_maybe)
__pencil_def(A[e]);

indicates that a write may occur to array A at index e.
This nicely fits any static analysis capable of extracting may
and/or must information from conditional expressions and is
also consistent with the usage of wildcards in intermediate
verification languages such as Boogie [19].

Figure 4 shows a loop nest extracted from the Adaptive
Beamformer (ABF) benchmark presented in Section IV-D.
The code calls a function fft32 (a Fast Fourier Transform).
The function only reads and modifies (in place) 32 elements
of its input array in, it does not modify any other parts of the
array. The function is not analyzed by the PENCIL compiler
because it is not a PENCIL-function. Without a summary
function the compiler would conservatively assume that the
whole array passed to fft32 is accessed for reading and
writing, preventing parallelization. The summary function
indicates that each iteration of the loop nest only reads and
writes 32 elements of the input array, allowing the compiler
to parallelize the loop nest.

Writing summary functions for library routines is the
most common use case for summaries, and is the library
developer’s responsibility. The summary functions should be
provided in the library’s header files and are used directly
by the PENCIL compiler. In less common cases, summary
functions are either written by the PENCIL programmer or
automatically generated by a DSL compiler.

F. Kill Statements

The __pencil_kill builtin function allows the user to
refine dataflow information within and across any control
flow region. The __pencil_kill function is polymorphic
and signals that its argument (a variable or array element)
is dead at the program point where the call to the function
occurs, meaning that no data flows through this argument

from any statement instance executed before the kill to any
statement instance executed after.

The information is used in several ways, as explained in
detail in [20]. The effect of __pencil_kill is illustrated
by the following example:
__pencil_kill(A);
for (int i = 0; i < n; i++) {
if (B[i] > 0)
A[i] = B[i];

}

If the above loop is mapped to a GPU kernel, then the A

array needs to be copied out from the GPU to the host after
computation, because some elements of A may be written to
by the loop. This copy-out overwrites the original contents
of A on the host. Since not all elements of A may be written
to, the array must in principle also be copied in to ensure that
the elements not written to retain their original values after
the copy-out. The __pencil_kill(A) statement indicates
that the data in A is not expected to be preserved by the
region and that the copy-in may be omitted.

III. POLYHEDRAL COMPILATION OF PENCIL CODE

We next explain how specific PENCIL features can be
compiled with a polyhedral compiler. (But, to reiterate,
PENCIL is not tied to any particular compilation technique.)

A. Polyhedral Compilation

Polyhedral compilation uses an abstract mathematical rep-
resentation to model programs. Each statement in a program
is represented using three pieces of information: an iteration
domain, access relations and a schedule. The representation
is first extracted from the program’s AST, it is then analyzed
and transformed (loop optimizations are applied during this
step), and finally it is converted back into an AST.

The iteration domain of a statement is a set that contains
all execution instances of the statement (a statement in a loop
has an execution instance for each loop iteration upon which
it executes). Each execution instance of a statement in a loop
nest is uniquely represented by an identifier and a tuple of
integers (typically, the values of the outer loop iterators).
These integer tuples are compactly described by quasi-
affine constraints. For example, the statement on Line 9 of
Figure 2, call it S0, has the following iteration domain:
{ S0(i,j) : 0 ≤ i < rows ∧ 0 ≤ j < cols }
A quasi-affine constraint is a constraint over integer values

and integer variables involving only the operators +, -, ×, /,
%, &&, ||, <, <=, >, >=, ==, !=, and the ternary ?: operator,
where the second argument of / and % must be a (positive)
integer literal, and where at least one of the arguments of
× must be a piece-wise constant expression. An example
of a quasi-affine constraint for a statement in a loop nest is
10× i+ j + n > 0, where i and j are loop iterators and n
is a symbolic constant (i.e., a variable that has an unknown
but fixed value for the duration of an execution). Examples
of non-quasi-affine constraints are i× i > 0 and n× i > 0.

To be able to extract a polyhedral representation, all loop
bounds and conditions need to be quasi-affine with respect
to the loop iterators and a fixed set of symbolic constants.
This condition is called static-affine.

Access relations map statement instances to the array
elements that are read or written by those instances, where
scalars are treated as zero-dimensional arrays. An accurate
representation requires the index expressions in the input
program to be static-affine.

Finally, the schedule determines the relative execution
order of the statement instances. Program transformations
are performed via modifications of the schedule and depend
on dependence relations. These relations map statement
instances to statement instances that depend on them for
their execution, and are derived from the access relations
and the original execution order. In particular, two statement
instances depend on each other if they (may) access the same
array element, if at least one of those accesses is a write and
if the first is executed before the second.

B. Compilation of PENCIL

We adapted PPCG [21], an existing polyhedral compiler
for GPUs, to handle PENCIL. PPCG relies on the pet
library [22] to extract the iteration domain and access
relations; the dependence analysis is performed by the isl
library [23]. A new schedule is computed by isl using a
variant of the Pluto algorithm [24] (this latter step applies
most loop nest transformations).

