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Abstract We explore software diversity as a defense against side-channel
attacks by dynamically and systematically randomizing the control flow
of programs. Existing software diversity techniques transform each pro-
gram trace identically. Our diversity based technique instead transforms
programs to make each program trace unique. This approach offers prob-
abilistic protection against both online and off-line side-channel attacks.
In particular, we create a large number of unique program execution
paths by automatically generating diversified replicas for parts of an input
program. Replicas derived from the same original program fragment have
different implementations, but perform semantically equivalent computa-
tions. At runtime we then randomly and frequently switch between these
replicas.
We evaluate how well our approach thwarts cache-based side-channel
attacks, in which an attacker strives to recover cryptographic keys by
analyzing side-effects of program execution. Our method requires no
manual effort or hardware changes, has a reasonable performance impact,
and reduces side-channel information leakage significantly.

Keywords: language-based security, software diversity, dynamic diver-
sity, side channels.

1

1 Motivation

Artificial software diversity, like its biological counterpart, is a highly flexible and
efficient defense mechanism. Code injection, code reuse, and reverse engineering at-
tacks are all significantly harder against diversified software ([10,16,35,21,42,18,14,12]).
We propose to extend software diversity to protect against side-channel attacks,
in particular cache side channels.

Essentially, artificial software diversity denies attackers precise knowledge of
their target by randomizing implementation features of a program. Because code
reuse and other related attacks rely on static properties of a program, previous
work on software diversity predominantly focuses on randomizing the program

1 Note: This paper appeared at NDSS’15.
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Figure 1: Time based side channel exploitable through a sequence of function
calls in a program trace.

representation, e.g., the in-memory addresses of code and data. Side-channel
attacks, on the other hand, rely on dynamic properties of programs, e.g., execution
time, memory latencies, or power consumption. Consequently, diversification
against side channels must randomize a program’s execution rather than its
representation.

Most existing diversification approaches randomize programs before execution,
e.g., during compilation, installation, or loading. Ahead-of-time randomization is
desirable because re-diversification during runtime impacts performance (similar
to just-in-time compilation). Some approaches interleave program randomization
and program execution ([30,18,38,22]). However, the granularity of randomization
in these approaches is quite coarse, potentially allowing an attacker to observe
the program uninterrupted for long enough to carry out a successful side-channel
attack. We avoid this problem by extending techniques used to prevent reverse
engineering such as code replication and control-flow randomization ([6,14]).
Unlike these approaches, however, we replicate code at a finer grained level and
produce a nearly unlimited number of runtime paths by randomly switching
between these replicas. Rather than making control flow difficult to reverse
engineer, our technique randomly switches execution between different copies of
program fragments, which we refer to as replicas, to randomize executed code and
thus side-channel observations. We call this new capability dynamic control-flow
diversity.

To vary the side-channel characteristics of replicas, we employ diversifying
transformations. Diversification preserves the original program semantics while
ensuring that each replica differs at the level of machine instructions. To protect
against cache side-channel attacks we use diversifications that vary observable
execution characteristics. Like other cache side-channel mitigations, such as
reloading the cache on context switches and rewriting encryption routines to
avoid optimized lookup tables, introducing diversity has some performance impact
which we rigorously quantify in this paper.

In combination, dynamic control-flow diversity and diversifying transforma-
tions create binaries with randomized program traces, without requiring hardware
or developer assistance. In this paper we explore the use of dynamic control-flow
diversity against cache-based side-channel attacks on cryptographic algorithms.
Our main contributions are the following:



– We apply the new capability of dynamic control-flow diversity to the problem
of side channels. To the best of our knowledge, this is the first use of automated
software diversity to mitigate cache side channels.

– We show how to generate machine code for efficient randomized control-flow
transfers and combine this with a diversifying transformation to counter
cache-based side-channel attacks.

– We present a careful and detailed evaluation of applying diversity to protect
cache side channels and report the following:

- Security: Our techniques successfully mitigate two realistic cache side-
channel attacks against AES on modern hardware.

- Performance: Applying dynamic control-flow diversity with effective
security settings to an AES micro-benchmark of the libgcrypt library results
in performance impacts of 1.75x and protecting a real-world application
using AES results in a slowdown of 1.5x.

2 Side-Channel Background

The execution of a program is described by its control flow. The sequence of all
control-flow transitions a program takes during execution is usually referred to
as an execution path, or a program trace. A program trace describes the dynamic
behavior of a program. Figure 1 illustrates a program trace at the granularity of
function calls.

Executing programs on real hardware results in dynamic properties that leak
information, such as timing or power variation. For example, Figure 1 shows a
side channel based on time spent in executing the function sequence d(), b(), d(),
b(). By observing dynamic properties of a program trace through a side channel,
attackers can derive information about the actual program execution, such as
inferring secret inputs to the program.

2.1 Threat Model

Since side-channel attacks often target secret keys of a process performing
encryption, in this paper we assume that an attacker is targeting such a secret key.
To demonstrate the applicability of our techniques, we assume an advantageous
scenario for this attacker and reason that our defense remains effective under
weaker assumptions.

Tromer et al. [39] classified side-channel attacks into synchronous and asyn-
chronous attacks depending on whether or not the attacker can trigger processing
of known inputs (usually plain- or cipher-texts). Synchronous encryption attacks,
where the attacker can trigger and observe encryption of known messages, are
generally easier to perform, and thus harder to defend against, since the attack
does not need to determine the start and end of each encryption. We assume
as strong a position for the attacker as possible and therefore will consider the
scenario where an attacker can request and observe encryption of arbitrary chosen
plaintexts.



To minimize external noise, we assume that the attacker is co-resident on
the same machine as the target process. We also assume that the attacker can
execute arbitrary user-mode code on a processor core shared with the target
process but does not have access to the address space of the target process.

In the interest of allowing a strong attacker model, we advise but do not require
that the protected binary be kept secret. Since we randomly generate diverse
but semantically equivalent binaries, preventing the attacker from reconstructing
the target environment is an advisable defense-in-depth against off-line attacks,
such as the cross-VM attack described by Zhang et al. [44]. Deploying protected
programs with differing layouts is also an effective defense against code-reuse
attacks [23] and we can defend in the same manner by deploying randomized
binaries which include dynamic control-flow diversity.

