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Abstract. Tiled many-core computer architectures are becoming increasingly
popular, providing a viable solution to the complexity of resource management
in parallel processors. One of the critical challenges in programming such tiled
many-core architectures is the efficient use of available resources.
In this paper we present a hierarchical memory management approach for tiled
many-core processors. This memory management approach is capable to pro-
vide shared memory across multiple OS instances running on different cores.
This memory management approach made it possible for us to port LPEL, a dy-
namic load-balancing middleware for stream processing applications, to the In-
tel Single-Chip Cloud Computer (SCC), a research processor that shares many
similarities with other tiled architectures. This is the first execution middleware
running on the SCC that provides dynamic load balancing. An evaluation shows
that our framework performs better than an MPI-based implementation.

1 Introduction
The demand for compute power is exceeding the supply [20]. Until recently, increasing
the processor clock speed to meet the demand of performance had worked well, but
heat and interference caused by increased clock speeds and shrinking size of transistors
are starting to limit processor designs [5, 4].

The current strategy is to use several simple and power efficient cores [27] in-
stead of a single complex and power-hungry core. Processors such as the Intel Xeon
Phi [7], ARM (Cortex A7 & A15) [12], Tilera (Tile-Mx & Tile-Gx) [10, 25] and Kalray
MPPA 256 [18] reflect a trend towards tiled architectures.

Parallel architectures with multi-core tends to be more energy-efficient than an
equivalent single-core processor. However, programming multi-core processors is more
complex and requires the refactoring of algorithms for concurrency. The identification
and exposition of concurrency is not enough to exploit a high fraction of the poten-
tial computing power made available by a parallel platform. The scheduling of dynamic
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workload on these tiled platforms increases the difficulty in utilising available resources.
Automatic load-balancing reduces the waste of resources and relieves the programmer.

Dataflow programming [17] is a particularly promising model for concurrent pro-
gramming. Data flow languages expose concurrency directly through explicit modelling
of data dependencies, in contrast to most traditional programming languages which are
centered around control flow. Coordination languages [8] allow software engineers to
build parallel applications from sequential building blocks. Stream processing [28] is
a parallel execution model that is well-suited for architectures with multiple computa-
tional elements that are connected by a network. Put together, these mechanisms afford
a powerful software development approach for multi-cores [14, 13, 24].

In this paper we introduce a hierarchical memory management approach for tiled
many-core processors that provides shared memory across multiple OS instances. Like
the Hoard memory manager [3] and scalloc [1] our memory management approach
uses local memory pools per core. In contrast to Hoard and scalloc, ours also works
with separate OS instances. Based on that memory manager we ported the Light-weight
Parallel Execution Layer (LPEL) [24, 21] to the Intel SCC research processor, making
it the first execution middleware running on the SCC with dynamic load balancing.

Sections 2.1 and 2.2 of this paper offer a brief review of the SCC tiled architecture.
Sections 2.3 and 2.4 provide a short review of the stream programming paradigm and
the stream execution model. Section 3 describes how our middleware maps streaming
network on the SCC tiled architecture. In Section 4 we study the issue of caching and
compare our middleware with an existing MPI [2] implementation. We discuss relevant
related work in Section 5 and conclude with Section 6.

2 Preliminaries
2.1 The SCC Architecture

Fig. 1: SCC Top-Level Tile Architecture

The SCC [15, 26, 16] is an experimental tiled multi-core processor created by IN-
TEL. The processor consists of 24 tiles in a 4x6 grid, connected by a high bandwidth,
low latency, on-die 2D mesh network, resembling a cluster on a single chip, as shown
in Fig. 1. Each tile hosts two modified P54C processor cores that support x86 compilers



and operating systems. Each core has 32 kB L1 and 256 kB L2 cache. Furthermore,
each tile has a 16 kB block of SRAM called Message Passing Buffer (MPB), which
is physically distributed, but logically shared. Each tile connects to the mesh network
via a router.There is a Voltage Regulator Controller (VRC) to let programs dynamically
manage the voltage and the frequency of cores, and four on-die Memory Controllers
(MC), which support a total of 16 to 64 GiB off-die DRAM. Only one atomic test-
and-set register and two atomic counter registers are available per core via the system
interface, which is a limiting factor for efficient synchronisation.

