
Kleenex:

Compiling Nondeterministic Transducers to

Deterministic Streaming Transducers

Bjørn Bugge Grathwohl Fritz Henglein
Ulrik Terp Rasmussen Kristoffer Aalund Søholm

Sebastian Paaske Tørholm
DIKU, University of Copenhagen

{bugge,henglein,dolle,soeholm,sebbe}@diku.dk

September 18th, 2015

Abstract

We present and illustrate Kleenex, a language for expressing gen-
eral nondeterministic finite transducers, and its novel compilation to
streaming string transducers with essentially optimal streaming behav-
ior, worst-case linear-time performance and sustained high throughput.
In use cases it achieves consistently high throughput rates around the 1
Gbps range on stock hardware, performing well, especially in complex
use cases, in comparison to both specialized and related tools such as
AWK, sed, grep, RE2, Ragel and regular-expression libraries.

1 Introduction

Imagine you want to implement syntax highlighting. This can be thought of
as parsing the input into its tokens and processing each token according to
its class. For illustration, assume we have one keyword, for, and alphabetic
identifiers as the only tokens. The lexical structure of the input is essentially
described by the regular expression (RE) ((for|[a−z]∗))∗, where whitespace
is, for simplicity, represented by the single blank between the two closing
parentheses. This scenario highlights the following:

Ambiguity by design. The RE is ambiguous. The intended semantics
is that the left alternative has higher priority than the right. This is
greedy disambiguation: Choose the left alternative if possible, treating
e∗ as its unfolding ee∗|1. Accordingly, in our example for matches the
left alternative, not the right.

Regular expression parsing. Note that the RE has star height 2; in par-
ticular, we need to parse the input under multiple Kleene stars. For

1

our RE the parse of a string is a list of segments (corresponding to the
outer Kleene star), with each segment represented by a pair, a token
and whitespace (corresponding to concatenation), where each token is
tagged (corresponding to the alternation) to indicate that it is either
the keyword for or an identifier; an identifier, in turn, consists of a
list (corresponding to the inner Kleene star) of characters.

Output actions. We need to output something, the highlighted tokens,
not just accept or reject a string as is done by finite automata. Note
that output actions are not specified in our RE.

We would like to do the highlighting in a streaming fashion, using as little
internal storage as possible and performing output actions as early as they
are determined by the input prefix read so far, at a high sustained input
processing rate, in particular in worst-case linear-time in the length of the
input stream with a low factor depending linearly on the size of the RE. We
would like to accomplish this automatically for arbitrary REs (or similar
input format specification) and output actions, with speeds that in practice
adapt to how much output actually needs to be produced; in particular,
performance should gracefully approach pure acceptance testing as more
and more output actions are removed. How?

It turns out that the set of parses are exactly the elements of the RE
read as a type [?, ?]: Kleene-star is the (finite) list type constructor, concate-
nation the Cartesian product, alternation the sum type and an individual
character the singleton type containing that character. A Thompson au-
tomaton [?] represents an RE in a strong sense: the complete paths—paths
from initial to final state—are in one-to-one correspondence with the parses
[?]. If a string has 4 parses (e.g. “for for ”), then there are exactly 4 complete
paths accepting it. Let us look at bit closer at a Thompson automaton: It is
nondeterministic, with ε-transitions, easily constructed, having O(m) states
and transitions from an RE of size m. It has exactly one initial and one
accepting node. Every state is either nondeterministic: it has two outgoing
ε-transitions (“left” or “right”); or it is deterministic: it has exactly one
outgoing transition labeled by ε or an input symbol, or it is the final state,
which has no outgoing transition. Every complete path is determined by a
sequence of bits used as an oracle [?]. Starting with the initial state, follow
all outgoing transitions from deterministic states; upon arriving at a nonde-
terministic state query the oracle to determine whether to go left or right,
until the final state is reached. The bit sequence of query responses yields a
prefix-free binary code for the string accepted on the designated path. This
bit-code can also be computed directly from the RE underlying the Thomp-
son NFA [?, ?]. Since a bit-code represents a particular parse, a string can
have multiple bit-codes if and only if the RE (and thus Thompson automa-
ton) is ambiguous: The greedy parse of a string, which we are interested in,
corresponds to the lexicographically least amongst its bit-codes [?].

2

The greedy RE parsing problem is producing this lexicographically least
bit-code for a string matching a given RE. This can be done by an optimally
streaming algorithm, running in time linear in the size of the input string
for fixed RE [?]: The bits in the output are produced as soon as they are
uniquely determined by the input prefix read so far, assuming the input
string will eventually be accepted. The algorithm maintains an ordered path
tree from the initial state to all the automata states reachable by the input
prefix read so far. A branching node represents both sides of an alternation
that are both still viable. The (possibly empty) path segment from the
initial state to the first branching node is what can be output based on
the input prefix processed so far, without knowing which of the presently
reached states will eventually accept the rest of the input. This works for
all REs and all inputs; e.g., it automatically results in constant memory
space consumption for REs that are deterministic modulo finite look-ahead,
e.g. one-unambiguous REs [?].

Let us step back a bit. It is possible to aggressively (“earliest possible”)
and efficiently stream out the bit-code of the greedy parse of an input string
under a given RE as the input is streaming in: worst-case linear time in
the input string size, no backtracking and each input symbol can be pro-
cessed in time O(m), linear in the size of the RE and of its Thompson NFA.
(Here it is critical that Thompson NFAs have ε-transitions since equiva-
lent ε-free automata require Ω(m logm) transitions [?] and standard ε-free
NFA-constructions [?, ?, ?] even Ω(m2).)

Coming back to our syntax highlight problem we can use this algorithm
to parse the input, build the parse tree from the bit-code and recursively
descend it to perform the syntax highlighting. We might (correctly) suspect
that the highlighting can be done by piping the bit-code into a separate
highlighter process, eliding the materialization of the bit-code.1 In this
paper we show we can do better yet: The algorithm can be generalized to
simulating arbitrary nondeterministic finite-state transducers, NFAs with
output actions. Furthermore, we can compile their nondeterminism away
by producing theoretically and practically very efficient streaming string
transducers [?, ?, ?].

1.1 Contributions

This paper makes the following novel contributions:

• An aggressively streaming algorithm for nondeterministic finite state
transducers (NFST) for ordered output alpabets, which emits the lex-
icographically least output sequence generated by all accepting paths

1All Kleenex code in this paper was highlighted with a Kleenex program emitting
LATEX-commands.

3

of an input string. It runs in O(mn) time, for automata of size m and
inputs of size n.
• An effective determinization of NFSTs into a subclass of streaming

string transducers (SST) [?], finite state machines with string regis-
ters that are updated linearly when entering the state upon reading
an input symbol. The number of registers required adapts to the
number of output actions in the NFST: The fewer output actions the
fewer registers. In particular, without special-casing, no registers are
generated—yielding a deterministic finite automata (DFA).
• An expressive declarative language, Kleenex, for specifying NFSTs

with full support for and clear semantics of unrestricted nondeter-
minism by greedy disambiguation. A basic Kleenex program is a
context-free grammar with embedded semantic output actions, but
syntactically restricted to ensure that the input is regular.2 Basic
Kleenex programs can be functionally composed into pipelines. The
central technical aspect of Kleenex is its semantic support for unbri-
dled (regular) nondeterminism and its effective determinization and
compilation to SSTs, thus both highlighting and complementing their
significance.
• An implementation, including some empirically evaluated optimiza-

tions, of Kleenex that generates SSTs and sequential machines ren-
dered as standard single-threaded C-code, which is eventually com-
piled to X86 machine code. The optimizations, which are neither
conclusive nor final, illustrate the design robustness obtained by the
underlying theories of ordered NFST’s and SST’s.
• Use cases that illustrate the expressive power of Kleenex, and a perfor-

mance comparison with related tools, including Ragel [?], RE2 [?] and
specialized string processing tools. These document Kleenex’s consis-
tently high performance (typically around 1 Gbps, single core, on stock
hardware) even when compared to expressively more specialized tools
with special-cased algorithms and tools with no or limited support for
nondeterminism.

