
Tree-Like Grammars and Separation Logic
(Extended Abstract)

Christoph Matheja, Christina Jansen, and Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany

http://moves.rwth-aachen.de/

Abstract. Separation Logic with inductive predicate definitions (SL)
and hyperedge replacement grammars (HRG) are established formalisms
to describe the abstract shape of data structures maintained by heap-
manipulating programs. Fragments of both formalisms are known to co-
incide, and neither the entailment problem for SL nor its counterpart for
HRGs, the inclusion problem, are decidable in general.
We introduce tree-like grammars (TLG), a fragment of HRGs with a
decidable inclusion problem. By the correspondence between HRGs and
SL, we simultaneously obtain an equivalent SL fragment (SLtl) featuring
some remarkable properties including a decidable entailment problem.

1 Introduction

Symbolic execution of heap-manipulating programs builds upon abstractions to
obtain finite descriptions of dynamic data structures, like linked lists and trees.
Proposed abstraction approaches employ, amongst others, Separation Logic with
inductive predicate definitions (SL) [21, 2, 16] and hyperedge replacement gram-
mars (HRG) [12, 15].

While these formalisms are intuitive and expressive, important problems are
undecidable. In particular, the entailment problem for SL [5, 1], i.e. the ques-
tion whether all models of a formula φ are also models of another formula ψ,
as well as its graph-theoretical counterpart, the inclusion problem for HRGs
[12], are undecidable in general. Unfortunately, as stated by Brotherston, Dis-
tefano and Peterson [4], “effective procedures for establishing entailments are
at the foundation of automatic verification based on Separation Logic”. Conse-
quently, SL-based verification tools, such as SLayer [3] and Predator [13],
often restrict themselves to the analysis of list-like data structures, where the
entailment problem is known to be decidable [2]. VeriFast [17], Hip/Sleek
[7] and Cyclist [4] allow general user-specified predicates, but are incomplete
and/or require additional user interaction. The largest known fragment of SL fea-
turing both inductive predicate definitions and a decidable entailment problem
is Separation Logic with bounded tree width (SLbtw) [16].

Approaches based on graph grammars suffer from the undecidability of the
related inclusion problem: Lee et al. [20] propose the use of graph grammars for

2 Christoph Matheja, Christina Jansen, and Thomas Noll

shape analysis, but their approach is restricted to trees. Juggrnaut [15] allows
the user to specify the shape of dynamic data structures by an HRG, but relies on
an approximation to check whether newly computed abstractions are subsumed
by previously encountered ones. Hence, finding more general fragments of SL
and HRGs with good decidability properties is highly desirable.

This paper investigates fragments of HRGs with a decidable inclusion prob-
lem. In a nutshell, HRGs are a natural extension of context-free word grammars
specifying the replacement of nonterminal-labelled edges by graphs (cf. [14]).
Common notions and results for context-free word languages, e.g. decidability of
the emptiness problem and existence of derivation trees, can be lifted to HRGs
(cf. [22]) which justifies the alternative name “context-free graph grammars”.

Most of our results stand on two pillars. To introduce these two pillars as well
as to summarise our main results here, the utilisation of some formal notation
and concepts is indispensable. Corresponding definitions and detailed explana-
tions can be found in the successive sections. The first pillar is an extension of the
well-known fact that context-free word languages are closed under intersection
with regular word languages, which are, by Büchi’s famous theorem [6], exactly
the word languages definable in monadic second-order logic (MSO).

Lemma 1 (Courcelle [8]) For each HRG G and MSO2 sentence φ, one can
construct an HRG G′ such that L(G′) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Here, MSO2 means MSO over graphs with quantification over nodes and edges.
The second pillar is the close connection between a fragment of HRGs - called

data structure grammars (DSG) - and a fragment of SL studied by Dodds [11]
and Jansen et al. [18].

Lemma 2 (Jansen et al. [18]) Every SL formula can be translated into a lan-
guage-equivalent data structure grammar and vice versa.

The overall goal of this paper is to develop fragments of HRGs which can
be translated into MSO2. Then it directly follows from Lemma 1 that the re-
sulting classes of languages have a decidable inclusion problem and are closed
under union, intersection and difference as well as under intersection with gen-
eral context-free graph languages. By Lemma 2, we obtain analogous results for
equivalent SL fragments.