The SCC is a research processor, but many of its features are found in commercial
processors, for example in Tilera TILEPro series: In Tilera’s architecture, cores are also
organised as 2D grid of tiles connected to a mesh via on-tile routers, and each core
is capable to run an OS instance. Each tile has 16 kB L1 instruction cache, 8 kB L1
data cache, and a 64 kB combined L2 cache. In contrast to SCC’s mesh network, the
TILEPro has six independent networks to route traffic to different destination, i.e., tile,
tile caches, external memory, and IO Controllers. The Special Purpose Registers (SPRs)
are nearly identical to SCC’s control register buffer (CRB). There are three memory
modes: In default mode the hardware maintains cache coherence, but it does not do so
in non-coherent mode, and in non-cacheable mode all the data blocks are not cached
at any level. Dynamic Distributed Cached Shared Memory (DDC) on TILEPro serves
same purpose as MPB on SCC [30].

2.2 The SCC Memory Architecture
The SCC offers three address spaces:

– A private off-chip address space in DRAM for each core. This memory is cache-
coherent with an individual core’s L1 and L2 caches.

– A shared off-chip address space in DRAM. This memory can optionally be config-
ured as cached, but ensuring cache-coherence is the programmer’s responsibility.

– The MBP, a physically distributed, logically shared address space in SRAM.

Tiles are organised in four memory domains of six tiles each. Each memory domain
maps to a particular MC. Private memory is accessed through the assigned MC, shared
memory can be accessed through any of the four MCs.

Each core has its own 256-entry Lookup Table (LUT) to translate 32-bit core ad-
dresses to a 46-bit system addresses. Each core can address 4 GiB of physical memory,
even though the SCC supports up-to 64 GiB in total. The LUTs provide a mechanism
to translate 32-bit physical core address to 34-bit physical system address. The upper 8
bits of a physical core address index a LUT entry, which contains 22 bits, of which the
upper 12 are routing information. The lower 10 bits are prepended to the lower 24 bits
of the core address, resulting in the 34-bit memory address. The LUTs are loaded with
default values at boot time, but it is possible to change them dynamically.

The interaction of the memory with caches depends on its mapping. The part of the
DRAM that is mapped as a shared region between cores can be configured to be cached
or uncached. If memory is configured as cached, read/write accesses go through the
L1 and L2 caches and manual flushing of the L2 cache is required to commit data to
main memory. The SCC does not provide cache coherence, hence concurrent accesses
to shared data may cause memory consistency issues in cached mode. If the memory is
configured as uncached, read/write accesses go directly to main memory (DRAM).



Fig. 2: Image Filter
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Fig. 3: LPEL Execution Layer

There is a tag for data in the MPB called Message Passing Buffer Type (MPBT) that
identifies L1 cache lines. Tagged data bypasses the L2 cache and goes directly to the L1
cache in the case of reads. Write operations to tagged memory are stored in the Write
Combine Buffer (WCB) until an entire cache line is filled or a write access to a different
cache line happens. Intel has also extended the Instruction Set Architecture (ISA) with
an instruction to invalidate all tagged cache lines in L1. Accessing invalidated L1 cache
lines forces an update of the L1 cache lines with the data in the shared memory.

2.3 Stream Programming

In stream programming, a program is structured as a set of computation processes called
nodes and a set of directed communication channels between them called streams.
Stream programs can be viewed as a graphs whose vertices are nodes and whose edges
are streams. Streaming data is presented as an infinite sequence of messages. Examples
of stream programming can be found in [6, 14, 29].

Fig. 2 shows an example of an S-Net [14] program — an image filter. The Split-
ter node consumes an image and splits it into sub-images. The number of sub-images
varies depending on the size of the original image. The sub-images are sent to differ-
ent branches where Filter nodes perform the actual filtering operation. The processed
sub-images are sent to the Merger node, which combines them into a complete image.