2 Transducers

The semantics of Kleenex will be given by translation to non-deterministic
finite state transducers, which are finite automata extended with output in
a free monoid. In this section, we will recall the standard definition (see
e.g. Berstel [?]). Since Kleenex is deterministic, we also need to define a
disambiguated semantics which allows us to interpret any non-deterministic
transducer as a partial function, even when it may have more than one

2This facilitates avoiding the Ω(M(n)) lower bound for context-free grammar parsing,
where M(n) is the complexity of multiplying n× n matrices.

4

possible output for a given input string.
In the following, an alphabet is understood to be a finite subset {0, 1, ..., n−

1} ⊆ N of consecutive natural numbers with their usual ordering. We fix
two alphabets Σ and Γ called the input and output alphabets, respectively.

Definition 1 (Finite State Transducer). A finite state transducer (FST)
over Σ,Γ is a structure T = (Σ,Γ, Q, q−, qf , E) where

• Q is a finite set of states;
• q−, qf ∈ Q are the initial and final states, respectively;
• E : Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q is the transition relation.

We write q
x|y−−→ q′ whenever (q, x, y, q′) ∈ E. The support of q ∈ Q is

defined as supp(q) = {x ∈ Σ ∪ {ε} | ∃q′, v. q x|v−−→ q′}.
A path in T is a sequence of transitions

q0
x1|y1−−−→ q1

x2|y2−−−→ ...
xn|yn−−−→ qn

It has input label u = x1x2...xn and output label v = y1y2...yn (ε denotes the

empty string). We write q0
u|v−−→ qn if a path from q0 to qn with input label

u and output label v exists.
T is normalized if for every state q ∈ QT , either supp(q) = {ε} or

supp(q) ⊆ Σ; and furthermore supp(qf) ⊆ Σ. We write q ↓ for q such that
supp(q) ⊆ Σ. The formulation of our simulation algorithm in Section 4
becomes simpler when restricting our attention to normalized transducers,
since we can take advantage of the following separation property:

Proposition 1. If T is normalized, then p
uv|z−−→ r ↓ if and only if there

exists a q such that z = xy and p
u|x−−→ q ↓ v|y−−→ r ↓.

Definition 2 (Relational Semantics). An FST T denotes a relation [[T]] ⊆
Σ∗ × Γ∗ with (u, v) ∈ [[T]] iff q−

u|v−−→ qf .

The relations definable as FSTs are the rational relations [?]. In the
special case where for any u ∈ Σ∗ there is at most one v ∈ Γ∗ such that
(u, v) ∈ [[T]], the transducer computes a partial function. Any FST can be
translated to an equivalent normalized FST.

In the following we give a refined semantics which allows us to inter-
pret any FST as denoting a partial function, using the assumed ordering
on alphabets to disambiguate between outputs. Our semantics requires re-
stricting paths to be nonproblematic [?]: If a path contains a non-empty

loop q′
ε|v′−−→ q′ with empty input label, then the path is said to be problem-

atic, otherwise it is nonproblematic. If there is a nonproblematic path from

q to q′ with labels u, v, then we write a subscript on the arrow: q
u|v−−→np q

′.

5

The output words (elements of Γ∗) are lexicographically ordered: w1 ≤
w2 if either w1 is a prefix of w2, or there exist words w′, w′1, w

′
2 and symbols

b1, b2 ∈ Γ such that w1 = w′b1w
′
1, w2 = w′b2w

′
2 and b1 < b2. We use the

ordering on output words to choose a single path from a non-empty set of
paths:

Definition 3 (Functional Semantics). Any transducer T denotes a partial
function [[T]]≤ : Σ∗ → Γ∗ ∪ {∅} where

[[T]]≤(u) = min{v | q− u|v−−→np q
f}.

Note that a partial function A→ B∪{∅} is considered here to be a map
A → 2

B where the cardinality of every subset in its range is at most two,
and we tacitly identify elements a ∈ A with their singleton sets {a}.3

Why the restriction to nonproblematic paths? Consider the following
transducer T :

q1start q2
a/1

ε/0

Then min{v | q1
a|v−−→ q2} = ∅, as evidenced by the following infinitely

descending chain of outputs: 1 ≥ 01 ≥ 001 ≥ 0001 ≥ Operationally,
such a chain corresponds to a non-terminating backtracking search. On the
other hand, the number of nonproblematic paths with a given input label
is always finite, ensuring well-foundedness of the lexicographic order. Every
problematic path has a corresponding nonproblematic path with the same
input label; consequently, dom([[T]]≤) = dom([[T]]).

3 Kleenex

The core syntax of Kleenex is essentially that of right regular grammars
extended with output actions and choice operators. Semantically, a Kleenex
program denotes a function which transforms an input string from a regular
language into a sequence of action symbols, with the caveat that if the input
grammar is ambiguous, then the production rules are chosen according to a
greedy leftmost disambiguation strategy.

We will first present the abstract syntax of core Kleenex, which is given
a semantics in terms of the transducers introduced in Section 2.

Definition 4 (Kleenex syntax). Let Σ and Γ be two alphabets. A Kleenex
program is a non-empty list p = d0d1 . . . dn of definitions di, each of the
form Ni:= ti, where ti is a term generated by the grammar:

t ::= 1 | N | a t | "b" t | t0|t1
3In other words, we adjoin an element to model partial functions as total functions to

pointed sets.

6

In the above, N is assumed to range over some set of non-terminal identifiers
{N1, ..., Nn}, a ∈ Σ over input symbols and b ∈ Γ over output actions.

We restrict the valid Kleenex programs to those where there is at most
one definition for each non-terminal identifier.

Let p be a Kleenex program over non-terminals {N1, . . . , Nn}. We define
a set of states Qp and two transition relations EA

p , E
C
p as the smallest sets

closed under the following rules:

N1 ∈ Qp
Ni ∈ Qp

ti ∈ Qp (Ni, ε, ε, ti) ∈ EA
p ∩ EC

p

(Ni:= ti)

a t ∈ Qp
t ∈ Qp (a t, a, ε, t) ∈ EC

p (a t, ε, ε, t) ∈ EA
p

"b"t ∈ Qp
t ∈ Qp ("b" t, ε, ε, t) ∈ EC

p ("b" t, ε, b, t) ∈ EA
p

t0|t1 ∈ Qp
{t0, t1} ⊆ Qp (t0|t1, ε, 0, t0), (t0|t1, ε, 1, t1) ∈ EC

p

(t0|t1, 0, ε, t0), (t0|t1, 1, ε, t1) ∈ EA
p

The sets are easily seen to be finite. They define two transducers, an oracle
T C
p = (Σ,2, Qp, N1, 1, E

C
p) and an action machine T A

p = (2,Γ, Qp, N1, 1, E
A
p),

where T A
p is easily seen to be deterministic, and T C

p is non-deterministic and
possibly ambiguous. The oracle intuitively translates an input string to a
set of codes for the possible paths through p which reads the given string.
The action machine translates a code to a sequence of actions.

Disambiguating according to the greedy leftmost strategy corresponds
to choosing the lexicographically least code, and we can thus define the
semantics as follows:

Definition 5 (Kleenex semantics). Let p be a Kleenex program and let
T C
p and T A

p be defined as above. The program p denotes a partial function
[[p]] : Σ∗ → Γ∗ ∪ {∅} given by

[[p]] = [[T A
p]] ◦ [[T C

p]]≤

3.1 Syntactic sugar

The full syntax of our language is obtained by extending the syntax of core
Kleenex with the following term-level constructors:

t ::= . . . | "v" | /e/ | ~t | t0 · t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}

7

main := odd ~/a/

| even ~/a/

odd := ~/aa/ "bb" odd

| "c"

even := ~/a/ "c" even

| "b"

Nmain := Nodd|Neven

Nodd := a a "b" "b" Nodd

|" c " a 1

Neven := a "c" Neven|"b" a 1

Nmain

Nodd

a1 a2

a3

Neven

a4

a5

1

ε/1

ε/0

ε/0

ε/1

a/ε a/ε ε/ε

ε/ε

ε/ε a/ε
ε/ε

ε/0

ε/1

a/ε

ε/ε

ε/ε a/ε

ε/ε

Nmain

Nodd

Neven

1

1/ε

0/ε

0/ε

1/ε

ε/ε ε/ε ε/b

ε/b

ε/c ε/ε
ε/ε

0/ε

1/ε

ε/ε

ε/c

ε/b ε/ε

ε/ε

Figure 1: In the top left is a Kleenex program in the surface syntax and on the
right is the desugared version. Below, the oracle transducer and action machine is
shown, from left to right. The transduction realized by the program maps a2n+1

to b2nc, and a2n+2 to c2nb, respectively.

where v ∈ Γ∗, n,m ∈ N, and e is a regular expression. The term "v" is
just shorthand for a sequence of action symbols. The regular expressions
are special versions of Kleenex terms that do not contain identifiers. They
always desugar to terms that output the matched input string: The sugared
term /e/ adds a default action "α(a)" after every input symbol a in e using
a given default action map α : Σ→ Γ. For example, the regular expression
/a*|b{n,m}|c?/ becomes the term (a"a")*|(b"b"){n,m}|(c"c")?. A sup-
pressed subterm is written ~t, and it desugars into t with all action symbols
removed. Composition t0 · t1 allows general sequential composition instead
of the strict cons-like form of the core syntax. The operators ·*, ·+ and ·?
desugar to their usual meaning as regular operators, as do operators ·{n},
·{n,}, ·{,m}, and ·{n,m}.

