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Abstract. The construction of safety-critical real-time applications re-
quires predictable computer platforms that enable a safe and tight static
analysis of those systems. The worst-case performance and the availabil-
ity of tight bounds on the worst-case execution time (WCET) of the
tasks of the applications are of central importance in such systems.
The compiler tool-chain plays an integral part in a real-time platform
infrastructure. Not only is the compiler responsible for relating source
code level annotations such as flow facts to the generated machine code
– a task necessary to achieve high-quality bounds on optimised code.
Also, the analysis tools profit from program information that is read-
ily available in the compiler but difficult to retrieve from the generated
binary alone. Therefore, the compiler should export internal knowledge
about the program to the analysis. Furthermore, compilation for hard
real-time systems requires optimisations that specifically aim at reduc-
ing the worst-case execution path instead of reducing the average case
performance. This requires feedback from the worst-case analysis back
to the compiler.
In this paper we describe the our approach to the compiler tool integra-
tion that has been realised in the platin tool kit, developed in the EU
FP7 T-CREST project. The platin tool kit is a portable glue tool that
interfaces our LLVM-based T-CREST compiler with several research and
industrial strength analysis tools. Our approach is transferable to other
compiler tool-chains and minimises the effort for adapting them for the
requirements of real-time platforms.

1 Introduction

Embedded computer systems are playing an increasingly important role in appli-
cations that are time-critical, e.g., in fly-by-wire applications, in medical equip-
ment, and in control systems of nuclear power plants. To ensure safety, the com-
puter systems controlling the actuators in these applications have to respond



to changes in the environment within strict time bounds. It is thus important
to design and implement these systems to meet their timing constraints and to
show that the implementation indeed fulfils all timing requirements. Despite the
stringent timing requirements of these time-critical applications, the importance
of time as a first-order property of embedded systems behaviour is not adequately
reflected by the platforms and methods/tools widely used for the construction
of the embedded computer systems for these applications.

Within the T-Crest project a new embedded multi-core platform was de-
veloped [14], which emphasised time-predictability in all design decisions. The
T-Crest platform consists of a novel processor core called Patmos [13], a time-
predictable network-on-chip (NoC) that connects the cores to each other and to
a predictable memory controller, and a tool chain centred around LLVM [9] for
compiling and analysing applications written in C code [11].

The primary task of the compiler tool chain in such a platform is to gen-
erate machine code for the target architecture. However, the compiler should
also to try to minimise the worst-case execution time (WCET) of the applica-
tion tasks, and support the worst-case analysis tools in finding tight and safe
WCET bounds. This requires interaction of the compiler with the WCET anal-
ysis tools. In the T-Crest project we implemented common routines for tool
integration and analysis in a separate tool kit called platin that requires only
small adoptions of the compiler and can be reused for other target architec-
tures as well. The platin tool kit is centred around its native PML file format
that stores information about the program structure and meta-information such
as flow facts and analysis results in a target-machine agnostic form. The tool
kit not only contains tools to interface with external analysis tools such as the
industry-standard AbsInt aiT WCET analyser, it also provides tools for tasks
such as flow fact transformation, WCET analysis, graph visualisation and tool
configuration.

In this paper we give an overview of the T-Crest platform, its compiler
tool chain and the platin tool kit. We present how the platin tool kit binds the
compiler and the WCET analysis tools together, show how to use use the platin
tool kit, and briefly discuss the steps required to adapt platin for a new target
architecture. The rest of the paper is structured as follows. Section 2 introduces
the T-Crest platform, while Section 3 overviews the Patmos compiler tool
chain. Section 4 presents the platin tool kit its interaction with the compiler and
analysis tools, and overviews the tools provided by platin. Section 5 demonstrates
the use of platin by means of an example. We discuss related work in Section 6
and conclude this paper with Section 7.

2 The T-CREST Platform

The goal of the T-Crest project3 was to develop a fully time-predictable multi-
core platform. The T-Crest platform consists not only of a novel processor

3 Results and publications of the T-Crest project are available from the project
website http://www.t-crest.org/

http://www.t-crest.org/


Fig. 1: The T-CREST platform and its compiler and analysis software ecosystem.

core, but also includes a time-predictable memory system, a compiler, analysis
tools and runtime libraries. All of them are designed to play together to achieve
a highly predictable platform for embedded systems.

