
Applying Active Continuous Quality Control to
Cross-Platfrom Conformance Testing

Johannes Neubauer1 and Bernhard Steffen1

Technische Universität Dortmund, Germany
johannes.neubauer|steffen@cs.tu-dortmund.de

Abstract. In this paper we sketch how Active Continuous Quality Con-
trol (ACQC) can be adapted to Learning-based Cross-platform Confor-
mance Testing (LCCT), i.e. to a method which is tailored to validate
the preservation of behavioral equivalence after migration. Our method
is designed to be applied e.g. after adaptations or technological switches
in terms of operation system, programming language, execution environ-
ment, third-party components, optimizations, new access methods to the
application, or API changes of third-party services. Technically, LCCT
is based on a combination of our approach to higher-order integration
of user-level test blocks with active automata learning in our learning
framework LearnLib. Its impact has been shown by revealing migration-
specific bugs typically stemming from browser-specific functionality.

Keywords: Active Learning, Model Checking, Testing, Migration, Validation,
Model-Based Testing

1 Introduction

Web Layer Web Service Interface

Business Logic Layer

Internet

Browser Web service

Persistence Layer

Fig. 1. The layered architecture of the
enterprise application OCS

Dynamic
SIB

Java API

SLG

Services:
Web Service, REST, 
RMI, CORBA, JNI, ...

Java
*

Fig. 2. The new dynamic SIB pattern
of the jABC.



Modern software systems, in particular when successful, undergo continuous
change and therefore require a continuous accompanying quality control at the
system level. This is especially true for multi-layered component-based systems
(see Fig. 1) in real-world scenarios, which can easily be changed by updating or
exchanging components and their implementations [6]. Today’s testing technol-
ogy does not sufficiently address this problem as it requires enormous ongoing
manual effort. E.g., keeping regression test suites or test models up to date is
very costly, which is the major hurdle for model-based testing [30] to enter in-
dustrial practice. Recently, automata learning technology has been proposed to
reduce the manual effort of the required test/model adaptation process. In [32]
we presented Active Continuous Quality Control (ACQC), an approach that
seamlessly integrates learning into the software evolution process in order to ar-
rive at a truly continuous quality control. ACQC uses an incremental variant
of active automata learning technology in order to closely monitor and steer
the evolution of applications throughout their whole life-cycle with minimum
manual effort. Key to this approach is the combination of the common practice
of a periodic, e.g. daily, system build with a fully automatic testing process,
performed and controlled via incremental active automata learning [24].

In this paper we sketch how ACQC can be adapted to Learning-based Cross-
platform Conformance Testing [18] (LCCT), i.e. to a method which is tailored
to validate the preservation of behavioral equivalence after migration [2]. Our
method is designed to be applied e.g. after adaptations or technological switches
in terms of operation system, programming language (e.g. reimplementation of
legacy software), execution environment (e.g. application server), third-party
components (e.g. database vendor, relational versus noSQL databases, or access-
layer to the data-base), optimizations (e.g. caching or clustering), new access
methods to the application (e.g. a RESTful API [4]), or API changes of third-
party services (like Facebook, Twitter, or Google Maps). Technically, we com-
bine our approach to higher-order integration of user-level test blocks with ac-
tive automata learning in our learning framework LearnLib [14, 21]. Its impact
has been shown by revealing migration-specific bugs typically stemming from
browser-specific functionality.

In contrast to ACQC, where maintaining the stability of a common abstrac-
tion layer via a common learning alphabet during the evolution of the System
Under Learning (SUL) as well as the cross-version reuse of information during
the learning process was essential, these issues are not critical for LCCT. Rather,
the third issue of ACQC, providing a correct mapping between the abstract level
of learning and the concrete implementation, needs to be flexibilized for LCCT
to deal with the platform specific versions of implementations. We employ the
dynamic service integration feature of the jABC, our graphical application devel-
opment framework [28] to elegantly solve this problem via higher-order test-block
integration [19]. This allows us to realize LCCT elegantly as a learning process
accompanied by a dynamic comparision of the platform-specific versions of the
learned models. In essence, one could understand LCCT as an iteration between



multiple learning phases which terminates when no differences are detected any-
more:

– Hypothesis models for the various platform versions are learned indepen-
dently.