2.4 LPEL - A Stream Execution Layer with Efficient Scheduling

Our streaming middleware includes two layers: a runtime system (RTS) and an exe-
cution layer. At the RTS layer, each stream is represented as a FIFO message buffer
and each node of the stream program is transformed into a task. A task is an iterat-
ing process that reads messages from its input streams, performs the associated node’s
computations, and writes output messages to its output streams. The role of the RTS is
to enforce the semantic of stream programs, i.e., to ensure that each task reads from and
writes to its appropriate streams. The execution layer below the RTS provides primitives
for task and stream management and a scheduler that distributes tasks to cores.

The Light-weight Parallel Execution Layer (LPEL) [24] is an execution layer pro-
viding user-space threading and communication mechanisms for stream programs on
shared memory platforms. It provides functions for creating, reading, writing and mod-
ifying streams and a task component to create a wrapper around each node before send-
ing it to the scheduler.

LPEL offers two different schedulers: DS-LPEL uses a global mapper to allocate
tasks to cores and a local scheduler for each core. The local scheduling policy is round-
robin, whereas the mapper uses either a round-robin policy or a static mapping [24].



HRC-LPEL follows a centralised approach of automatic load balancing [21], where
one conductor core is dedicated to manage the set of ready tasks; cf. Fig. 3.

3 LPEL on the SCC
To obtain good performance in terms of throughput and latency, the HRC-LPEL sched-
uler uses the notion of data demands on streams to derive the task priority that is used to
decide which task will be executed on available core. We deployed HRC-LPEL on the
SCC, as it has been shown to be more efficient than the DS-LPEL [21]. Furthermore, it
better suits our future plan to extend the scheduler with power management features.

HRC-LPEL requires shared memory to efficiently move tasks and their associated
states between the workers, however the SCC is by default a distributed memory plat-
form: Each core runs separate OS instance.

Although the SCC offers a fast network between the cores and on-chip shared mem-
ory (MPB), the default configuration does not offer enough shared memory. The limited
number of hardware locks also makes it difficult to deploy HRC-LPEL on the SCC,
as we need at least one lock per stream. Software mechanisms like mutexes from the
POSIX thread library are not safe to use on distributed memory platforms.

For all these reasons we re-configure the SCC as a shared memory platform.

3.1 Shared Memory Creation

We use the LUT entries described in Section 2.2 to configure the SCC such that it
behaves as a shared memory platform. There are 256 LUT entries, of which 0–40 are
used by OS that is running on the core. Entries 192–255 are mapped to the MPBs and
configuration registers. This leaves LUT entries 41–191 unused.

To create shared memory we improve upon technique used in the RCCE [31] li-
brary. In RCCE, 4 LUT entries are mapped to same physical address-space range on
all the cores. As each LUT entry points to a 16 MiB segment of physical memory, this
mapping provides 64 MiB of memory that is shared between all cores. There are two
problems with this approach: Firstly, 64 MiB are not enough to deploy HRC-LPEL and
run some real-world application. The lack of shared memory can be addressed using
the remaining LUT entries. As each entry points to a 16 MiB chunk of memory this
provides us approx 2.5 GiB of shared memory. As mentioned before, 41 of the 256 en-
tries point to physical memory needed by the individual OS instances. To obtain more
shared memory we disable 4 of the 48 cores and use entries from those cores to populate
unused entries of LUT.

The second problem is that with memory mapped as described in RCCE you get
a globally visible shared memory, but the virtual address range is not the same for all
the cores. In this case, pointers are not globally valid. Using offsets from the begin-
ning of the address-space instead would introduce an additional overhead. We solve the
problem by mapping the address-space to same virtual address range on all cores.

Calling standard malloc will allocate space in private rather than shared region of
memory. We have written our own malloc and free functions that are based on K&R
malloc and free [19] to address the issue.