The hardware side of the T-Crest platform consists of the T-Crest multi-
core chip. It contains a configurable number of processor cores. Each core contains
a Patmos processor and several local memories. The Patmos processor [13] uses a
fully-predicated 32-bit RISC-style instruction-set architecture (ISA) and a five-
stage in-order pipeline. Each core features a data cache, a stack cache [1], a
method cache [2] and a local scratchpad. The cores are connected to each other
by a time-predictable network-on-chip [7] called Argo, which can be used for
message passing. A separate time-predictable memory interconnect [4] called
Bluetree connects the cores to the memory controller [5] for the shared RAM.

Figure 1 gives a software-centric overview of the T-CREST platform. The
LLVM-based Patmos compiler tool chain uses the clang C frontend to parse
C code into LLVM bitcode, which is then optimised by LLVM bitcode passes.
The LLVM backend for Patmos patmos-llc generates machine code for the
Patmos processor. The platin tool kit [11] is a key component in the T-Crest
platform for tool integration and WCET analysis. It is tightly coupled with
the compiler tool chain and serves three main tasks. First, it provides tools for
flow fact transformation and for program analysis. Second, it interfaces with
existing analysis tools in order to bring their analysis functionality to the T-
Crest platform. Among the supported tools are the SWEET flow analyser and
the industry-standard AbsInt aiT WCET analyser. Platin can also be used to
analyse execution traces generated by the Patmos simulator pasim. Third, platin
provides utility tools for result visualisation and tool configuration, as well as



driver tools that chain multiple analysis and transformation steps into single,
easy to use commands.

We will overview the Patmos compiler tool chain in the next section, while
the rest of this paper presents the platin tool kit in more detail.

3 The Patmos Compiler

The Patmos processor developed within T-Crest is designed for high time pre-
dictability [13]. The architectural features of this processor are designed to im-
prove performance yet remain inherently timing analysable. This is achieved
by using static (compile-time) alternatives for commonly used performance-
enhancing features at runtime in order to reduce hard-to-analyse dynamic be-
haviour. A worst-case timing analysis tool can then be used to derive tight
WCET bounds for the real-time tasks of the embedded application.

The task of the Patmos compiler is thus twofold. First, the compiler must
generate code that targets the Patmos ISA and exerts control over the com-
ponents of the processor core so that the generated program exhibits a low
WCET [2,1]. Second, the compiler must support the WCET analysis by provid-
ing information available in the compiler that usually is discarded but is valuable
for automated and precise timing analysis. This includes preserving information
about the control-flow structure, but also flow annotations provided by the user
that constrain the possible flow of control, e.g., bounds on the maximum num-
ber of loop iterations (loop bounds). The compiler in turn can profit from static
analysis results from the timing analysis to guide optimisations towards a good
worst-case performance. This requires an integration of the compiler and the
WCET analysis tools.

Figure 2 gives an overview of the compiler tool chain. The compiler is based
on the LLVM compiler framework [9]. At the beginning of the compilation pro-
cess, each C source code file is translated to LLVM intermediate representation
(bitcode) by the C frontend clang. The user application code as well as standard
C libraries and runtime support libraries are linked on this intermediate level by
the llvm-link tool, presenting subsequent analysis and optimisation passes as
well as the code generation backend a complete view of the whole program. This
control-flow graph (CFG) oriented intermediate representation is particularly
suitable for generic target independent optimisations, such as common subex-
pression elimination, which are readily available through the LLVM opt tool.
The llc tool constitutes the compiler backend. It translates LLVM bitcode into
machine code for the Patmos ISA, addressing the target-specific features for time
predictability. The backend produces a relocatable ELF binary containing sym-
bolic address information, which is processed by gold,4 defining the final data
and memory layout, and resolving symbol relocations. An important property of
this compilation flow stems from the fact that the application is already linked
at intermediate level: Optimisations and the code generator have a complete

4 gold is part of the GNU binutils, see http://sourceware.org/binutils/

http://sourceware.org/binutils/


Fig. 2: Overview of the Patmos compiler tool chain

view of the program, which is necessary for optimisations that need to balance
the use of a shared resource across the whole program execution. For example,
Patmos’ specialised software-controlled caches require the compiler to be aware
of all cache accesses along the worst-case path for it to be able to generate code
that exhibits lowest possible WCET.

