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Abstract. Static program analysis is in general more precise if it is sensitive to
execution contexts (execution paths). In this paper we propose x-terms as a mean
to capture and manipulate context-sensitive program information in a data-flow
analysis. We introduce finite k-approximation and loop approximation that limit
the size of the context-sensitive information. These approximated x-terms form
a lattice with a finite depth, thus guaranteeing every data-flow analysis to reach a
fixed point.

1 Introduction

Static program analysis is an important part of optimizing compilers and software en-
gineering tools. These analyses predict properties of any execution of a given program,
referred to as program information, by abstracting from its concrete execution seman-
tics and its potential input values. Analyses can be context-sensitive or -insensitive, i.e.,
an analysis may or may not distinguish program information for different execution
paths, i.e. for different contexts, e.g., the call contexts of a method. Context-sensitive
analyses are, in general, more precise than their context-insensitive counterparts but
also more expensive in terms of time and memory consumption.

In an iterative program, there are countably (infinitely) many contexts. Hence, merg-
ing the program information of some contexts is needed for the analysis to terminate.
This, however, makes the analysis less context-sensitive, hence, less precise.

In Trapp et al. [THLL15], we focussed on capturing context-sensitive analysis in-
formation, i.e. contexts and program information for each program point, in a memory
efficient way. In other words, we strived to delay merging the program information
of different context for keeping analysis precision high. In the present paper, we dis-
cuss how to handle the approximations that sacrifies precision for memory. We propose
two solutions: finite k-approximation and loop approximation, and we prove that any
context-insensitive data-flow analysis problem have a k-approximated context-sensitive
counterpart that is guaranteed to reach a fixed point.

The remainder of the paper is structured as follows: Section 2 summarise the no-
tions of x-terms and some of its fundamental operations. Sections 3 and 4 presents some
theoretical results that will be useful later on. Section 5 presents two types of x-term
approximations and discusses how they relate to loop handling and analysis termina-
tion. Section 5.5 presents an approximative approach that is a normalized combination
of these two x-term approximations. Section 6 discusses related work, and section 7
concludes the paper and discusses future work.



2 Background

This section summarise the notions of x-terms and some of its fundamental operations.
It is basically a brief summary of [THLL15] included for the completness and under-
standability of this paper.

2.1 SSA Representation

We assume the analysis to be based on a Static Single Assignment (SSA) graph repre-
sentation [CFRT91] of a program. Nodes in the SSA graph represent program points;
special ¢-nodes represent merge points of the execution paths, i.e., contexts. Here we
distinguish the program information of incoming paths by creating a x-term connected
to sub-terms, each representing the program information analyzed for the respective
incoming execution path.

Figure 1 shows an example code with corresponding basic block and SSA-graph
representations.

if (...)
x = 1;
else
X = 2
if | ) A
y = %5
b = 3;
}
else {
y = 2;
b 4;
if (...)
elze x’
a =y

return a+b;

Fig. 1. A source code example with corresponding basic block and SSA graph structures.

In the figure the source code is transfered into numbered basic blocks (middle), and
based on this a ¢-node based SSA-graph have been generated (right). The ¢-nodes will
there be the merging point for different definitions of values for a given variable.

2.2  x-terms

A x-function is a representation of how different control-flow options affect the value
of a variable. For example, we can write down the value of variable b in block 7 in
Figure 1 using x-functions as b = x7(3, 4). Interpretation: variable b has the value 3 if



Fig. 2. Tree view of x'°(x*(1,2), x"(x*(1,2), 2)) and its graph representation.

it was reached from the first predecessor to block 7 in the control-flow graph, and the
value 4 if it was reached from the second predecessor block. That is, a value expressed
using x-functions (a so-called x-term) does not only contain all possible values, it also
contains which control-flow options that generated each of these values.

The construction of the y-term values and the numbering of the x-functions is a part
of a context-sensitive analysis. Every ¢-node in an SSA graph represents a join point
for several possible definitions of a single variable, say x. When the analysis reaches
a block b containing a ¢-node for x it “asks” all the predecessor blocks to give their
definition of = and constructs a new x-term x°(zy,...,,) where x; is the y-term
value for = given by the i:th predecessor. If the i:th predecessor block does not define x
by itself, it “asks” its predecessor for the value. This process continues recursively until
each predecessor has presented a y-term value for x. The process will terminate if any
use of a value also has a corresponding definition.

Iteration in the code will generate loops in the control-flow and this need to be
handled in the y-term. Loop handling will be elaborated in section 5.4.

In summary, a y-term is a composition of y-functions and analysis values a, b, . .. €
V. Each program p has a (possibly infinite) set of y-functions X (p) and each x-function
xé’- € X(p) is identified by a pair (b, j) where the block number b indicates in what
basic block its generating ¢-node is contained, and the iferation index j indicates on
what analysis iteration over block b the y-function was generated.

Two x-terms x%(z1,...,z,) and X?(yl, ..., Yn) from the same block b have the
same switching behavior if they have the same iteration index (i.e. ¢ = 7). That is, for
any execution of the program it holds that

branch zy, is selected < branch yy, is selected

Thus, the switching behavior of a x-function is determined by a pair (b, ) where b is
the block number and ¢ is the iteration index. In what follows, we will often skip the
iteration index to simplify the notations. In these cases we assume that all involved
x-function have the same iteration index.



public int m(int a, int b) {

if ( ...0) |
a = atl;
b = b-1;
}
else {
a a-1;
b = bt+l;

return a + b;

Fig. 3. An method with the corresponding SSA graph of the basic block containing the return-
statement.

