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Abstract. We present the Symbolic Execution Debugger (SED), an ex-
tension of the Eclipse debug platform for interactive symbolic execution.
Being based on symbolic execution, its functionality goes beyond that of
traditional interactive debuggers. For instance, debugging can start di-
rectly at any method or statement and all program execution paths are
explored simultaneously. To support program comprehension, execution
paths as well as intermediate states are visualized.
Using KeY as underlying symbolic execution engine, SED supports se-
quential Java programs and the inspection of verification proofs.
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1 Introduction

This updated and extended version of [7] presents the Symbolic Execution De-
bugger1 (SED), a language independent extension of the Eclipse debug platform
for symbolic execution. Symbolic execution [3,4,10,11] is a program analysis tech-
nique based on the interpretation of a program with symbolic values. This makes
it possible to explore all concrete execution paths (up to a finite depth). We de-
scribe an SED implementation that uses KeY [2] as the underlying symbolic exe-
cution engine, supporting sequential Java without floats, garbage collection and
dynamic class loading. Our main contributions are the SED platform, interac-
tive symbolic execution of Java and visualization of program behavior including
unbounded loops and method calls.

The SED supports traditional debugger functionality like step-wise execution
or breakpoints, and enhances it as follows: Debugging can begin at any method
or any other statement in a program, no fixture is required. The initial state
can be specified partially or not at all. During symbolic execution all feasible
execution paths are discovered, thus it is not necessary to set up a concrete initial
program state leading to an execution where a targeted bug occurs. At any time
each intermediate state can be inspected using the SED. Intermediate states
1 The website www.key-project.org/eclipse/SED contains an Installation and User

Guide (including instructions on how to use API classes), as well as a screencast and
theoretical foundations.

http://www.key-project.org/eclipse/SED


tend to be small and simple, because symbolic execution can be started close to
the suspected location of a bug and the symbolic states contain only program
variables accessed during execution. This makes it easy for the bug hunter to
comprehend intermediate states and the actions performed on them to find the
origin of a bug. Heisenbugs [5], a class of program errors that disappear while
debugging, are avoided as the behavior of a program is correctly reflected in its
symbolic execution. Besides debugging the SED platform allows to visualize and
explore results of static analysis based on symbolic execution.

2 Symbolic Execution

Symbolic execution (SE) means to execute a program with symbolic values in
lieu of concrete values. We explain SE and how it is used interactively in the
SED by example: method eq shown in the listing in Fig. 1 compares the given
Number instance with the current one.

For a Java method to be executed it must be called explicitly. For instance,
the expression new Number().eq(new Number()); invokes eq on a fresh in-
stance with a different instance as argument. This results in a single execution
path: first the guard in line 5 is evaluated to true, as fields of integer type are ini-
tialized with 0 by default. Finally, true is returned as result. To inspect another
execution path the method has to be called in a different state.

Let us execute method eq symbolically, i.e., without a concrete argument,
but a reference to a symbolic value n which can represent any object or null. In
our SE tree notation we use different icons to underscore the semantics of nodes.
As Fig. 1 shows, the root is a Start Node representing the initial state and the
program fragment (any method or any block of statements) to execute. Here a
call to eq is represented by its Method Call child node.

The if-guard, represented as a Branch Statement node, splits execution when
the field value is accessed on the symbolic object n. Because nothing is known
about n, it could be null. The Branch Condition children nodes show the con-
dition under which each path is taken. On the left, where n is not null, the
comparison in the if-guard splits execution again. If both values are the same,
the return statement is executed, indicated by a Statement node. Now the sym-
bolic path of the method is fully executed and returns true in the Method Return
child node. This SE path ends in the Termination node. The branch where the
values are different looks similar, but false is returned instead. In the rightmost
branch the parameter n has the value null and SE ends with an uncaught
NullPointerException, visualized as an Exceptional Termination node.2

In contrast to concrete execution, SE does not require fixture code and dis-
covers all feasible execution paths (up to its execution depth). Each SE path
through an SE tree may represent infinitely many concrete executions and is
characterized by its path condition (the conjunction of all branch conditions on

2 The instantiation of the thrown exception is not visualized since we do not include
execution of Java API methods for simplicity.