By convention, the nonterminal named main is the entry point to a
Kleenex program.

The desugaring can be described more precisely by a desugaring operator
D[[·, ·]]. The result of desugaring a program p = d1 . . . dn with initial term
N1:= t1 is a program with initial term N ′1:= D[[t1, 1]] which furthermore is

8

a solution to the following set of equations:

D[[1, k]] = D[[~1, k]] = k

D[["b1 . . . bn", k]] = "b1" . . . "bn" k

D[[~("b" t), k]] = D[[~t, k]]

D[[a t, k]] = a D[[t, k]]

D[[~(a t), k]] = a D[[~t, k]]

D[[~(t0|t1), k]] = D[[~t0, k]]|D[[~t1, k]]

D[[N, k]] = ND[[t,k]] (where N:= t)

D[[~N, k]] = ND[[~t,k]] (where N:= t)

D[[/e/, k]] = D[[te, k]]

D[[t0 · t1, k]] = D[[t0,D[[t1, k]]]]

D[[t0|t1, k]] = D[[t0, k]]|D[[t1, k]]

D[[t*, k]] = D[[t,D[[t*, k]]]]|k

D[[t+, k]] = D[[t,D[[t*, k]]]]

D[[t?, k]] = D[[t, k]]|k

In the above, a non-terminal name Nt on the right-hand side of an equa-
tion implies the presence of a definition Nt:= t, and the term te corresponds
to the regular expression e as described above. The range patterns are just
expanded and then further desugared.

The system does not always have a well-defined solution: The generalized
composition operator of sugared Kleenex allows one to write non-regular
grammars, for example:

A:= (aA) · b|1.

A program that does not have a well-defined desugaring is not considered
to be well-formed, and we will not attempt to give it a semantics.

3.2 Custom register updates

We extend the syntax of Kleenex further with register actions:

t ::= . . . | R @ t | !R
| [R <- (R | "v")?]

| [R += (R | "v")?]

where R is a lower-case register name. Intuitively, these constructs allow
one to store actions and perform them later. Writing R @ t redirects all
actions that would have resulted from running t into the register R, which
can be performed later by writing !R. The register R can be either set to a

9

sequence of actions (R | "v")? or appended with them, using the <- and +=

construct, respectively.
At first glance it seems like adding custom register updates to Kleenex

significantly alters the language and moves beyond the semantics discussed
so far. However, the only requirement on the output actions is that they
form a monoid, so this is not the case. We simply add actions like “set
register R to v” as output symbols along with the output symbols !v. The
output redirection caused by the · @ · operator can be understood as a push
operation: when R @ t is written it means that in the scope of t the topmost
register is R. If there are other redirection symbols in t, these will come in
and out of scope as they are pushed and popped to the stack.

As an example, the following program swaps two input lines by storing
them in registers a and b and outputting them in reverse order:

main := a@line b@line !b !a

line := /[^\n]*\n/

4 Simulation and determinization

In this section, we specify an algorithm for simulating FSTs under the func-
tional semantics, allowing us to efficiently evaluate the oracle transducer
defined in Section 3. We also show how the simulation algorithm can be
implemented by finite deterministic streaming string transducers [?] whose
states are identified by equivalence classes of simulation states. The lat-
ter construction gives a deterministic machine model for Kleenex programs
which can be compiled to efficient code for executing on hardware.

We note that non-deterministic transducers are strictly more powerful
than their deterministic counterparts, and can thus not always be deter-
minized in general. Determinization procedures exist [?, ?] which result in
a deterministic transducer with an infinite state set in the general case, and
a finite state set if and only if the underlying transduction is subsequen-
tial [?, ?]. The oracle transducers of Kleenex programs are not subsequen-
tial in general. Our simulation algorithm is also different from the existing
methods for determinizing transducers by also taking disambiguation into
account.

In the following we fix a transducer T = (Σ,∆, Q, q−, qf , E). We will
assume that T is normalized, and that it furthermore satisfies the following
property:

Definition 6 (Prefix-free transducer). T is said to be prefix-free if for all

p, q, q′ ∈ QT where supp(q), supp(q′) ⊆ Σ we have that if p
x|y−−→ q and

p
x|y′−−→ q′ then y 6≺ y′.

It is easy to verify that the oracle transducers constructed Section 3 are

10

both normalized and prefix-free. Note that they will always have ∆ = 2,
but our construction generalizes to oracle alphabets of all sizes.

4.1 Generalized state set simulation

Let D be a finite and totally ordered set, and write S(D,Q) for the set of
partial functions Q → D∗ ∪ {∅}. Elements A ∈ S(D,Q) can be seen as
generalized subsets of Q where every member q is labeled by some element
A(q) ∈ D∗, and every non-member has A(q) = ∅.

We extend word concatenation in D∗ to the set D∗ ∪ {∅} by setting
x∅ = ∅ = ∅x. For u, v ∈ D∗ ∪ {∅}, write u � v if u is a prefix of v, i.e.
there is a unique w such that v = uw. Write u ≺ v if w has length at least
one. Let u∧ v refer to the longest p such that u = pu′ and v = pv′ for some
u′, v′. Note that in view of this definition, ∅ becomes a neutral element with
u ∧ ∅ = u = ∅ ∧ u.

We define a right action · : S(D,Q)× Σ∗ → S(D ∪∆, Q) on the gener-
alized state sets as follows:

Definition 7 (Right action). Let A ∈ S(D,Q) and u ∈ Σ∗. We define

(A · u)(q) = min{A(p)v | p u|v−−→np q ↓}.

When D = ∆ the right action can be seen as a map S(∆, Q) × Σ∗ →
S(∆, Q). It is easily seen that the right action is related to the functional
semantics in the following way:

Proposition 2. Let A(q) = ε if q = q− and A(q) = ∅ otherwise. Then
(A · u)(qf) = [[T]]≤(u).

A generalized subset A ∈ S(D,Q) is said to be prefix-free if A(p) 6≺ A(q)
for all p, q ∈ Q. When T is normalized and prefix-free, the right action
preserves prefix-freeness of generalized subsets and commutes with word
concatenation:

Proposition 3. If T is normalized and prefix-free and A is prefix-free, then
for all u, v ∈ Σ∗,

1. A · u is prefix-free; and
2. (A · u) · v = A · uv.

Proof. The first property follows directly by A and T being prefix-free. For

11

the second, we have for r ∈ Q,

((A · u) · v)(r)

= min{(A · u)(q)y | q v|y−−→np r ↓}

= min{min{A(p)x | p u|x−−→np q ↓}y | q
v|y−−→np r ↓}

= min{min{A(p)xy | p u|x−−→np q ↓} | q
v|y−−→np r ↓}

= min{A(p)xy | p u|x−−→np q ↓
v|y−−→np r ↓}

= min{A(p)z | p uv|z−−→np r ↓} = (A · uv)(r)

The third equality is a consequence of the fact that A and T are prefix-free,
together with the following easily proved fact about lexicographic ordering:
(minX)y = min{xy | x ∈ X) whenever X is a set of pairwise prefix-free
words. The fourth equality is just associativity of minimum, and the last
equality follows by the fact that T is normalized and Proposition 1.