2.3 Tree and Graph Representation of x-terms

Every x- term can be naturally viewed as a tree. This is illustrated in Figure 2 (left)
where we show the tree representation of the x-term x'°(x*(1,2), x"(x*(1,2),2)).
Each edge represents a particular control flow option in this view and each path from
the root node to a leaf value contains the sequence of control flow decisions required for
that particular leaf value to come into play. The tree representation of a x-term is easy
to understand and important from theoretical point of view: many of the notations to be
presented are easiest to understand in terms of operations on the tree representation.

To actually represent each y-term as a tree is in practice much to costly. A more
compact graph representation can easily be found by reusing identical subtrees, cf. Fig-
ure 2 (right), thus avoiding redundancies. This is the approach we recommend for any
x-term implementation and it is similar to how OBDDs are handled in [Bry92], and
how classifier information is handled in [DLL14].

2.4 Operations on x-terms and Shannon Expansions

The code fragment on the left-hand side of Figure 3 assigns different values to variables
a and b in the two different branches of the i f-statement and then returns the sum a +b.
Using x-terms, we can express the values of a and b as x(a+1,a—1) and x(b—1,b+1)
respectively, and the sum a + b as

+(x(a+1,a—1),x(b—1,b+1)).

Furthermore, we know that any execution takes either the first or the second branch
of the i f-statement (but we do not know which). This observation leads us to the fol-
lowing rewriting:

+(x(a+1,a—1),x(b—1,b+ 1)) = x( first branch +, second branch +)
= X(—F(CL + 17b - 1)7+(a - 1ab+ 1))



That is, we can make use of the fact that both x-terms have the same switching behavior
and apply the + operator on each of the two branches separately before we merge the
result. This rewriting can be seen as that we are pushing the + operator one step closer
to the leaf values.

Finally, we are now in a position where we can apply + on a set of leaf values. In
this case + is well defined and we can fall back on ordinary integer arithmetics. This
manipulation, where we also use the redundancy rule x(¢,¢) = t, can symbolically be
written as:

X(+(a+1,0—-1),4+(a—1,b+ 1)) =x((a+ 1)+ (b—-1),(a—1)+ (b+1))
=x(a+ba+b)=a+b

The result indicates that no matter what branch of the i f-statement we use, we will
always get the result a 4 b. This simple example illustrates one of the strengths of using
x-terms, we can by using a few simple rewrite-rules make use of having stored flow-
path information and "compute" more precise results than would have been possible in
a context-insensitive approach.

That we can rewrite the addition of two y-terms as a y-term over the addition of
a and b for each individual branch is in this case quite obvious. This rewrite rule for
X-term expressions is called a Shannon expansion *. It does not change the information
represented by that term and leads therefore to an equivalent (=) term. It may, however,
change the size needed for representing a y-term. For example,

ta = x""(x*(1,2),X"(x*(1,2),2))
= (M1, X7 (1,2), X2, X7 (2, 2))) (expansion over %)
=x"(x*(1,2), x"°(x*(1,2),2)) (expansion over ")

The Shannon expansion is also used to define the result of applying an operation to
x-terms. For instance, assume t, = x1%(x*(1,2), x"(x*(1,2),2)) and ¢, = x"(3,4),
and assume further that apply(+,i,j) = ¢ + j for any two integers ¢ and j. Then

apply(+, ta. ty) = apply(+ X0 (1,2), x"(x*(1,2),2)),x7(3,4))
= x"(apply(+ x*(1,2), x"(3,4)),
apply(+, X (x*(1,2),2), x"(3,4)))
= x"(x"(apply(+, x*(1,2),3), apply(+, x*(1,2),4)),
X" (apply(+,x*(1,2),3), apply(+,2,4)))
= x"(x"(x*(apply(+, 1,3), apply(+,2,3)),
x*(apply(+, 1,4), apply(+,2,4))),
X" (x*(apply(+,1,3), apply(+,2,3)),6))
= x"(x"(x*(4,5), x*(5,6)), x"(x*(4,5),6))

3 The word "Shannon expansion” is taken from the OBDD literature [Bry92] where a similar
procedure is used to rewrite boolean functions represented as OBDDs.



The first step above, expansion over x'°, can be seen as if we push the operator +
one step towards the leaf values by computing + for each one of the branches of y'°
individually, and then merge these values using x'°. This process can be repeated until
we reach the leaf values where the context-insensitive version of + can be applied.
This idea generalizes to any operator implementing a context-insensitive transfer
function. For each context-insensitive operator 7 : A x B x ... X N +— V their is
a corresponding y-induced operator 7 : X4 X Xp X ... X Xy +— Xy defined as

T(tay .- tn) = apply(7,ta, ... tn)-

3 Structural Induction on x-terms

Many basic properties such as commutativity and associativity of a context-insensitive
operator 7 are directly mapped to the y-induced counterpart 7. In what follows, we will
often want to proof statements like: Assume that statement S(v1, . .., v,) is true for all
abstract values v; € V. Then S (t1,...,tn) (the x-induced counterpart to .S) is true for
all x-terms t; € Xy . A typical example of such a statement is:

