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Abstract. Cyper-physical systems (CPS) are networked embedded systems, hav-
ing often real-time requirements for individual control tasks. The complexity of
CPS due to concurrency can be reduced by modelling it as a streaming network,
providing an implicit local synchronisation mechanism.
In this paper we show that specifying real-time requirements for such streaming
networks is not straight forward. Especially specifying latency is challenging due
to their global context from which they arise. Analysing models at requirements
and system design level, we provide practical solutions to the specification of the
timing behaviour of such models of streaming networks.

1 Introduction

Streaming networks consists of processing nodes connected via communication chan-
nels. Since this communication channels have a single reader and a single writer, stream-
ing networks are a well-recognised for their benefit of coping with the complexity of
concurrent systems.

This strength of streaming networks makes them also an interesting paradigm to
apply to cyber-physical systems (CPS). CPS are networked embedded systems, thus
exposing naturally a high level of concurrency [9]. At the same time CPS have often
real-time requirements, often for local subsystems, but sometimes also at a global level.

Lee has proposed coordination languages as a means to cope with the complexity
of CPS [9]. We support this observation and also propose to use the streaming network
paradigm such the underlying concept for such a coordination language.

In this paper we do not focus on the overall design of a coordination language well
suited for CPS. But rather, we focus on the underlying streaming network paradigm
and discuss how it suits the specification of real-time requirements. As we show in this
paper, it is not so easy to specify real-time properties for streaming networks in a simple
and resource-efficient way.

In Section 2 we study the specification of real-time properties for real-time systems
of simple structure, exposing the difference between modelling timing behaviour at
requirements level and at system design level. In Section 3 we show the challenges that
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arise when aiming to annotate real-time properties in streaming networks and propose
concrete solutions. Section 4 shows some examples of streaming networks applied to
CPS. A selection of related work is discussed in Section 5. Section 6 concludes the
paper.

2 Development of Real-time Systems

In order to expose the challenge of specifying real-time properties of streaming net-
works we first review some fundamentals of developing real-time programs. There are
basically two extreme contexts for modelling extra-functional behaviour like real-time
requirements:

1. a high-level model that describes how the system is expected to fit into the environ-
ment. We call such a model a requirements specification or requirements model.

2. a low-level model that describes how the system is designed, with various levels of
detail. We call such a model a design model.

Depending on the concrete software development processes of specific application do-
mains, there are more fine-grained distinctions of modelling levels. However, for the
sake of simplicity, we focus only on these two fundamental ones. Furthermore, in the
following we discuss the timing-related aspects of such system models.

To understand modelling of real-time systems from its fundamentals, we assume a
simple system structure where a particular services is expected to work on input, derived
from sensors, to produce an output for an actuator. This fundamental structure is shown
in the top of Figure 1.

Focusing on the system requirements we derive a requirements model. In the con-
text of real-time systems such a requirements model has to include the specification
of extra-functional properties, especially timing requirements. The modelling aspects
of timing requirements are shown in the bottom half of Figure 1. Based on the simple
system structure we can express timing requirements as a tuple 〈Ix, Sy, Oz, T reqx,y,z〉,
meaning that each timing requirement Treqx,y,z spans from a particular input Ix to an
output Oz , characterising a service Sy . In the timing domain these requirements typ-
ically include the processing rate and the latency of a service. The processing rate is
sometimes also called throughput. The variation in rate or latency is called jitter, and
can also be included in the timing requirements. While often jitter is exclusively associ-
ated with latency, we consider it also applicable to processing rate, especially for such
real-time systems where the processing rate is more important than the latency, e.g., in
video streaming applications without control loops.

To give an example of a timing requirement, we consider the maximum latency for
a service, also called a deadline. Deadlines are called firm if the utility of a service
abruptly drops after exceeding the deadline, otherwise it is called a soft deadline [8].
Figure 2 shows the specification of a deadline for a service Sy from input Ix to output
Oz . It is important to include the data-flow path attached to the timing requirement,
since the same service, for example, might also write to another output with a different
deadline attached to it. The deadline shown in Figure 2 is relative, i.e., the maximum
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Fig. 1. Derivation of real-time requirements from application context

latency is measured against the trigger instant at input Ix. Each trigger instant of input
Ix results into a different absolute deadline:

tdeadline = tinput + tdeadline,rel

Figure 3 shows the transition from the requirements model to the design model.
While the requirements model is solely focused on the demands imposed by the ap-
plication environment of the real-time control system, the design model shifts its fo-
cus to the details of how to build the system, resulting in a design-specific model. As
shown in Figure 3, the design model can be expressed at different abstraction stages,
ranging from an implementation-independent model to an implementation-dependent
model. The implementation-dependent design model includes imposed properties like
the choice of platform. But the implementation-dependent design model might also be
enriched by annotations, derived from behaviour analysis, making behavioural prop-
erties, resulting from the implementation choices, explicit. Figure 4 shows a timing
requirement of latency (response time) attached to the design model.