The largest fragment we propose are tree-like grammars (TLG). Intuitively,
every graph H generated by a TLG allows to reconstruct one of its derivation
trees by identifying certain nodes, the anchor nodes, with positions in a deriva-
tion tree. Furthermore, each edge of H is uniquely associated with one of these
anchor nodes. These properties allow for each graph H generated by a given
TLG G to first encode a derivation tree t in MSO2 and then to verify that H is
in fact the graph derived by G according to t. Our main result is that the two
informally stated properties from above guarantee MSO2-definability.

Theorem 1. For each TLG G, there exists an MSO2 sentence φG such that for
each H ∈ HG, H ∈ L(G) if and only if H |= φG.

Tree-Like Grammars and Separation Logic 3

TLGs are introduced in detail in Section 4. Furthermore, we study the frag-
ment of tree-like Separation Logic (SLtl, cf. Section 5) which is equivalent to
TLGs generating heaps rather than arbitrary graphs.

Definition 1. An SLtl environment is an SL environment Γ where every disjunct
φ(x1, ..., xn) of every predicate definition meets the following conditions:

– Anchoredness: All pointer assertions y.s 7→ z occurring in φ contain the first
parameter x1 of φ, either on their left-hand or right-hand side, i.e. x1 = y
or x1 = z.

– Connectedness: The first parameter of every predicate call in φ occurs in
some pointer assertion of φ.

– Distinctness: x1 is unequal to the first parameter of every predicate call
occurring in Γ.

By Lemma 2, our results on TLGs also hold for SLtl. Thus, SLtl has the
following remarkable properties:

1. The satisfiability as well as the extended entailment problem, i.e. the question
whether an arbitrary SL formula φ entails an SLtl formula ψ, are decidable.

2. Although negation and conjunction are restricted to pure formulae, SLtl is
closed under intersection and difference.

Regarding expressiveness, common data structures like (cyclic) lists, trees,
in-trees, n × k-grids for fixed k and combinations thereof are SLtl-definable.
In particular, we show that SLtl is strictly more expressive than SLbtw. The
same holds for an entirely syntactic fragment of TLGs, called ∆-DSGs, and a
corresponding fragment of SLtl.

A full version of this paper containing further details and proofs has recently
been submitted to APLAS1.

The remainder of this paper is structured as follows. Section 2 very briefly
recapitulates standard definitions on SL and MSO, while Section 3 covers es-
sential concepts of hypergraphs and HRGs. The fragment of TLGs and its MSO-
definability result is introduced in Section 4. Our results on TLGs are transferred
to SL and discussed in Section 5. Finally, Section 6 concludes.

2 Preliminaries

This section introduces our notation and briefly recapitulates trees, graphs, MSO2,
and SL. On first reading, the well-informed reader might want to skip this part.

1 http://pl.postech.ac.kr/aplas2015/

4 Christoph Matheja, Christina Jansen, and Thomas Noll

Notation Given a set S, S⋆ denotes all finite sequences over S. For s, s′ ∈ S⋆,
s.s′ denotes their concatenation, the i-th element of s is denoted by s(i) and
the set of all of its elements is denoted by ⌊s⌋. A ranked alphabet is a finite
set S with ranking function rkS : S → N and maximal rank ℜ(S). We write
{x1 7→ y1, . . . , xm 7→ ym} to denote a finite (partial) function f with domain
dom(f) = {x1, . . . , xm} and co-domain {y1, . . . , ym} such that f(xi) = yi for
each i ∈ [m] = [1,m] = {1, 2, . . . ,m}. The operators ⊎ and +⊔ denote the disjoint
union of two sets and two functions, respectively.

Trees Given a ranked alphabet S, a tree over S is a finite function t : dom(t) → S
such that ∅ ̸= dom(t) ⊆ N⋆, dom(t) is prefix closed and for all x ∈ dom(t), {i ∈
N | x.i ∈ dom(t)} = [rkS(t(x))]. x ∈ dom(t) is a (proper) prefix of y ∈ dom(t),
written x ≺ y, if y = x.i.z for some i ∈ N and z ∈ N⋆. The subtree of t with root
x ∈ dom(t) is given by t|x : {y | x.y ∈ dom(t)} → S : y 7→ t(x.y).

Graphs An edge-labelled graph over an alphabet S is a tuple H = (V,E) with
a finite set of nodes V and edge relation E ⊆ V × S × V . With each graph H
we associate the relational structure H = (V ⊎ E, src, tgt, (Es)s∈S) where src
and tgt are the binary source and target relations given by src := {(u, e) | e =
(u, s, v) ∈ E}, tgt := {(e, v) | e = (u, s, v) ∈ E}. For each s ∈ S, there is a unary
relation Es := {(u, s, v) ∈ E | u, v ∈ V } collecting all edges labelled with s.