In addition to the machine code, the backend exports complete information
about the control-flow structure of both bitcode and machine code as well as in-
formation about the program obtained by the compiler in the Program Metainfo
Language (PML) format, as detailed in the following section. The platin tool
kit uses these PML files to perform analysis tasks and to transform flow facts. It
is also able to export program information to analysis tools such as the AbsInt
WCET analysis tool aiT. Analysis results are imported back into the PML file,
which can in turn be passed back to the compiler for iterative WCET driven
optimisation.

The platform, including the processor, a simulator, the compiler tool chain
including the platin tool kit as well as a set of benchmarks is available as open-
source from the T-Crest organisation at github.5 The Patmos handbook [12]
provides detailed information about the installation, a description of the proces-
sor core and its instruction set architecture (ISA) and documents the use of the
compiler tool chain.



Fig. 3: The platin tool interacts with the compiler with its native PML file,
while it communicates with other tools using exporters and importers for their
file formats.

4 The Platin Tool Kit

The main task of the platin tool kit is the tool integration in the T-Crest plat-
form. It uses a YAML6 based file format called PML as its native file format,
which stores control flow information, flow facts and value facts, analysis results,
information to relate different code representations and a hardware description.
Apart from performing tool integration tasks, the platin tool kit has been ex-
tended to provide tools not only for visualisation and inspection of information
stored in PML files but also to include its own set of cache and path analyses to
perform a WCET analysis. Section 4.2 overviews platin’s main tools.

Platin’s interaction with other tools is shown in Figure 3. It gathers infor-
mation from a number of sources. The LLVM backend provides the control-flow
and call targets on both bitcode and machine-code level. The LLVM PML ex-
porter also retrieves value facts about data pointers as well as flow facts from
LLVM-internal analysis passes and adds them to the generated PML file. The
platin tool kit also contains several analysis drivers for external analysis tools.
The trace analysis tool derives execution timings and flow facts from a simula-
tor’s execution trace (pasim for Patmos). Platin can also use the abstract inter-
pretation based analyser SWEET [10] to find additional flow facts. An LLVM
plugin exports the LLVM bitcode representation of the program to the Artist

5 http://www.github.com/t-crest
6 A “human friendly data serialization standard for all programming languages”, see
http://yaml.org/

http://www.github.com/t-crest
http://yaml.org/


Flow Analysis Language (ALF) that SWEET uses as input language. Flow facts
found by SWEET are then imported by platin and mapped back to bitcode.

Using the information provided by the compiler, platin is able to transform
the gathered information from bitcode level to the machine code level. The com-
bined set of flow facts and value facts is then passed on the AbsInt WCET
analyser aiT in aiT’s native AIS format, or used in the internal WCET analysis
tool called WCA. A flow fact simplification step ensures that the flow facts are
expressed in a form that is understood by the used WCET analysis tool.

4.1 Flow Fact Transformation

LLVM splits the task of compiling source code to machine code into two major
steps: compiling to and optimising on a machine-independent intermediate rep-
resentation called bitcode (clang) and lowering bitcode down to machine code
using machine specific optimisations in the backend (llc). The LLVM backend
does not change the control flow in a major way since optimisations such as
loop transformations and inlining are performed at bitcode level. This enables
platin to map bitcode and machine code across the backend automatically using
relation graphs [6] with almost no adaption of the backend. Using these relation
graphs, platin is able to transform linear flow facts from bitcode to machine code
without further user assistance.

Maintaining flow facts across high-level optimisations is inherently more dif-
ficult and requires at least some compiler support. There are various approaches
to that problem. Transforming the flow facts along with the optimisation trans-
formations can be done either by the compiler itself as implemented in the WCC
compiler [3], or by an external tool that requires a log of all compiler transfor-
mations as proposed by Kirner et al˙ [8]. Platin leaves the task of high-level
flow fact transformation to the compiler. The Patmos compiler must therefore
ensure that flow facts that are exported to PML match the exported optimised
bitcode. Flow facts that are derived directly from LLVM analyses do not need
to be co-transformed since the LLVM framework itself either updates or reruns
analyses after optimisation passes as required. For manual source code annota-
tion, the Patmos compiler currently supports constant loop bound flow facts as
source code pragmas. The compiler disables transformations that might inval-
idate these loop bounds for functions containing such source annotations. The
preserved source code pragmas can thus be directly exported to PML.