The fundamental difference between Figure 4 and Figure 2 is that the abstract spec-
ification of a service in Figure 2 has been replaced by a concrete processing node re-
alising that service. The relation between services and processing nodes realising them
is, in general, n : m and not necessarily 1 : m or n : 1.

Here we want to stress that ideally a design model already reflects the real-time be-
haviour of the system at a platform-independent stage, if possible even at an implementation-
independent stage. The benefit of a platform-independent design model is that the sys-
tem behaviour can be reasoned about independently of the platform choice, making a
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Fig. 2. Example of timing requirements: deadline (maximum latency)

correctness verification more robust against changes of the platform at a later develop-
ment stage.

However, including the specification of the timing behaviour into the platform-
independent design model also comes with a cost. We have to ensure, after the platform
choice, that the specified timing behaviour is actually implementable with the chosen
platform. While this is nothing surprising by itself, there is a fundamental difference of
whether we have to fulfil the timing specification of the requirements model or whether
we have to fulfil the timing requirements of an platform-independent design model.
The latter may impose additional design-specific constraints that can rise resource con-
straints which are not imposed by the application context itself. In Section 3 this aspect
is discussed in more detail within the context of timed streaming networks.

3 Specification of Complex Systems

In Section 2 we have discussed the specification of timing requirements of real-time
systems with a very simple structure. In the context of networked cyber-physical sys-
tems we have to deal with much more complex application structures. In the following
we discuss challenges of modelling extra-functional properties for both, requirements
and design models.

3.1 Timed Requirements Models

One of the challenges of requirements modelling is that requirements have to be devel-
oped in a modular way in order to cope with complexity. Like the example shown in
Figure 5, services of a system tend to be described in a cascaded way. We cannot use
the simple concept of Section 2 where a service is used to characterise the information
processing between the inputs and outputs of a system.

Instead of linking services directly to sensor inputs and actuator outputs, we have to
use some form of system interfaces. Regardless of the concrete specification methods
being used in practice, we abstract from them by using the generic concept of ports.
Sensors, actuators, and individual services can now be characterised locally within the
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Fig. 3. Derivation of real-time model from application context and refined by analysis

perimeter of their interface ports pi. Figure 5 shows the use of ports. Not only can the
information input by a sensor now be discussed independently of its use, the figure also
shows the characterisation of two services SV1 and SV2, which are cascaded, i.e., one
input of SV2 is not connected to a sensor but rather to the output of another service.
SV2 might rely on SV1 on a rather weak basis to provide a refined quality of service,
but it can be also the case that SV2 strictly relies on SV1 to provide any useful service
at all.

The challenge of modelling timing requirements of cascaded services is that timing
requirements in their purest form are imposed by the environment and are independent
of any internal structuring of the computer system. For example, in Figure 5 there might
be a certain relative deadline d2,1 from sensor S2 to actuator A1. At the same time, there
might be a relative different deadline d1,1 from sensor S1 to actuator A1. The problem
with the cascaded services S1 and S2 is that one cannot naturally assign them fractions
of d1,1 and d2,1 without creating artificial constraints on the flexibility of the use of
resources.

To characterise the latency requirements in their purest form one would have to use
a kind of path-based characterisation of latency requirements. Instead of the approach
in Section 2 where a timing requirement Treqx,y,z was associated with a context tuple
〈Ix, Sy, Oz〉, we would now have to match a timing requirement Treqp with a path
specifier. A path specifier pth is a sequence pth = (a1, a2, a3, . . . an) where each ele-
ment ai of the sequence is either a service, a port, or an IO node: ai ∈ SERVICES ∪
PORTS ∪ IO . A path specifier may also only incompletely describe a path, by which
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multiple paths would match the specification. This can be used to assign a requirement
to a group of paths. For example, the path specifier (S2, P2, P4, A2) matches with two
concrete paths of Figure 5: (S2, P2, SV1, P5, SV2, P4, A2) and (S2, P2, SV2, P4, A2).