If we allow access to the binary, we must be careful that the attacker is not
able to accurately determine which replica of each program unit was executed
in an observed program trace. An attacker who observes a complete trace of
control-flow transfers could filter out the effects of the replicas’ diversifying
transformations, regardless of what those effects are. In practice, a user-level
process cannot observe all control-flow transfers of another process, especially at
the granularity of basic blocks2.

2.2 Example Attacks

To demonstrate an example of our dynamic control-flow diversity defense, we
chose two synchronous, known input cache attacks on AES described by Tromer
et al. [39]: EVICT+TIME and PRIME+PROBE. Although these representative
cache attacks have limited scope, an attacker could use this type of attack to
compromise a system-wide filesystem encryption key or target a proxy server
where an attacker can trigger encryption of known plaintexts. In addition, these
attacks are representative of cache-based side channels and are the basis of
several more complex side-channel attacks [44,43,36]. While we demonstrate the
effectiveness of our technique against cache-based side channels in particular, we
expect that the same general defense paradigm can be applied to other categories
of side channels using different diversifying transformations than the ones we
discuss in Section 3.1.

Caches exploit temporal and spatial locality to speed up access to recently
used data. This helps to compensate for the speed gap between processors and
main memories. As a side effect, caches increase the correlation between program
inputs and its execution characteristics.

Modern processors access the cache in units called “cache lines,” which are
typically 64 bytes long. Each cache level is partitioned into n “cache sets,” and
each memory line can be placed into exactly one of these n sets. Each set stores
at most m lines simultaneously, in which case the cache is called “m-way set

2 Gullasch et al. [20] describe a DoS attack against the OS scheduler which could result
in such fine-grained information, but the OS scheduler can be hardened to prevent
such attacks.
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Figure 2: Example of cache structure on a modern processor. Cache shown is
3MB in size, with 4096 (212) sets, 12-way associativity and 64-byte cache lines.
Memory addresses are broken into a 46-bit (or less) tag, a 12-bit set number and
a 6-bit line offset.

associative”. In practice, caches are 4-, 8-, 12- and 16-way associative. Figure 2
shows the structure of a 3MB 12-way set associative cache found in our test
system.

For efficiency, the processor shares these caches between running processes
but prevents processes from accessing data belonging to other processes via
the virtual memory abstraction. However, since data from multiple processes is
concurrently stored in the cache, adversaries can indirectly deduce information
about which cache locations a target process accesses by observing side-effects
of cache accesses. Since the data cache access patterns of many programs are
input-dependent and predictable, attackers can use knowledge of some inputs
and the target’s data access patterns to derive the secret input.

To exploit cache access patterns, all cache timing attacks rely on the same
fundamental principle of cache behavior: accessing data stored in the cache is
measurably faster than accessing the data from main memory. As a result, attacks
can exploit this principle as a side channel and observe different cache behavior
for certain segments of a program trace. In the EVICT+TIME attack, we observe
the effect of evicting an entire cache set and forcing the encryption program to



Algorithm 1: EVICT+TIME attack.

Input : Cache set c to probe, plaintext p, key k.
Output : Time needed to encrypt the plaintext after probing c.
Encrypt(k, p);
Evict cache set c;
t0 ←Time();
Encrypt(k, p);
t1 ←Time();
return t1 − t0;

Algorithm 2: PRIME+PROBE attack.

Input : Array C of cache sets to probe, plaintext p, key k.
Output : Array T of times needed to probe each set in C.
foreach c ∈ C do

Read w values into cache set c from memory;
end
Encrypt(k, p);
foreach c ∈ C do

t0 ←Time();
Read w values from cache set c;
t1 ←Time();
T [c]← t1 − t0;

end
return T ;

fetch values from main memory, while in the PRIME+PROBE attack we fill a
cache set and check which cache lines the encryption evicts by observing the time
to reload our data.

For convenience we summarize both AES attacks here but refer interested
readers to Tromer et al. [39] for further details. Optimized AES implementations
use four in-memory tables (T0 through T3, each containing 256 four-byte values)
during encryption, and the access pattern of these tables varies according to the
key and plaintext inputs. Specifically, during the first of ten encryption rounds
for plaintext p and key k, the encryption process will access table Tl at index
pi ⊕ ki for all i = 0, . . . , 15 where l = i mod 4. Since we assume the attacker
knows the plaintext p, the attacker is able to derive information about the key
from information about which table elements are loaded from memory.

Algorithm 1 shows the EVICT+TIME attack. We derive the table access
patterns by observing the total execution time of the encryption routine. By
first running the encryption on a chosen, random plaintext, we prime the cache
with the table entries required during the encryption of this plaintext. We then
completely evict a cache set by loading a set of memory locations that all map
into the chosen cache set. By timing another encryption of the same plaintext,
we can then, by averaging over many runs, determine whether the encryption
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Figure 3: Side-channel resistance of diversification techniques.

used a table value from that cache set, since the encryption routine will take
longer when accessing an evicted table entry due to the cache miss.

The PRIME+PROBE attack (shown in Algorithm 2) is very similar to the
EVICT+TIME attack, but with the timing and eviction roles flipped. In this
attack we first create a known starting cache state by loading a set of memory
locations into each relevant cache set. We then trigger encryption of a chosen
plaintext, which will modify this cache state by caching accessed table entries.
Finally, we determine which cache sets were modified by timing a load of each
cache set again. The cache sets corresponding to table entries that the encryption
accessed will take longer to load than those not used, since the encryption table
entry will have displaced one of the original entries loaded by the attacker and
thus incur at least one cache miss.

By analyzing a large set of these cache observations for randomly chosen
plaintexts, we can determine the key bits that correspond to table indices in the
first round of encryption. For each guess of a key byte k̂i, we average all observed
timings for the cache set evictions corresponding to table entry Ti mod 4[k̂i ⊕ pi].
In both attacks, the highest observed average time should correspond to the
correctly guessed key byte. However, with 64 byte cache lines, four table entries
fit into each cache line, and we can only observe accesses at the granularity of
cache lines, which means that we can only determine the high nibble of each key
byte with this analysis. Therefore, to determine the lower four bits of each key
byte, we must analyze the second round of encryption as described by Tromer
et al. This analysis, while more involved, is conceptually analogous to the first
round analysis and we refer interested readers to the description in the original
paper.