Monadic Second-Order Logic over Graphs Given a finite alphabet S, the syntax
of MSO2 is given by:

φ ::= Es(x) | src(x, y) | tgt(x, y) | X(x) | φ1 ∨ φ2 | ¬φ | ∃x : φ | ∃X : φ | x = y

where x, y are first-order variables, X is a second-order variable and s ∈ S. For a
graph H = (V,E), we write H, ȷ |= φ iff H satisfies φ where ȷ is an interpretation
mapping every free first-order variable to an element of V ⊎E and every second-
order variable to a subset of either V or E, respectively. The semantics of |= is
standard (cf. [10]). Note that the semantics of src, tgt and Es has been given
explicitly in the definition of H.

Heaps Similarly to the typical RAM model, a heap is understood as a set of
locations Loc, whose values are interpreted as pointers to other locations. For-
mally, we assume Loc := N and define a heap as a partial mapping h : Loc →
Loc⊎{null}. The set of all heaps is denoted by He. Let Σ be a finite alphabet of
selectors equipped with an injective ordering function cn : Σ → [0, |Σ| − 1]. We
assume a heap to consist of objects equipped with finitely many pointer variables
which are modelled by reserving exactly |Σ| successive locations. Hence, for a
heap containing n objects, dom(h) = [n · |Σ|].

Separation Logic with Recursive Definitions We consider a fragment of Separa-
tion Logic, similar to Separation Logic with recursive definitions in [16, 18], in

Tree-Like Grammars and Separation Logic 5

which negation ¬, true, and conjunction ∧ in spatial formulae are disallowed.
Let Pred be a set of predicate names. The syntax of SL is given by:

E ::= x | null
P ::= x = y | P ∧ P pure formulae
F ::= emp | x.s 7→ E | F ∗ F | ∃x : F | σ(x1, ..., xn) spatial formulae
S ::= F | S ∨ S | S ∧ P SL formulae

where x, y, x1, ..., xn ∈ Var, s ∈ Σ and σ ∈ Pred. The formula x.s 7→ E is called
a pointer assertion, σ(x1, ..., xn) a predicate call.

Note that we do not require that all selectors of a given variable are de-
fined by a single pointer assertion, i.e. we are less strict about pointer assertions
than other fragments proposed in the literature, e.g. in [16]. Furthermore, it is
straightforward to add program variables to SL, which we omitted for the sake
of simplicity. To improve readability, we write x.(s1, . . . , sk) 7→ (y1, . . . , yk) as a
shortcut for x.s1 7→ y1 ∗ . . . ∗ x.sk 7→ yk.

Predicate calls are interpreted by means of predicate definitions. A predicate
definition for σ ∈ Pred is of the form σ(x1, ..., xn) := σ1∨...∨σm where m,n ∈ N,
σj is a formula of the form F ∧P , and x1, ..., xn ∈ Var are pairwise distinct and
exactly the free variables of σj for each j ∈ [m]. The disjunction σ1 ∨ ... ∨ σm is
called the body of the predicate. An environment is a set of predicate definitions.
Env denotes the set of all environments.

The semantics of a predicate call σ(x1, ..., xn), σ ∈ Pred, w.r.t. an environ-
ment Γ ∈ Env is given by the predicate interpretation ηΓ. It is defined as the least
set of location sequences instantiating the arguments x1, . . . , xn and heaps that
fulfil the unrolling of the predicate body. We refer to [18] for a formal definition.

The semantics of the remaining SL constructs is determined by the standard
semantics of first-order logic and the following, where ȷ is an interpretation of
variables as introduced for MSO2:

h, ȷ, ηΓ |= x.s 7→ null ⇔ dom(h) = {ȷ(x) + cn(s)}, h(ȷ(x) + cn(s)) = null
h, ȷ, ηΓ |= x.s 7→ y ⇔ dom(h) = {ȷ(x) + cn(s)}, h(ȷ(x) + cn(s)) = ȷ(y)

h, ȷ, ηΓ |= σ(x1, ..., xn) ⇔ ((ȷ(x1), ..., ȷ(xn)), h) ∈ ηΓ(σ)

h, ȷ, ηΓ |= φ1 ∗ φ2 ⇔ ∃h1, h2 : h = h1 +⊔h2, h1, ȷ, ηΓ |= φ1, h2, ȷ, ηΓ |= φ2

A variable x ∈ Var is said to be allocated in a formula if it (or a variable y
with y = x) occurs on the left-hand side of a pointer assertion.