For the future we plan to support arbitrary linear flow facts in the Patmos
compiler by using source code markers. In contrast to other techniques, using
flow markers requires only minimal changes to the compiler. In particular, opti-
misations do not need to update flow facts as long as the code transformations
preserve the sequence of markers on any program path. This makes integrating
and maintaining flow fact support in a large existing and constantly evolving
compiler such as LLVM much more feasible. Support for source code markers is
still under development in the Patmos compiler though.



4.2 Platin Tools

The core of platin is a Ruby framework for working with PML data. It pro-
vides common functionality such as reading and writing PML files, accessing and
traversing PML data structures, merging and modifying PML data, constructing
various graph representations and working with context-sensitive information.
The tools and analyses in platin are built on top of that framework. The tools
typically accept one or more PML input files and a number of options, and will
generate a new PML output file. The tools can be chained together by passing
the output PML file of any tool as input of another platin tool. Platin tools can
also invoke other platin tools internally in order to implement complex function-
ality. In this case, PML data is passed between the tools in-memory. The Ruby
scripting language enables rapid development of tools and analyses and allows
the developer to focus on the task at hand, which is especially essential in a
research environment. While a Ruby implementation implies some performance
drawbacks compared to other languages, we did not find the performance of the
platin tools to be an issue in our experiments.

Platin provides several tools to work with its native PML file format. The
platin pml tool can merge and validate PML files or print out flow facts, value
facts and timing analysis results in a condensed form. The visualize tool can
be used to visualise control flow graphs and relation graphs.

Platin can also be used for for tool configuration. It uses PML files to config-
ure parameters of the hardware model, such as cache parameters and memory
latencies. The platin pml-config tool can be used to generate or modify such
a PML hardware model, while the tool-config tool generates command line
options for tools like the compiler and the simulator to configure them consis-
tent with the hardware model. Other tools like the WCET analysis tool and the
aiT export also use the PML hardware model configuration to setup the timing
parameters.

For tool integration, platin provides tools such as sweet, analyze-trace

and pml2ais. The sweet tool invokes SWEET to find flow facts. The results are
parsed and added to the PML file. The analyze-trace tool generates flow facts
from simulation runs, which are only valid for the inputs used in the simulation
but are useful for testing the correctness and precision of WCET analyses. Flow
facts are attached either at bitcode or at machine code level, depending on their
source. The transform tool converts flow facts between different levels. The
pml2ais tool in turn exports flow facts to the AbsInt aiT AIS file format and
generates an analysis project file for aiT based on the platin configuration.

The platin wcet tool is a driver tool for the WCET analysis tools. It invokes
either AbsInt aiT using the pml2ais exporter or platin’s internal WCET analysis
wca. The wcet tool can optionally use many of the above tools to find and
transform additional flow facts. It also sets up the analysis tools according to
the PML hardware model and provides options to configure specific analysis
modes such as always-hit or always-miss cache analyses.



4.3 Integrating platin Into Other Compiler Tool Chains

The platin tool kit has been designed to support multiple architectures with a
minimal effort for adapting platin and the compiler tool chain. The PML file for-
mat and most of the functionality of platin is architecture independent. Memory
latencies and caches are configured in a generic hardware model. Support for
analysis tools like aiT and SWEET that support multiple target platforms is
implemented in generic platin tools. Architecture dependent analysis and tool
integration code is encapsulated in architecture modules in platin. Adapting
platin to a new architecture thus only requires the implementation of a new ar-
chitecture module for that platform, which invokes platform-specific tools such
as a simulator and performs basic analysis tasks such as deriving the WCET of
a basic block.

Platin requires a compiler backend that generates PML files. For LLVM back-
ends, the PML export machine-function pass can be reused, as it also has been
implemented in a generic way. This is possible due to the generic representation
of machine code in LLVM backends. The PML export pass creates PML files,
exports the structure of machine code, bitcode and relation graphs. Only the
classes that retrieve target-specific information such as call or jump targets and
interface with backend analysis passes need to be specialised. Work on high-
level support for flow-fact transformation in the clang frontend and on bitcode
level can be reused directly from the Patmos compiler, since the frontend and
middle-end is platform independent.