We next discuss the changes we made to PPCG to support
PENCIL. For more details, including details on support for
arrays of structures, we refer the reader to [20].

Assume predicates. pet keeps track of constraints on the
symbolic constants of a program (i.e., of variables that have
an unknown but fixed value throughout an execution). The
constraints are automatically derived from array declarations
and index expressions. In particular, constraints are derived
that exclude negative array sizes and negative array indices
(negative indices are not allowed because they could result in
aliasing within an array). The constraints are used by PPCG
when generating an AST from a schedule to simplify the
generated AST expressions.

An assume predicate provides pet with additional con-
straints on the symbolic constants that may not be au-
tomatically derivable. For example, Lines 4, and 5 in
Figure 2 provide additional constraints on the symbolic
constants ker_mat_rows and ker_mat_cols. Although
the argument of a __pencil_assume statement can be any
expression, PPCG currently only exploits quasi-affine ones.

The kill builtin. A kill statement in pet represents the
fact that no dataflow on the killed data elements can pass
through an instance of the statement. This information can
be used during dataflow analysis to stop the search for
potential sources of data elements. When pet comes across

1 if (se[e][r] != 0)
2 sup = max(sup, img[cand_row][cand_col]);

Figure 5. Code extracted from dilate

1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < M; j++)
3 for (int k = 0; k < M; k++) {
4 B[i][j][k] = 0;
5

6 if (A[i][j][k] == 0)
7 break;
8 }

Figure 6. Code containing a break statement

a variable declaration, two kill statements that kill the
variable are introduced, one at the location of the variable
declaration and one at the end of the block that contains the
variable declaration. The use of the __pencil_kill builtin
introduces additional kill statements to pet.
Non-static-affine array accesses. To handle non-static-
affine accesses, pet has been modified to distinguish may-
writes vs. must-writes. Any index expression that cannot be
statically analyzed or that is not affine, is treated as possibly
accessing any index. This over-approximation typically re-
sults in the compiler statically identifying more dependences
than will actually be exhibited at runtime.
Non-static-affine conditionals and loop guards. PPCG
treats any non-static-affine conditional or loop with a non-
static-affine loop guard as a single macro-statement together
with its body (i.e., as a statement encapsulating both con-
trol and body). Any write inside such a macro-statement
is treated as a may-write. For example, the conditional
of Figure 5, extracted from the dilate benchmark, cannot
be analyzed. The if-statement and its body are therefore
considered as one macro-statement and the assignment to
sup is treated as a may-write.
While loops, break and continue. While loops and loops
containing break and continue statements are treated like
non-static-affine conditionals: the loop and its body are
considered to be a single macro-statement. For example, due
to the break in Figure 6, PPCG treats the entire loop headed
at Line 3 as a single statement. This means that PPCG can
schedule (i.e., change the order of execution of) the loop
headed at Line 3 and its body as a whole, but it cannot
schedule the individual statements in the body.
The independent directive. When the independent di-
rective is used to annotate a loop, the iterations of that loop
may be freely reordered with respect to each other, including
reorderings that result in distinct iterations accessing over-
lapping data. Through the directive the user asserts that no
dependences need to be introduced to prevent such reorder-
ings and that any variable declared inside the loop is private
to each iteration. pet handles the independent directive
by building a relation between the statement instances that
excludes them from depending on each other. Moreover,

pet builds a set of variables that are local to the loop.
This set of variables is used by PPCG to ensure that their
live ranges do not overlap in affine transformations, and to
privatize them if needed when generating parallel code.
Summary functions. pet has been modified to extract
access information from called functions. If a summary
function is provided, the information is extracted from the
summary instead.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of OpenCL code gener-
ated from PENCIL using pencilcc, a version of PPCG
incorporating a runtime library and the changes discussed
in the previous section.1 To verify that PENCIL can be used
both as a standalone language and intermediate language for
DSL compilers, we used both benchmarks written directly
in PENCIL and code generated by DSL compilers. The set of
benchmarks written directly in PENCIL consists of a image
processing benchmark suite by Realeyes (Section IV-A)
and a selected set of benchmarks from the Rodinia and
SHOC suites (Section IV-B). The code generated by DSL-to-
PENCIL compilers originates from the VOBLA and SpearDE
DSLs (Sections IV-C and IV-D).

We used four GPU platforms for our experiments: an
Nvidia GTX 470 (with an AMD Opteron Magny-Cours
2 × 12 core CPU and 16GB RAM), an ARM Mali-T604
(with a dual-core ARM Cortex-A15 CPU and 2GB RAM),
an AMD Radeon HD 5670 (with an Intel Core2 Quad
Q6700 CPU and 8GB RAM) and an AMD Radeon R9 285
(with an Intel Xeon E5-2640 8 core CPU and 32GB RAM).
Hence, we covered both a relatively large set of real-word
applications and a relatively diverse range of platforms.