For x ∈ D∗ and A ∈ S(D,Q), define xA ∈ S(D,Q) by (xA)(q) =
x(A(q)). We say that x is a prefix of A if A = xA′ for some A′, which is
equivalent to x being a prefix of every A(q). The right action commutes
with the prefix operation:

Proposition 4. Let x ∈ D∗, then (xA) · u = x(A · u) for all u ∈ Σ∗.

Proof. Follows by the fact that lexicographic ordering satisfies min{xy | y ∈
Y } = xminY .

Streaming simulation algorithm A streaming simulation algorithm on
T processes an input from left to right and may write zero or more symbols
to the output in each step.

Algorithm 1 (Streaming FST Simulation). Let T be a normalized and
prefix-free transducer, and let the input u = a1a2...an be given. Let A0 ∈
S(∆, Q) be defined as in Proposition 2. Reading symbol ai, compute Bi =
Ai · ai+1. Append pi =

∧
q∈QBi(q) to the output stream and set Ai+1 =

B′i, where the equality Bi = piB
′
i defines B′i. When there are no more

input symbols left, append (An · ε)(qf) to the output and return, or fail if
(An · ε)(qf) = ∅.

By Proposition 2, Proposition 3 and Proposition 4, the algorithm com-
putes [[T]]≤(u).

4.2 A deterministic computation model

We wish to translate Kleenex programs to completely deterministic pro-
grams without a simulation overhead.

12

Single-valued transducers in general, however, can only be determinized
if the underlying function is subsequential [?, ?], a property which is not
satisfied in general for the oracle transducers constructed from Kleenex pro-
grams.

We turn instead to streaming string transducers [?] (SST), a determin-
istic model of computation which generalizes subsequential transducers by
allowing copy-free updates to a finite set of word registers. It turns out
that every transducer that can be simulated by our generalized state set
algorithm can be expressed as an SST.

Definition 8 (Streaming String Transducer [?]). A deterministic streaming
string transducer (SST) over alphabets Σ,∆ is a structure S = (X,Q, q−, F, δ1, δ2)
where

• X is a finite set of register variables;
• Q is is a finite set of states;
• F is a partial function Q → (∆ ∪X)∗ ∪ {∅} mapping each final state
q ∈ dom(F) to a word F (q) ∈ (∆ ∪X)∗ such that each x ∈ X occurs
at most once in F (q);
• δ1 is a transition function Q× Σ→ Q;
• δ2 is a register update function Q× Σ×X → (∆ ∪X)∗ such that for

each q ∈ Q, a ∈ Σ and x ∈ X, there is at most one y ∈ X such that x
occurs in δ2(q, a, y).

The semantics are defined as follows. A configuration of an SST S is
a pair (q, ρ) where q ∈ QS is a state, and ρ : XS → ∆∗ is a valuation. A
valuation extends as a monoid homomorphism to a map ρ̂ : (XS∪∆)∗ → ∆∗

by setting ρ(x) = x for x ∈ ∆. The initial configuration is (q−, ρ−) where
ρ−(x) = ε for all x ∈ XS .

A configuration steps to a new configuration given an input symbol:
δS((q, ρ), a) = (δ1S(q, a), ρ′), where ρ′(x) = ρ̂(δ2S(q, a, x)). The transition
function extends to a transition function on words δ∗S by δ∗S((q, ρ), ε) = (q, ρ)
and δ∗S((q, ρ), au) = δ∗S(δS((q, ρ), a), u).

Every SST S denotes a partial function [[S]] : Σ∗ → ∆∗ ∪ {∅} where for
any u ∈ Σ∗, we define

[[S]](u) =

ρ̂′(FS(q′)) if δ∗((q−, ρ−), u) = (q′, ρ′)

and q′ ∈ dom(FS)

undefined otherwise

4.3 Tabulation

We need to come up with a representation of our streaming simulation al-
gorithm as an SST with a designated register used for streaming output.
Our representation needs to satisfy the property of being finite state as well

13

as the property that the output register contains the output p1p2...pi of
Algorithm 1 after reading input symbol ai. The latter requirement means
that we must somehow statically encode the prefix structure of all potential
outputs in the states of the SST, since SSTs cannot access the contents of
registers. It turns out that this is possible by letting the states of the SST
be equivalence classes of generalized state sets, where the equivalence relates
state sets that agree on state ordering and prefix structure.

Trees We will call a prefix-free generalized state set A an ordered tree with
node set

NA = {A(p) ∧A(q) | p, q ∈ Q,A(p) ∧A(q) 6= ∅}.

Under this view, the leaves of A seen as a tree is the subset of nodes LA =
{A(q) | q ∈ Q,A(q) 6= ∅} ⊆ NA, and the leaves are labeled by A−1 : LA →
2
Q. Since A is assumed prefix-free, we have for any nodes x, y ∈ NA that
x � y if and only if there is a z ∈ NA such that x = y ∧ z. In this case x is
called an ancestor of y and z, which in turn are called the descendants of x.
Importantly, the root node of any (sub)tree is the longest common prefix of
its descendants.

Example 1. We illustrate the tree interpretation as follows. Consider the
oracle transducer from Figure 1. Let A0 be the generalized state set that
maps Nmain to ε and every other state to ∅. Then the state sets A0 · a and
A0 · aa can be seen as trees in the following way:

A0 · a : A0 · aa :

ε 0 00

01

10 100

101

{a2}
{1}
{a4}
{a5}

(−)·a
=⇒

ε 00 000

001

10 100 1000

1001

101

{a1}
{a3}
{a4}
{a5}
{1}

We will consider two generalized state sets to be equivalent if they are
indistinguishable as ordered trees.

Definition 9 (Ordered tree isomorphism). Let D1, D2 be totally ordered
and let A1 ∈ S(D1, Q) and A2 ∈ S(D2, Q) be trees. An ordered tree iso-
morphism between A1 and A2 is a bijective map h : NA1 → NA2 such that
for all p, q ∈ Q:

1. h(A1(p) ∧A1(q)) = A2(p) ∧A2(q); and
2. A1(p) ≤ A1(q) if and only if A2(p) ≤ A2(q).

We write h : A1 ≡ A2 and say that A1 and A2 are equivalent when
h is an ordered tree isomorphism between A1 and A2. Tree equivalence is
preserved by the right action:

14

Proposition 5. If A ∈ (D1, Q), B ∈ (D2, Q) and h : A ≡ B then for all
a ∈ Σ, we have A · a ≡ B · a.

Proof sketch. Since h is an order isomorphism and since A and B are prefix-
free, we have for all q ∈ Q exists pq ∈ Q and yq ∈ ∆∗ such that (A · a)(q) =
A(pq)yq and (B · a)(q) = h(A(pq))yq. Observe that for any n ∈ NA·a there
exists q1, q2 ∈ Q such that

n = (A · a)(q1) ∧ (A · a)(q2)

=

{
A(q1)(yq1 ∧ yq2) if A(q1) = A(q2)

A(q1) ∧A(q2) otherwise

Furthermore, there does not exist q1, q2, r1, r2 ∈ Q such that A(q1)(yq1 ∧
yq2) = A(r1) ∧A(r2), since that would imply that A(q1) is a prefix of A(r1)
and A(r2). We define a map h′ : NA·a → NB·a such that for all q1, q2 ∈ Q,

h′((A · a)(q1) ∧ (A · a)(q2))

=

{
h(A(q1)(yq1 ∧ yq2)) if A(q1) = A(q2)

h(A(q1) ∧A(q2)) otherwise.

This is a well-defined function by the previous observations, and a tree
isomorphism by the fact that h is a tree isomorphism.

Canonical representatives Call a generalized set A ∈ S(D,Q) canonical
if

1. rng(A) is prefix closed: if y ∈ rng(A) and x � y then x ∈ rng(A); and
2. rng(A) is downwards closed: if x b ∈ rng(A) for b′ < b then xb′ ∈

rng(A) (for b, b′ ∈ ∆).

Write S̃(D,Q) for the subset of canonical trees. The set is finite, as every
canonical tree A has a prefix closed node set, so the longest word in NA

is bounded by |dom(A)| − 1 (the maximum depth of a tree with |dom(A)|
leaves).