From now on, we assume that all existentially quantified variables are even-
tually allocated. This requirement is similar to the “establishment” condition in
[16]. With this assumption, the inequality operator for logical variables x ̸= y
is redundant with respect to the expressive power of the formalism, because
x.s 7→ z ∗ y.s 7→ z already implies that ȷ(x) ̸= ȷ(y) in all heaps satisfying the
formula. Thus, we assume that two existentially quantified variables refer to
different locations if not stated otherwise by a pure formula.

6 Christoph Matheja, Christina Jansen, and Thomas Noll

3 Context-Free Graph Grammars

This section introduces HRGs together with some of their properties relevant
for the remainder of this paper. For a comprehensive introduction, we refer to
[14, 22].

Let ΣN := Σ⊎N be a ranked alphabet consisting of terminal symbols Σ and
nonterminal symbols N .

Definition 2 (Hypergraph). A labelled hypergraph (HG) over ΣN is a tuple
H = (V,E, att, lab, ext) where V and E are disjoint sets of nodes and hyperedges,
att : E → V ⋆ maps each hyperedge to a sequence of attached nodes such that
|att(e)| = rkΣN (lab(e)), lab : E → ΣN is a labelling function, and ext ∈ V ⋆ a
sequence of external nodes. The set of all HGs over ΣN is denoted by HGΣN

.

Note that we allow attachments of hyperedges as well as the sequence of
external nodes to contain repetitions. Hyperedges with a label from Σ are called
terminal edges, nonterminal otherwise. The set of terminal (nonterminal) hyper-
edges of an HG H is denoted by EΣ

H (EN
H , respectively). In this paper, we assume

rkΣN
(s) = 2 for each s ∈ Σ. Moreover, a hyperedge e with lab(e) = s ∈ Σ and

att(e) = u.v is interpreted as a directed edge from u to v. The relational struc-
ture corresponding to H ∈ HGΣ is H := [H], where the (conventional) graph [H]
is defined as [H] = (VH , E), E := {(attH(e)(1), labH(e), attH(e)(2)) | e ∈ EH}.

Example 1. As an example, consider the HG illustrated in Figure 1(a). For
referencing purpose, we provide a unique index i ∈ [|V |] inside of each node
ui represented by a circle. External nodes are shaded. For simplicity, we as-
sume them to be ordered according to the provided index. Terminal edges are
drawn as directed, labelled edges and nonterminal edges as square boxes with
their label inside. The ordinals pictured next to the connections of a nonter-
minal hyperedge denote the position of the attached nodes in the attachment
sequence. For example, if e is the leftmost nonterminal hyperedge in Figure 1(a),
att(e) = u5.u1.u3.u7.

Two HGs H, H ′ are isomorphic, written H ∼= H ′, if they are identical up
to renaming of nodes and edges. In this paper, we will not distinguish between
isomorphic HGs. The disjoint union of H,H ′ ∈ HGΣN

is denoted by H ⊎H ′.
The main concept to specify (infinite) sets of HGs in terms of context-free

graph grammars is the replacement of a nonterminal hyperedge by a finite HG.
Intuitively, a nonterminal hyperedge e is replaced by an HG H by first removing
e, inserting a disjoint copy of H and identifying the nodes originally attached
to e with the sequence of external nodes of H. This is formally expressed by a
quotient.

Definition 3 (Hypergraph Quotient). Let H ∈ HGΣN
, R ⊆ VH × VH be an

equivalence relation and [u]/R = {v ∈ VH | (u, v) ∈ R} the equivalence class of
u ∈ VH , which is canonically extended to sequences of nodes. The R-quotient
graph of H is [H]/R = (V,E, att, lab, ext), where V = {[u]/R | u ∈ VH}, E = EH ,
att = {e 7→ [attH(e)]/R | e ∈ EH}, lab = labH , ext = [extH]/R.

Tree-Like Grammars and Separation Logic 7

Definition 4 (Hyperedge Replacement). Let H,K ∈ HGΣN be hypergraphs
with disjoint nodes and hyperedges, e ∈ EN

H with rkΣN
(e) = k = |extK |. Let

V = VH ⊎VK , and H,e≈K ⊆ V ×V be the least equivalence relation containing
{(attH(e)(i), extK(i)) | i ∈ [k]}. Then the HG obtained from replacing e by K is
H[e/K] := [(H \ {e} ⊎K)]/ H,e≈K

where H \ {e} is the HG H in which e has
been removed. Moreover, two nodes u, v ∈ V are merged by H[e/K] if u ̸= v and
u H,e≈K v.