Our experiments were designed to evaluate (a) whether
PENCIL enables the parallelization (mapping to OpenCL)
of kernels that cannot be parallelized with current state-of-
the-art polyhedral compilers (Pluto [24]), and (b) whether
PENCIL enables the generation of efficient code (by com-
paring the performance of the automatically generated code
to hand-crafted code).

Autotuning. We developed an autotuning compiler frame-
work to facilitate the retargeting of our compiler to dif-
ferent GPU architectures. We applied autotuning to the
pencilcc-generated code only. Autotuning the hand-
crafted reference code (mostly implemented as libraries)
would be difficult, because the code is not designed to be
autotuned (work group sizes are hard-coded, changing the
use of local and private memory requires manual modifi-
cations, etc.). Moreover, the BLAS libraries (clMath [10]
and cuBlas [9]) do not require autotuning: they are already
configured with a set of optimal parameters for their target

1Version 0.4 of pencilcc is available at https://github.com/Meinersbur/
pencilcc. The experiments in this section were performed using an
older, development version: https://github.com/Meinersbur/pencil-driver/
tree/7a0dd59708253cb121cadf0b6529bd792b35c3fd.

architectures. Our autotuning framework searches for the
most appropriate optimizations (compiler flags) by gen-
erating many different code variants and executing them
on the target GPUs. The search covers combinations of
pencilcc’s compiler flags, including different work group
and tile sizes, whether to use local and/or private memory,
and which loop distribution heuristic to use (out of two pos-
sible heuristics). Autotuning each benchmark takes several
hours (except for the six VOBLA kernels, which take up to
two days due to the large search space).

Measurements. For our experiments, we let pencilcc
instrument the generated code to measure the wall clock
execution time, which includes the GPU kernel execution
time, duration of any data copies (between the host and the
GPU), and the time taken to execute on the host any program
code that was not offloaded to the GPU. The measured times
do not include device initialization and release, and kernel
compilation times. In order to exclude compilation time,
we either invoked a dry-run computation beforehand that
was not timed (caching compiled kernels), or subtracted the
compilation time from the total execution time, depending
on the way in which the reference implementation compiled
and invoked its kernels. We used OpenCL profiling tools to
further analyze the performance of the reference implemen-
tations and the pencilcc-generated code (obtaining the
number of cache misses, device global memory accesses,
device occupancy, etc.). Each test was run 30 times. Below,
we report the median of the speedups over the reference
implementations.

A. Image Processing Benchmark Suite

The image processing benchmark suite consists of a set
of kernels covering computationally intensive parts of the
computer vision stack by Realeyes ranging from. simple
image filters to composite image processing algorithms. For
each kernel in the benchmark suite we compared a straight-
forward (non-hand-optimized) PENCIL implementation with
the equivalent OpenCL kernel from the OpenCV version
2.4.10 image processing library [12].

The image processing suite consists of 7 kernels: affine
warping, image resize, general 2D convolution, gaussian
smoothing, color conversion, dilate, and basic image his-
togram (calculating the tonal distribution in an image).

An important characteristic of the image processing ker-
nels is that they contain non-static-affine code, which a
classic polyhedral compiler does not handle efficiently due
to the restrictions of the polyhedral model. The conditional
if (se[e][r] != 0) in Figure 5 is an example of such
non-static-affine code.

Five kernels from the benchmark suite have non-static-af-
fine conditionals and read accesses. One kernel has non-stat-
ic-affine write accesses. Hence, the compiler needs to handle
all of these. Non-static-affine write accesses are difficult to

Table I
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE IMAGE PROCESSING BENCHMARKS

Benchmark Non-static-affine code Independent Assume Kill
resize required - - 33% ↑
dilate required - - 10% ↑
color conversion - - - 34% ↑
affine warping required - - 23% ↑
2D convolution required - 20% ↑ 21% ↑
gaussian smoothing required - - 47% ↑
basic histogram - required - -

Table II
SPEEDUPS OF THE CODE GENERATED BY PENCILCC OVER OPENCV

FOR THE IMAGE PROCESSING BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
resize 1.00 1.25 2.47 8.09
dilate 0.59 0.32 0.25 2.91
color conversion 1.32 2.37 1.56 1.11
affine warping 1.06 1.93 2.44 2.85
2D convolution 0.91 - 0.95 2.53
gaussian smoothing 0.92 0.97 0.51 1.61
basic histogram 0.45 0.42 0.16 4.34

handle because they prevent the compiler, in general, from
determining whether a loop is parallelizable.