Any tree has a canonical representative:

Proposition 6. For any set D and tree A ∈ S(D,Q), there is a unique
C ∈ S̃(N, Q) with A ≡ C.

As a consequence, there is a reduction map [·] : S(D,Q) → S̃(N, Q)
such that A ≡ B if and only if [A] = [B], implying that the quotient set
S(D,Q)/≡ must be finite. Any A ∈ S(D,Q) is thus canonically represented
by a homomorphism hA : N[A] → NA such that A = hA ◦ [A].

In view of Proposition 5, this means that we can statically enumerate
all possible trees up to tree isomorphism by computing with the canonical

15

representatives. Any concrete tree reachable by the simulation algorithm is
an instance of a canonical tree composed with a suitable homomorphism.
An SST implementing the simulation algorithm can thus take the set of
canonical trees as its states, and will then need to maintain the associated
homomorphism via register updates.

Paths We need to represent tree homomorphisms using SST registers such
that the effect of computing right actions on the underlying tree can be
expressed as SST updates.

For a tree A ∈ S(D,Q), any node x ∈ NA has a unique maximal de-
composition x = x0x1...xn such that each x0x1...xi ∈ NA for all 0 ≤ i ≤ n.
Intuitively, this reflects the full path from the root node to the node x, and
we can define the map

pathA : NA → N∗A

pathA(x) = (x0, x0x1, ..., x0x1...xn),

which maps nodes to their maximal path decomposition (we use the tuple
notation to distinguish between the two levels of monoids). In view of this
and the fact that homomorphisms must preserve descendants, then for any
homomorphism h : A ≡ B there is a unique κh : NA → NB such that

h(x) = κh(t0)κh(t1) · · ·κh(tn), (1)

where pathA(x) = (t0, t1, ..., tn). Intuitively, κ can be seen as a “differential”
representation of h, representing the change of h between a node and its
immediate ancestor. By viewing κh as a map NA → D∗B which extends
uniquely to a monoid homomorphism κ̂h : N∗A → D∗B, we obtain h = κ̂h ◦
pathA. Considering the unique isomorphism hA : [A] ≡ A, write κA for the
associated decomposition satisfying (1), and we thus have

A = κ̂A ◦ path[A] ◦ [A] (2)

The path-operator is easily seen to be a tree isomorphism since it pre-
serves node ordering and prefix structure. That is, for any A ∈ S(D,Q), we
have pathA : A ≡ A] where A] ∈ S(ND, Q) is defined by A] = pathA ◦ A.
Using this notation, (2) becomes

A = κ̂A ◦ [A]], (3)

SST construction We construct an SST implementing the FST simula-
tion algorithm and sketch a proof of its correctness.

Theorem 1. For any normalized prefix-free transducer T = (Σ,∆, Q, q−, qf , E),
there is an SST S such that [[S]] = [[T]]≤.

16

Proof. We define S as follows. Let A0 be defined as in Algorithm 1, and
observe that A0 ∈ S̃(N, Q). The states are the canonical trees labeled by Q:

QS = {[A] | A ∈ S(∆, Q)} ∪ {A0} ⊆ S̃(N, Q),

q−S (q) = A0(q)

The registers will be identified by canonical tree nodes:

XS =
⋃
{NC | C ∈ QS}.

The final output and the transition maps are given as follows:

FS(C) = (C] · ε)(qf),

δ1S(C, a) = [C · a],

δ2S(C, a, x) =

{
κC]·a(x) if x ∈ N[C]·a]
ε otherwise

We claim that S computes the same function as T under the functional
semantics.

For u ∈ Σ∗ let (Cu, ρu) refer to the value δ∗S((q−S , ρ
−), u) = (Ci, ρi). We

show that for any u ∈ Σ∗, we have ρ̂u ◦ (C]u · ε) = A0 · u.
Suppose that this holds. Then for any u ∈ Σ∗, we have by the above and

Proposition 2 that [[S]](u) = ρ̂u(FS(Cu)) = ρ̂u ◦ (C]u · ε)(qf) = (A0 · u)(qf) =
[[T]]≤(u).

Our claim follows as a special case of the following lemma.

Lemma 1. Let A ∈ S(∆, Q) and ρ : XS → ∆∗ such that A = ρ̂◦ [A]]. Then
for any u ∈ Σ+ with δ∗S(([A], ρ), u) = (C, ρ′) we have ρ̂′ ◦ C] = A · u.

Proof. By induction on u. For u = a we have C = [[A] · a] = [A · a] and
ρ′ = ρ̂ ◦ κ[A]]·a. We can easily verify that ρ̂′ = ρ̂ ◦ κ̂[A]]·a so for any q ∈ Q,

ρ̂′ ◦ [A · a]](q) = ρ̂ ◦ κ̂[A]]·a ◦ [A · a]](q)

= ρ̂ ◦ ([A]] · a)(q)

= ρ̂(min{[A]](p)y | p a|y−−→np q ↓})

= min{ρ̂ ◦ [A]](p)y | p a|y−−→np q ↓}

= min{A(p)y | p a|y−−→np q ↓} = (A · a)(q)

The second equality follows by observing that A ≡ [A] ≡ [A]], so by Propo-
sition 5, we have A · a ≡ [A]] · a and thus [A · a] = [[A]] · a]. Therefore,
κ̂[A]]·a ◦ [A · a]] = κ̂[A]]·a ◦ [[A]] · a]] = [A]] · a by using the identity (3). The

fourth equality is justified by the fact that [A]](p) ≤ [A]](q) if and only if
A(p) ≤ A(q).

17

For u = au′ where u′ 6= ε, we have (C, ρ′) = δ∗S(([A · a], ρ̂ ◦ κ[A]]·a).
By the previous argument we can apply the induction hypothesis, and we
obtain C = [(A · a) · u′] and ρ̂′ ◦C] = (A · a) · u′. The result then follows by
Proposition 3.

Example 2. We illustrate how the construction works by showing how
Example 1 is implemented as an SST update between states [A0 · a] and
[A · aa]. The register update is obtained by computing κ[A0·a]]·a. The tree

[A0 · a]] looks as follows:

(ε) (ε, 0) (ε, 0, 00)

(ε, 0, 01)

(ε, 1) (ε, 1, 10)

(ε, 1, 11)

{a2}
{1}
{a4}
{a5}

Recall that each node is a full path in the canonical tree [A0 · a]. The node
names from N[A0·a] are overlined and elements of the path monoid N∗[A0·a] is

written (x1, x2, ...). The tree [A0 · a]] · a looks as follows:

(ε) (ε, 0, 00) (ε, 0, 00, 0)

(ε, 0, 00, 1)

(ε, 1) (ε, 1, 10) (ε, 1, 10, 0)

(ε, 1, 10, 1)

(ε, 1, 11)

{a1}
{a3}
{a4}
{a5}
{1}

Note that symbols that are not overlined are output symbols from ∆. The
map κ′ = κ[A0·a]]·a : N[A0·aa] → (N[A0·a] ∪ ∆)∗ gives us the relevant SST
update strings:

κ′(ε) = (ε) κ′(0) = (0, 00) κ′(00) = 0

κ′(01) = 1 κ′(1) = (1) κ′(10) = (10)

κ′(100) = 0 κ′(101) = 1 κ′(11) = (11)

The full construction of an SST from the oracle transducer in Figure 1
can be seen in Figure 2.

5 Implementation

Our implementation compiles a Kleenex program to machine code by im-
plementing the transducer constructions described in the earlier sections.
We have also implemented several optimizations to decrease the size of the
generated SSTs and improve the performance of the generated code. We
will briefly describe these in the following section, and we note that they are
all orthogonal to the underlying principles behind our compilation.

The possible compilation paths of our implementation can be seen in
Fig. 3.

18

[A0]start [A0 · a] (ε)(0)(01)

[A0 · aa] (ε)(1)(11)

a

/ ε 7→ ε
0 7→ 0

00 7→ 0
01 7→ 1
1 7→ 10

10 7→ 0
11 7→ 1

a

/ ε 7→ (ε)
0 7→ (0, 00)

00 7→ 0
01 7→ 1
1 7→ (1)

10 7→ (10)
100 7→ 0
101 7→ 1
11 7→ (11)

a

/ ε 7→ (ε)
0 7→ (0)

00 7→ (00)
01 7→ (01)
1 7→ (1, 10)

10 7→ (100, 0)
11 7→ (101, 1)

Figure 2: Example of SST computing the same function as the oracle transducer
in Figure 1. Each transition is tagged by a register update, and the nodes of the
canonical tree identifying the destination state make up the registers. The wide
arrows exiting the accepting states indicate the final output string. Note that this
always includes the root variable (ε) which thus acts as an interface for streaming
output (although for this particular example, nothing can output until the end of
the input).