3.2 Shared Memory Management

By using LUT entries to create shared memory, all cores get the same view on the
memory. There are multiple ways we can allocate this shared memory to cores.



The first approach is to have a global allocator that allocates memory to each core
as and when requested. As shared memory is global each core has to grab the lock,
allocate memory and release lock. The lock is necessary as we do not want meta-data
within the memory allocator to be corrupted due to simultaneous accesses by multiple
cores. This creates unnecessary contention and adversely impacts the performance.

In the second approach, the global memory is divided into chunks of equal size and
then each core can locally manage its chunk. The problem with this approach is that
not all tasks need the same amount of memory. If we distribute equally-sized chunks of
memory to all the cores, we waste resources.

To alleviate this problem we can fuse the first and second approach to create a
hybrid allocator. We can have a global allocator that allocates chunks of memory as and
when required by participating cores and then cores allocate memory locally from these
chunks. When cores do not have enough memory to fulfil the next request for memory
allocation, it will request another chunk from the global allocator.
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Fig. 4: Shared memory layout

Figure 4 depicts the view of shared memory from perspective of different cores.
When a core makes a request to the global allocator it receives a chunk of memory.
The chunks that are managed by a core may not be contiguous. Thus the core keeps its
free storage as a circular list of free blocks, e.g., core 1 manages chunk 1 and 3. If we
consider core 1’s view at the chunks then both chunks are divided into small multiple
blocks. The local allocator manages two lists; first to keep track of free storage, known
as free list. Second list is garbage list to keep track of garbage storage that needs to be
added back to free list. Each block contains a header indicating its size, a pointer to the
next block, and an owner id, followed by the actual memory.

Algorithm 1 allocates n bytes of memory from local shared memory. The local
allocator scc malloc local uses a “first fit” algorithm [19] that is not thread-safe. It is
therefore protected by a lock (lines 1–3). A return value of NULL means there is no
block available from where core can allocate required memory (line 4). The core then
requests a new chunk of memory from the global allocator (line 5). In order to ease
the contention on global allocator the core always requests m bytes where m > n.
To make this newly allocated memory chunk available to the requesting core, we call
scc free local on it so that it gets added to the free list (line 7).



The function scc malloc local is called again to allocate memory. If the return value
is still NULL that means there is not enough memory available and an error is returned
(lines 8–13). All the calls to scc malloc local and scc free local are protected by a mu-
tex from the POSIX thread library to make them thread-safe.

Algorithm 2 is a simple allocator that keeps track of the size of the global shared
memory and the starting point of this memory as meta-data. When a request for memory
allocation is made by a core, the global allocator performs three steps: First it checks,
if there is enough memory to allocate. If so, it continues to the next step—otherwise it
returns an error. Next it uses a lock implemented by using a test-and-set register to avoid
any corruption of meta-data. Finally it allocates the required memory block and adjusts
the size and starting point of the global shared memory before releasing the lock. This
hierarchical malloc means we will also need a hierarchical free.

Algorithm 1 scc malloc local to allocate
n bytes from local shared memory
1: mutex lock()
2: memptr← scc malloc local(n) . K&R

malloc
3: mutex unlock()

4: if memprt = NULL then
5: chunk← scc malloc global(m)
6: mutex lock()
7: scc free local(chunk)
8: memptr← scc malloc local(n)
9: mutex unlock()

10: if memprt = NULL then
11: Not enough memory available, return

Error
12: else
13: Return memptr

Algorithm 2 scc malloc global to allo-
cate m bytes from global shared memory
Require: m ≤ available global memory
1: tas lock()
2: chunk←m bytes from global memory
3: tas unlock()
4: Return chunk

Algorithm 3 scc free local to free mem-
ory pointed by p

1: if not (shmStart < p < shmEnd) then
2: standard free(p) . p points to private

memory
3: return
4: if owner id = core id then
5: mutex lock()
6: scc free local(p) . K&R free
7: mutex unlock()
8: else
9: acr lock()

10: add p to garbage list of core with
owner id

11: acr unlock()