Platin fully supports the Patmos platform and has some initial support for
an ARM tool chain support. We do believe that basic support for other LLVM
based compiler tool chains can be achieved comparatively quickly, as only a few
key components in the LLVM backend and in platin need to be implemented or
adapted. As a result and due to platin’s open source nature, the platin tool kit
can be useful for other projects in the domain of embedded real-time systems as
well.

5 Example

In this section we demonstrate some of the tools of platin. We show a typical
workflow by compiling and analysing a small demo application on Patmos. A
quick start guide for installing the Patmos tool chain can be found in the Readme
file of the Patmos repository7 or in the Patmos handbook [12].

Listing 1 shows the content of sort.c. It contains a simple insertion sort
implementation in function sort. Our target function for analysis is gen sort,
which fills an array with N pseudo-random numbers and then sorts the array.
In order to prevent the compiler from inlining and removing our analysis target
function, we mark the function as noinline. The code contains loop bound
annotations for the WCET analysis in the form of pragmas.

7 https://github.com/t-crest/patmos

https://github.com/t-crest/patmos


Listing 1: Demo application that initialises and sorts an array.

#include <s t d l i b . h>

#define MAX SIZE 100

void s o r t ( int ∗arr , s i z e t N) {
#pragma loopbound min 0 max 99
for ( int j = 1 ; j < N; j++) {

int i = j − 1 ;
int v = arr [ j ] ;
#pragma loopbound min 0 max 99
while ( i >= 0 && arr [ i ] >= v) {

ar r [ i +1] = ar r [ i ] ;
i = i − 1 ;

}
ar r [ i +1] = v ;

}
}
void gen so r t ( int ∗arr , s i z e t N) a t t r i b u t e ( ( n o i n l i n e ) ) ;
void gen so r t ( int ∗arr , s i z e t N) {

#pragma loopbound min 1 max MAX SIZE
for ( s i z e t i = 0 ; i < N; i++) {

ar r [ i ] = rand ( ) % N;
}
s o r t ( arr , N) ;

}
int main ( int argc , char∗∗ argv ) {

srand (0) ;
int ar r [MAX SIZE ] ;
s i z e t N = rand ( ) % (MAX SIZE / 2) + (MAX SIZE / 2) ;

g en so r t ( arr , N) ;

return 0 ;
}

All tools in the Patmos tool chain are configured to use the default Patmos
hardware configuration if no further options are given. In this example we show
how to use platin to configure a different hardware setup. For this, we use
pml-config to generate a modified hardware model:

platin pml-config --target patmos-unknown-unknown-elf \

-o config.pml -m 2k -M fifo8

This command generates a new config.pml file containing a description of
the default hardware model, except that we use a method cache of only half the
size (2 KB size with a tag memory of 8 entries).

In the next step, we compile our program using the patmos-clang com-
piler driver. We also use the platin tool-config tool to setup the compiler
according to our modified hardware model. tool-config can be used in a simi-
lar manner to setup pasim, the Patmos simulator. We need to explicitly enable
optimisations with -O2, as the default optimisation level is -O0.

patmos-clang ‘platin tool-config -i config.pml -t clang‘ \

-O2 -o sort -mserialize=sort.pml sort.c



Listing 2: Analysis report for the sort application

---
- analysis -entry: gen_sort

source: trace
cycles: 49089

- analysis -entry: gen_sort
source: platin
cycles: 644867
cache -max -cycles -instr: 651
cache -min -hits -instr: 398
cache -max -misses -instr: 3
cache -max -cycles -stack: 0
cache -max -misses -stack: 0
cache -max -cycles -data: 436779
cache -min -hits -data: 0
cache -max -misses -data: 10599
cache -max -stores -data: 10200
cache -unknown -address -data: 20799
cache -max -cycles: 437430

The driver calls all commands necessary to compile the source code, link and
optimise the bitcode and generate and link the final binary sort. The option
-mserialize causes the compiler to generate the PML file sort.pml. It contains
a description of the application control flow at bitcode level (after the bitcode
optimisations) and of the final machine code. It also contains value facts and flow
facts such as loop bounds as found by the compiler as well as our source-code
loop annotations, and relation graphs relating the bitcode and machine code
control flow graphs.