Kleenex Symbolic Oracle+Action FSTs

Symbolic SST+Action FSTC codemachine code

translate

constant propagation

pipeline

inline (woACT)
gcc

clang 1-LAk-LA

Figure 3: Compilation paths. 1-LA is symbolic SST construction with single-symbol
transitions; k-LA is construction of SST with up to k symbols of lookahead for some
k determined by the program. The “pipeline” translation path indicates that the
resulting program keeps the oracle SST and action FST separate, with data being
piped from the SST to the FST at runtime. The “inline” path indicates that the
action FST is fused into the oracle SST.

19

5.1 Transducer pipeline

It is possible to chain together several Kleenex programs in a pipeline, let-
ting the output of one serve as the input of the next. This can for example
be used to strip unwanted characters before performing a transformation.
By using the optional pipeline pragma, start: t1 >> . . . >> tn, a program-
mer can specify that the entry point is t1 and that the output should be
chained together as specified, with the final output being that of tn. The
implementation does this by spawning a process for each transducer and
setting up UNIX pipes between them.

5.2 Inlining the action transducer

When we have constructed the oracle SST we end up with two deterministic
machines which need to be composed. We can either do this at runtime,
piping the output of the oracle SST into the action FST, or we can apply
a form of deforestation to inline the outuput of the action FST directly
in the SST (this is straightforward since the action FST is deterministic by
construction). The former approach is advantageous if the Kleenex program
produces a lot of output and is highly nondeterministic.

5.3 Constant propagation

The SSTs generated by our construction contains quite a lot of trivial reg-
ister updates which can be eliminated in order to achieve better run-time
efficiency. Consider the SST in Fig. 2, where all registers but (0) and (1)
are easily seen to have a constant known value in each state. Eliminating
the redundant registers means that we only have to maintain two registers
at run-time.

We achieve this by constant propagation: computing reaching definitions
by solving a set of data-flow constraints (see e.g. [?]).

5.4 Symbolic representation

Text transformation programs often contain idioms which have a rather
redundant representation as pure transducers. A program might for example
match against a whole range of characters and proceed in the same way
regardless of which one was matched. This will, however, lead to a transition
for each concrete character in the generated FST, even though all transitions
have the same source and destination states.

A more succinct representation can be obtained by using a symbolic rep-
resentation of the transition relation by introducing transitions whose input
labels are predicates, and whose output labels are terms indexed by input
symbols. Replacing input labels with predicates has been described first
described by Watson [?]. Such symbolic transducers have been developed

20

further and have recently received quite a bit of attention, with applications
in verification and verifiable string transformations [?, ?, ?, ?].

Our implementation of Kleenex uses a symbolic representation for basic
ranges of symbols in order to get rid of most redundancies. The simulation
algorithm and the SST construction can be generalized to the symbolic case
without altering the fundamental structure, so we have elided the details of
this optimization. We refer the reader to the cited literature for the technical
details of symbolic transducers.

5.5 Finite lookahead

A common pattern in Kleenex programs are definitions of the form

token := ~/abcd/ commonCase | ~/[a-z]+/ fallback

that is, a specific pattern appearing with higher priority than a more gen-
eral fallback pattern. Patterns of this form will result in (symbolic) SSTs
containing the following kind of structure:

...

...

a/... b/... c/... d/...

[^a]/... [^b]/... [^c]/... [^d]/...

The primary case and the fallback pattern are simulated in lockstep, and in
each state there is a transition for when the common case fails after reading
0, 1, 2, etc. symbols.

If the SST was able to look more than one symbol ahead before deter-
mining the next state, we would be able to tabulate a much coarser set of
simulation states and do away with the fine-grained interleaving. For the
above example, we would like a transition structure like the following:

...

...

abcd/...

[a-z]/...

If the first four symbols of the input are abcd, the upper transition is taken.
If this is not the case, but the first symbol is a, then the lower transition
is taken. The idea is that any string successfully matched by the primary
case will satisfy the test abcd, so if the transition with [a-z] is taken, then
the FST states corresponding to the primary case can be removed from the
generalized state set and tabulation can continue with a simpler simulation
state.

The semantics of SSTs with lookahead are still deterministic despite the
seeming overlap of patterns, as the model requires that any pair of tests
are either disjoint (no string will satisfy both at the same time), or one
test is completely contained in another (if a string satisfies the first test, it
also satisfies the second). This restriction gives a total order between tests,
specifying their priority—the most specific test must be tried first.

21

6 Benchmarks

We have run comparisons with different combinations of the following tools:

RE2, Google’s automata-based regular expression C++ library [?].
RE2J, a recent re-implementation of RE2 in Java [?].
GNU AWK, GNU grep, and GNU sed, programming languages and tools

for text processing and extraction [?].
Oniglib, a regular expression library written in C++ with support for dif-

ferent character encodings [?].
Ragel, a finite state machine compiler with multiple language backends [?].

In addition, we implemented test programs using the standard regu-
lar expression libraries in the scripting languages Perl [?], Python [?], and
Tcl [?].

Meaning of plot labels Kleenex plot labels indicate the compilation
path, and follow the format [<0|3>[-la] | woACT] [clang|gcc]. 0/3 in-
dicates whether constant propagation was disabled/enabled. la indicates
whether lookahead was enabled. clang/gcc indicates which C compiler was
used. The last part indicates that custom register updates are disabled, in
which case we generate a single fused SST as described in 6.3. These are
only run with constant propagation and lookahead enabled.

Experimental setup The benchmark machine runs Linux, has 32 GB
RAM and an eight-core Intel Xeon E3-1276 3.6 GHz CPU with 256 KB L2
cache and 8 MB L3 cache. Each benchmark program was run 15 times,
after first doing two warm-up rounds. Version numbers of libraries, etc. are
included in the appendix. All C and C++ files have been compiled with
-O3.

Difference between Kleenex and the other implementations Un-
less otherwise stated, the structure of all the non-Kleenex implementations
is a loop that reads input line by line and applies an action to the line.
Hence, in these implementations there is an interplay between the regular
expression library used and the external language, e.g., RE2 and C++. In
Kleenex, line breaks do not carry any special significance, so the multi-line
programs can be formulated entirely within Kleenex.

Ragel optimization levels Ragel is compiled with three different opti-
mization levels: T1, F1, and G2. “T1” and “F1” means that the generated
C code should be based on a lookup-table, and “G2” means that it should
be based on C goto statements.

22

Kleenex compilation timeout On some plots, some versions of the
Kleenex programs are not included. This is because the C compiler has
timed out (after 30 seconds). As we fully determinize the transducers, the
resulting C code can explode in some cases. This is a an area for future
research.

6.1 Baseline

The following three programs are intended to give a baseline impression of
the performance of Kleenex programs.

flip ab The program flip ab swaps “a”s and “b”s on all its input lines.
In Kleenex it looks like this:

main := ("b" ~/a/ | "a" ~/b/ | /\n/)*

We made a corresponding implementation with Ragel, using a while-
loop in C to get each new input line and feed it to the automaton code
generated by Ragel.

Implementing this functionality with regular expression libraries in the
other tools would be an unnatural use of them, so we have not measured
those.

The performance of the two implementations run on input with an av-
erage line length of 1000 characters is shown in Figs. 4.

patho2 The program patho2 forces Kleenex to wait until the very last
character of each line has been read before it can produce any output:

main := ((~/[a-z]*a/ | /[a-z]*b/)? /\n/)+

In this benchmark, the constant propagation makes a big difference, as
Fig. 5 shows. Due to the high degree of interleaving and the lack of keywords,
in this program the look-ahead optimization reduces overall performance.

This benchmark was not run with Ragel because Ragel requires the
programmer to do all disambiguation manually when writing the program;
the C code that Ragel generates does not handle ambiguity in a predictable
way.