Algorithm 4 scc free garbage to free
memory from garbage list
1: acr lock()
2: glfirst← gl . copy the garbage list gl
3: gl← NULL . empty the garbage list
4: acr unlock()

5: mutex lock()
6: while glfirst 6= NULL do
7: glnext← block after glfirst
8: scc free local(glfirst) . K&R free
9: glfirst← glnext

10: mutex unlock()

Algorithms 3 and 4 free the shared memory that was allocated with our own alloca-
tor function scc malloc local. We know the range of the global shared memory region



and can check if the memory that is being freed is within this shared region or not (line
1). If the memory pointed by p was allocated in private region using standard malloc,
then we need to free it using standard free (line 2). If it was allocated in shared re-
gion then owner id from memory block and core id are compared (line 4). If the owner
id and core id are the same, then we call function scc free local, which is the stan-
dard free function corresponding to scc malloc local [19]. As mentioned earlier calls to
scc free local are protected by a lock to ensure thread-safe operation (lines 5–7).

Each core maintains a garbage list of blocks to be freed. Access to this garbage list
is protected by locks. In case of id mismatch, the core will add the block to the garbage
list of the core that allocated the block (lines 9–11).

Algorithm 4 frees the memory blocks that were added to its garbage list by some
other cores. This algorithm is executed periodically during scheduling cycle.

Here we use two different locks. The first lock is to protect the garbage list from
being corrupted due to the concurrent access by other cores (lines 1,4). We use atomic
counter registers of the SCC to implement this lock. The second lock is local to the
core to ensure thread-safe operation of scc malloc local and scc free local by using
a pthread mutex (lines 5,10). Once the garbage list is copied and the original list is
emptied, we can release the lock so that other cores can start adding memory block to
be freed (lines 2,3). Then we loop through copied list and add blocks to free list (lines
6–9) by calling function scc free local (line 8).

3.3 Conductor/Worker Initialisation

When deploying the HRC-LPEL scheduler on the SCC, it makes sense to create exactly
as many workers as there are cores, as the cores of SCC are single-threaded. As there
is no shared memory at the beginning, we can not just create conductor/workers on a
single core and then distribute them amongst participating cores. For this purpose, when
the execution of a program starts, a configuration file is used to decide which core will
be the conductor based on the physical core id.

As mentioned in Section 3.1, to create a truly globally shared memory, all cores have
to map part of program’s address-space to same virtual address range. At the beginning
there is no shared memory, apart from the MPB. Meta-data, including a flag necessary
to establish communication between cores is located in a pre-defined location in MPB.

If a core is a conductor, it starts by initialising the shared memory, tasks, streams
and the static parts of streaming network. If core is a worker, it will busy-wait on a
flag located in MPB. Once the conductor has mapped the LUT entries and created the
shared memory, it places the relevant LUT configuration in the MPB and sets the flag.
Once the flag is set the worker cores configure their LUTs to map shared memory to
same virtual address range as conductor.

HRC-LPEL uses mailboxes to facilitate communication between conductor and
workers. Each mailbox is protected by a lock to ensure that no messages are lost. Once
the mailboxes are setup, the workers request tasks to execute from the conductor and
the conductor will fulfil these requests based on demand and task priority. When there
are no more messages to be processed, the conductor sends a termination message to
all the workers via mailbox.

3.4 Synchronization primitives

HRC-LPEL requires a number of means to synchronise at different points.



– when initialising, the conductor/workers need a shared flag
– the meta-data of the global shared memory may be accessed by conductor/workers

concurrently
– meta-data of the local shared memory needs to be protected against concurrent

access by multiple threads
– the mailbox is an example of producer/consumer, where messages are

added/removed from queue. This queue needs to be protected against concurrent
access to ensure messages are not lost

– streams are used to transfer data/messages between tasks. Streams are implemented
as FIFO buffers, and these buffers need protection to ensure integrity of data (during
reading/writing to the stream).

We already use all the hardware registers provided by SCC for synchronisation.
The MPB is used to store the shared flag. We use the test-and-set registers to implement
locks that protect the meta-data of the global shared memory. We use the atomic counter
registers to implement locks to protect the garbage list and the mailboxes.

