
Towards a Theory of Objects in Sequentially
Constructive Synchronous Programming

Michael Mendler and Marc Pouzet

1 University of Bamberg
2 Ecole Normale Superieure Paris

Abstract. The synchronous model of computation reduces the pro-
gramming of deterministic concurrent systems to the programming of
stateful reaction modules that operate in lock-step. At each macro-step,
also called synchronous instant, each concurrent program module reads
inputs from the environment and executes a step function to change
internal memory and produce an output which is consumed by the en-
vironment during the same instant. To guarantee overall determinacy,
current synchronous programming (SP) languages are heavily restric-
tive: Modules may only communicate through signals, the modules’ step
functions must be schedulable so that there is essentially only one write
access to a signal and each step function is called at most once within
a single instant. Programs which cannot be scheduled to satisfy this are
considered non-constructive and rejected. Thus, on the face of it, the
synchronous paradigm, as embodied in traditional SP languages, seems
to preclude object-style component models, which are common in main-
stream imperative programming and natural for modular compilation of
synchronous programs.
Previous attempts to add objects to SP have been fairly tentative or re-
mained hidden in the intermediate languages of SP compilers. However,
the situation may now be changing. Recent work on a scheduling-centred
reconstruction of SP, called the sequentially constructive model of syn-
chronous computation (SCMoC), has introduced a key advance. The
SCMoC permits multiple sequential writes to a signal variable under an
init-update-read scheduling discipline which relaxes the standard con-
structiveness analysis for an SP program. Considering that a signal is
nothing but a rather special case of a shared object, we show how to en-
rich earlier tentative synchronous object models by pushing the SCMoC
scheduling perspective further. We generalise from simple read/write ac-
cess functions on signals to module tasks on shared state, and from pre-
defined implicit scheduling disciplines to programmer-defined scheduling
policies. In this way, we can encapsulate both memory and synchronous
code freely into shared objects just as SCMoC signals can be shared
modulo init-update-read protocols. This yields an expressive component
model that fills an abstraction gap still prevalent in standard SP lan-
guages.