6.2 Rewriting

Thousand separators The following Kleenex program inserts thousand
separators in a sequence of digits:

main := (num /\n/)*

num := digit{1,3} ("," digit{3})*

digit := /[0-9]/

23

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

200

400

600

800

1,000

1,200

1,400

1,600

M
b
it

/s
flip_ab (ab_lines_len1000_250mb.txt 238.42 MB)

Figure 4: flip ab run on lines with average length 1000.

We evaluated the Kleenex implementation along with three other imple-
mentations using Perl, and Python. The performance can be seen in Fig. 6.
Both Perl and Python are significantly slower than all of the Kleenex imple-
mentations; this is a problem that is tricky to formulate with normal regular
expressions (unless one reads the input right-to-left).

CSV rewriting The program csv project3 deletes columns two and five
from a CSV file:

main := (row /\n/)*

col := /[^,\n]*/

row := ~(col /,/) col "\t" ~/,/ ~(col /,/)

~(col /,/) col ~/,/ ~col

Various specialized tools exist that can handle this transformation are
included in Fig. 7; GNU cut is a command that splits its input on certain
characters, and GNU AWK has built-in support for this type of transforma-
tion.

Apart from cut, which is really fast for its own use-case, the Kleenex
implementation is the fastest. The performance of Ragel is slightly lower,
but this is likely due to the way the implementation produces output: In a
Kleenex program, output strings are automatically put in an output buffer

24

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on re
2

re
2j

se
d tc

l
0

200

400

600

800

1,000

M
b
it

/s
patho2 (ab_lines_len1000_250mb.txt 238.42 MB)

Figure 5: patho2 run on lines with average length 1000.

which is flushed routinely, whereas a programmer has to manually handle
buffering when writing a Ragel program.

IRC protocol handling The following Kleenex program parses the IRC
protocol as specified in RFC 2812.4 It follows roughly the output style
described in part 2.3.1. Note that the Kleenex source code and the BNF
grammar in the RFC are almost identical. Fig. 8 shows the throughput on
250 MiB data.

main := (message | "Malformed line: " /[^\r\n]*\r?\n/)*

message := (~/:/ "Prefix: " prefix "\n" ~/ /)?

"Command: " command "\n"

"Parameters: " params? "\n"

~crlf

command := letter+ | digit{3}

prefix := servername

| nickname ((/!/ user)? /@/ host)?

user := /[^\n\r @]/+ // Missing \x00

middle := nospcrlfcl (/:/ | nospcrlfcl)*

params := (~/ / middle ", "){,14} (~/ :/ trailing)?

| (~/ / middle){14} (/ / /:/? trailing)?

4https://tools.ietf.org/html/rfc2812

25

https://tools.ietf.org/html/rfc2812

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c
pe

rl

py
th

on
0

200

400

600

800

1,000

1,200

M
b
it

/s
thousand_sep (numbers_250mb.txt 238.42 MB)

Figure 6: Inserting thousand separators on random numbers with average length
1000.

trailing := (/:/ | / / | nospcrlfcl)*

nickname := (letter | special)

(letter | special | digit){,10}

host := hostname | hostaddr

servername := hostname

hostname := shortname (/\./ shortname)*

hostaddr := ip4addr

shortname := (letter | digit) (letter | digit | /-/)*

(letter | digit)*

ip4addr := (digit{1,3} /\./){3} digit{1,3}

6.3 With or without action-separation

One can choose to use the machine resulting in combining the oracle and
the action machine when compiling Kleenex. Doing so results in only one
process doing both the disambiguation and outputting, which in some cases
is faster and in other slower. Figs. 7, 9, and 11 illustrate both situations. It
depends on the structure of the problem whether it pays off to split up the
work in two processes; if all the work happens in the oracle and the action
machine nearly does not do anything, then the added overhead incurred by
the process context switches becomes noticeable. On the other hand, in

26

cu
t

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

re
2

re
2j

se
d tc

l
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

M
b
it

/s
csv_project3 (csv_format1_250mb.csv 238.42 MB)

Figure 7: csv project3 reads in a CSV file with six columns and outputs columns
two and five. “gawk” is GNU AWK that uses the native AWK way of splitting up lines.
“cut” is a command from GNU coreutils that splits up lines.

cases where both machines do much work, the fact that two CPU cores can
be utilized speeds up the program. This would be more likely if Kleenex
had support for actions which could perform arbitrary computation, e.g. in
the form of embedded C code.

7 Use cases

In this section we will briefly touch upon various interesting use cases for
Kleenex.

JSON logs to SQL We have implemented a Kleenex program (code in
Appendix) that transforms a JSON log file into an SQL insert statement.
The program works on the logs provided by Issuu.5

The Ragel version we implemented outperforms Kleenex by about 50%
(Fig. 9), indicating that further optimizations of our SST construction should
be possible.

5The line-based data set consists of 30 compressed parts and part one is available from
http://labs.issuu.com/anodataset/2014-03-1.json.xz

27

http://labs.issuu.com/anodataset/2014-03-1.json.xz

ke
x

0-
la
 g

cc

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c
0

50

100

150

200

250

300

350

400

450

M
b
it

/s
irc (irc_250mb.txt 238.42 MB)

Figure 8: Throughput when parsing 250 MiB random IRC data.

Apache CLF to JSON The Kleenex program below rewrites Apache
CLF6 log files into a list of JSON records:

main := "[" loglines? "]\n"

loglines := (logline "," /\n/)* logline /\n/

logline := "{" host ~sep ~userid ~sep ~authuser sep

timestamp sep request sep code sep

bytes sep referer sep useragent "}"

host := "\"host\":\"" ip "\""

userid := "\"user\":\"" rfc1413 "\""

authuser := "\"authuser\":\"" /[^ \n]+/ "\""

timestamp := "\"date\":\"" ~/\[/ /[^\n\]]+/ ~/]/ "\""

request := "\"request\":" quotedString

code := "\"status\":\"" integer "\""

bytes := "\"size\":\"" (integer | /-/) "\""

referer := "\"url\":" quotedString

useragent := "\"agent\":" quotedString

ws := /[\t]+/

sep := "," ~ws

quotedString := /"([^"\n]|\\")*"/

integer := /[0-9]+/

ip := integer (/\./ integer){3}

6https://httpd.apache.org/docs/trunk/logs.html#common

28

https://httpd.apache.org/docs/trunk/logs.html#common

ke
x

0-
la
 g

cc

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
gc

c

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

500

1,000

1,500

2,000

2,500

3,000

M
b
it

/s
issuu_json2sql (issuu_14000000objs.json 7471.78 MB)

Figure 9: The speeds of transforming JSON objects to SQL INSERT statements
using Ragel and Kleenex.

rfc1413 := /-/

This is a re-implementation of a Ragel program.7 Fig. 10 shows the bench-
mark results. The versions compiled with clang are not included, as the com-
pilation timed out after 30 seconds. Curiously, the non-optimized Kleenex
program is the fastest in this case.

ISO date/time objects to JSON Inspired by an example in [?], the
program iso datetime to json (code in Appendix) converts date and time
stamps in an ISO standard format to a JSON object. Fig. 11 shows the
performance.

URL parsing Kleenex allows one to naturally follow the URL specifica-
tion given in RFC1738.8 We implemented a URL parser by directly following
the BNF-grammar in the RFC; its code can be found in the Appendix.

Syntax highlighting Kleenex can used to write syntax highlighters; in
fact, the Kleenex syntax in this paper was highlighted with a Kleenex pro-

7https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel
8http://www.ietf.org/rfc/rfc1738.txt

29

https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel
http://www. ietf.org/rfc/rfc1738.txt

ke
x

0
gc

c

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
gc

c
pe

rl

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

200

400

600

800

1,000

1,200

M
b
it

/s
apache_log (example_big.log 247.23 MB)

Figure 10: Speed of the conversion from the Apache Common Log Format to JSON.

gram. The code for a version that emits ANSI color codes is included in the
Appendix.

HTML comments The following Kleenex program finds HTML com-
ments with basic formatting commands and renders them in HTML af-
ter the comment. For example, <!-- doc: *Hello* world --> becomes
<!-- doc: *Hello* world --><div> Hello world </div>.

main := (comment | /./)*

comment := /<!-- doc:/ clear doc* !orig /-->/

"<div>" !render "</div>"

doc := ~/*/ t@/[^*]*/ ~/*/

[orig += "*" t "*"] [render += "" t ""]

| t@/./ [orig += t] [render += t]

clear := [orig <- ""] [render <- ""]

8 Related Work

We discuss related work in the context of current and future work.