The kernels require support for non-static-affine code,
the independent directive, and the __pencil_assume
and __pencil_kill builtins. Table I lists the features per
benchmark. In the case of non-static-affine code and the
independent directive, the table lists whether the feature
was required for OpenCL code generation. For the builtins,
the table shows the speedup obtained when support for the
feature was enabled (vs. disabled). The speedup shown is
for the Nvidia GTX 470, the effect on the other platforms
was similar. A ‘-’ indicates that a feature was not used in a
benchmark or its use did not affect code generation.

Support for non-static-affine code was required to gener-
ate OpenCL code for five kernels. For basic histogram, the
use of the independent directive enabled parallelization
and OpenCL code generation, which is difficult otherwise.
For dilate, assuming that the size of the structuring element
(the array representing the neighborhood used to compute
each pixel) is less than 16× 16 enabled pencilcc to map
the element to local memory, and allowed it to generate code
that was 20% faster compared to when it did not assume this.
The speedups associated with using __pencil_kill are
mainly due to the builtin enabling pencilcc to eliminate
redundant data copies.

Table II presents the speedups of the pencilcc-gen-
erated OpenCL code over the baseline OpenCV OpenCL
implementation. We used the same image to evaluate all
kernels (a 2880× 1607, 1.5MB image).

On the AMD Radeon R9 285 platform, the speedup of
the pencilcc-generated kernels over the OpenCV refer-
ence implementations was due to slow data copies used
by OpenCV. On this platform, OpenCV used OpenCL’s
clEnqueueWriteBufferRect, which copies data from

host to device while at the same time padding the data for
aligned memory accesses. pencilcc, on the other hand,
used OpenCL’s clEnqueueWriteBuffer, which copies
data but does not perform any padding. OpenCV’s approach
was 7× slower on the AMD Radeon R9 285 platform,
explaining the significant speedups we obtain. Note that,
although the use of clEnqueueWriteBufferRect may be
less efficient for these benchmarks, it may be more efficient
in other cases where only one data copy is performed and
many filters are applied on the same input image.

Other than the difference in data copies, there was no
significant difference in the speedups obtained on the AMD
Radeon R9 285 HD 5670 platforms, and we focus in the
latter AMD platform in the remainder of this section.
pencilcc does not apply any optimizations to data

copies other than eliminating spurious copies when the
user provides appropriate __pencil_kill statements. For
each of the image processing benchmarks, the amount of
data copied by the pencilcc-generated code (when using
__pencil_kill) was equal to the amount of data copied
by the reference implementation. Consequently, the listed
speedups (or slowdowns) were solely due to faster (or
slower) kernel execution times (except for the R9 285, as
discussed above).

The speedups of resize and color conversion on Nvidia,
ARM and AMD Radeon HD 5670 were due to the tiling of
the 2D loop nest in these two kernels, which considerably
enhanced data locality (up to 56% fewer L1 cache misses
on Nvidia for color conversion). In the case of affine
warping, the speedup was due to two optimizations: thread
coarsening, which merges multiple work items, leading to
less redundant computation, and tiling, which enhanced data
locality (up to 65% fewer L1 cache misses on Nvidia).

For basic histogram, the code generated by pencilcc
was generally slower than the OpenCV reference imple-
mentation. The OpenCV version was faster, because each
work group computes a histogram in local memory, and
the local histograms are only combined into one global
histogram during a final reduction. Automatic generation of
such reductions is not yet supported by pencilcc.

In the case of dilate, the OpenCV reference implementa-
tion was vectorized, while pencilcc currently does not
support the generation of vectorized code. The lack of
vectorization affected the performance most on AMD and
ARM. In addition, the OpenCV reference implementation
mapped the input image array to local memory while
pencilcc’s local memory heuristic decided not to apply
this mapping. As a consequence, the pencilcc-generated
code accessed global GPU memory 175 times more than
the OpenCV implementation, which led to a decrease in
performance. The same problem with the local memory
heuristic applied to gaussian smoothing.

The performance of 2D convolution matched that of the
OpenCV reference implementation on Nvidia and AMD.

Table III
SELECTED BENCHMARKS FROM THE RODINIA AND SHOC SUITES

Benchmark (Suite) Data set size Description/notes
2D stencil (SHOC) 100 iter., 4096× 4096 grid On structured grid
Gaus. elim. (Rodinia) 1024× 1024 matrix Dense matrix
SRAD (Rodinia) 100 iter., 502× 458 image Image enhancement
SpMV (SHOC) 16384 rows Sparse matrix-vector multipl.
BFS (Rodinia) 4 million nodes Breadth-first search on graph

Table IV
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE RODINIA AND SHOC BENCHMARKS

Benchmark Non-static-affine code Independent
2D stencil - -
Gaussian elimination - -
SRAD required -
SpMV required -
BFS required required

The reference implementation could not be run on the ARM
Mali GPU, as it used hardcoded local memory and work
group sizes that exceeded hardware limits.