The good news is that modelling requirements of processing rates can be done lo-
cally and propagated over the network. This approach, for example, is used in Simulink
from Mathworks [10]. Nevertheless, clear semantic rules are needed to specify what
happens at the interface between different processing rates [11].

Summarising, the challenge of specifying timing requirements for streaming net-
works is to express them in a pure form, i.e., only implied by the application environ-
ment and not by any internal system structuring decisions.

3.2 Timed Design Models

In this section we discuss the issues of specifying timing requirements for design mod-
els. As discussed before, the design model focuses on the behaviour of the realised
system, where the realised system consists of inter-linked processing nodes with in the
general case an n : m mapping between services and processing nodes.

The challenge of how to describe latency in case of cascaded processing nodes is
related with the challenge of specifying latency for cascaded services mentioned in
Section 3.1. The additional challenge for the design model is that it tends to be more
complex than the requirements model in case of individual services being realised by



multiple processing nodes. Figure 6 shows a streaming network with processing nodes
fed by multiple sensors and contributing to the control of multiple actuators.
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Fig. 6. Processing network with multiple sensors and actuators (Design Model)

What we ultimately want to obtain is a design model which has a clear timing se-
mantics, i.e., it is known what the timing behaviour of different components will be, at
least at a certain course granularity level. This is an aim somehow similar to the idea of
the Precision Timed Machine (PRET) whose machine code has a timed semantics [7,
6]. However, there is a slight difference. With PRET the focus is on a well-specified
processor platform with built-in timing semantics. The machine code for PRET would
be a platform-specific design model of the computer system.

However, with our ambition for design models of streaming networks we would like
to have a platform-independent design model with well-specified temporal behaviour.
This means, we would like to know how the system is going to behave, regardless of
the implementation details and even more, regardless of the chosen hardware platform.
With streaming networks we have the challenge that at a particular position of the net-
work messages originating from different sources can pass through, thus we generally
cannot assign the processing latency of a path to any particular place in the network. So
if we want to specify the timing behaviour directly at the design model rather than hav-
ing a separate list of timing constraints, we would have to split the overall latency into
multiple local latency values, assigned to individual sections of the streaming network.

For the split latency values there are two different semantics possible:

Summative latencies: the absolute latency along a path from the input to the output
is the sum of all the local latency values along that path. Summative latencies do
not require a platform-specific design model, so they can be also specified for a
platform-independent design model.

Local absolute latencies: each local latency value describes the absolute local latency
along a certain subsection of a processing path from the system input to the output.
Absolute local latencies require a platform-specific design model, so they cannot
be specified for a platform-independent design model.

To be most descriptive, the local latencies have be both, summative latencies as well
as local absolute latencies.

To give an example, we assume that the streaming network shown in Figure 6 has
as requirement the following absolute latencies from sensor input to actuator output:



A1 A2

S1 10 ms 4 ms
S2 10 ms 4 ms

Having only a platform-independent design model, we can still decompose these
end-to-end latencies into summative latencies and map them to the streaming network
of Figure 6. Figure 7 shows summative latencies for the given example mapped to the
streaming network. In this small example we have been able to derive the summative
latencies manually. For larger graphs a systematic mapping method would be necessary
to use.
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Fig. 7. Processing network with timed semantics (Design Model)

Using such summative latencies for a platform-independent design model are ad-
equate to specify the end-to-end latencies by means of local annotation. However, it
would be problematic to interpret them as absolute latencies for local sections of the
streaming network. By doing so we would impose additional synthetic resource con-
straints for implementation and platform choice, not justified by the requirements. Thus
our proposal is that for the platform-independent design model we interpret the local
latency specifications in general only as summative latency specifications.

From Summative Latencies to Local Absolute Latencies As soon as we have de-
rived a platform-specific design model, we are able to use performance or worst-case
execution time (WCET) analysis to refine the model and replace the original summa-
tive latencies by another set of latencies that at the summative level are equivalent to
the summative latencies of the platform-independent design model, but now also have
a local absolute latency semantics.