30

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

re
2

re
2j

se
d tc

l
0

200

400

600

800

1,000

1,200

M
b
it

/s
iso_datetime_to_json (datetimes_250mb.txt 248.55 MB)

Figure 11: The performance of the conversion of ISO time stamps into JSON
format.

8.1 Regular expression matching

Regular expression matching has different meanings in the literature.
For acceptance testing, which corresponds to classical automata the-

ory, Bille and Thorup [?] improve on Myers’ [?] log-factor improved RE-
membership testing of classical NFA-simulation, based on tabling. They
design an O(kn) algorithm [?] with word-level parallelism, where k ≤ m is
number of strings occurring in an RE. The tabling technique may be promis-
ing in practice; the algorithms have not been implemented and evaluated
empirically, though.

In subgroup matching as in PCRE [?], an input is not only classified
as accepting or not, but a substring is returned for each sub-RE in an RE
designated to be of interest. Subgroup matching is often implemented by
backtracking over alternatives, which yields the greedy match.9 It may
result in exponential-time behavior, however. Consequently, considerable
human effort is expended to engineer REs to perform well. REs resulting
in exponential run-time behavior are used in algorithmic attacks, leading
to proposals for countermeasures to such attacks by classifying REs with

9Committing to the left alternative before checking that the remainder of the input is
accepted is the essence of parsing expression grammars [?].

31

slow backtracking performance [?, ?], where the countermeasures in turn
appear to be attackable. Even in the absence of inherently hard match-
ing with backreferences [?], backtracking implementations with avoidable
performance blow-ups are amazingly wide-spread. This may be due to a
combination of their good best-case performance and PCRE-embellishments
driven by use cases. Some submatch libraries with guaranteed worst-case
linear-time performance, notably RE2 [?], are making inroads, however.
Myers, Oliva and Guimaraes [?] and Okui, Suzuki [?] describe a O(mn), re-
spectively O(m2n) POSIX-disambiguated matching algorithms. Sulzmann
and Lu [?] use Brzozowski [?] and Antimirov derivatives [?] for Perl-style
subgroup matching for greedy and POSIX disambiguation.

Full RE parsing generalizes submatching: it returns a list of matches for
each Kleene-star, also for nested ones. Kearns [?], Frisch and Cardelli [?]
devise 3-pass linear-time greedy RE parsing; they require 2 passes over the
input, the first consisting of reversing the entire input, before generating
output in the third pass. Grathwohl, Henglein, Nielsen, Rasmussen devise
a two-pass [?] and an optimally streaming [?] greedy regular expression
parsing algorithm. Streaming guarantees that line-by-line RE matching can
be coded as a single RE matching problem. Sulzman and Lu [?] remark that
POSIX is notoriously difficult to implement correctly and show how to use
Brzozowski derivatives [?] for POSIX RE parsing;

There are specialized RE matching tools and techniques too numerous
to review comprehensively. We mention a few employing automaton opti-
mization techniques applicable to Kleenex, but presently unexplored. Yang,
Manadhata, Horne, Rao, Ganapathy [?] propose an OBDD representation
for subgroup matching and apply it to intrusion detection REs; the cycle
counts per byte appear a bit high, but are reported to be competitive with
RE2. Sidhu and Prasanna [?] implement NFAs directly on an FPGA, es-
sentially performing NFA-simulation in parallel; it outperforms GNU grep.
Brodie, Taylor, Cytron [?] construct a multistride DFA, which processes
multiple input symbols in parallel, and devise a compressed implementation
on stock FPGA, also achieving very high throughput rates. Likewise, Ziria
employs tabled multistriding to achieve high throughput [?]. Navarro and
Raffinot [?], show how to code DFAs compactly for efficient simulation.

8.2 Ambiguity

REs may be ambiguous, which is irrelevant for acceptance testing, but prob-
lematic for submatching and parsing since the output depends on which
amongst possibly multiple matches is to be returned. Brüggemann-Klein [?]
provides an efficient O(m2) RE ambiguity testing algorithm. Vansummeren
[?] illustrates differences between POSIX, first/longest and greedy matches.
Colcombet [?] analyzes notions of (non)determinism of automata.

32

8.3 Transducers

From RE parsing it is a surprisingly short distance to the implementation of
arbitrary nondeterministic finite state transducers (NFSTs) [?, ?]. In con-
trast to the situation for automata, nondeterministic transducers are strictly
more powerful than deterministic transducers; this, together with observable
ambiguity, highlights why RE parsing is more challenging than RE accep-
tance testing.

As we have seen, efficient RE parsing algorithms operate on arbitrary
NFAs, not only those corresponding to REs. Indeed, REs are not a par-
ticularly convenient or compact way of specifying regular languages: they
can be represented by certain small NFAs with low tree-width, but may
be inherently quadratically bigger even for DFAs [?, Theorem 23]. This
is why Kleenex employs context-free grammars restricted to denote regular
languages, with embedded output actions, to denote NFSTs.

We have shown that NFSTs, in particular unambiguous NFSTs, can be
implemented by a subclass of streaming string transducers (SSTs). SSTs ex-
tensionally correspond to regular transductions, functions implementable by
2-way deterministic finite-state transducers [?], MSO-definable string trans-
ductions [?] and a combinator language analogous to regular expressions
[?]. The implementation techniques used in Kleenex appear to be directly
applicable to all SSTs, not just the ones corresponding to NFSTs.

Allender and Mertz [?] show that the functions computable by regis-
ter automata, which generalize output strings to arbitrary monoids, are in
NC and thus inherently parallelizable. This is achievable by performing
relational NFST-composition by matrix multiplication on the matrix rep-
resentation of NFSTs [?], which can be performed by parallel reduction.
This is tantamount to running an NFST from all states, not just the input
state, on input string fragments. Mytkowicz, Musuvathi, Schulte [?] observe
that there is often a small set of cut states sufficient to run each NFST. This
promises to be an interesting parallel harness for a suitably adapted Kleenex
implementation running on fragments of very large inputs.

Veanes, Molnar, Mytkowics [?] employ symbolic transducers [?, ?, ?]
and a data-parallel intermediate language in the implementation of BEK
for multicore execution.

9 Conclusions

We have presented Kleenex, a convenient language for specifying nonde-
terministic finite state transducers; and its compilation to machine code
representations of streaming state transducers, which emit the output

Kleenex is comparatively expressive and performs consistently well—
for complex regular expressions with nontrivial amounts of output almost

33

always better in the evaluated use cases—vis-à-vis text processing tools such
as RE2, Ragel, grep, AWK, sed and RE-libraries of Perl, Python and Tcl.

We believe Kleenex’s clean semantics, streaming optimality, algorithmic
generality, worst-case guarantees and absence of tricky code and special
casing provide a useful basis for

• extensions to deterministic visible push-down automata, restricted ver-
sions of backreferences and approximate/probabilistic matching;
• known, but so far unexplored optimizations, such as multicharacter

input processing, automata minimization and symbolic representa-
tion, hybrid NFST-simulation/SST-construction (analogous to NFA-
simulation with NFA-state set memoization to implement on-demand
DFA-construction);
• massively parallel (log-depth, linear work) input processing.

Acknowledgements

We thank Issuu for releasing their data set to the research community. This
work has been partially supported by The Danish Council for Independent
Research under Project 11-106278, “Kleene Meets Church: Regular Ex-
pressions and Types”. The order of authors is insignificant; please list all
authors—or none—when citing this paper.

34

	Introduction
	Contributions

	Transducers
	Kleenex
	Syntactic sugar
	Custom register updates

	Simulation and determinization
	Generalized state set simulation
	A deterministic computation model
	Tabulation

	Implementation
	Transducer pipeline
	Inlining the action transducer
	Constant propagation
	Symbolic representation
	Finite lookahead

	Benchmarks
	Baseline
	Rewriting
	With or without action-separation

	Use cases
	Related Work
	Regular expression matching
	Ambiguity
	Transducers

	Conclusions