B. Rodinia and SHOC Benchmark Suites

Our second set of benchmarks consists of reverse-engi-
neered benchmarks from the Rodinia [7] and SHOC [6]
suites. We selected the benchmarks, listed in Table III, based
on diversity (i.e., covering different Berkeley ‘motifs’ [25]
such as dense and sparse linear algebra, structured grids, and
graph traversal), and for their ability to pose a challenge
to traditional polyhedral compilers due to their use of
non-static-affine code. We compared the performance of
pencilcc-generated code for these benchmarks with the
Rodinia and SHOC reference implementations.

Table IV lists the PENCIL features required for each of
the benchmarks and shows the effect of the features on
pencilcc’s ability to generate OpenCL code. Support
for non-static-affine code is required by three benchmarks,
which use non-static-affine read accesses, conditionals, and
write accesses. The non-static-affine write accesses, in BFS,
prevent the compiler from parallelizing the code, and require
use of the independent directive. We did not make use
of __pencil_kill annotations for the benchmarks in this
suite. Assume predicates were useful in providing optimiza-
tion hints to the compiler for the 2D Stencil, SpMV and
BFS benchmarks. This was especially important for enabling
generation of OpenCL code that could be automatically
vectorized by the ARM Mali compiler, but for this bench-
mark suite we did not conduct a controlled measurement of
performance with vs. without assume predicates.

Table V shows the speedups over the OpenCL reference
implementations. The speedups for 2D Stencil and Gaussian
Elimination are mainly due to tiling which enhanced data
locality and reduced cache misses (we observed 4× fewer
L1 cache misses for 2D Stencil on Nvidia GTX 470). For
SRAD, the PENCIL-generated OpenCL code was signifi-
cantly slower than the reference implementation, mainly

Table V
SPEEDUPS FOR THE OPENCL CODE GENERATED BY PENCILCC OVER

THE RODINIA AND SHOC REFERENCE IMPLEMENTATIONS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
2D stencil 3.44 3.04 2.68 5.76
Gaussian elimination 0.67 1.54 4.39 2.58
SRAD 0.22 0.34 0.43 0.56
SpMV 1.17 1.67 1.04 1.08
BFS 0.65 0.78 0.43 0.72

because pencilcc did not map a reduction to OpenCL
(pencilcc currently does not support the generation of
parallel reductions). This leads to additional data transfers
between the host and the device. For BFS, the generated
OpenCL code was also slower than the reference code, again
due to additional data transfers. These data transfers were
due to pencilcc only mapping the bodies of while loops
to the device and generating data transfers at the beginning
and end of each loop iteration.

C. VOBLA DSL for Linear Algebra

The image processing benchmarks and Rodinia and
SHOC benchmarks of Sections IV-A and IV-B demonstrate
the use of PENCIL as a standalone language. Here and in
Section IV-D, we consider benchmarks in which PENCIL is
used as an intermediate language for DSL compilers.

VOBLA is a domain specific language for implementing
linear algebra algorithms, providing a compact and generic
representation using an imperative programming style [3].
The main control flow operators of VOBLA are if, while,
for, and forall. The if and while operators have stan-
dard semantics. The for and forall operators iterate over
a scalar range (e.g., 0:3) or arrays. forall indicates that
the iterations of a loop can be executed in any order.

The VOBLA-to-PENCIL compiler is fairly simple and
does not perform any sophisticated optimizations. Advanced
loop nest transformations are handled by pencilcc. The
VOBLA compiler only uses assume predicates and the
independent directive. The __pencil_kill builtin is
only useful to eliminate spurious data transfers in non-static
control code and is not needed for the purely static control
code of VOBLA. Summary functions are only needed when
library functions are called, but these are not generated by
the VOBLA compiler.

The VOBLA compiler infers assume predicates from
relations between array sizes. For example, for the statement
C = A + B, the VOBLA compiler infers that the sizes of
A and B are equal and generates a __pencil_assume
statement that indicates this. As a consequence, pencilcc
does not need to generate code to handle the case in which
the sizes of A and B differ. This information can, e.g., be
exploited when pencilcc decides to fuse loops that iterate
over A and B, respectively.

The VOBLA compiler generates the independent di-
rective when translating forall operators: each forall

Table VI
PERFORMANCE GAINS FOR BENCHMARKS COMPILED FROM VOBLA

WHEN ASSUME PREDICATES ARE ENABLED

Benchmark Nvidia GTX 470
gemver 6% ↑
2mm 84% ↑
3mm 91% ↑
gemm 71% ↑
atax 13% ↑
gesummv 2% ↑

Table VII
SPEEDUPS OBTAINED WITH PENCILCC OVER THE BLAS LIBRARIES

Benchmark Nvidia GTX 470 AMD Radeon HD 5670 AMD Radeon R9 285
gemver 1.17 2.14 0.39
2mm 0.91 0.62 0.14
3mm 0.87 0.66 0.12
gemm 1.09 0.69 0.19
atax 0.88 1.79 0.37
gesummv 1.03 1.83 0.33

operator is translated into a PENCIL for loop that is
annotated with independent.