1 public class Number {
2 private int value;
3

4 public boolean eq(Number n) {
5 if (value == n.value) { return true; }
6 else { return false; }
7 }
8

9 // ...
10 }

<start>

self.eq(n);

if (this.value==n.value)

!n = null

self.value = n.value

return true;

<return TRUE as result of self.eq(n);>

<end>

!self.value = n.value

return false;

<return FALSE as result of self.eq(n);>

<end>

n = null

<uncaught java.lang.NullPointerException>

Fig. 1: Source code of class Number and SE tree of method eq

it). SE may not terminate in presence of loops and recursive methods which can
be avoided by applying loop invariants or method contracts, see Section 4.

3 Basic Usage of the Symbolic Execution Debugger

The SED is realized as an Eclipse plugin. SE of a selected method or selected
statements in a method can be started via the Eclipse context menu item Debug
As, Symbolic Execution Debugger (SED). The user is then offered to switch to
the Symbolic Debug perspective, which provides all relevant views for interactive
symbolic execution (see Fig. 2).

The Debug view allows, as usual, to switch between debug sessions and to
control program execution. Instead of the current stack trace of active threads,
the view shows the traversed SE tree. An alternative and more sophisticated vi-
sualization of the SE tree is shown in the Symbolic Execution Tree view. To ease
navigation within large SE trees a thumbnail view called Symbolic Execution
Tree (Thumbnail) is provided. The SE tree of the screenshot (Fig. 2) is iden-
tical to the tree in Fig. 1. The additional frames (blue rectangles) displayed in
view Symbolic Execution Tree represent the bounds of code blocks. Such frames
can be independently collapsed and expanded to abstract away from the inner
structure of code blocks, thus achieving a cleaner representation of the overall
code structure by providing only as much detail as required for the task at hand.
A collapsed frame contains only one branch condition node per path (namely
the conjunction of all branch condition of that particular path), displaying the
constraint under which the end of the corresponding code block is reached.



Fig. 2: Symbolic Execution Debugger: interactive symbolic execution

The symbolic program state of a node consists of variables and their symbolic
values. It can be inspected in the Variables view. The details of a selected variable
(e.g. additional constraints) or node (path condition, call stack, etc.) are available
in the Properties view. The source code line corresponding to the selected SE tree
node is highlighted in the editor. Additionally, the editor highlights statements
and code members reached during symbolic execution.

The Symbolic Execution Settings view lets one customize SE, e.g., one can
choose between method inlining and method contract application. Breakpoints
suspend the execution and are managed in the Breakpoints view.

In Fig. 2 the SE tree node return true; is selected. In the Variables view
we can see that the symbolic values of field value are identical for the objects
referenced by self (the current instance) and parameter n. This is exactly what
is enforced by the path condition. A fallacy and source of bugs is to implicitly
assume that self and n refer to different instances as they are named differently
and here also because that an object is passed to itself as a method argument.
But the path condition is also satisfied if n and self reference the same object.
The SED helps to detect and locate unintended aliasing by determining and
visualizing all possible memory layouts w.r.t. the current path condition.

Selecting context menu item Visualize Memory Layouts of an SE tree node
creates a visualization of possible memory layouts as a symbolic object diagram



Fig. 3: Symbolic Execution Debugger: different memory layouts

(see Fig. 3). It resembles a UML object diagram and shows the dependencies
between objects, the values of object fields and the local variables of the current
state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Fig. 3, the local
variables n and self refer to objects visualized as rectangles. The content of
the instance field value is shown in the lower compartment of each object. The
local variable exc is used by KeY to distinguish among normal and exceptional
termination.

The toolbar (near the origin of the callout) allows to select different possible
layouts and to switch between the current and the initial state of each layout. The
initial state shows how the memory layout looked before the execution started
resulting in the current state. Fig. 3 shows both possible layouts of the selected
node return true; in the current state. The second memory layout (inside the
callout) represents the situation, where n and self are aliased.

4 Usage Scenarios

Like a traditional debugger, the SED helps the user to control execution and to
comprehend each performed step. It is helpful to focus on a single branch where
a buggy state is suspected. (To change the focus to a different branch, no new
debugging session or new input values are needed). It is always possible to revisit
previous steps, because each node in the SE tree provides the full state.