Using such a refinement step towards the platform-specific design model avoids the
introduction of synthetic resource constraints while still providing a fundamental timing
semantics at the platform-independent design model. This approach is summarised in
Figure 8.
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4 Examples of Real-time Streaming Networks

In the following, we show some applications of stream processing networks for real-
time computing and also discuss specific issues implied by them which are relevant for
modelling.

4.1 Fuel Injection

Figure 9 shows a grossly simplified model of a fuel injection system for internal com-
bustion engines. Fuel injection is a real-time application with very strict timing re-
quirements. Injecting the fuel to late or too early not only reduces the efficiency of the
engine, but also increases the mechanical stress of the engine components, resulting in
an acceptable outwear rate.
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TS &…&temperature&sensor&

Fig. 9. Example of multi-rate system: Engine Fuel Injection

While any real fuel injection system is much more complex, our simplified model is
sufficient to outline a relevant property when modelling it as a streaming network. The



fuel injection system FIS collects inputs from two sources: the current motor tempera-
ture from sensor TS and the current crankshaft position from sensor CPS.

The important aspect of this simple model is that we have different rates involved
here. The CPS sensor has to deliver its trigger signal in fixed coupling with the crankshaft
position, every revolution of the crankshaft. Without the CPS trigger signal available,
the fuel injection cannot operate. Also the latencies involved along processing the
crankshaft position have to be precisely taken into account. In contrast, the motor tem-
perature from sensor TS has much weaker requirements. Neither the rate nor the latency
of that sensor are very significant, since the temperature of the engine changes relatively
slowly during correct operation.

4.2 Car Platooning

A car platooning (CP) system is a technology to line up vehicles on a highway into
virtual trains, automatically controlling distance and speed [1]. In this section we purely
focus on the influence of CPS to the brake control of a car. We want to highlight the
different levels of criticality when it comes to brake control in a modern car.
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Fig. 10. Example of mixed criticalities: Car Platooning

Figure 10 shows the control chain of components in a modern car that can influence
the activation of the brake. Quite standard nowadays is the anti-lock braking system
(ABS) which has the highest control over the brake. The driver may activate the braking
of the car with the manual brake (MB), but it is the ABS which finally decides when and
how long the brake should be actually activated, giving priority to preserve steer-ability
over short braking distance. To do so, ABS receives information about the current wheel
revolution speed from sensor RS, and lowers the brake activation whenever the speed of
a wheel drops. On top of MB acts the distance control (DC) system, which uses distance
sensors (DS) in order to keep a minimum distance with other vehicles driving in front



of the car. On top of DC may be a car platooning (CP) system which, to some extent,
behaves similar to DC by taking DS into account in order to control the distance to the
font car. CP and DC can actually share the input from the same distance sensors of the
car. However, CP senses the environment beyond that, being in active communication
with the neighbouring vehicles on the road, allowing smoother operation by starting
distance adjustment measures before even a change was noticed via the DS sensors.
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Fig. 11. Example of coupled control loops: Car Platooning

What this use case shows is that besides timing requirements there are also depend-
ability requirements, resulting in different criticalities of the above services. The closer
a component is to the brake, the higher is its criticality and the more control it has over
the brake. Figure 11 visualises the different automatic control loops involved in that use
case. Highest priority is given to ABS, as it is able to pause braking whenever it needs
to do so in order to give priority to steer-ability. The manual break MB is not shown in
that diagram, as it acts besides ABS since manual brake has to work even if ABS fails.
DC has higher priority to CP regarding braking, since DC might detect a road obstacle
while CP wants to accelerate in order to keep the distance with the vehicle driving in
front of it.

This example demonstrates that in the system design, real-time requirements and
criticality properties are orthogonal issues. Having the strongest real-time requirements
has nothing to do with having the highest criticality in the system.

To summarise, real-time requirements are an important category of extra-functional
properties, but there are other extra-functional requirements as well. So, scheduling
resources may not simply be a real-time problem, but also a mixed-criticality problem.

5 Related Work

There are many approaches of modelling distributed systems with specification of extra-
functional properties. In the following we present a sample of modelling approaches,
including academic research and concrete tools.