We used VOBLA to implement a set of linear algebra
kernels and compared the code generated by pencilcc
with equivalent code that calls BLAS library functions.
The kernels are gemver (vector multiplication and matrix
addition), 2mm (2 matrix multiplications), 3mm (3 matrix
multiplications), gemm (general matrix multiplication), atax
(matrix transpose and vector multiplication), and gesummv
(scalar, vector and matrix multiplication).

The VOBLA implementations were first compiled to
PENCIL using the VOBLA compiler and then mapped to
OpenCL using pencilcc. We compared the code with two
highly optimized BLAS library implementations:
• the clMath 2.2.0 [10] BLAS library provided by AMD

and used for comparison on the AMD platforms, and
• the cuBlas 5.5 [9] BLAS library provided by Nvidia

and used for comparison on the Nvidia platform. In
this case we used pencilcc to generate CUDA code
instead of OpenCL code.

We do not provide a comparison for the ARM platform,
as no BLAS library is available on that platform. We used
a matrix size of 4096× 4096 for all benchmarks.

Table VI shows that the code obtained for the Nvidia
GTX 470 was significantly faster with assume predicates
enabled. For example, the code generated for gemm with
assume predicates is 71% faster than without.

Table VII shows the speedups for the kernels generated
by pencilcc over the BLAS libraries. The pencilcc-
generated kernels for the Nvidia and the AMD HD 5670
platforms were close in performance to the highly optimized
BLAS libraries for 2mm, 3mm, atax and gemm (e.g., 0.69×
for gemm on the AMD platform). The main optimizations
applied to these kernels were tiling, loop fusion, and the
use of local and private memory. The BLAS library code
still outperforms the pencilcc-generated code as it im-

plements many other optimizations such as vectorization
(clMath) and the use of register tiling (cuBlas). The speedups
for gesummv and gemver were due to loop fusion and tiling
across different BLAS library calls. For example, the gemver
kernel consists of a sequence of 6 BLAS library calls and
although the individual BLAS library functions are highly
optimized, better performance can be obtained by fusing and
tiling across function calls. clMath is highly vectorized and
tuned for the AMD R9 285. Since pencilcc does not
perform vectorization, it fails to reach the performance levels
for clMath on this platform.

D. SpearDE DSL for Data-Streaming Applications

SpearDE [8] is a domain-specific modeling and program-
ming framework for signal processing applications, designed
by Thales Research and Technology. We evaluated PENCIL
using two representative SpearDE applications: Adaptive
Beamformer (ABF) and Space-Time Adaptive Processing
(STAP). Both are common signal processing applications for
radar systems. We compared the pencilcc-generated code
with the sequential CPU version, because no parallel version
was available to us.

AFB and STAP are relatively large: ABF consists of 38
statements in the polyhedral representation (with a loop
depth reaching five), and STAP consists of 88 statements
(with a loop depth reaching seven). The STAP code is
distributed across 12 separate PENCIL functions. The func-
tions were optimized individually, because pencilcc’s
optimization pass currently does not scale to a fully inlined
version reaching about 1000 lines of code.

As shown in Table VIII, ABF and STAP benefit from sup-
port for non-static-affine code, the independent directive,
summary functions, and the __pencil_kill builtin. The
speedups reported are again for the Nvidia GTX 470.

As mentioned in section II-E, ABF calls a fast Fourier
transform function. Without a summary, the compiler as-
sumes that the function modifies its whole input array, mak-
ing parallelization impossible. The use of the independent
directive in STAP enables the parallelization of a loop with
non-static-affine array accesses.

Both ABF and STAP use PENCIL only for the com-
putationally intensive parts of the code. Many temporary
arrays used in these parts are allocated outside the PENCIL
regions. However, as pencilcc does not analyze non-
PENCIL code, it cannot assume that the arrays are temporary.
Using __pencil_kill allows the compiler to infer that the
arrays do not need to be copied between host and device. In
the case of STAP, copying the temporary arrays cannot be
completely avoided, as the code is distributed across multiple
functions and the temporaries are used in several of them.