Theorem 1. Let 7 : V X V = V be a commutative operation and let T : Xy X Xy —
Xy be the corresponding x-induced operator. It then holds that

7A:(.lfa?tb) = ;(tlhta) vta7tb € XV-

This type of statement can in many cases be proved by something called structural
induction on x-terms. This type of induction is similar in spirit to ordinary structural
induction as presented in most text books (e.g. [AU95]). That is, we do an induction on
the depth of x-terms. The following is an outline for such induction proofs:

1. The Base Case: We show that g(va, ...,0y) is true when v, ...,v, € V C Xy.
This step can in most cases be done by applying the property S(vg, ..., v,).
2. The Inductive Hypothesis: Let

to = x%a1,...,ap), ... tn = X" (N1, ..., ng)

and assume that

S(ai,...,n;)istrue V(ai, ..., n;) € children(ty) X ... x children(t,).

3. The Inductive Step: Prove that S(t,,. .., t,) is true using the assumptions in the
inductive hypothesis and the definition of operations on x-terms including Shannon
expansion.

If we do so, then we can conclude that g(ta, ..., ty) is true for all x-terms ¢4, ..., t, €

Xy . In order to exemplify this type of proof by structural induction we prove Theo-
rem 1.

1. The Base Case: We are given that 7 is commutative and we know that for every
x-induced operator it holds that

T(Vay---y0n) = T(Vay -, 0n),Yv; €V C Xy



Thus, let t, = vq,tp = vp
T(ta,stp) = T(Va,vp) = T(Vp,Va) = T(to, ta), Vv, vp €V C Xy.

This completes the base case.
2. The Inductive Hypothesis: Let t, = x%(ay, ..
assume that

T(a;, bj) = 7(bj, a;) V(ai, b;) € children(t,) x children(ty).

.yap) and t, = x*(by,...,b,) and

3. The Inductive Step: Prove that 7(t,, tp) = T(tp, to) is true using the assumptions in
the inductive hypothesis. We start with the left-hand side:

T(ta,tp) = 7(x%(ay, ... ,ap),xb(bl, %)
=X ( (ah b(b1>~-'abq))7'"’;(apvxb(bla-“qu))
=x (X (T(a1,01)),7(az,b1)),...,7(ap, b1)),
X (7(a1,bq)), 7(az2,bq)), - ... T(ap, by)))
= x"(X*(7(b1, 1)), 7 (b1, a2)), ..., 7 (b1, ap)),

Xa(;(bwal))v"’:(bmaQ))? e 77,:(1)113 ap)))

The first two rewritings are Shannon expansions in x® and x°, respectively. In the
final rewriting we have used the inductive hypothesis 7(a;,b;) = 7(bj, a;). At-
tacking the right-hand side with a similar approach (but no use of the inductive
hypothesis) we find that:

7 (tp, a)—T( b(by,... by), x*(a1,...,ap))
a( (Xb<b1,...,b )7a1),...7/7\:(Xb(b17...,bq),ap)
b( “(7(b1,a1)),7(b1,a2)), ..., 7(b1,ap)),

X*(7(bg,a1)), 7 (bg; a2)), - - ., T(bg, ap)))

Thus, 7(tq, ty) = T(ts, to) and we have completed the proof of Theorem 1.

In what follows, we will not show any proofs that are straight forward applications
of this type of structural induction since they pretty much look the same. For example,
it is straight forward to show that properties like associativity, distributivity, and closure
are conserved for any y-induced operator 7 : Xy x Xy — Xy by using a similar
approach as in the previous proof.

4 The x-term lattice

In Section 2, we learned that every context-insensitive operator 7 has a y-induced coun-
terpart 7. This also holds for the abstract value lattice operators I and L. The interesting
point here is that these operators can be used to define a x-induced x-term lattice Ly
over the elements in Xy, the set of all x-terms. This y-induced lattice is important since
it will be the value lattice in a y-term based context-insensitive analysis.



Theorem 2. For each lattice of abstract values Ly = {V,1,U, T, L} there is a corre-
sponding x-induced lattice EV = {Xv,M,0, T, L} where M and U are the x-induced
versions of M and L.
Showing that M and [ have the properties commutative, associative, and closure, is a
straight forward exercise in structural induction as presented in Section 3. The same
holdsfort ML = 1,t0T =T forall t € Xy . We will not show it here.
Furthermore, we can use the x-induced lattice operator LI to define a partial ordering
relation between x-terms. The Connecting Theorem in [DP02] implies that

Theorem 3. Let Ev = {Xy,M,0, T, L} be a x-induced lattice for some abstract

values V and let C : Ly x Ly — {true, false} be an operator defined as:
t Cty < t; Uty = to, Vi1, to € Xy
Then Py = {E, Xv } is a (x-induced) partial ordering over Xy .

Due to the iteration indicis the y-induced lattice Ly has an infinite height. Thus im-
plying that a data-flow analysis based on this lattice will not be guaranted to terminate.
Further approximations are needed (cf. Section 5).

