
Approximating Context-Sensitive Program Information

Mathias Hedenborg1, Jonas Lundberg1, Welf Löwe1, and Martin Trapp2

1 Linnaeus University, Software Technology Group,
{Mathias.Hedenborg|Jonas.Lundberg|Welf.Lowe}@lnu.se
2 Senacor Technologies AG, Martin.Trapp@senacor.com

Abstract. Static program analysis is in general more precise if it is sensitive to
execution contexts (execution paths). In this paper we propose χ-terms as a mean
to capture and manipulate context-sensitive program information in a data-flow
analysis. We introduce finite k-approximation and loop approximation that limit
the size of the context-sensitive information. These approximated χ-terms form
a lattice with a finite depth, thus guaranteeing every data-flow analysis to reach a
fixed point.

1 Introduction

Static program analysis is an important part of optimizing compilers and software en-
gineering tools. These analyses predict properties of any execution of a given program,
referred to as program information, by abstracting from its concrete execution seman-
tics and its potential input values. Analyses can be context-sensitive or -insensitive, i.e.,
an analysis may or may not distinguish program information for different execution
paths, i.e. for different contexts, e.g., the call contexts of a method. Context-sensitive
analyses are, in general, more precise than their context-insensitive counterparts but
also more expensive in terms of time and memory consumption.

In an iterative program, there are countably (infinitely) many contexts. Hence, merg-
ing the program information of some contexts is needed for the analysis to terminate.
This, however, makes the analysis less context-sensitive, hence, less precise.

In Trapp et al. [THLL15], we focussed on capturing context-sensitive analysis in-
formation, i.e. contexts and program information for each program point, in a memory
efficient way. In other words, we strived to delay merging the program information of
different contexts for keeping analysis precision high. In the present paper, we discuss
approximations that sacrifies precision for memory.

2 Background

This section introduces the notions and construction of χ-terms as components in static
program analysis. Details are given in [THLL15].

2.1 SSA Representation

We assume the analysis to be based on a Static Single Assignment (SSA) graph repre-
sentation [CFR+91] of a program. Nodes in the SSA graph represent program points;

special φ-nodes represent merge points of the execution paths, i.e., contexts. Here we
distinguish the program information of incoming paths by creating a χ-term connected
to sub-terms, each representing the program information analyzed for the respective
incoming execution path.

Figure 1 shows an example code with corresponding basic block and SSA-graph
representations.

if (...)
x = 1;

else
x = 2

if (...){
y = x;
b = 3;

}
else {
y = 2;
b = 4;

}
if (...)
a = x;

else
a = y;

return a+b;

Phi

Phi

Phi

Phi

entry

4

x = 2

y = 2
b = 4

a = x a = y

a +b

return

1 2

2 3

+

return

1

 3

6

b = 3
y = x

 2
x = 1

5

7

 8 9

10

11

10

10

7 7

4
4

Fig. 1. A source code example with corresponding basic block and SSA graph structures.

In the figure the source code is transfered into numbered basic blocks (middle), and
based on this a φ-node based SSA-graph have been generated (right). The φ-nodes will
there be the merging point for different definitions of values for a given variable.

2.2 χ-terms

A χ-function is a representation of how different control-flow options affect the value
of a variable. For example, we can write down the value of variable b in block 7 in
Figure 1 using χ-functions as b = χ7(3, 4). Interpretation: variable b has the value 3 if
it was reached from the first predecessor to block 7 in the control-flow graph, and the
value 4 if it was reached from the second predecessor block. That is, a value expressed
using χ-functions (a so-called χ-term) does not only contain all possible values, it also
contains which control-flow options that generated each of these values.

The construction of the χ-term values and the numbering of the χ-functions is a part
of a context-sensitive analysis. Every φ-node in an SSA graph represents a join point
for several possible definitions of a single variable, say x. When the analysis reaches
a block b containing a φ-node for x it “asks” all the predecessor blocks to give their
definition of x and constructs a new χ-term χb(x1, . . . , xn) where xi is the χ-term
value for x given by the i:th predecessor. If the i:th predecessor block does not define x

1 2

χ41 2

χ4

2

χ7

χ10

1 2

χ4

χ7

χ10

Fig. 2. Tree view of χ10(χ4(1, 2), χ7(χ4(1, 2), 2)) and its graph representation.

by itself, it “asks” its predecessor for the value. This process continues recursively until
each predecessor has presented a χ-term value for x. The process will terminate if any
use of a value also has a corresponding definition.