3 Dynamic Control-Flow Diversity

Most diversification techniques prevent attackers from constructing reliable
attacks by randomizing the layout of a program’s data and code. Since modern
exploits such as code reuse attacks depend on detailed knowledge of the program
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Figure 4: Function call graph before and after replicating the function d().

layout and internals, automatically modifying these aspects of the program
implementation hinders development of reliable exploits using techniques such
as return-oriented programming. However, software diversity affects not only
program layout but also alters program side-effects, such as run time, power
usage and cache usage. Even simply re-ordering functions can have a large effect
on cache usage and performance since code will be aligned differently in the
instruction cache.

Since software diversity affects performance and cache usage, by extension we
observed that it could be useful to disrupt or add noise to side channels. However
static compile-time or load-time diversity is insufficient, since side-channel attacks
are online dynamic attacks and attackers can simply profile the static target
binary to learn its runtime characteristics. Re-diversifying and switching to a new
variant during execution is also insufficient since side-channel attacks are fast
enough to complete between reasonably spaced re-diversification cycles. Figure 3
illustrates the effect of diversification techniques on side channels. While the
program trace of the original program leaves a specific footprint on the executing
hardware, diversified program variants (labeled as static variant 1 and static variant
2) each have a different footprint. This diversity is likely to thwart offline profiling
attacks, but online side-channel attacks that deduce information by monitoring
the running program are not affected by these diversification techniques.

We extend previous, mostly static software diversification approaches by
dynamically randomizing the control flow of the program while it is running.
Rather than statically executing a single variant each time a program unit is
executed, we create a program consisting of replicated code fragments with
randomized control flow to switch between alternative code replicas at runtime.

In Figure 3, we see the effect of dynamic control-flow diversity in the bottom
row, labeled dynamic variant 1. For the trace segment the attacker is interested
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in, the program can now take numerous different paths, effectively preventing
the attacker from constructing a reliable model to infer program execution
information from side-channel characteristics, such as timing.

We build our control-flow diversity on a conventional compiler-based diversifi-
cation system that creates randomized variants of a program fragment, such as a
function or a basic block, by applying diversifying transformations. A diversify-
ing transformation preserves program semantics but transforms implementation
details. Examples of previously proposed diversifying transformations include
insertion of NOP instructions, permutation of function or basic block layout,
and randomization of register assignments. In Section 3.1 we discuss a diversi-
fying transformation to illustrate the effects of control-flow diversity on cache
side channels, but other transformations could be used to protect against other
instances and varieties of side-channel attacks.

To create control-flow diversity, we begin by choosing a set of program
fragments (either functions or basic blocks) to transform. If a developer knows
that some sections of the program, such as encryption routines, are particularly
interesting targets for side-channel attacks, the developer can manually specify
this set of program fragments to diversify. In addition, for blanket coverage we
can randomly select candidate program fragments. Since randomized control-flow
transfers add performance overhead, the software distributor should adjust the
percentage of duplicated fragments to balance security and performance.

After choosing a set of functions and/or basic blocks, we clone each chosen
program fragment a configurable number of times. We then use different diver-



100: 0xABABCDCD
Main App Thread(s)

…

goto cf_table[100]

…

tmp = Memory[load_table[200]]

…

99: 0x34523232

101: 0x32345982

199: 0x12345678

201: 0xABBB1234

Table Rewriter Thread

for (;;) {
  for each table T {
    for each entry E in T {
      re-randomize(E);
    }
  }
  sleep();
}

WritesReads

Tables

200: 0x23451234

Figure 6: Memory layout of runtime address tables, along with pseudocode of
the randomization algorithm. The randomization algorithm runs periodically in
an infinite loop for the entire duration of the program.

sifying transformations for each clone to create functionally-equivalent replicas
that differ in runtime characteristics. The set of transformations applied to each
program fragment may include completely different transformations, applications
of the same transformation with different parameters, or some combination of
both. Figure 4 shows an example of this process applied to a function.

We then integrate these randomized replicas into a program that dynamically
chooses control-flow paths at runtime. For each replica, we replace all references
to the original fragment with a randomized trampoline. As illustrated in Figure 5,
whenever the program executes a trampoline it randomly chooses a replica to
transfer control to.

We use the SIMD-Oriented Fast Mersenne Twister pseudorandom number
generator (PRNG) [37], since the runtime needs to quickly generate random
numbers. Although our chosen PRNG is not cryptographically secure, it is
sufficient for our purposes, since we assume the attacker cannot extract every
control-flow transfer through the noisy side channel. If defending a side channel
through which extracting the dynamic control flow and predicting the PRNG
stream is easier than extracting the targeted secret information, this PRNG could
easily be replaced by a cryptographically secure PRNG. Processor-integrated
random number generators would be ideal to fill this role, and, as processors
with this capability become widespread, we expect that the processor can fill a
randomness buffer instead of using a software PRNG.

3.1 Cache Noise Transformation

In order to produce structurally different but semantically identical variants,
we randomly apply diversifying transformations to the program code. These
transformations change how a program looks to an observer (who might either
read the binary itself, or observe it through side channels) without affecting
program semantics. We investigated one specific transformation, inserting cache
noise, to disrupt cache side-channel observations. However, this technique is only
one example of possible side-channel disrupting transformations. When protecting



other side channels, one may need different transformations, e.g., disrupting power
observations might require randomly weaving in another unrelated program to
ensure that the inserted code is indistinguishable from the original program code.

We initially investigated disrupting the EVICT+TIME attack by randomly
inserting NOP instructions into the code. However, after optimizing our ran-
domness generation, we found that NOP instructions do not add enough time
fluctuation to disrupt the attack. In addition, NOP instructions have no effect
on cache usage, and thus do nothing to affect the PRIME+PROBE attack. We
therefore turned our attention to inserting random memory loads, which disrupt
both timing and cache snooping side channels.