Theorem 4. Let 7 : L4 — Ly be a monotone function and let T : L A L B be the
corresponding x-induced operator. It then holds that

tq E to = 7~'(t1> E ?(tg), th,tz S ZA

Once again, the proof of this theorem is a straight forward exercise in structural induc-
tion as presented in Section 3. The only tricky part is the final induction step where we
must show thatt, Ct, = 7(t,) C 7(tp) for two arbitrary x-terms t, = x*(a1, ..., ap),
tp = x°(b1, - . ., b,) given the induction hypothesis

a; Cb; < 7(a;) T7(b), V(ai, b;) € children(t,) x children(ty).
This can be done in two steps:

1. Show that
te Uty =tp = a; U bj =b; V(a;,bj) € children(t,) x children(ty).

which corresponds to t, T t, = a; C b;,¥(a;, b;j). This can be done by comparing
t, U t;, with t;, after both has been Shannon expanded over both y® and x°.
2. Show that
7(a;) UT(b;) = 7(bj),V(ai, b;) € children(t,) x children(ty)
= T(te) UT(ty) = T(tp)-
which corresponds to 7(a;) C 7(b;), ¥(ai,b;) = 7(ta) T 7(tp). This can be done

by a Shannon expansion of 7(¢,) L1 7(t;) over both x* and * followed by repeated
use of the identities 7(a;) U 7(b;) = 7(b;).

These two steps, together with induction hypothesis, prove the inductive step.



5 x-term Approximations

In this section, we present two different approximations to the fully context-sensitive
approach outlined above. We refer to these two approximations as the finite k-approxi-
mation and the loop approximation. In the end of this section (Section 5.4), we show
how these two approximations can be used to handle loops. These two approximations
will in Section 5.5 be merged to something we refer to as a k-approximated analysis.
This type of analysis is parametrized by a single precision parameter k. However, we
start by introducing the concept of Ll-approximations.

5.1 L-Approximations

The aim of this section is to show that we always can replace any subterm X? G

in a x-term ¢ with U(t1, ..., ,). Hence, given that we interpret the x-terms as values
in a data-flow analysis, we still maintain a conservative approach. We refer to this type
of x-term manipulations as LI-approximations.

Theorem 5. For any x-term x(t1,...,tn) € ZV it holds that

(1, tn) E0(E, . t)

Proof: Using Theorem 3 as a definition for C, it is sufficient to verify that

U(x(t1, - tn), Uty .. tn)) = 0(t1, .- tn).

This can be done in a few steps starting with a Shannon expansion over x and ending
by applying the redundancy rule

U(x(t1s e tn), Ot .o tn)) = x(O(ty, Ots, .- tn)), .- -,
U(tn, U(ts,. .. tn)))
=x(0(t1, .. tn), .., Ut1, ... tn))
=U(t1,. .-, tn)

Theorem 6. Lett, = X?(ah coyan)andty, = x?(bl, ..., bn) be two x-terms with the
same switching behavior where a; C b;, Vi € [1, n]. It then holds that toCtp.

Proof outline: Start with a Shannon expansion of t, U t, over x? and use a; U b; =
b;, Vi € [1,n] to verify that t, U t;, = t;.

Definition 1 (LUl-approximation). Let t € Xy be a x-term and let a = X?(al, ceeylp)
be a subterm of t. The U-approximation of t with respect to a, denoted t*, is a new term
where a in t is replaced by U(ay, . . ., a,,).

This definition is easy to understand using the tree representation of ¢. It simply means
that we have replaced the subtree rooted by the node X? (a1,...,an) withU(aq,...,ay).

Theorem 7. Lett € Xy be a x-term and let a be a subterm of t then t C tr.
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Proof outline: This follows directly from the Theorems 5 and 6. Theorem 5 says that
the replaced subterm is less then (or equal to) the new subterm. Theorem 6 says that
this property is propagated to the root.

Theorem 7 is important since it tells us how to make conservative approximations
of x-terms. That is, we can in any phase of the analysis replace a y-term x(t1, ..., ,)
with U(ty, . . ., t,) and still maintain a conservative approach.

5.2 The Finite k-Approximation

The construction of new -terms is a part of the context-sensitive analysis. When the
analysis reaches a ¢-node in block b for a variable z, it constructs a new y-term by
composing x” with all possible values for . The newly constructed x-term embodies
all control-flow options that might influence the value of x at that point. The size of
the y-term representing x grows larger (without upper limit) as the analysis proceeds
and more and more control-flow options influences the value of z. This represents a
fully context-sensitive analysis where the effect of every control-flow option for every
variable is kept at all times. In this section, we will present an approximation of the fully
context-sensitive analysis where we only keep track of the last k& control-flow options
that might influence the value of a variable*. More “remote" control-flow options are
merged using the ordinary context-insensitive merge operator L.