Now we are ready to analyse our target function. We use the platin wcet

driver tool to run all necessary commands, including the trace analysis and the
platin WCET analysis tool WCA. The driver tool will automatically try to run
the AbsInt aiT analysis tool if it is installed.

platin wcet -i config.pml --enable-trace-analysis --enable-wca \

-b sort -e gen_sort -i sort.pml --outdir tmp \

-o wcet.pml --report report.txt

We need to pass the name of the binary file (-b) and both the compiler gen-
erated PML file and the hardware model PML file (-i) to platin. The -e option
tells platin the name of the analysis target function. The optional --outdir

option causes platin to keep temporary files and store them in the given direc-
tory, mainly the generated project files for the AbsInt analyser tool a3patmos.
The optional -o option stores detailed analysis results such as the found WCET
bounds for the target function, execution timings of basic blocks and execution
frequencies of blocks on the worst-case path along with the program informa-
tion from the input files in a PML file for further analysis or for WCET-driven
optimisations.

The --report option causes platin to store the result summaries of the anal-
yses in report.txt. Listing 2 shows the content of that file. In this example the



Listing 3: Flow facts from LLVM and user annotations as reported by platin

=== flowfacts generated by llvm.bc ===
--- loop -bound ---
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: gen_sort/for.cond >:

↪→ [1 gen_sort/for.cond] less -equal (1 + %N)>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less -equal (1 umax %N)>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>
#<FlowFact origin=llvm.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>
=== flowfacts generated by user.bc ===
--- loop -bound ---
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/for.cond >:

↪→ [1 gen_sort/for.cond] less -equal 101>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less -equal 100>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: gen_sort/while.cond.i>:

↪→ [1 gen_sort/while.cond.i] less -equal 100>
#<FlowFact origin=user.bc ,level=bitcode , in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less -equal 33>

platin WCET analysis derives a lower WCET bound than aiT. aiT is able to
find better loop bounds and thus finds fewer data cache misses for the sort loop,
but it assumes higher costs for instruction cache misses than platin.

Both analyses seem to highly over-approximate the actual WCET when com-
pared to the trace results of the execution. However, while we assume that in
the worst case the whole array is used, the actual execution only fills and sorts a
fraction of the array. Hence the measured execution time is not a good indicator
for the worst-case performance.

The inner loop of the sort function is a triangle loop. Our annotated global
loop bound of (N − 1)2 is thus about a factor of two too large. For loops with
constant bounds, LLVM is capable of detecting such triangle loops and deriving
the correct bounds automatically. Our PML export uses the LLVM analysis
results to generate additional flow facts. platin provides a tool to print all flow
facts in a PML file in a compact form.

platin pml -i sort.pml --print-flowfacts

Listing 3 shows the output of that command. We find our manual loop an-
notations in the user.bc origin section. Note that LLVM inlined the sort()

function, therefore our loops are now in function gen sort.8 The loop bounds
are expressed as flow constraints on the loop header blocks.9 We can also see
that LLVM managed to find parametric loop bounds for two loops, but failed
to find a loop bound for the inner triangle loop since in our case the size of the

8 Function umodsi3 implements the modulo operator, as Patmos does not provide a
modulo instruction in hardware.

9 The right-hand side of the constraint is larger than our loop bound by one because
the loop header is executed one additional time more than the loop body to jump
out of the loop when the loop condition becomes false.



array to sort is not fixed but parametric. It is thus necessary to annotate the
inner loop manually. Platin supports arbitrary linear flow constraints in PML. It
is possible to manually supply additional flow constraints in PML format. Sup-
port for source code flow annotations beyond local loop bounds in the Patmos
compiler is planned for future development.

We can also use platin to visualise control-flow graphs, call-graphs and rela-
tion graphs:

platin visualize -i wcet.pml -o out -f gen_sort \

--show-timings=platin

This command generates all graphs for function gen sort and stores them
in the output directory out. Figure 4 shows the generated control-flow graphs
at bitcode level (after optimisation) and of the final machine code. The latter
graph is the same graph that is used for WCET analysis by platin. Square boxes
correspond to basic blocks or basic block slices, while round boxes are virtual
nodes inserted by platin. The block node labels in the machine code graph show
the address and the number of the basic block, as well as the name of the
corresponding bitcode block (in brackets) and the range of the instructions in
the basic block slice (in square brackets). The --show-timings option causes
platin to highlight blocks and edges that are on the worst-case path found by
the given analysis tool in the machine-code graph. Edges between basic blocks
are annotated with their worst-case execution frequency and their associated
WCET contribution.