Table IX shows the speedups of the pencilcc-generated
code over the sequential code. On all platforms, the speedup
for ABF was due to parallelization and tiling. The generated
code did not make use of local memory, but privatization

Table VIII
EFFECT OF ENABLING SUPPORT FOR INDIVIDUAL PENCIL FEATURES ON

THE SPEARDE BENCHMARKS

Benchmark Summary functions Non-static-affine Independent Kill
ABF required required - 14% ↑
STAP - required 6% ↑ 4% ↑

Table IX
SPEEDUPS WITH PENCILCC OVER THE SEQUENTIAL CPU CODE FOR

THE SPEARDE BENCHMARKS

Nvidia ARM AMD Radeon AMD Radeon
Benchmark GTX 470 Mali-T604 HD 5670 R9 285
ABF 11.00 1.88 2.05 3.69
STAP 2.94 0.51 0.89 1.72

of scalars was essential for making parallelization possible.
This was also the case for STAP, except that the generated
kernel code did not perform well on short-vector architec-
tures (ARM Mali and AMD Radeon HD 5670), which suffer
from no automatic vectorization in pencilcc.

The performance of ABF and STAP was also affected
by limitations of pencilcc’s two loop fusion/distribution
heuristics. The first tries to fuse loops as much as possible,
which maximizes temporal locality, but does not take into
account resource limits (register pressure), resulting in a
loss of performance on GPUs. The second heuristic tries
to distribute loops as much as possible, which maximizes
parallelism but may damage locality (e.g., the imaginary
and real parts of complex-valued arithmetic are computed in
separate OpenCL kernels when this heuristic is applied). The
implementation of a heuristic similar to Pluto’s smartfuse
heuristic [24] would allow a better trade-off between paral-
lelism and data locality and would enhance performance.

E. Discussion of Results

As our experiments show, the independent directive
and (in the case of SpearDE) summary functions improve
pencilcc’s ability to generate OpenCL. Assume predi-
cates and the __pencil_kill builtin enhance the quality
of the generated code. Performance-wise, 72% of the gen-
erated kernels reach at least 50% of the performance of the
hand-optimized reference implementations, and in 47% of
the cases the generated kernels outperform the reference
implementation. Our experiments also expose some limi-
tations of the current setup. In particular, the inability of
pencilcc to generate parallel reductions, its limited loop
fusion heuristics, handling while loops as black boxes, and
the lack of vectorization and register tiling.

We have not discussed the performance of our autotuning
framework. In brief: it performed well on small PENCIL
benchmarks, but for larger benchmarks (e.g., the SpearDE
ones), we ran into problems due a combinatorial explosion
in the number of compiler options. This warrants further
investigation into search heuristics and predictive modeling.

V. RELATED WORK

Summary functions have first been proposed as abstract
domain transformers of numerical libraries in PIPS [26]. As
a language construct, they find their origin in the decoupled
access/execute (æcute) model [18], which allows express-
ing memory access patterns and execution constraints of
kernels. PENCIL’s summary functions are, to the best of
our knowledge, the first attempt to abstract interprocedural
access patterns in C99.

PENCIL’s directives are inspired by directive-based lan-
guages such as OpenMP [27] and OpenACC [28]. In
PENCIL, the independent directive describes the absence
of loop carried dependences and such information can be
used to enable a range of loop nest transformations rather
than enabling loop parallelization alone. A semantically
similar directive, also called independent, occurs in High
Performance Fortran [17]. What sets PENCIL apart is its
sequential semantics. As a subset of C, it is designed to
allow advanced compilers to perform better static analysis,
enabling automatic parallelization.

PENCIL builtins such as __pencil_assume allow the
PENCIL compiler to receive additional information from a
DSL compiler or from an expert programmer. The compiler
can exploit this information to enable further optimizations.
Microsoft Visual C and clang 3.6 support, respectively,
semantically identical __assume and __builtin_assume
builtins. These builtins could be used as a substitute when
available.

DSL compilers targeting GPUs typically map DSL code
directly to OpenCL and CUDA, relying on DSL constructs
that express parallelism. Using such an approach, DSL
compilers such as Halide [4] and Diderot [29] (for image
processing) and OoLaLa [30] (for linear algebra) show
promising results. Our complementary goal is to build a
more generic framework and intermediate language to be
used by different domain specific optimizers.

Delite [31] is a generic framework for building DSL
compilers. Delite relies on information from a DSL to decide
whether a loop is parallel but has no facilities for advanced
loop nest transformations. We therefore believe that generic
DSL frameworks like Delite can benefit from using PENCIL
and a polyhedral compiler.

VI. CONCLUSION

We have presented PENCIL, a portable intermediate lan-
guage designed to enable productive and efficient accelerator
programming. PENCIL is unique in its design combining a
sequential semantics, strict compliance with C, and a rich
set of attributes and pragmas that enable static analysis.
PENCIL makes many forms of non-static-affine code and
access patterns amenable to advanced loop transformation
and parallelization within the polyhedral framework.

We have evaluated the design and implementation of
PENCIL on a representative set of benchmarks across several

GPU-accelerated platforms. Some of these benchmarks are
written in a domain-specific language and then compiled
to PENCIL. Our experiments validate the use of PENCIL
together with an optimizing compiler as a valuable building
block for enabling performance-portable accelerator pro-
gramming.