We still need synchronisation primitives to protect the streams and for allocating
core local shared memory. For this purpose we use POSIX (pthread) mutexes. The SCC
runs an OS instance on each core, so we create mutexes with the process shared attribute
set. When different worker threads try to access the same mutex, it will be seen as it
was accessed by different processes.

4 Experiments
We evaluate the efficiency of HRC-LPEL with dynamic load balancing on the SCC
and compare it to DS-LPEL with manual load balancing. In the latter each core has its
local round-robin scheduler, and the cores communicate via MPI. We also evaluate the
scalability of HRC-LPEL for varying numbers of cores.

4.1 Experimental Setup
In our experiments we used a default sccKit 1.4.2 configuration, with the cores run-
ning SCCLinux at 533MHz, and memory and mesh running at 800MHz. We used the
SCCLinux driver for memory mapping.

We used four benchmarks implemented using the S-Net coordination language [14]:

– DES: Encrypts data using DES. This benchmark performs computationally inten-
sive operations on relatively small chunks of data of 2 kB.

– FFT: Calculates a fast fourier transform. This benchmark performs computationally
less intensive operation on relatively large chunks of data of 64 kB.

– HIST: Calculates histograms of images. This benchmark performs computationally
intensive operations on relatively large chunks of data of 127 kB.

– FILT: Applies a series of filters on images. This benchmark performs computation-
ally intensive operations on relatively large chunks of data of 127 kB.

Each benchmark contains a pipeline performing the application’s main function. To
increase the level of concurrency, S-Net provides parallel replication to create multiple
instances of the pipeline.

We used 4 out of the 48 cores as donors for shared memory, and 4 further cores to
model an external source/producer and sink/consumer for stream programs. Since we
need at least one conductor and one worker, our baseline is 2 cores.



The SCC does not provide cache coherency and offers no direct control over cache
flushing, so we have to ensure consistency when using the cache. We use two variants
of HRC-LPEL: In DLB only the task stack—consisting of non-shared data—is cached,
whereas in NDLB we do not use caching. For DS-LPEL with manual load balancing
MPI is used and memory is not shared, so we can make full use of caching. In this
approach, which we denote MLB, each benchmark is mapped to achieve the best load
balance, i.e., each instance of the pipeline is mapped on a separate core.

The first core is special: Besides processing messages, it is also responsible for re-
ceiving input messages from the environment, distributing messages to the other cores
and collecting them, and sending them out to the environment. The MPI communica-
tions occur only between the first and all other cores. To ensure the message order, MPI
must be used in blocking mode.

4.2 Experimental Results
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Fig. 5: Performance of FFT on NDLB, DLB and MLB

Fig. 5 shows the maximum throughput and minimum latency of the FFT benchmark.
NDLB outperforms DLB by a factor of at least 1.5 for both, throughput and latency,
even though caching is disable in NDLB. Since the SCC is configured as a shared
memory platform, the caches need to be flushed to ensure data integrity among cores.
This causes a significant overhead that caching cannot compensate.

MLB has the lowest throughput, because the communication performance of MPI
is inferior to direct memory access. The maximum communication bandwidth between
2 cores is around 2.78 MiB/s for MPI. Transferring 64 kB between 2 cores takes more
than 22 ms via MPI but only 15 ms via direct memory access. With 2 cores the through-
put for MLB is smaller than for DLB and NDLB, and for more cores the MPI band-
width is shared. MLB requires one core to communicate with all other cores, sending
input messages and receiving output messages. Due to similar load on the cores, this
communication is likely to coincide. MPI introduces a (de)serialising and (un)packing
overhead and operates in blocking mode and this forces each core to wait while sending
messages via the MPI interface. As a result the MLB throughput for MLB can be 7
times smaller than for DLB and 20 times smaller than for NDLB, as shown in Fig. 5.