6 Related Work

The WCET-aware C Compiler (WCC) [3] is a custom developed C compiler that
focuses on WCET optimisation, targeting Infineon TriCore microcontrollers. It
uses a machine-independent high-level intermediate representation called ICD-C
for high-level optimisations, and a retargetable low-level intermediate represen-
tation called ICD-LLIR for machine optimisations and code generation. WCET
analysis is performed by the AbsInt aiT tool at ICD-LLIR level and adds analy-
sis results such as basic block execution times and encountered instruction cache
misses, as well as information about the found worst-case path to the ICD-LLIR.
The compiler maintains a mapping between the blocks of the ICD-C and ICD-
LLIR representations, so that WCET analysis results can be used by high-level
optimisations on ICD-C as well. Flow facts are transformed and updated by
compiler and its optimisation passes itself.

Kirner et al. transform flow information in parallel to high-level optimisations
such as loop interchange [8]. Their transformation technique requires control-
flow update rules for optimisations that modify the control-flow graph or change
loop bounds or other flow constraints. These update rules specify the relation
between edge-execution frequencies before and after the optimisation, and are
used to consistently transform all flow constraints affected by the optimisation.
The method was implemented for source-to-source transformations but should
be applicable to bitcode as well.



CFG for gen_sort

entry |1|

for.cond |4|

for.body |28| for.cond.i |4|

for.body.i |3| sort.exit |1|

while.cond.i |5|

land.rhs.i |5|

while.end.i |4|while.body.i |3|

(a) Bitcode CFG

CFG for 7/gen_sort

START

0x20624: 0(entry) [0..21]

END

LOOP enter 1

 f = 1
 max = 22 cycles
 sum = 22 cycles

0x20694: 1(for.cond) [0..1]

0x2069c: 1(for.cond) [2..2] 0x20754: 9(for.body) [0..39]

 f = 100
 max = 257 cycles
 sum = 752 cycles

LOOP exit 

 f = 1
 max = 5 cycles
 sum = 5 cycles

0x206a0: 2(while.body.i) [0..2]

LOOP cont 5

 f = 9801
 max = 24 cycles
 sum = 235224 cycles

0x206ac: 3(while.end.i) [0..3]

LOOP cont 7

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206bc: 4(land.rhs.i) [0..5]

 f = 9801
 max = 29 cycles
 sum = 284229 cycles

0x206d4: 4(land.rhs.i) [6..6]

LOOP exit 

 f = 99
 max = 30 cycles
 sum = 2970 cycles

0x206d8: 5(while.cond.i) [0..1]

0x206e0: 5(while.cond.i) [2..2]

LOOP exit 
 f = 9900
 max = 5 cycles
 sum = 49500 cycles

0x206e4: 6(for.body.i) [0..3]

LOOP enter 5

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206f4: 7(for.cond.i) [0..1]

0x206fc: 7(for.cond.i) [2..2]

LOOP exit 

 f = 1
 max = 4 cycles
 sum = 4 cycles

 f = 99
 max = 5 cycles
 sum = 495 cycles

LOOP exit 

 f = 1
 max = 4 cycles
 sum = 4 cycles

0x20700: 8(sort.exit) [0..16]

 f = 1
 max = 17 cycles
 sum = 17 cycles

CALL __umodsi3()

0x20804: 9(for.body) [40..44]

LOOP cont 1

 f = 100
 max = 507 cycles
 sum = 23673 cycles

LOOP enter 7

(b) Machine-code CFG with platin WCET results

Fig. 4: Bitcode and machine-code control-flow graphs for gen sort.



7 Conclusion

In this paper we presented an overview of the Patmos compiler tool chain and
the platin tool kit. The platin tool kit combines several tools for compiler and
WCET analysis integration, tool configuration and flow fact transformation. We
demonstrated the platin tool kit on a sample application and showed how to
perform a WCET analysis using platin. Due to its design, it should be possible
to adapt and integrate platin into other LLVM based compilers with a low effort.
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