Finding the Origin of Bugs The explicit rendering of different control flow
branches in the SE tree constitutes a major advantage over traditional debug-
gers. Unexpected or missing expected branches are good candidates for possible



sources of bugs. Fig. 4a shows a buggy part of a Quicksort implementation for
sorting array numbers. Within a concrete execution of a large application a
StackOverflowError was thrown. It indicates that method sortHelper calls
itself infinitely often. Using SED we start debugging close to the suspected lo-
cation of the bug, namely, at method sort. Executing the method stepwise,
exhibits execution paths taken when invoking the method in an illegal state. Ex-
ploration of such cases can be avoided by providing a precondition which limits
the initial symbolic state. In this example, we exclude empty arrays by specify-
ing the precondition numbers != null && numbers.length >= 1 in the debug
configuration. After a few steps, the SE tree produced by SED (see Fig. 4b)
shows that the if statement is not branching. This is suspicious and deserves
closer attention. Inspecting the if guard shows that the comparison should have
been low < high and the source of the bug is found.3

1 public class QuickSort {
2 private int[] numbers;
3

4 public void sort() {
5 sortHelper(0, numbers.length - 1);
6 }
7

8 private void sortHelper(int low, int high) {
9 if (low <= high) {

10 int middle = partition(low, high);
11 sortHelper(low, middle);
12 sortHelper(middle + 1, high);
13 }
14 }
15

16 private int partition(int low,
17 int high) {
18 // ...
19 }
20 }

(a) Buggy Quicksort implementation (from [6])

<start>

self.sort();

sortHelper(0,this.numbers.length-1);

self.sortHelper(low,high);

if (low<=high)

int middle = partition(low,high);

(b) SE tree

Fig. 4: Quicksort example

Program and Specification Understanding SE trees show control and data flow
at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews or
in early prototyping phases, where the full implementation is not yet available. It
works best, when partial method contracts and invariants are available to achieve
3 Without the precondition the bug can be observed as well, but a little later.



compact and finite SE trees. However, useful specifications can be much weaker
than what would be required for verification. The listing in Fig. 5 shows a buggy
implementation of method indexOf with a very simple loop invariant written in
the Java Modeling Language (JML) [12]. We configured the symbolic execution
engine to apply loop invariants instead of unrolling loops, which guarantees a
finite SE tree. The resulting SE tree under precondition a != null is also shown
in Fig. 5. Application of the loop invariant splits execution into two branches.
Body Preserves Invariant represents all loop iterations and Use Case continues
execution after the loop (full branch conditions are not shown for brevity).

Even without checking any further details, it is already indicated by the icon
crossed out in red that the leftmost branch terminates in a state where the
loop invariant is not preserved. Now, closer inspection shows the reason to be
that, when the array element is found, the variable i is not increased, hence
the decreasing clause (a.length - i) of the invariant is violated. The two
branches below the Use Case branch correspond to the code after the loop has
terminated. In one case an element was found, in the other not. Looking at the
return node, however, we find that in both cases instead of the index computed
in the loop, the value of i is returned.

1 public static int indexOf(int[] a,
2 int s) {
3 int index = -1;
4 int i = 0;
5 /*@ loop_invariant i >= 0 && i <= a.length;
6 @ decreasing a.length - i;
7 @ assignable index, i;
8 @*/
9 while (index < 0 && i < a.length) {

10 if (s == a[i]) { index = i; }
11 else { i++; }
12 }
13 return i;
14 }

<start>

Arrays.indexOf(a,s);

int index = -1;

int i = 0;

invariant: i >= 0 & i <= a.length; 
variant: javaSubInt(a.length, i) 
assignable: index, i

Body Preserves Invariant

if (s==a[i])

a[i_0] = s

index_1=i;

<loop body end>

!a[i_0] = s

i++;

<loop body end>

Use Case

return i;

index_1_0 >  -1

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

index_1_0 < 0

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

Fig. 5: Buggy and partially specified implementation of indexOf and its SE Tree



Our examples demonstrate that SE trees can be used to answer questions
about thrown exceptions or returned values. In SED the full state of each node
is available and can be visualized. Thus it is easily possible to see whether and
where new objects are created and which fields are changed when (comparison
between initial and current memory layout).

Using breakpoints, symbolic execution is continued until a breakpoint is hit
on any branch. Breakpoints can be attached to a line of code with or without
a condition or they may consist only of a condition. Thus they can be used to
find execution paths that (i) throw a specified exception, (ii) access or modify
a specified field, (iii) invoke or return from a specified method. Breakpoints can
also be used to (iv) control loop unwinding and recursive method invocation and
(v) to stop at an intermediate state that has a specified property.

5 Verification with SED and KeY

The SED platform allows to perform SE interactively, to visualize the resulting
symbolic execution tree, and to inspect symbolic states. Together, this results
in a powerful debugging tool that in addition can be used to control SE and to
present results of an SE-based analysis.