– The differences between these hypothesis models are exploited to construct
distinguishing traces which are used to trigger a new learning phase.

In this extended abstract we will focus on the mapping of abstract test sym-
bols to concrete test-block implementations and its realization within the jABC,
while we defer the presentation of the iterative LCCT process to the extended
version of this paper. For a detailed elaboration of the technical details of dy-
namic service binding please refer to [18].

In the following, we will therefore first sketch the jABC including its pragmat-
ics, before we address the higher-order test block generation in Sec. 3, followed
by a short paragraph about model extrapolation in Sec. 4, a brief discussion of
our example scenario in Sec. 5, and our conclusions in Sec. 6.

2 Extreme Model-Driven Design in the jABC

The user-level test blocks are realized in the jABC [13], a framework for service-
oriented development that allows users to create services and applications easily
by composing reusable building blocks into (flow-) graph structures that are
both formally well-defined as well as easy to read and build. These building
blocks are called Service Independent building Blocks (SIBs) in analogy to the
telecommunication terminology [25], in the spirit of the service-oriented com-
puting paradigm [11] and of the one thing approach [29], an evolution of the
model-based lightweight coordination approach of [12] specifically applied to
services.

On the basis of a large library of SIBs, the user builds models for the de-
sired system in terms of hierarchical Service Logic Graphs [26] (SLG). SLGs are
semantically interpreted as Kripke Transition Systems (KTS ), a generalization
of both Kripke structures (KS ) and labeled transition systems [15] (LTS ) that
allows labels both on nodes and edges.

The service integration into the graphical process model design framework
jABC is realized via dynamic service binding (see Fig. 2) that supports domain-
specific (business) activities [3].

Dynamic service integration is technically achieved by directly binding a ser-
vice in form of a Java method to an activity, denoted by a dynamic SIB. This is
realized by considering services as first-class objects and therefore introducing a
type-safe second-order context for exchanging services of a service graph at the
parameter level, a step reminiscent of higher-order functions in functional pro-
gramming languages [23]. The type-safe second-order context is a mapping from
a tuple consisting of a name (e.g. ‘userController’) and type information (e.g.
UserController) to a Java object (at runtime). Each entry in this mapping is
called a context variable. Activities read and write values from context variables.



3 Higher-Order Test Block Integration

We apply the dynamic service integration [17] approach of the jABC framework
to active automata learning. This provides us with the necessary flexibility to
infer comparable models via automata learning for validating platform migra-
tions.

Enabling dynamic service integration does not require any implementation
of adapters for mapping of activities to services, as domain-specific activities
are instead modeled hierarchically as SLGs themselves on the basis of low-level
services:

– Services are provided as methods of a Java class or interface (i.e. a remote
enterprise bean (EB)1, a RESTful- or a Selenium service respectively), ab-
stracting from technical details. These are integrated via dynamic SIBs in
low-level graphs, which are absolutely unaware of the process models.

– A fully configured instance of a subclass of the service class or interface is
read from the context as input to the corresponding dynamic SIB, and the
configured method is executed2 as the control-flow reaches the activity.

– Available SIB libraries in terms of low-level graphs allow application experts
to build high-level, coarse-grained, and domain-specific test blocks.

Being organized in taxonomies, these SIB libraries can easily be discovered and
(re)used for building complex process models, the aforementioned service logic
graphs (SLG).

4 Test-Based Model Extrapolation

In our setting, active automata learning [24] may be interpreted as a systematic
test generation framework that interrogates the SUL and extrapolates an appro-
priate corresponding (hypothesis) model. For learning reactive systems, like e.g.,
a web-services or, as in our example scenario, complete web applications, Mealy
machine models have turned out to be the target model of choice. These can
efficiently be learned using the LearnLib [20, 21, 14, 10], our framework for ac-
tive automata learning. LearnLib3 provides different active learning algorithms
and optimization strategies for handling counterexamples, filter techniques that
allow reducing the number of executed tests through domain knowledge [1, 8],
further optimizations like parallelization [7], and, since recently [9], a space op-
timal version, which is also particularly well-suite to support the comparison
phase of LCCT.