The finite k-approximation of x-terms is easy to understand using the tree represen-
tation Gy = {N, E,r}. Whenever a new x-term ¢ is generated we replace all x-terms
toub = X2(t1,. .., tn) in subterms(t) that has depth(tsus,t) > k with U(t1, ..., t,).
The process starts in the leafs and proceeds towards the root node. The result is a new
x-term %) with depth(t®)) < k. The process is outlined in Algorithm 1 where we
define a recursive function kApprox(k,t) that transforms an input y-term ¢ into a k-
approximated y-term ¢(¥),

Algorithm 1 kApprox(k,t = x4(t1, ... t,)) — t*)

if £ =20 then
t*) = collapse(t)
else

for all ¢; € children(t) do
t; = kApprox(k — 1,t;)
end for
t) = b1, )
end if
return ¢(*)

The post-order traversal in kApprox guarantees that our approximation starts from
the leafs and proceeds towards the root. Parts of the tree that has a depth greater than

* Other approaches to limit the size of the x-terms are possible. We could, for example, limit
the tree size (i.e. number of nodes) rather than the depth.



a=x*(x"(1,2),x*(x"(3,4),2))
o = (' (1,2),x*({3,4},2)
a(l) = XB({172}’ {27374})

Fig. 4. Two different finite k£ approximations of the same x-term a.

k is collapsed into leaf values by a process named collapse (see Algorithm 2). The
process of merging leaf values proceeds until we have reached depth & of the input x-
term ¢. The result is a new y-term ¢(*) that only embodies the last & control-flow options
that might influence the value. Notice also that in the case £ = 0 all context-sensitive
information is lost and we have a context-insensitive analysis.

Algorithm 2 collapse(t) — v
if ¢ € V then
v==¢
else
letv=_1
for all ¢; € children(t) do
v = v Ll collapse(t;)
end for
end if
return v

Figure 4 shows the result of two different finite k£ approximations of the same x-
term a. On the left-hand side we have the result in print and on the right-hand side we
have the same result depicted as an original tree and two trees where the depth have
been reduced and the leaf values have been merged.

5.3 The Loop Approximation

According to Trapp at al. [THLL15] we know that the analysis of a loop will generate
x-terms like 22 = xb (... x% _,(...)...). That is, the newly created x-term will have
a subterm with the same block number and a lower iteration index. This pattern will
probably occur over and over again since each loop iteration results in a new composi-
tion of X with itself. This will result in y-terms of infinite depth and a non-terminating
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analysis if no measure is taken to stop the iterations. In this section we will show one ap-
proximation that is a first step in that process. Informally, a y-term t = x%(t1, ..., t,,) is
loop-approximated if every subterm of ¢ that has the same block number as ¢ is replaced
by its [J- approximation.

Definition 2 (Loop-approximated x-term). A x-ferm t is loop approximated if

toub € subterms(t) A block(tsuy) = block(t) =t —t;

where tf_ is the U-approximation of t with respect to tey,. An analysis where every
newly created x-term is immediately loop approximated is said to be a loop approxi-
mated analysis.

This approximation is easy to understand as a tree manipulation. We make a post order
traversal of the tree and replace each x-term having the same block number as the
root node with their context-insensitive approximation. This approach is outlined in
Algorithm 3 where we define a recursive function loopApprox(t,b) that recursively
visits all children before any merging takes place.

Algorithm 3 1loopApprox(¢,b) — t*

for all ¢; € children(t) do {Visit all children}
t; = loopApprox(ti,b)

end for

if block(t) = b then
let t* = apply(L,t1,...,tn)
return t*

else
return x°(¢5,...,t%)

end if

The loop approximated analysis comes with a number of important observations:

1. Each y-term will have a finite depth limited by the number of basic blocks that
contain ¢°-nodes.

2. We can now drop the iteration index since only control-flow options from the last
visit to any given block b will be recordered. Control-flow options from earlier
visits have all been conservatively merged by LI- approximations. Thus, we will
never have two y-terms generated from the same block with different switching
behavior.

3. If we drop the iteration index then the number of y-functions at use will reduce to
the number of basic blocks that contains a ¢-node (a finite number).

4. A finite number of y-functions and a finite depth of all y-terms implies that we
have a finite number of possible x-terms. (Obvious if we think in terms of possible
tree representations).

A consequence of the final observation is the following theorem:
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Theorem 8. The x-induced lattice Zv associated with a loop approximated analysis
is a finite lattice with a finite height.

One implication of this theorem is that every loop approximated analysis has a value
lattice satisfying the ascending chain condition (see [DP02]) and that every analysis
involving monotone transfer functions eventually will terminate (see [NNH99]). An
example related to these properties is presented in the next section.

5.4 Analysis Loop Handling

The relation between the loop approximation and the loop handling is best illustrated
with an example. In Figure 5, we show a hypothetical situation that illustrates a general
case. On the left-hand side we have a piece of code that contains two variables x and
y which values will be updated within the loop body. On the right-hand side we have
the same situation depicted as an SSA graph. The two variable values entering the loop
are represented as a tuple ¢; and the updates within the loop body are represented by
a mapping f : L — Lp. The loop approximated values generated by the ¢-node in

X
y = ...
while ( ... ) {
x =
y =

Fig. 5. A piece of source code and the corresponding graph. The mapping f : L1+ Lr sym-
bolizes the effect of the loop body on the variable tuple [z, y].

block b can then be written as

to = X (t:, L)
t1 = Xb(tl7f<tz))
ta = X"(t:, O(f(t:), F2(t:))

tn = X"(ti, O(f(t:), f2(ta), -, f7 ()

where f* is the composition of f with itself k times. Here ; denotes the (loop approx-
imated) value that ¢y would get if we terminated the loop analysis after 4 iterations. We
have derived these expressions by repeated use of ¢, = x’(t;, f(t,_1)) followed by
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Shannon expansion of the “inner” x°, and a loop approximation. We have also assumed
that f(L) = L. For example, ¢; was derived as

ty = Xb(ti7 f(to)) = Xb(ti7 f(Xb(tu J—))

= X"(ts X" (f(t:), 1)) = X" (ts, O(f (1), 1))

= x"(ti, f(t:)))
Notice also that we have dropped all iteration indices. This is possible in a loop approx-
imated analysis where control-flow options from previous visits to a block b have all
been merged by a Ll-approximation.