ACKNOWLEDGMENTS

This work was partly supported by the EU FP7 project
CARP (287767) and the ARTEMIS COPCAMS project
(332913). We would like to thank our partners at Thales
Research and Technology for their collaboration on a PEN-
CIL-based interface within the SpearDE framework.

REFERENCES

[1] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems,”
Computing in Science & Engineering, 2010.

[2] Nvidia, “Nvidia CUDA C programming guide 4.0,”
2011. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide

[3] U. Beaugnon, A. Kravets, S. van Haastregt, R. Baghdadi,
D. Tweed, J. Absar, and A. Lokhmotov, “VOBLA: A vehicle
for optimized basic linear algebra,” in LCTES, 2014, pp. 115–
124.

[4] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. P. Amarasinghe, “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” in PLDI, 2013, pp. 519–530.

[5] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and
G. N. Wells, “Unified form language: A domain-specific lan-
guage for weak formulations of partial differential equations,”
ACM Trans. Math. Softw., vol. 40, no. 2, 2014.

[6] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
scalable heterogeneous computing (SHOC) benchmark suite,”
in GPGPU, 2010, pp. 63–74.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, 2009, pp. 44–54.

[8] E. Lenormand and G. Edelin, “An industrial perspective: A
pragmatic high end signal processing design environment at
Thales,” in SAMOS, 2003, pp. 52–57.

[9] Nvidia, cuBLAS Library User Guide, 2012. [Online].
Available: http://docs.nvidia.com/cuda/cublas

[10] clMath Developers Team, “OpenCL math library,” 2013.
[Online]. Available: https://github.com/clMathLibraries

[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic linear algebra subprograms for Fortran usage,” ACM
Trans. Math. Softw., 1979.

[12] OpenCV Developers Team, “Open source computer vision
library,” 2002. [Online]. Available: http://opencv.org

[13] A. Kravets, G. Kouveli, A. Lokhmotov, E. Hajiyev,
L. Marak, and T. Virolainen, “CARP deliverable D2.2.A:
requirements analysis,” 2012. [Online]. Available: http:
//carp.doc.ic.ac.uk/external/publications/D2.2A.pdf

[14] R. Baghdadi, A. Cohen, T. Grosser, S. Verdoolaege,
A. Lokhmotov, J. Absar, S. van Haastregt, A. Kravets,
and A. F. Donaldson, “PENCIL language specification,”
INRIA, Research Rep. RR-8706, 2015. [Online]. Available:
https://hal.inria.fr/hal-01154812

[15] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. In-
oue, T. Grosser, G. Kouveli, A. Kravets, A. Lokhmotov,
C. Nugteren, F. Waters, and A. F. Donaldson, “PENCIL:
Towards a platform-neutral compute intermediate language
for DSLs,” in WOLFHPC, 2012.

[16] ISO, “ISO/IEC 9899:1999, Programming languages – C,”
1999.

[17] D. B. Loveman, “High performance Fortran,” Parallel &
Distributed Technology: Systems & Applications, vol. 1, no. 1,
pp. 25–42, 1993.

[18] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. J.
Kelly, “Deriving efficient data movement from decoupled
access/execute specifications,” in HiPEAC, 2009, pp. 168–
182.

[19] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino, “Boogie: A modular reusable verifier for
object-oriented programs,” in FMCO, 2006, pp. 364–387.

[20] S. Verdoolaege, “PENCIL support in pet and PPCG,”
INRIA, Tech. Rep. RT-457, 2015. [Online]. Available:
https://hal.inria.fr/hal-01133962

[21] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Ten-
llado, and F. Catthoor, “Polyhedral parallel code generation
for CUDA,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
2013.

[22] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,”
in IMPACT, 2012.

[23] S. Verdoolaege, “isl: An integer set library for the polyhedral
model,” in ICMS, vol. 6327, 2010, pp. 299–302.

[24] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan, “A practical automatic polyhedral parallelizer and
locality optimizer,” in PLDI, 2008, pp. 101–113.

[25] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick, “The landscape of parallel
computing research: A view from Berkeley,” University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[26] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interpro-
cedural parallelization: An overview of the PIPS project,” in
ICS, 1991.

[27] OpenMP Architecture Review Board, “OpenMP application
program interface, v3.0,” 2008.

[28] CAPS Enterprise, Cray Inc., Nvidia, and the Portland Group,
“The OpenACC application programming interface, v1.0,”
2011.

[29] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer,
“Diderot: A parallel DSL for image analysis and visualiza-
tion,” in PLDI, 2012.

[30] M. Luján, T. L. Freeman, and J. R. Gurd, “Oolala: An object
oriented analysis and design of numerical linear algebra,” in
OOPSLA, 2000, pp. 229–252.

[31] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun, “A domain-specific approach to heteroge-
neous parallelism,” in PPoPP, 2011, pp. 35–46.