Going beyond mere SE, the SED can also verify that a Java program satisfies
a given specification written in JML, because it uses KeY as its underlying
symbolic execution engine.4 A program is correct with respect to its specification
if and only if each branch in the SE tree ends with a termination node and no
icons are crossed out in red are displayed in the whole tree. In this case all
branches terminate in a state where the given postcondition (i.e., JML ensures
clause) is fulfilled. If a method call was approximated by a method contract,
the precondition- and caller-no-null checks must have been successful, too. In
addition, all loop invariants present were valid at the start of their loop and
were preserved by the loop body.

An SE tree produced by the SED displays considerably less information than
a full proof tree in KeY [2]: while the former contains only nodes that correspond
to reachable program states, the latter shows all intermediate SE steps performed
during proof construction, including the proof steps for pure first-order verifica-
tion conditions. Hence, the SED provides a software developer’s view on a KeY
proof, hiding intermediate and non-SE related steps. Program states are visu-
alized in a user-friendly way and are not encoded as formulas often distributed
and hidden within large proof goals. A major limitation of the SED compared
to the KeY prover is that it is currently not possible in SED to continue a proof
interactively in case KeY’s proof strategy was not powerful enough to close some
goal automatically. But it provides still the means to interact with the prover
by adapting or inserting additional JML assertions and thus to use KeY with an
auto-active flavor [16,13].

4 The debug configuration allows to select a method contract alternatively to a pre-
condition.



6 Architecture

The SED extends Eclipse and can be added to existing Eclipse-based products.
In particular, SED is compatible with Eclipse’s Java Development Tools (JDT).
To ensure compatibility and to obtain a seamless integration with the Eclipse
user interface, SED uses and extends the Eclipse platform as shown in Fig. 6.

Workspace

Debug CoreJDT Core/Debug

Symbolic Debug Core

KeY Debug Core

Workbench

Debug UI JDT UI

Visualization UI

Symbolic Debug UI

KeY Debug UI

Fig. 6: Architecture of the Symbolic Execution Debugger (SED). Eclipse compo-
nents are shaded in grey, our extensions have a white background.

The core of Eclipse is the Workspace which manages the projects and the
user interface (Workbench) with its editors, views and perspectives. The Debug
Platform extends these with language independent facilities for debugging (De-
bug Core and Debug UI). Finally, JDT offers functionality to edit and debug
Java programs (JDT Core/Debug and JDT UI).

The Symbolic Debug Core component extends the debug model of the Debug
Platform for symbolic execution, independently from specific target languages
and symbolic execution engines. Additional UI extensions (Symbolic Debug UI)
and visualization capabilities (Visualization UI) are available.

The KeY Debug Core component implements the extended debug model for
symbolic execution based on KeY’s symbolic execution engine (available as pure
Java API). The user interface extensions required to launch Java methods and
to execute statements symbolically are provided by the KeY Debug UI.

The architecture of the SED platform allows us to integrate different symbolic
execution engines for the purpose of debugging, program understanding, and to
control analyses based on symbolic execution. In order to integrate a new SE
engine, it suffices to implement the extended debug model for symbolic execution
and to create the user interface extensions to start and control the symbolic
execution. 5

5 The website www.key-project.org/eclipse/SED provides additional documentation
and an example SED implementation as a starting point.

http://www.key-project.org/eclipse/SED


7 Related and Future Work

A number of recent tools implement SE for program verification [9] or test gener-
ation [1,15], which are complementary to SED. In fact, SED could be employed
to control or visualize these tools. As far as we know, EFFIGY [11] was the
first system that allowed to interactively execute a program symbolically in the
context of debugging. It did not support specifications or visualization.

The Eclipse plugin of Java Path Finder (JPF) [14] prints the analysis results
obtained from SE as a text report, but does neither provide graphical visualiza-
tion nor interactive control of SE. JPF is prototypically supported by SED as
an alternative SE engine.

The SE engine and its Eclipse integration described in [8] features non-
interactive graphic visualization of the SE tree. SED allows to interact with
the visualization as a means to control SE and to inspect symbolic states.

A prototypic symbolic state debugger that could not make use of method
contracts and loop invariants was presented in [6]. However, that tool was not
very stable and its architecture was tightly integrated into the KeY system.
As a consequence, the SED was developed from scratch as a completely new
application featuring significant extended and new functionality. It is realized as
a reusable Eclipse extension which allows to integrate different SE engines.

We plan to extend the verification capabilities of the SED to create a full-
fledged alternative GUI of the KeY verification system [2]. The visualization
capabilities and a debugger-like interface will flatten the learning curve to use a
verification system. On the other hand, exploiting verification results during SE
allows to classify execution paths automatically as correct or wrong.
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