To ensure that inserted loads have a high likelihood of actually impacting
the performance of the targeted program, we want to create loads that evict
a specific set of cache lines, specifically those that the target uses. In addition,
attempting to read from invalid addresses (such as unallocated regions in the
process address space) can potentially crash the target program, stopping the
attack. For these reasons, we restrict the loads to a linear region, selected at
program load-time. In the case of our AES experiments, this region covers only
the AES S-box tables but in general is adjustable for other applications.

Our compiler randomly picks the locations to insert loads at compile time,
and the target program itself picks the base and size of the region at load-time
during program initialization. We leave the size of each load (in bytes) up to the
implementation, and use single-byte loads in our evaluation. While implementing
this cache diversification technique, we identified two ways of computing the
address accessed by each load instruction: (i) static address and (ii) dynamic
address computation.

In the first technique, static address computation, the compiler randomly
picks an address (inside the range), then hard-codes it inside the program so the
load is the same for every execution:

offset = 0x123 // Random constant < region_size

addr = region_base + offset

tmp = Memory[addr] // Volatile load

The second technique, dynamic address computation, loads addresses chosen
dynamically while the program is running. We extend the same cached random
tables used for control-flow diversity described below, and constantly rerandomize
this table to contain valid addresses. This results in the following code for inserted
load i:

addr = Memory[random_table[i]]

tmp = Memory[addr] // Volatile load

Static address computation requires the region size to be defined at com-
pile time and a global variable region base to be initialized at run time. The
background thread for dynamic address computation randomly picks addresses
for each table slot using global variables region base and region size that are
initialized at run time.
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Figure 7: Average accuracy of AES side-channel attacks with our defense. The
dashed line shows the expected number of correct bits for randomly chosen keys
(8 bits). Error bars represent two standard errors from the mean.

3.2 Table Randomization Optimization

One of our main design goals was to make the randomized trampolines and
memory loads be fast enough for practical usage. A naive initial implementation
that called a random number generator for every control-flow transfer or memory
operation proved to have unacceptably large overhead, even when buffering
randomness. We instead chose to store branch targets and memory load addresses
in tables and periodically re-randomize this table asynchronously in a background
thread. At program startup we create a background thread that repeatedly iterates
over all tables and randomizes each entry. Trampolines are then just a single
indirect branch through a control-flow cache table, while the memory loads
require an extra load from the table. Figure 6 shows the memory layout of the
tables and the pseudocode of the table randomization algorithm which runs in
the background thread.

Our dynamic control-flow transfer implementation could be further optimized
to use inline caching and rewrite static branch instructions rather than an external
table in data memory. However, branch targets are rerandomized frequently, so
changing code page permissions from executable to writable and back may trump
the performance improvement from inline caching. Alternatively, code pages
could be left writable and executable, although this increases the risk of a code
injection attack and may still be slow if instruction cache flushes are required.

4 Evaluation

To analyze the security and performance characteristics of our techniques in a real-
world setting, we evaluated dynamic control-flow diversity as a defense for the two
side-channel attacks proposed by Tromer et al. [39] and discussed in Section 2.2.
We implemented these attacks targeting the AES-128 encryption routine in
libgcrypt 1.6.1, which is the current version of the cryptographic library underlying
GnuPG. Since our implementation does not currently support diversification



of inline assembly, we disabled the assembly implementation of AES to force
libgcrypt to use its standard C implementation. It is worth noting that this is
an implementation limitation, and an industrial-strength implementation of our
transformations could easily support rewriting of inline assembly as well.

To simplify our attack implementation, we made a slight change to the
libgcrypt source code. We added an annotation to each of the targeted tables to
force the compiler to align table entries such that no entries crossed a 64 byte
cache line boundary. While both attacks could work around this alignment issue
with further engineering effort, this change allowed us to more accurately measure
the results of our protections.

We performed all security evaluations on an Intel Core 2 Quad Q9300 running
Ubuntu 12.04 with Linux kernel 3.5.0. We targeted our attacks at the L2 cache of
the processor; the Q9300 contains a 6MB L2 cache split into two halves, with each
3MB half being shared by two of the cores. The cache is 12-way set associative
with 64-byte lines and 4096 sets. To minimize system interference, we stopped
all unnecessary system daemons and pinned the attack to two cores, where the
second core accommodated the background rewriting thread. In addition, to
create the most advantageous situation possible for an attacker, our example
attacks call the libgcrypt encryption function as a black box in the same process,
rather than spawning or communicating with a separate process. Attacks in a
more realistic setting would require even more observations to reliably extract the
key, and our transformations would create additional uncertainty when coupled
with the extra intra-process system noise.

Modern processors implement a cache prefetching algorithm that assumes
spatial locality of cache accesses and speculatively loads additional cache lines
that the prefetching unit expects might be accessed soon. Prefetching improves
performance, especially for algorithms that access long linear regions of memory.
However, prefetching negatively impacts cache-based side-channel attacks by
introducing the difficulty of determining which lines were loaded by the encryption
algorithm and which by the prefetcher. For this reason, we disabled the prefetcher
completely on our test machine by setting several configuration bits in machine
status registers. While this slightly reduces the overall system performance, it
makes attacks much more consistent.

We implemented all transformations and insertion of dynamic control-flow
diversity as passes in version 3.3 of the Clang/LLVM compiler framework [29].
These new passes operate at the LLVM intermediate representation (IR) level,
and are thus platform-independent.

4.1 Security Evaluation

After testing our example attacks, we empirically found that 5 million iterations
of the EVICT+TIME attack and 75 thousand iterations of the PRIME+PROBE
attack were sufficient to derive 96% and 82% of the random key bits on average,
respectively. Although our attack implementation does not derive the full key in
all cases due to random system noise and complex processor variations, this is



an implementation concern, and an attacker would likely tune these attacks for
increased accuracy.