This example shows that the effect of using a loop approximated analysis is that the

analysis of loops (or any other cycle in the dependency graph) will generate a sequence
of y-terms all following a similar pattern:

ty, = Xb(tiaTn) where T;, = D(f(tl)v fz(t’i)v ) fn(tt))

The term 7;, clearly represents a conservative approximation of the contribution from
n loop iterations and ¢,, = xfl (t;, T,,) can be interpreted as: we go into the loop (7},) or
we do not (¢;).

Another consequence of using a loop approximated analysis is that

ti, F(t:), f2(t5), ., [ (ts)

forms an ascending chain that will eventually get stabilized if f is a monotone function.
Thus, after a finite number of loop iterations we will have f"(t;) = f"~'(t;) and as
result that ¢,, = ¢,,_1. This signals that the loop analysis can be terminated.

To gain a more concrete understanding of how the loop approximation can be used
to terminate the analysis of a loop let us look into an intuitive example. If we have a
while-loop that enclosed an if-statement that assigns a new value to a variable x.
This situation is depicted in Figure 6 (SSA-graph left) where we also show the first
three x values that might escape the loop (top right). The non-approximated values are
given at the top of the figure and illustrates the problem of growth. That is, the set of
control-flow options that might influence the value is growing larger and larger for each
iteration. Furthermore, the values x}. and x’_ returned from two consecutive iterations
are not comparable (i.e. z}’ ,@ xy_q and x;)_4 i_ x,)). This implies that we will never
reach a stable situation where x;; = z;’_; where we can terminate the loop analysis.

The situation is quite different in the loop approximated analysis of the loop where
we after the second iteration get a result 2§ = x* (1, T) that is not changed in the
following iterations. (We have used a so-called “flat” lattice for integers where nlU L =
n and n U m = T for any two lattice elements n and m, n # m. Moreover, we
assume the following transfer functions for the + + (——) operations: n + +(——) =
n+ 1(n — 1) for integers n, T + +(——) = T and L + +(——) = L. We have also
removed redundant subterms.) The stable situation will get recognized by the analysis
after the third iteration and the loop analysis will terminate.

5.5 The k-Approximated Analysis

In the previous section, we introduced two different approximations that make sense in
almost any type of analysis. The loop approximation is necessary to guarantee analysis



No Approximations

0 =xo(1,1)

xy zxi”( ,xo0(xo (2, 1), x8' (0, 1))

2 =x2 (1, xl(xi“(Q xo(xe' (3, L), x4 (1, 1)),
X1 (0, x0(xo (1, L), x0'(—=1,1)))))

Loop Approximated
To = Xw(]-? J—)
zy = x"(1,x"(2,0))
l';) = Xw(lv T)
s =x"(1,T) (Loop analysis terminated)

Fig. 6. A loop approximated version of the given example . It illustrates how the loop approxima-
tion can be used to terminate the analysis of a loop.

termination and k in the finite k approximation is a precision parameter that can be seen
as the size of “context memory” which decides how many previous control-flow options
that each x-term should try to remember.

In this section, we present notations and results that are valid for y-terms, and anal-
yses, that are both loop and finite k£ approximated. We will for simplicity refer to such
x-terms as k-approximated and an analysis that uses this approach will be called a
k-approximated analysis.

In what follows, we will present results and notations related to a k-approximated
analysis. This will be a rather brief presentation since many of the concepts has earlier
on been introduced in a non-approximated version. However, this is the approach we
intend to use in the rest of this section and the results presented here can be seen as the
"final" results of this rather lengthy section.

The Normalized Set X ‘(,’-“ ) The set of all k-approximated x-terms forms a subset of
all x-terms. We will here introduce a normalized form of this subset where we require
increasing block numbers of the subterms along all leaf-to-root paths in a y-term. (We
assume that all leaf values v € V' has been assigned the block number 0.) We refer to
x-terms having this specific structure as normalized. This approach of describing X ‘</k )
has the advantage that all y-term values now has a unique y-term (tree) representation.
In what follows will take great care in maintaining this ordering.

Furthermore, we will assume that we have a control-flow numbering of the basic
blocks in the flow-graph. That is, when numbering the basic blocks, we try to assign
each basic block a higher number than their control-flow predecessors. More precisely,
for any two blocks B! and B2 we try to assign block numbers b' and b? such that:

B? always executed after B! = b > b

We have here emphasized the word try since this type of block numbering is, although
possible within a method, not possible for a whole program. However, it serves as a
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guide line for how to number the basic blocks in a program. The advantage of this ap-
proach is that subterms with a large depth can be considered as more "remote" than
those closer to the root and that the finite & approximation can be defined more accu-
rately.