Fig. 3. The low-level SLGs dynami-
cally accesses the remote EB or REST-
ful API of the OCS.

Fig. 4. The low-level SLGs dynami-
cally accesses the web interface of the
OCS via Selenium.

5 Example Scenario

The Online Conference Service (OCS) [16] is a multi-layered enterprise applica-
tion (see Fig. 1) where, in particular, the presentation layer (frontend) is sepa-
rated from the business logic (backend). The API of the backend is partitioned
into controller interfaces for every type of entities modeling the domain of the
OCS like a conference, a paper, or a report. A derived controller class implements
the different actions that are possible on the respective objects, e.g., ‘create a

1 A Java EE technology to execute enterprise services remotely via Remote Method
Invocation (RMI).

2 We support both interpreted execution using the Java Reflection API [5] and full-
code generation executing the method directly (i.e. type-safe) in the generated code.

3 LearnLib is available at http://www.learnlib.de



user’. The used input symbols (cf. the edge labels in Fig. 5 in order to identify
the abbreviations) are as follows:

SP Submit Paper : An author submits a paper to the conference but does not pro-
vide a document file. Since the number of papers in a conference is negligible
for the overall workflow, we allow only one paper submission per conference.

UD Upload Document : An author uploads a document file for the previously
submitted paper.

DD Download Document : The PC Chair downloads a document file of a paper.
BD Bidding : A PC Member submits a bidding for a paper.
SA Special Assignment : The PC Chair assigns a PC Member as reviewer iff the

member has bided for the paper.
SR Submit Report : A reviewer submits a report for a paper.
ES End Submission: The PC Chair stops the submissions phase. From now on

it is not possible to submit any new papers. This will also start the bidding
phase and all PC Members will be able to submit biddings for papers.

EU End Upload : The PC Chair stops the upload phase. It is no longer possible
to upload documents to papers.

EB End Bidding : The PC Chair stops the bidding phase. Members of the pro-
gram committee are no longer allowed to bid for papers.

EA End Assignment : The PC Chair stops the assignment phase. From now on it
is not possible to assign reviewers to papers. This will also start the review
phase during which all reviewers are able to submit a report to an assigned
paper.

The respective symbols will be successfully executed if all prerequisites are ful-
filled. As in classical testing the membership queries have to be executed inde-
pendently. In automata learning this is realized via a so-called reset that puts
the SUL in a predefined state as all queries have to begin in the start state of the
hypothesis automaton. In the case study the reset for every membership query
creates a new conference and employs exactly one PC chair, PC member, and
author. Since the number of papers in a conference is negligible for the overall
workflow, we furthermore allow only one paper submission per test run.

In order to faithfully capture true web-based user behavior, we realized an
alternative implementation of these controllers, denoted by web-test controllers,
using the web-test framework Selenium [22]. These controllers, which truly mimic
users operating the OCS via a browser, implement the same controller interface
than their backend counterpart, and should ideally also have the same impact.

We have used our approach to dynamic service binding (cf. Sec. 3), in order
to obtain variants of test blocks for the same API (controller interface) repre-
senting different implementations. This allowed us to dynamically exchange the
implementation, i.e. remote EB or RESTful API (see Fig. 3) and the browser
instrumentation (see Fig. 4) via higher-order service integration, and therefore
to efficiently and elegantly coordinate the learning and comparison of the two
platform-specific models.

Its impact has been shown by revealing migration-specific bugs typically
stemming from browser-specific functionality as shown in Fig. 5. It shows an



q0

q1 q2

q3 q4 q5

q6q7

q8

q9qA

qB qC

ES SP

ES BD UD

EB EU BD ES UD BD

BDEU

ESUD

...