To ensure that our baseline was accurate, we averaged 50 runs without
any diversification, using a new random secret key for each iteration. Since
our transformations rely on random choices during compilation, we tested each
instance with ten different random seeds and each seed with five random keys
(resulting in 50 runs total for each configuration) and report the average accuracy
over all seeds and keys for each configuration.

To ensure that functions or basic blocks relevant to the AES encryption im-
plementation were replicated, we manually inspected the libgcrypt implementation
and selected nine functions that the program executes for every AES encryption.
To collect comparable data for each experiment, we configured our compiler
to select all nine functions (or all basic blocks in the selected functions) for
replication.

We fixed the number of generated replicas for each program fragment to ten
in all cases. We found that further increasing this parameter had little effect on
the attack success with the number of iterations we tested. However, increasing
the replica count also had no measurable effect on runtime performance, and
only a moderate effect on file size. Therefore adding additional variants may be
a viable option to combat increasing attacker capabilities.

Security results for both the EVICT+TIME and PRIME+PROBE attacks
are found in Figure 7. We label the all static cache load variants with Static
and the dynamic variants with Dyn. Control-flow diversity with function and
basic-block replicas is labeled respectively with CF/F and CF/BB. We report key
recovery in number of bits for clarity, however, it is important to note that both
attacks derive the key in nibble-sized increments.

Static Loads Static cache noise at a 5–25% insertion rate had little effect on
the EVICT+TIME attack, resulting in 104–108 of 128 key bits recovered. Adding
dynamic control-flow diversity to static noise also had little effect, since there is
little timing variance between replicas when using static loads. Increasing this
percentage to 10–50% had a more pronounced effect. More loads naturally imply
that execution will be slower and thus more sensitive to cache collisions.

Dynamic control-flow diversity did have a significant effect on the PRIME+PROBE
attack when combined with static cache loads. Function-level dynamic control-
flow diversity reduced the correctly key recovered key bits from 52 with static
loads to 41, and basic-block level replication furthered reduced this to 31 bits.
With 10–50% cache noise insertion, we saw further reduction to 16 key bits
correctly recovered using basic-block dynamic control-flow diversity.

Dynamic Loads Dynamic loads had a larger effect on the EVICT+TIME
attack. Dynamic cache noise alone at a 5–25% rate reduced the average correctly
recovered key bits to 81. Adding dynamic control-flow diversity on top of this
further reduced the recovered key bits to 64 and 54 for function-level and basic
block-level diversity respectively. At the 10–50% insertion rate we observed



similar trends, with CF/BB and dynamic loads reducing the EVICT+TIME key
recovery to 20 bits. Dynamic cache loads naturally have a higher performance
variation, since they require an extra indirect load to implement runtime dynamic
randomness. This results in a more pronounced impact on the EVICT+TIME
attack.

We observed similar trends for the PRIME+PROBE attack. While dynamic
loads have some effect on the attack by themselves, they are most effective when
combined with function or basic-block dynamic control-flow diversity. In the best
case (CF/BB + Dyn) we observed an average correct key recovery of only 14
bits. This result is near the theoretical limit of 8 bits where an attacker gains no
information from the side channel. Recovering 8 bits of the key is equivalent to an
adversary randomly guessing the key by nibbles without side-channel information,
since such an adversary has a 1 in 16 chance to guess each nibble correctly and
each key nibble is independent for uniform random keys. This expected number
of correctly guessed key bits with no knowledge is a lower bound on the accuracy
of any side-channel attack, and we show this bound as a dashed line in Figure 7.

Increasing samples To investigate whether the attacks could feasibly over-
come our defense by gathering more side-channel observations, we increased
the iteration count for both attacks. We found that while the attack accuracy
increased marginally with 4x and 8x the number of original attack measurements,
a realistic attack is still infeasible. With the CF/BB + Static (10–50%) setting, 4x
iterations resulted in average correctness of 70 bits for the EVICT+TIME attack
and 34 bits for the PRIME+PROBE attack. 8x iterations resulted in 42 correct
key bits on average for the PRIME+PROBE attack. These results indicate that
dynamic control-flow diversity is still effective in the presence of better resourced
attackers, although it may require a different diversifying transformation to be
more effective against the EVICT+TIME attack.

Collecting eight times more samples than in our baseline attack required
about five minutes of attack time, resulted in a 1.5GiB data file, and analysis
took about an hour on a high end, quad-core c3.xlarge Amazon EC2 instance.
In a more realistic situation collecting many more samples than this is likely
prohibitive. It is important to remember that our attack is simply encrypting
a single block, with no inter-process communication or application overhead.
Our tests represent a best-case scenario for an attacker. A realistic attack would
target a service which is doing more work than our test attacks, and thus data
collection would be far slower and noisier in practice.

4.2 Performance Evaluation

Most existing defenses against cache side-channel attacks, e.g., reloading sensitive
tables into cache after every context switch or rewriting encryption algorithms to
not use cached tables at all, introduce moderate overheads. Our transformations
also marginally increase the cost of AES encryption. However we believe this
overhead to be quite reasonable for an automated and general side-channel
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Figure 9: Performance slowdown factor for SPEC CPU2006 with function-level
dynamic control-flow diversity on 25% of functions and 10–50% static cache noise
inserted in all functions. Y-axis is on a log scale.

defense. To properly quantify this impact, we studied an AES micro-benchmark,
a full-fledged service — Apache serving files over HTTPS using AES — and the
SPEC CPU2006 benchmark suite.

From this performance analysis, in conjunction with attack success, we found
that the optimal trade-off between security and performance is the CF/F + Static
Loads setting. The CF/BB + Static Loads setting was slightly more effective, with
only a small marginal decrease in performance, and is thus also an ideal candidate
setting. Using dynamic loads, while slightly more effective, has a significantly
larger performance impact for comparably little marginal security benefit.