An all-round modelling approach is the Unified Modelling Language (UML), which
combines multiple modelling paradigms in a unified framework [12]. UML allows the
modelling of a system at different abstraction levels. For example, with the UML Use
Case Diagram (UCD) one can model the system application context without focusing



on implementation details and formal interfaces. Regarding the application of UML
to real-time systems there are different approaches. For example, Real-Time UML de-
scribes how to model resources, time, and concurrency [5]. The UML Profile for Mod-
eling and Analysis of Real-time and Embedded systems (MARTE) extends Real-Time
UML with concepts for timed processing and timed events, introducing also logical and
physical clocks as different time sources [13, 3].

The UCD of UML provides an interesting concept of how to model system require-
ments at a high level, focusing on the different services to be provided. However, when
using the mechanisms of UML and its extensions to specify, one also has to face the
problems discussed in this paper.

An example of academic approaches of how to model timed systems is Ptides, a
variant of the Ptolemy execution model [4, 2]. Ptides and Ptolemy have been developed
by Ed Lee et al. at Berkeley. Ptides is a stream-based event processing model with
support to model extra-functional properties and time sources for real-time processing.
Ptides allows to model the processing chains on so-called platforms and the commu-
nication between multiple platforms, resulting in distributed systems. With Ptides, one
can annotate the extra-functional properties of different components, like delays to lo-
cally receive or send a message. In addition, one can set the “due date” of messages,
i.e., the time at which an output at an actuator should be produced. While this due date
is initially set to the message creation time, it can then be incrementally increased by
delay blocks along the processing path toward its final destination at an actuator. There
are no inherent rules of where to increment the due date by how much, as long as the
total delay of the multiple delay blocks along the processing chain add up to the desired
time for the output to be produced. By this delay blocks one can obtain a timed system
model that has a fixed semantics of the event timings, regardless of the underlying plat-
form. From that point of view, Ptides is well-suited to model the latency of real-time
systems in a platform-independent way via summative local latencies as described in
Section 3. So far, the published research on Ptides did not address the issue of how to
derive platform-specific latencies, which besides summative latencies, would also pro-
vide local absolute latencies. As such, Ptides provides a very useful summative timing
semantics at platform-independent design model level, but cannot escape the challenge
of how to obtain local absolute latencies, as discussed in Section 3, which would require
a platform-specific design model.

As an example of a modelling tool with wide-spread industrial use is Matlab/Simulink
from Mathworks [10]. In Simulink one can specify processing graphs with multiple up-
date rates of the different components. Simulink is well-prepared for modelling multi-
rate systems by a specific “Rate Transition” block [10]. The Rate Transition block can
be parameterised in order to trade data integrity and deterministic transfer for faster
response or lower memory requirements. Simulink’s focus on update rates works rela-
tively well to address the problem discussed in this paper, but only from the throughput
point of view. Simulink does not provide the same flexibility for modelling event la-
tency, as, for example, Ptides is able to offer.

Kirner and Maurer have recently introduced an interface specification for compo-
nents of stream-based mixed-criticality systems [11]. This model includes the spec-
ification of the progress type of components (time-triggered or some form of event-



triggered), but most importantly it offers an explicit way to specify trigger dependencies
and trigger-decoupling of subsystems. They also introduced the classification of mes-
sages into event messages, state messages and semi-state messages in order to have a
semantic justification of trigger coupling/decoupling [11]. Their mixed-criticality inter-
face techniques could applied to other models like Ptides. While these mixed-criticality
interfaces are useful to compose the timing behaviour from subsystem, this cannot com-
pletely remedy the timing specification problem discussed in this paper.

6 Summary and Conclusion

The specification of real-time properties in complex systems causes some challenges
which we address in this paper. We have put our focus on streaming networks which
are a well-suited design paradigm for cyber-physical systems with their omnipresent
concurrent behaviour.

We have shown that it is not a straight forward process to specify real-time proper-
ties for streaming networks, neither at the requirements level nor at the system design
level. More precisely, it is the specification of latency (or deadlines) that is not well
suited for streaming networks, mostly because latency requirements are caused by the
application environment and do not have a direct imprint at subsystem level. Through-
put or processing rate on the other hand can be annotated to streaming networks rela-
tively easy.

We resolve the situation by providing latency specifications with only summative se-
mantics at the level of platform-independent design models. Using temporal behaviour
analysis these latency specifications can be refined from a platform-specific design
model into latency specifications, having both, a local absolute semantics as well as
the original summative semantics at the global level. This result shows to what extent
it is possible to specify platform-independent system design models with real-time se-
mantics.
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