¢-node Semantics A new x’-term is created whenever the analysis reaches a ¢’-node.
The four steps involved in this process in case of k-approximated analysis are out-
lined in Algorithm 4. The first step is to remove every occurrence of X in the input

Algorithm 4 ¢gp(t§’“)7 oty )

forall ¢t e {t .. t{1 do
ti = loopApprox(tEk)7 b)

end for

t=x"(t1,... tn)

t = normalize(t)

t*®) = kApprox(t, k)

operands. This is done in loopApprox by replacing all subterms with block number b
with their L-approximation. Next, we construct a new y-term that is now guaranteed to
be loop approximated but neither normalized nor finite £ approximated. The algorithm
normalize takes care of the normalization (see Algorithm 5). It is a recursive pro-
cess where we make repeated Shannon expansions over the y-function with the highest
block number. This process continues until we reach subterms having a block number
that is less then b. Once normalize is applied we have a x-term that is both loop ap-

Algorithm 5 normalize(t) — t*
b = block(t)
max = mazBlock(children(t))
if max > b then
forall ¢ € [1,arity(x™*")] do
t; = normalize(t|maz:i)
end for
£ = X" iy (o))
return t*
else
return ¢
end if

proximated and normalized. We complete the ¢-node handling by applying kApprox
to make sure that the resulting x-term has a maximum depth of k.
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x ) -induced operators We have previously shown that for each context-insensitive
operator 7 : A X B X ... x N — V their is a corresponding x-induced operator
T:XaxXpXx...x Xy Xy.Inthe definition of 7, we used an algorithm apply
that performed repeated Shannon expansions until it reaches the leaf values where the
context-insensitive operator can be applied.

The definition of a x(¥)-induced operator can be seen as apply followed by a
normalization procedure and a finite k-approximation. Using this approach, it is obvious
that algebraic properties of a context-insensitive operator 7, like commutativity and
associativity, are preserved for y(*)-induced operators since we showed in Section 3
that they where preserved for any non-approximated x-induced operator.

In Algorithm 6, we present a recursive algorithm kPush that performs all three
activities (apply, normalization, and finite k cut-off) in a single traversal of the input
operands.

Algorithm 6 kPush(k, 7,ty,...,t,) — t(*)
b = max(block(t1), ..., block(ty))
if K =0 then
forall i € [1,n] do
v; = collapse(t;)
end for
t®) = 7(v1,...,00)
else if b = 0 then
t®) = 7(ty,.. . tn)

else
for all i € [1, arity(x")] do
C; = kPush(k — 17T7t1|b:i7 e 7tn‘b:i)
end for
th) = Xb(C17 EERR) Carity(xb))
end if
return ¢*)

The default handling in this algorithm is to push the operator 7 towards the leaf
values by making a Shannon expansion over the root x-function in the operands that
has the highest block number. This process guarantees that the result is normalized if
all the input y-terms are normalized.

The test & = 0 identifies the cut-off case where we have reached the maximum
depth k of the resulting x-term. In this case, we use collapse to make a conservative
approximation of the remaining subtrees and apply the context-insensitive operator 7
on the results. The case b = 0 identifies the case where all input operands are leaf values
and the context-insensitive operator 7 can be applied.

Finally, by using kPush, we can properly define the y (*)-induced operators.

Definition 3. For each context-insensitive operator T : A X B X ... x N — V theiris
a corresponding X -induced operator 7 ch) X XJ(Bk) X ... X X](\?) — X‘(/k) defined
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as
F(ta, ..., tn) = kPush(k, 7, ta, ..., tn) Vi, ...ty € X,

We noted in Section 5.2 that Shannon expansions in combination with finite k-
approximations are a bit problematic. The basic observation was that the interpreta-
tion of finite k£ approximations as an approach "where we only keep track of the last
k control-flow options" was disturbed when Shannon expansions was used since they
rewrite the structure of the y-term. In this section, we have tried to minimize this prob-
lem by introducing a heuristic control-flow numbering of the basic blocks and intro-
duced algorithms (normalize and kPush) that uses this block ordering to minimize
the mixing of "remote" and "recent” control-flow options due to Shannon expansion.

The Lattice E&f ) In Section 4, we introduced a x-induced lattice L',NV that in general
has an infinite height. In this section, we present the x (*)-induced lattice Z%f ) which in
contrast has a finite height. The finite height result follows from the fact that we always
have a finite number of y-terms in any loop approximated analysis. (see Section 5.3).

Theorem 9. For each lattice of abstract values Ly = {V,MN,U, T, L} there is a cor-
responding x®)-induced lattice Zi/k) = {X‘(/k), ﬁ(k), D(k)7 T, L} where A® gna )
are the x®)-induced versions of 1 and | defined in terms of the algorithm kPush as:

0% (t1, ... tn) = kPush(k, L, 1, .., tn)
A% (t1, .. te) = KPush(k, M, 1, ..., tn).

(k) (k)

That 1" and L]
tion of algebraic identities previously discussed. The same holds for ¢ Ak = 1,

+0% T = T forall ¢ € X‘(,k). Finally, closure follows from the design of kPush that

guarantees to generate a new k-approximated y-term.
(k)

are both commutative and associative follows from the preserva-

We can use the x(*)-induced lattice operators (1"~ and D(k) to define a partial order-
ing relation between k-approximated y-terms. The Connecting Theorem (see [DP02],
page 39) implies that

Theorem 10. Let ng) = {XX(,k),I:I(k), E(k),T,J_} be a x-induced lattice for some
abstract values V and let E(k) : ch) X Eg/k) — {true, false} be an operator defined

as:

~ (k) -
t1 C to <— t; U

~ ~ (k
Then P‘(}C) = {E( ), X‘(/k)} is a (x®)-induced) partial ordering over X‘(,k).