...
...

...
...

...
...

DD,UD

DD,UD

DD,UD

DD

Fig. 5. Differences between learned models regarding the bidding [32].

excerpt of such an automaton of an OCS version with a bug in the security logic
in the backend, which has been intercepted in the presentation layer. So it was
not apparent by inspecting the presentation layer, only. For better readability
we have omitted the output symbols (namely success and error) of the Mealy
machine as well as the error edges (failed execution), since they are all reflex-
ive. This is due to the rollback mechanism of the OCS, so that all erreneous
executions have no impact on the state of the system.

The thick line followed by a thick dotted line in Fig. 5 shows that a member
of the program committee may bid for reviewing a paper right after submission,
although this should be possible after ending the submission phase (ES), only.
This issue has also been found by our active continuous control (ACQC ) ap-
proach [32]. However, in contrast to LCCT, ACQC tests the business logic only
and therefore does not search for differences between frontend and backend, but
it has been able to find the version which introduced the issue in the backend.
Thus these are different test approaches that complement each other.

6 Conclusion and Future Work

With ACQC we have presented a novel approach to quality control that employs
incremental active automata learning technology in order to periodically infer
evolving behavioral automata of complex applications accompanying the devel-
opment process. In this extended abstract we have presented the adaptation



of ACQC to Learning-based Cross-platform Conformance Testing (LCCT), an
approach specifically designed to validate successful system migration. Key to
our approach is the combination of (1) adequate user-level system abstraction,
(2) higher-order test-block integration, and (3) learning-based automatic model
inference and comparison. LCCT employs second-order, type-safe execution se-
mantics for (test) process models, which allows one to dynamically exchange the
binding of functionality/test blocks at runtime. The impact of our approach has
been illustrated along testing the conformance of the presentation layer and the
business logic layer of Springer’s Online Conference Service OCS in [18].

Complex multi-layered component-based systems can be subjected to rapid
evolution, up to the point of exchanging components at runtime [31], a pro-
cess which is called “online evolution”. We are currently investigating how to
extend our static approach, which focuses on managing changes that occur be-
tween system releases, to an approach capturing the effects of hierarchy [27] and
self-adaptation. We think that it will be seen that our higher-order modeling
approach is tailor-made for this purpose.

References

1. O. Bauer, J. Neubauer, B. Steffen, and F. Howar. Reusing system states by ac-
tive learning algorithms. In Eternal Systems, volume 255 of CCSE, pages 61–78.
Springer-Verlag, 2012.

2. A. De Lucia, R. Francese, G. Scanniello, and G. Tortora. Developing legacy sys-
tem migration methods and tools for technology transfer. Software: Practice and
Experience, 38(13):1333–1364, 2008.

3. M. Doedt and B. Steffen. An Evaluation of Service Integration Approaches of Busi-
ness Process Management Systems. In Software Engineering Workshop (SEW),
2012 35th IEEE, 2012.

4. R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

5. I. R. Forman and N. Forman. Java Reflection in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2004.

6. G. T. Heineman and W. T. Councill, editors. Component-based software engineer-
ing: putting the pieces together. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

7. F. Howar, O. Bauer, M. Merten, B. Steffen, and T. Margaria. The teachers’ crowd:
The impact of distributed oracles on active automata learning. In ISoLA 2012,
Communications in Computer and Information Science, pages 232–247. Springer-
Verlag, 2012.

8. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Computer Aided Verification, volume 2725 of LNCS, pages 315–327.
Springer-Verlag, 2003.

9. M. Isberner, F. Howar, and B. Steffen. The ttt algorithm: A redundancy-free
approach to active automata learning. In B. Bonakdarpour and S. Smolka, editors,
Runtime Verification, volume 8734 of Lecture Notes in Computer Science, pages
307–322. Springer International Publishing, 2014.