AES Micro-benchmark We first measured the increase in time introduced by
each transformation with an AES micro-benchmark. We generated ten random
different versions of libgcrypt for each set of parameters, ran each version of the
AES encryption function five million times on random plaintexts for each of ten



Transformation File Size (KiB) Increase Factor

Baseline 657 1.00

Static Loads (5-25%) 657 1.00
CF/F + Static (5-25%) 702 1.07
CF/BB + Static (5-25%) 716 1.09
Dyn Loads (5-25%) 658 1.00
CF/F + Dyn Loads (5-25%) 755 1.15
CF/BB + Dyn Loads (5-25%) 727 1.11
Static Loads (10-50%) 657 1.00
CF/F + Static (10-50%) 766 1.17
CF/F + Static (10-50%) 941 1.43
CF/BB + Static (10-50%) 737 1.12
CF/BB + Static (25@10-50%) 837 1.27
Dyn Loads (10-50%) 660 1.00
CF/BB + Dyn Loads (10-50%) 759 1.15
CF/F + Dyn Loads (10-50%) 784 1.19

Table 1: File size increase for libgcrypt, relative to a non-diversified baseline.

different random keys and measured the number of cycles for each encryption.
The first column of each group in Figure 8 shows the slowdown for the libgcrypt

micro-benchmark.

We found that using function or basic-block level dynamic control-flow diver-
sity along with static cache noise results in a performance slowdown of 1.76x–2.02x
compared to the baseline AES encryption when using 10–50% cache noise inser-
tion. Dynamic cache noise at a 5–25% rate results in similar performance, but
10–50% insertion of dynamic loads has significantly more impact on performance
(2.39–2.87x slowdown).

In addition to measuring encryption time, we investigated the impact of our
transformations on the size of the encryption library. While desktop disk space is
currently plentiful, this is not the case for embedded or mobile systems. Many
programs are also distributed over the Internet through communication links
that have either bandwidth or data limits. Table 1 shows the impact of our
transformations on the size of the libgcrypt shared object.

Application Benchmark In the previous section we measured the performance
impact on AES encryption alone, encrypting a single block. However, to get
a more realistic picture of the performance impact of our techniques, we also
evaluated the performance overhead of dynamic control-flow diversity and our
transformations on Apache 2.4.10 serving AES encrypted data. We used the



standard apachebench (ab) tool to evaluate performance, connecting over https
to an Apache instance using a diversified version of the OpenSSL 1.0.1 library3.

As seen in the second column of each group in Figure 8, the overall slowdown
of our techniques varies from 1.25x for static cache noise to 2.1x for dynamic.
The static noise CF/F and CF/BB settings in fact have identical overheads in this
test, and we therefore recommend the CF/BB setting for practical applications
which consist of more than just block cipher encryption. The overall performance
impact is naturally lower than the simple micro-benchmark, since Apache does
other processing in addition to encryption. However, this workload is more
representative of a real-world application of cryptography and AES in particular.

SPEC CPU2006 To illustrate the effects of our techniques on CPU intensive
workloads, we tested with the C and C++ portions of the SPEC CPU2006
benchmark suite. We selected one parameter setting: function-level dynamic
control-flow diversity with static noise. However, since SPEC does not have any
particular targets for cache side-channel attacks, we applied dynamic control-flow
diversity universally over all functions with a 25% probability. We also applied
static cache noise over all functions with a probability to insert noise for each
instruction chosen randomly for each basic block from the range 10–50%. These
parameters represent a worst-case for the CF/F + Dyn setting. To account for
random choices, we built and ran SPEC with four different random seeds

As we show in Figure 9, our transformations introduce a 1.82x geometric mean
overhead across all benchmarks. The xalancbmk and dealII benchmarks stand out
in this test. These particular benchmarks are large, complex C++ programs with
many function calls. Since we applied function dynamic control-flow diversity
across the entire program in this case, we naturally incur a higher overhead when
the program calls many small functions. In practice users of dynamic control-flow
diversity should target transformations in only the sections of code which might
be vulnerable to a side-channel attack, instead.

5 Discussion

Parameter Settings

In our experiments we determined that a 5–25% insertion percentage range for
cache noise instructions is too narrow. Dynamic control-flow diversity works best
when replicas have very different runtime behavior, since it relies on switching
between replicas with varying side-channel effects. In addition, libgcrypt is mostly
straight line code and thus has a relatively low number of functions and basic
blocks used for AES encryption. We expect that more complex cryptographic
algorithms such as RSA will have more control flow, and thus more opportunity
to insert dynamic control-flow diversity and switch between variants.

3 While we have not tested the effectiveness of the side-channel attack on this library, we
believe it would take minimal effort to port the attack to OpenSSL or other table-based
AES implementations.



Cache noise, especially the dynamic variant, has an impact on execution time
and thus the EVICT+TIME attack. However, this transformation is designed
specifically to disrupt the PRIME+PROBE attack by polluting the cache and
masking real AES table cache accesses. A transformation targeted at varying the
running time of each replica would be more suited to disrupting this attack. We
could adapt proposed hardware junk code insertion techniques [25,5] to work with
dynamic control-flow diversity by inserting differing code with varying runtimes
into each replica.

In the best case, CF/BB + Dyn (10–50%), our EVICT+TIME attack can
derive only 4.96 key nibbles, or about 20 key bits. Even with a more performance
conscious alternative, CF/BB + Static (10–50%), we still prevent the attacker
from finding 80 of 128 key bits. In the PRIME+PROBE attack our experiments
show an average of 3.32 correctly recovered key nibbles, or 13.28 key bits, for the
CF/BB + Static (10–50%) setting. The remaining approximately unknown key
bits are too much to brute-force search, since this would require checking 2n key
guesses, where n is the number of unknown key bits. With this low correctness
an attacker is unlikely to even be able to determine which key nibbles are correct,
and thus would gain no useful information from the attack. Thus, we conclude
that our techniques effectively mitigate the PRIME+PROBE attack, given a
realistic attack scenario.

We chose example parameters of ten replicas for each program unit along with
5–25 and 10–50 percent probability of inserting cache noise operations at each
instruction as a starting point after initial experimentation. These parameters are
representative of a narrow and wider range of insertion. However, these parameters
may not represent an ideal trade-off between security and performance. In fact,
these parameter settings are not mutually exclusive, e.g., some functions may be
diversified with static noise while others get dynamic noise. Some combination of
function and basic block replicas may also be useful for some applications. For
future work, we propose to develop heuristics for automatic parameter selection
through application and attack profiling.