To motivate the following result we can use the same line of arguments that we
used when discussing the preservation of algebraic identities. That is, a x*)-induced
operator 7(*) is just a finite k& approximated y-induced operator 7. From this it follows
that

®) 4y = o, Viy,ty € X

F(t1) E7(t2) = 7®(81) EP 70 (1), Vi, by € L0

and consequently that
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Theorem 11. Let 7 : L4 — Lp be a monotone function and let T : E(:) — ES_D{C) be
the corresponding x¥)-induced operator. It then holds that

(k)

Tty = 78 (1) TV 7B (1y), Vi, te € L4

Thus, for any context-insensitive data-flow problem with value lattice Ly and trans-
fer function 7(*), we have y*)-induced counter parts £y and 7(*) that, since £y has a
finite hight, is guaranteed to reach a fixed point.

Finally we know from the fundamental theory of data-flow frameworks [NNH99]
that the time complexity for an analysis is proportional to the lattice height h*. A rough
estimate of A* can be motivated as follows: let p be a program, let a be the maximum
arity in any x-function in X (p), and let b be the height of the context-insensitive value
lattice Ly . Furthermore, the tree representation of an arbitrary y-term with depth &
has about a” leafs and the same number of subterms. Each leaf has a height of hv.
Thus, just by choosing different leaf values for this particular tree structure we can
construct an ascending chain z1, . . ., z,, that has length O(a* - h*). Furthermore, each
element x; in this chain can be further divided into an ascending subchain z;1, ..., ;N
by replacing each one of the a* subterms by their L-approximation. This gives this
subchain a length of about a”. Thus, a rough estimate of the maximum ascending chain

length, and therefore the height h* of the lattice £\, is O(a¥ - a¥ - h*) = O(a?* - h*).

6 Relation to Previous Work

As mentioned before, this paper is very much inspired by the ideas first presented by
Martin Trapp in his dissertation [Tra99]. In that work, he presents an approach that is
very similar to the k-approximated analysis. The major difference is that he presents his
loop and finite k approximated approach as a monolithic construct without discussing
the non-approximated case. To put it very short, he presents the set of normalized x-
terms X ‘(/k) together with rules for how to compute Ll-approximations and y*)-induced
operators 7(*), Furthermore, he states that X(t1, - tn) C U(t1,...,t,) and that we,
in any phase of the analysis, can replace a y-term x(t1,...,t,) with U(t1,...,t,)
and still maintain a conservative approach. The additional work that we have done is
decribed in next section.

In [RKS99] and [KROO] Riitting et al. demonstrate an efficient and powerful ap-
proach by the usage of value graphs, which have initial similarities to our x-terms
representations. Both representations are based on a SSA representation of a program,
and are using a graph representing the control flow in the program. The focus of their
usage of value graphs is to find a solution for Constant propagation problem, while in
our case we focus on value propagation for any data-flow analysis problem. Another
difference is that we are using Shannon expansion to force our operators out to the
leaves, where the operation can be evaluated. This is not the case in the value graphs,
the operator nodes are scattered out in the value graph-representation, and therefore the
evaluation of the result has another approach.

Lundberg and Lowe have in [LL13] been looking into the possibility of saving more
information for doing a more precise points-to analysis. Their approach was to increase
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the call-depth (K > 1) for each new context. Their result of not getting any substantial
precision improvement when the depth was increased (k > 1) implicates that increasing
k in our k-approximation is not a sure way to get a significant precision improvement.

7 Summary and Future Work

Taken all together, our presentation of y-terms is an attempt to verify many of the
results that was presented, hinted, and implicitly assumed by Martin Trapp. It is also
an attempt to verify (and understand) many of his “stated” results and definitions. In
addition to this we have focused on the non-approximated y-term expressions that we
think is missing, and the reason for this is:

1. In order to properly motivate the introduction of the [l-approximation as a "conser-
vative" approximation satisfying ¢ C t*, for any Ul-approximation ¢ of a y-term
t, we need to introduce the non-approximated x-term lattice Ev, and the corre-
sponding partial ordering C.Itis only in this context that we can verify that ¢ C [
(Theorem 7) and properly interpret a Ll-approximation as "conservative".

2. We have been able to prove that many basic properties, such as commutativity and
associativity, of a context-insensitive operator 7 are directly mapped to the x*)-
induced counterpart 7(*), We did this in two steps: i) We proved that it holds in the
non-approximated case using structural induction, ii) We concluded that any iden-
tity that holds in the non-approximated case also must hold in the k-approximated
case since the k-approximation is just a simple tree manipulation.

3. The two most important results are that any abstract value lattice £y has a x(*)-

induced counterpart Z&,k ), and that 7 : £ — Lp is monotone implies that 7(¥) :

EN(:) — ngk) is monotone. These results make it possible to say that any context-
insensitive data-flow framework has a y(*)-induced context-sensitive counterpart.

The ideas from this paper will be used in future work to explore details about con-
crete context-sensitive dataflow problems such as constant folding and points-to analy-
sis.
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