MLB has a higher latency than NDLB and DLB. Besides the beforementioned rea-
sons, the HRC-LPEL scheduler affords control over the consumption rate of input mes-
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Fig. 6: Scalability of FFT on NDLB
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Fig. 7: Scalability of DES on NDLB
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Fig. 8: Scalability of Histogram on NDLB
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Fig. 9: Scalability of Filter on NDLB

sages to optimise latency [21]. MLB lacks this feature and allows the program to con-
sume input messages even when it is overloaded and unable to process them. The la-
tency for MLB can be 370 and 900 times higher than for DLB and NDLB, respectively.

Fig. 6 shows how NDLB scales for the FFT benchmark. From 2 to 16 cores the
throughput scales roughly linearly, but more cores imply more memory accesses. Mem-
ory is managed by 4 memory controllers and extensive access can cause contention.
Therefore throughput does not scale well between 32 and 40 cores. Although FFT op-
erates on a sizeable amount of data (64 kB), the computation time is relatively small.
On average each task takes 65 ms to process a message, so each core must access a
large amount of data frequently.

In contrast, DES requires extensive computation on a small amount of data. Each
input message is 2 kB and each task takes 194 ms on average to process a message. For
this reason, the throughput of DES scales better, as shown in Fig. 7.

The latency depends on the immanent concurrency level of the stream program.
Increasing the number of cores takes advantage of the concurrency within the stream
program and helps to reduce the latency. However, more cores also imply higher com-
munication costs, as tasks are spread among cores. Figs. 6 and 7 show that the latency
decreases when we increase the number of core up to 16. For 32 and 40 cores the com-
munication overhead surpasses the benefit of concurrency. The latency of DES and FFT
therefore does not scale well for 32 or 40 cores.

Fig. 8 and Fig. 9 shows throughput and latency for HIST and FILT benchmark
respectively. In contrast to DES and FFT here we can see roughly linear scaling in
throughput from 2 cores all the way to 40 cores. This was expected, as HIST and FILT
are computationally more intensive than DES and FFT. For HIST the latency continues
to decrease up to 40 cores. In contrast, a decrease in latency can be observed for FILT



for up to 32 cores, after which it rises sharply. One reason can be the higher number of
message queuing at merge point in the stream network, which can be a bottleneck.

Table 1 shows the minimal and maximal execution time for each task in the bench-
marks. Some of these tasks have multiple instances occurring in the separate parallel
pipelines created by S-Net. We can see that all benchmarks show a considerable vari-
ation in execution times of tasks. This can be attributed to high work-load imbalance
which depends highly on input messages. These numbers underline the need for a load
balancing scheduler like the one we have presented.

The table shows that the <collect> task of the FILT benchmark has nearly 4000%
variation on 40 cores (for 32 core run this variation is 495.30%). The <collect> task
merges messages from multiple streams and forwards them to the subsequent compo-
nent. Such a high variation indicates that at some point multiple messages were waiting
to be merged, resulting in the sharp increase in latency seen in Fig. 9.

Benchmark Task Min Max Diff (%)

FFT
initP 1.1232s 1.9954s 77.65s
stepP 10.3226s 15.2775s 48.00s

HIST

<collect> 0.9477s 1.5814s 66.86s
<split> 0.8987s 4.2756s 375.74s

split 3.9660s 5.0427s 27.15s
calHist 22.3738s 28.7144s 28.34s

FILT

<collect> 0.6123s 27.0231s 4313.34s
<filter> 0.1787s 0.4919s 175.19s

<parallel> 0.4500s 1.5947s 254.38s
<split> 0.3979s 11.5076s 2792.24s

filt 134.2071s 470.1736s 250.33s
split 1.0512s 6.3557s 504.62s

Table 1: Minimal and maximal task execution time on 40 cores

5 Related work
Verstraaten’s SCC port of S-Net [32], where the core allocation is determined via static
user annotations at the S-Net level, is closely related to our approach. In his approach
the programmer must manually specify the allocation at compile time, which can be
difficult and precludes system-wide load balancing under dynamic demand.