Disabled Cache

Disabling caching of critical memory is an often suggested naive approach to
preventing cache side-channel attacks [39]. This approach is attractive since
existing commodity processors support selectively disabling page caching, but
unfortunately it is prohibitively slow. To verify that this mitigation is impractical,
we carefully measured the performance of the AES routine in libgcrypt with
caching disabled for the AES lookup tables. This required writing a custom Linux
kernel module to map and mark a page of memory as uncacheable using the
Page Attribute Table (PAT) available on x86 CPUs. The user mode application,
in this case libgcrypt, can then map this page into its address space and store the
lookup table into it. This interface, while technically possible, is complex and
not available in the standard Linux kernel.

We modified libgcrypt to utilize this approach and tested the same AES
micro-benchmark described above. We found that disabling caching on only the



single AES lookup page caused the encryption routine to be 75 times slower
than normal. Therefore disabling caching, even for a single page, is impractical
on modern hardware. We discuss other hardware based cache protections in
Section 6, however, these approaches are not available in commodity processors.

Implementation Limitations

For our initial investigation of applying control-flow diversity to side channels,
we manually inspected the libgcrypt AES implementation to select nine functions
relevant to the encryption algorithm. This simple step required no modification
to the original sources, and could be easily automated by supplying only an
encryption entry point. We forced our system to replicate these functions and
their basic blocks to demonstrate the effectiveness of our techniques in a con-
trolled environment, without the additional complication of having the system
automatically select program units for diversification at random. However, this
small manual effort was done to arrive at a controlled experiment and is not
required to use control-flow diversity. By randomly selecting program units for
replication with some configurable probability, our system can probabilistically
protect an entire application from side-channel attacks with no manual effort.

Instead of random or manual program unit selection, we believe that side-
channel analysis tools such as CacheAudit [15] can guide the selection of the
critical program fragments and parameters for diversification. This should elimi-
nate all manual effort while preserving a high level of security.

Related Attacks

Diversifying transformations, such as inserting cache noise instructions, can
also be used to perform fine grained code layout randomization. This provides
probabilistic protection against return-oriented programming and its variants
which makes it realistic to expect that our defense technique can simultaneously
defend against two or more fundamentally different classes of attacks. We will
pursue this research direction in follow up work as well.

6 Related Work

This paper unites two previously unrelated strands of research: side channels and
artificial software diversity. We discuss the related work in each of these areas
separately.

6.1 Side Channels

After Kocher described an initial timing side-channel attack on public-key cryp-
tosystems [27], researchers have proposed a multitude of side-channel attacks
against cryptographic algorithms. While researchers have proposed many different
side-channel vectors ranging from power analysis [26] to acoustic analysis [17],



we focus on applying our techniques against timing and cache-based attacks not
requiring physical access. Cache-based attacks were first theoretically described
by Page [32] in 2002. In 2003, Tsunoo et al. [40] demonstrated cache-based attacks
against DES in practice. Bernstein [7] then presented a simple timing attack on
AES, along with potential causes of this timing variability, including variable
cache behavior and latency. Shortly after, Osvik, Shamir, and Tromer [31,39]
presented their attacks on AES, including the two example attacks used in this
paper. In addition to the two synchronous attacks we evaluated our techniques
against, Osvik et al. also described an asynchronous attack relying only on
passively observing encryptions of plaintexts from a known but non-uniform
distribution.

Recently, Hund et al. [24] used a cache-based timing side-channel attack to de-
randomize kernel space ASLR in order to accurately perform code-reuse attacks
in the kernel address space. Since we build our system on techniques proven to
be effective against code-reuse attacks, our dynamic control-flow diversity with
NOP insertion is a perfect fit to defend in depth against this attack.

As side-channel attacks have matured, researchers have proposed numerous
defenses using both hardware and software. We will now briefly describe a few of
the relevant defenses.

Hardware Defenses Several different methods of preventing side channels at
the hardware level have been proposed, with varying degrees of practicality. In
the context of differential power analysis attacks, Irwin et al [25] proposed a new
stage in the processor execution pipeline which randomly mutates the instruction
stream with the assistance of a compiler-generated register liveness map. Among
other peephole transformations, this mutation unit adds instructions that do not
affect the correct functioning of the program, which are a super-set of our compiler-
based NOP insertion transformation. Since our transformations in software are
similar to the techniques Irwin et al. applied to differential power analysis, we
expect that our technique will apply directly to power analysis attacks as well.
Finally, Irwin et al. proposed a new probabilistic branch instruction, maybe, that
would allow us to efficiently randomize control flow without the use of a random
buffer. Ambrose et al. [5] also proposed inserting random instructions but with
the added requirement that inserted instructions modify processor state, e.g.,
registers, so the new instructions are indistinguishable from legitimate program
code.

To specifically target cache-based attacks, Page [33] proposed partitioning
the cache into disjoint configurable sets so that a sensitive program cannot share
cache resources with an attacker. However this would require a radical change
to current cache designs. Bernstein [7] suggested the addition of a new CPU
instruction to load an entire table into L1 cache and perform a lookup. This
approach provides consistent cache access behavior regardless of input, and as such
would eliminate cache side channels through table lookups. Wang and Lee [41]
also proposed two new hardware cache designs to mitigate cache side channels:
PLcache and RPcache. PLcache has the new capability of locking a sensitive



cache partition into cache, while RPcache randomizes the mapping from memory
locations to cache sets. While these techniques are powerful mitigations against
cache side-channel attacks, they all require additional hardware features which
major processor vendors are unlikely to implement. In contrast, our techniques
require no special hardware support and can be used immediately.

Intel has recently implemented a new hardware instruction to perform en-
cryption and decryption for AES [19]. Since this instruction is data independent,
using it instead of a software routine should protect against side-channel attacks
on AES. However, this hardware only implements AES, and thus we still need
defensive measures to protect other cryptographic algorithms.

Software Defenses The ideal defense against side-channel attacks is to modify
the sensitive program so that it has no input-dependent side-effects, however this is
an extremely labor-intensive solution and is often infeasible. Developers generally
take this approach to removing timing side channels by creating algorithms that
run in constant-time regardless of inputs. Bernstein [7] strongly recommends this
approach, while cautioning that software which the programmer expected to run
in constant time may not do so due to hardware complexity.