10. M. Isberner, F. Howar, and B. Steffen. The open-source learnlib. In D. Kroening
and C. S. Păsăreanu, editors, Computer Aided Verification, volume 9206 of Lec-
ture Notes in Computer Science, pages 487–495. Springer International Publishing,
2015.

11. T. Margaria. Service is in the eyes of the beholder. IEEE Computer, 40:33–37,
2007.

12. T. Margaria and B. Steffen. Lightweight coarse-grained coordination: a scalable
system-level approach. STTT, 5(2-3):107–123, 2004.

13. T. Margaria and B. Steffen. Agile it: Thinking in user-centric models. In Leveraging
Applications of Formal Methods, Verification and Validation, Proc. ISoLA 2008,
volume 17 of Communications in Computer and Information Science, pages 490–
502. Springer Verlag, 2009.

14. M. Merten, B. Steffen, F. Howar, and T. Margaria. Next generation learnlib. In
TACAS 2011, volume 6605 of LNCS, pages 220–223. Springer-Verlag, 2011.

15. M. Müller-Olm, D. Schmidt, and B. Steffen. Model-checking: A tutorial introduc-
tion. SAS, pages 330–354, 1999.

16. J. Neubauer, T. Margaria, and B. Steffen. Design for Verifiability: The OCS Case
Study. In Formal Methods for Industrial Critical Systems: A Survey of Applica-
tions. John Wiley & Sons, 2011. In print.

17. J. Neubauer and B. Steffen. Second-order servification. In ICSOB, pages 13–25,
2013.

18. J. Neubauer and B. Steffen. Learning-based cross-platform conformance testing.
2015. In submission.

19. J. Neubauer, B. Steffen, and T. Margaria. Higher-order process modeling: Product-
lining, variability modeling and beyond. arXiv preprint arXiv:1309.5143, 2013.

20. H. Raffelt, B. Steffen, and T. Berg. Learnlib: a library for automata learning and
experimentation. In FMICS ’05, pages 62–71. ACM, 2005.

21. H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework for ex-
trapolating behavioral models. STTT, 11(5):393–407, 2009.

22. Selenium. SeleniumHQ Web application testing system, visited july 2015. http:
//seleniumhq.org/.

23. P. Sestoft. Higher-order functions. In Programming Language Concepts, volume 50
of Undergraduate Topics in Computer Science, pages 77–91. Springer London, 2012.

24. B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning
from a practical perspective. In Formal Methods for Eternal Networked Software
Systems, volume 6659 of LNCS, pages 256–296. Springer-Verlag, 2011.

25. B. Steffen and T. Margaria. Metaframe in practice: Design of intelligent network
services. In Correct System Design, Recent Insight and Advances, volume 1710 of
LNCS, pages 390–415. Springer, 1999.

26. B. Steffen, T. Margaria, V. Braun, and N. Kalt. Hierarchical service definition.
In Annual Review of Communication, pages 847–856. Int. Engineering Consortium
Chicago (USA), IEC, 1997.

27. B. Steffen, T. Margaria, V. Braun, and N. Kalt. Hierarchical Service Definition.
Annual Review of Communications of the ACM, 51:847–856, 1997.

28. B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak. Model-Driven Devel-
opment with the jABC, volume 4383 of LNCS, pages 92–108. Springer Berlin/Hei-
delberg, 2006.

29. B. S. T. Margaria. Business process modeling in the jabc: The one-thing approach.
In Handbook of Research on Business Process Modeling, pages 1–26. IGI Global,
2009.



30. J. Tretmans. Model-Based Testing and Some Steps towards Test-Based Modelling.
In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal Networked
Software Systems, volume 6659 of Lecture Notes in Computer Science, pages 297–
326. Springer-Verlag, 2011.

31. Q. Wang, J. Shen, X. Wang, and H. Mei. A component-based approach to online
software evolution: Research articles. J. Softw. Maint. Evol., 18(3):181–205, May
2006.

32. S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer. Active continuous
quality control. In Proceedings of the 16th International ACM Sigsoft symposium
on Component-based software engineering, pages 111–120. ACM, 2013.