..S ..

production rule p1

.

(a)

.

2

. 1.

5

.

6

.

S

.

S

.

7

.

3

.

4

.
p

.
l

.
r

.

1

.

1

.

3

.

4

.
2

.

3

.

4

.
2

...

production rule p2

.

(b)

.
2

.

1

.

3

.

5

.

4

. p.

l

.

r

.

n

.

n

.

p

.

p

.

derivation tree t

.

(c)

. p1.
ε

.

p2

.

p2

.

1

.

2

...

yield(t)

.

(d)

.........

Fig. 1. HRG TLL with two production rules p1 and p2

We now formally introduce context-free graph grammars based on hyperedge
replacement.

Definition 5 (Hyperedge Replacement Grammar). An HRG is a 3-tuple
G = (ΣN , P, S) where ΣN is a ranked alphabet, S ∈ N is the initial symbol and
P ⊆ N×HGΣN is a finite set of production rules such that rkΣN (X) = |extH | > 0
for each (X,H) ∈ P . The class of all HRGs is denoted by HRG.

Given p = (X,H) ∈ P , we write lhs(p) and rhs(p) to denote X and H, respec-
tively. To improve readability, we write p instead of lhs(p) or rhs(p) whenever
the context is clear.

Example 2. The HRG TLL depicted in Figure 1(a),(b) will serve as a running
example. It consists of one nonterminal symbol S, four terminal symbols l, r, p, n
and two production rules p1, p2.

A key feature of HRGs is that the order in which nonterminal hyperedges
are replaced is irrelevant, i.e. HRGs are confluent (cf. [14, 22]). Thus, derivations
of HRGs can be described by derivation trees. Towards a formal definition, we
assume that the nonterminal hyperedges EN

p = {e1, ..., en} of each production
rule p = (X,H) are in some (arbitrary, but fixed) linear order, say e1, ..., en. For
HRG G, G[X] denotes the HRG (ΣN , PG, X).

Definition 6 (Derivation Tree). Let G = (ΣN , P, S) ∈ HRG. The set of all
derivation trees of G is the least set D(G) of trees over the alphabet P with
ranking function rkP : P → N such that t(ε) = p for some p ∈ P with lhs(p) = S.
Moreover, if EN

p = {e1, . . . , em}, then rkP (p) = m and t|i ∈ D(G[labp(ei)]) for
each i ∈ [m]. The yield of a derivation tree is given by the HG

yield(t) = t(ε)[e1/yield(t|1), . . . , em/yield(t|m)].

8 Christoph Matheja, Christina Jansen, and Thomas Noll

We implicitly assume that the nodes and hyperedges of t(x) and t(y) are
disjoint if x ̸= y. The yield of a derivation tree is also called the derived HG
according to t.

Example 3. Figure 1(c) illustrates a derivation tree t of the HRG TLL in which
production rule p1 has been applied once, and production rule p2 twice. The
labels next to the circles provide the position in dom(t) while the labels inside
indicate the applied production rule. The graph on the right (d) illustrates the
shape of yield(t). For simplicity, node indices as well as edge labels are omitted.

The language generated by an HRG consists of all HGs without nonterminal
edges that can be derived from the initial nonterminal symbol.

Definition 7 (HR Language). The language generated by G ∈ HRG is the set
L(G) = {yield(t) | t ∈ D(G)}.

Example 4. The HRG TLL, provided in Figure 1, generates the set of all fully-
branched binary trees in which the leaves are connected from left to right and
each node has an additional edge to its parent.

Two results for derivation trees are needed in the following. The first result
is directly lifted from analogous results for context-free word grammars (cf. [22]
below Theorem 3.10).

Lemma 3 For each G ∈ HRG, D(G) is a regular tree language. In particular, the
emptiness problem for HRGs is decidable in linear time.

Furthermore, we generalize the notion of merged nodes to multiple successive
applications of hyperedge replacement.