Page [34] suggested manually adding noise to encryption to make cache side-
channel attacks more difficult in a manner conceptually similar to our automatic
randomizing transformations. For instance, Page manually inserted garbage
instructions and random loads into the encryption routine to combat timing
and trace based attacks respectively. Page’s work is a form of obfuscation rather
than diversification since all users run the same binaries with the same runtime
control-flow. Our combination of control flow randomization and garbage code
insertion simultaneously defends against code reuse attacks and side channels
whereas garbage code in itself does not protect against side channels and Page’s
transformations do not protect against code reuse.

Brickell et al. [8] proposed the use of compressed and randomized tables for
AES that would alleviate cache-based attacks. However, this implementation
process requires manually rewriting the AES implementation and is specific to
the operation of AES.

Cleemput et al. [9] proposed defenses that do not require manual program
modification. In particular, they described the use of compiler transformations to
reduce timing variability. Our approach, while also compiler-based, seeks to mask
variability rather than remove it entirely, since opportunities to automatically
eliminate variable-time routines are limited.

In their recent paper addressing side-channel attacks in the context of virtu-
alized cloud computing, Zhang and Reiter [45] proposed periodically scrubbing
shared caches used by sensitive processes. This scheme potentially breaks cache
snooping by a time-shared process on the same core, but will not necessarily com-
bat cache attacks in a Simultaneous Multithreading (SMT) context or continuous
power analysis attacks. Since our random decision points are more fine grained
than the scrubbing interval, our techniques have greater potential against these
fine-grained attacks, although this would require more investigation. In addition,



control-flow diversity does not depend on any resources outside the program and
is thus applicable in situations without hypervisors, such as embedded software.

Finally, Tromer et al. [39] mention adding noise to memory accesses with
spurious accesses to decrease the signal available to the attacker. Effectively, our
technique accomplishes this goal in a general way that could be extended to other
side channels, and we provide a concrete evaluation showing its effectiveness in
practice. Since adding replicas exponentially increases the number of possible
execution traces, we can ratchet our defense up sufficiently so that an attacker
cannot feasibly collect and analyze enough samples.

6.2 Artificial Software Diversity

The literature on artificial software diversity is extensive; we limit ourselves to
the work most closely related to ours. Larsen et al. provides a comprehensive
systematization of approaches to artificial software diversity [28]. Cohen initially
pioneered software diversity as a protection against reverse engineering [10] and
was first to suggest garbage code insertion and transformations that obscure the
actual control flow. Collberg et al. [11] extended these ideas into a broader set of
obfuscating transformations against reverse engineering attacks and introduced
the notion of opaque predicates [13]. While opaque predicates usually refer to
predicates that have a known outcome at obfuscation time but are expensive to
decide afterward via static analysis, Collberg et al. also mention “variable” opaque
predicates that flip-flop between true and false at runtime. These ideas were
evaluated in depth by Anckaert et al. [6] as a defense against reverse engineering,
by Collberg et al. [12] in context of client-side tampering of networked systems,
and by Coppens et al. [14] to prevent reverse engineering of patches. Our work
differs in its use of control flow randomization: we use it to switch among
implementation variants (replicas) with fine-granularity—not as a randomizing
transformation in itself. Furthermore, we aim to thwart side-channel attacks
rather than reverse engineering.

Several diversified defenses against code reuse attacks have dynamic aspects.
Giuffrida et al. [18] presented a compiler-based approach that periodically reran-
domizes services in a microkernel OS while it is running. Live rerandomization
works by periodically transferring the application state from one process to
another such that the old and new processes run diversified variants of the
same input program. While this provides excellent protection against code reuse
attacks, the rerandomization overhead prevents the fine granularity our approach
efficiently supports.

Hiser et al. [21] performed fine-grained code layout randomization using a
process virtual machine. The approach uses a code cache that leads to predictable
program traces and might constitute a side channel in itself. Homescu et al. [22]
diversifies just-in-time compiled code and similarly caches translated code to
improve performance. Shioji et al. [38] introduced “code shredding” that embeds
random checksums in pointers to thwart control-flow hijacking. To improve
performance and add randomness, checksums are not masked out before the
pointer values are used in control flow transfers. Rather, the entire code section



is replicated in process memory to make the targets of checksummed pointers
valid. Our use of code replication is more flexible because our granularity can
vary at the function or basic block level and has a lower memory overhead as a
result. Our performance overhead is also much lower since our compiler-based
approach avoids the overheads associated with binary rewriting; Shioji report
overheads ranging from 3x to 26x on Bzip2 1.0.5.

Novark and Berger secure the heap against memory management errors via a
randomizing memory allocator [30]. Allocations are placed randomly in memory
and stay in place until their deallocation. Freed pages are overwritten with
random data. While this can interfere with side-channel attacks, attackers can
sample the victim process arbitrarily many times between memory allocator
activations.

Summing up, our work is the first to use software diversity to mitigate cache
side-channel attacks. Previous diversification approaches comprise one or more
randomizing code transformations. Our approach consists of a runtime random-
ization mechanism to dynamically vary execution characteristics in addition to a
set of randomizing code transformations.

7 Conclusion and Outlook

We provide the first evaluation of software diversity as a side-channel mitigation.
To that end, we developed dynamic control-flow diversity which performs fine-
grained program trace randomization. Our technique does not require source
code modification or specialized hardware so it can be automatically applied to
existing software. We have implemented a prototype diversifier atop LLVM and
rigorously evaluated the performance of our techniques using modern, realistic
cache side-channel attacks in a setting that favors attackers. Our experimental
evaluation shows that our technique mitigates cryptographic side channels with
high efficacy and moderate overhead of 1.5–2x in practice, making it viable for
deployment.

Beyond the cryptographic side-channel problem addressed in this paper,
we expect that control-flow diversity is simultaneously effective against other
implementation-dependent attacks, including code reuse and reverse engineering.
We plan to explore this in future work.
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