In summary, a χ-term is a composition of χ-functions and analysis values a, b, . . . ∈
V . Each program p has a (possibly infinite) set of χ-functionsX (p) and each χ-function
χb
j ∈ X (p) is identified by a pair (b, j) where the block number b indicates in what

basic block its generating φ-node is contained, and the iteration index j indicates on
what analysis iteration over block b the χ-function was generated.

2.3 Tree and Graph Representation of χ-terms

Every χ-term can be naturally viewed as a tree. This is illustrated in Figure 2 (left)
where we show the tree representation of the χ-term χ10(χ4(1, 2), χ7(χ4(1, 2), 2)).
Each edge represents a particular control flow option in this view and each path from
the root node to a leaf value contains the sequence of control flow decisions required for
that particular leaf value to come into play. A more compact graph representation (DAG)
can easily be found by reusing identical subtrees, cf. Figure 2 (right), thus avoiding
redundancies.

3 χ-term Approximations

In this section, we present two different approximations to the context-sensitive ap-
proach outlined above. We refer to these two approximations as the finite k-approxima-
tion and the loop approximation.

3.1 The Finite k-Approximation

The construction of new χ-terms is a part of the context-sensitive analysis. When
the analysis reaches a φ-node in block b for a variable x, it constructs a new χ-term

by composing χb with all possible values for x. The newly constructed χ-term em-
bodies all control-flow options that might influence the value of x at that point. The
size of the χ-term representing x grows larger (without upper limit) as the analysis
proceeds and more and more control-flow options influences the value of x. The fi-
nite k-approximation of χ-terms can be seen as on operation on the tree representa-
tion Gt = {N,E, r}. Whenever a new χ-term t is generated we replace all χ-terms
tsub = χb

i (t1, . . . , tn) in subterms(t) that has depth(tsub, t) ≥ k with t(t1, . . . , tn),
where t is the union operator on the realted value lattice. The use of k means that
the last k analysis steps have had influences on the current value. The process starts
in the leafs and proceeds towards the root node. The result is a new χ-term t(k) with
depth(t(k)) ≤ k.

3.2 The Loop Approximation

According to Trapp at al. [THLL15] we know that the analysis of a loop will generate
χ-terms like xbn = χb

n(. . . χ
b
n−1(. . .) . . .). That is, the newly created χ-term will have a

subterm with the same block number and a lower iteration index. This pattern will prob-
ably occur over and over again since each loop iteration results in a new composition of
χb with itself. This will result in χ-terms of infinite depth and a non-terminating analy-
sis if no measure is taken to stop the iterations. Informally, a χ-term t = χb

i (t1, ..., tn) is
loop-approximated if every subterm of t that has the same block number as t is replaced
by its context-insensitive approximation.

4 Result

In the previous section, we introduced two different approximations that make sense in
almost any type of analysis. The loop approximation is necessary to guarantee analysis
termination and k in the finite k-approximation is a precision parameter that can be
seen as the size of “context memory” which decides how many previous control-flow
options that each χ-term should try to remember.

By using both these approaches in the analysis phase we can handle the need of
extra information to meet the demands for context sensitivity and the precision in the
result of the program analysis.

In the full paper we present: a) formal definitions of both k- and loop-approximations,
b) efficient algorithms for both, c) proofs showing that approximated χ-terms forms a
finite value lattice (depth k) guaranteeing each analysis to reach a fixed point.

References

[CFR+91] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490, 1991.

[THLL15] Martin Trapp, Mathias Hedenborg, Jonas Lundberg, and Welf Löwe. Capturing and
manipulating context-sensitive program information. Software Engineering Work-
shops 2015, 1337:154–163, 2015.