In our approach cores are allocated dynamically at the LPEL level beneath the S-
Net runtime system. The approach involves keeping track of the system-wide workload
and resource availability, enabling efficient task scheduling to maximise throughput and
to reduce latency by dynamic load balancing. Also our approach can easily be extended
towards dynamic power management.

The two approaches also differ in overhead. The distributed version of S-Net runs
several extra tasks per core, such as the input manager, the output manager and the
worker. This incurs extra overhead due to OS-level context switches. Our approach has
only worker tasks, which considerably reduces the context switching overhead.



In [1] authors present a memory allocator called scalloc that is fast, multicore-
scalable and provides low-fragmentation. The allocator is made-up of two parts; a fron-
tend to manage memory in spans and a backend to manage empty spans. spans are same
concept as superblocks in Hoard [3]. The spans are organised in 29 different size classes
ranging from 16 bytes to 1MB. Any request for memory over 1MB is allocated directly
from OS using mmap. Span-pool is a global concurrent data structure that holds spans
in different pools using arrays and stack. Each span is used to fulfil memory request in
terms of blocks, when all the blocks in span are freed, i.e. span has no allocated block
it is returned to span-pool. With regard to memory allocation and deallocation we have
similar approach, for example notion of ownership of memory block and separate lists
to hold memory blocks that needs to be freed. For example, add block to local free list
when allocation was done by same core, or add to remote free list otherwise, in case
of scalloc it will be threads not cores. The main difference in our approach is that our
allocator works across different instance of OS and uses less complex data structure
and, can handle allocation bigger than 1MB in size.

In Intel’s [9] Privately Owned Public Shared Memory (POP-SHM) approach, each
core offers some private memory to share data with other cores. For computations, how-
ever, the data must be copied to private memory. In contrast, our middleware hides the
details of memory management, enabling programming at a high level of abstraction.

Software Managed Cache-coherence (SMC) [33] provides coherent, shared, virtual
memory, but it is the responsibility of the programmer to ensure that data is placed
in the shared region and that operations to shared data are guarded by release/acquire
calls. SMC is a library that provides coherent, shared memory, where as our middleware
provides a high-level abstraction that simplifies programming.

MESH [23] is a framework for memory-efficient sharing. It uses remote method
invocation to pass access to shared object between cores. The MESH framework uses
POP-SHM for shared memory. It provides a higher level of abstraction than POP-SHM,
but in contrast to our approach it does not provide a scheduler that is geared toward
maximising throughput and reducing latency in streaming applications and relieving
the programmer from worrying about load balancing.

Prell et al. [22] have presented an implementation of Go’s [11] concurrency con-
structs on the SCC. Their approach uses Intel’s RCCE [31] as communication library
and employs work-stealing. The work shows that the implementation failed to scale
due to limitation such as the number of simultaneously used channels and the size and
number of data items exchanged over channels. In contrast, our middleware provides
automatic load balancing and avoids these limitation. Furthermore, our middleware can
easily be extended to exploit SCC-specific power management functionality.

6 Summary and Conclusion
We have presented a hierarchical memory management approach for tiled many-core
processors. This memory management approach is capable to provide shared memory
across multiple OS instances running on different cores. Based on that memory man-
ager we were able to port the Light-weight Parallel Execution Layer (LPEL) to the Intel
SCC research processor, making it the first execution middleware with dynamic load
balancing to run on the SCC. We have studied the abstraction of communication, lo-
cal cache deployment, and the resource-efficient use of the cores on the SCC research
processor, which serves as an example of a tiled many-core architectures.



Our results show that our middleware is superior to an MPI-based implementation
in throughput and latency. LPEL relies on multi-threading to offer high-performance
lightweight tasks switching, which requires MPI to use TCP-based sock channels.

We also found that exploiting local caches is basically limited to non-shared data
objects, resulting in inferior performance compared to the non-cached version. Using
a cache-coherent tiled architecture may yield better performance. Further work is re-
quired to study the influence of cache locality and core interconnect topology for cache-
coherent architectures.
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