Definition 8 (Merged Nodes). Let G ∈ HRG, t ∈ D(G), x, y ∈ dom(t) such
that x ≺ y, i.e. y = x.i.z for some i ∈ N, z ∈ N⋆, and let u ∈ Vt(x), v ∈ Vt(y).
We say that u and v are merged in t, written u ∼t v, if

– z = ε and u t(x),ei ≈t(x.i) v, or
– z ̸= ε and there exists w ∈ Vt(x.i) such that u t(x),ei ≈t(x.i) w and w ∼t v.

Example 5. Consider the derivation tree t shown in Figure 1(c) again. In its
yield, the node u7 in t(ε) is merged with u4 in t(1) and with u3 in t(2). In
yield(t), this node represents the leftmost leaf of the right subtree.

The relation ∼t merges exactly the nodes that are identified with each other
by yield(t).

Lemma 4 (Merge Lemma) Given G ∈ HRG and t ∈ D(G), let ≃t denote the
least equivalence relation containing ∼t. Then

yield(t) ∼=

 ⊎
x∈dom(t)

rhs(t(x))


/≃t

.

Tree-Like Grammars and Separation Logic 9

4 Tree-Like Grammars

This section introduces tree-like grammars (TLG), a fragment of HRGs which
can be translated into MSO2.

Some further notation is needed. Let H ∈ HGΣN with EN
H = {e1, . . . , em}. We

call extH(1) the anchor node of H and denote it by ⚓H . Moreover, the sequence
of context nodes of H is defined as ctxtH := attH(e1)(1) . . . attH(em)(1) and
the free nodes of H are all nodes attached to nonterminal hyperedges only, i.e.
free(H) := {u ∈ VH | ∀e ∈ EΣ

H : u /∈ ⌊attH(e)⌋}.
We will see that TLGs are constructed such that every anchor node u rep-

resents an application of a production rule and thus a position in a derivation
tree t. The context nodes represent its children as they are merged with an-
chor nodes after their corresponding nonterminal hyperedges have been replaced.
Consequently, by the characteristic edges of an anchor node u we refer to the
characteristic edges EΣ

t(x) of a position x ∈ dom(t) represented by u. We consider
a series of simple graph languages to narrow down the class of TLGs step by
step. The first example stems from the fact that every context-free word lan-
guage can be generated by an HRG [14] (if words are canonically encoded by
edge-labelled graphs).

.. S1 →. 1.. S1

.. S2

. 2. a. 1. 2. 1. 2.

(b)

.

S1 →

.

1

..

S2

.

2

.

a

.

1

.

2

.

S2 →

.

1

.

2

.

b

.S ..1 ..S .. 2.a .1 .2. b.

(a)

.

S

..

1

..

2

.

a

.

b

Fig. 2. Two HRGs generating the language {an.bn | n ≥ 1} of string-like graphs.

Example 6. The HRG G shown in Figure 2(a) generates string-like graphs of
the form an.bn for each n ≥ 1. It is well known that the language L(G) is not
MSO2-definable. We observe that for arbitrary hypergraphs H ∈ L(G) it is not
possible to determine a node that is uniquely associated with all terminal edges
in the recursive, upper production rule of Figure 2(a) (which is in accordance
with the idea behind TLGs formulated at the beginning of this section). This
is caused by the intermediate nonterminal hyperedge, which can be replaced
by an arbitrarily large HG. Thus, to ensure that TLGs generate MSO2-definable
hypergraphs only, we require that every non-free node (and thus every terminal
edge) is reachable from the anchor node using terminal edges only.

However, this requirement is insufficient. For instance, Figure 2(b) depicts
an HRG G′ with L(G′) = L(G) which satisfies the condition from above. G′ is
obtained by transforming G into the well-known Greibach normal form (for word
grammars). In a derivation tree t, a position x ∈ dom(t) corresponding to an
application of the upper production rule has two children which represent the
nonterminal hyperedges labelled with S1 and S2, respectively. Since all nodes
except for the two leftmost ones are free in this production rule, the parent-child
relationship between anchor nodes and context nodes (or any other triple of
nodes) cannot be reconstructed in MSO2. Thus, we additionally require context
nodes to be non-free.

10 Christoph Matheja, Christina Jansen, and Thomas Noll

In the following we consider basic tree-like HGs, which form the building
blocks of which a tree-like HG is composed.

Definition 9 (Basic Tree-Like Hypergraphs). H ∈ HGΣN is a basic tree-like
HG if ⚓H ∈ ⌊attH(e)⌋ for each e ∈ EΣ

H and ⌊ctxtH⌋ ∩ free(H) = ∅.

As a first condition on TLGs, we require right-hand sides of production rules
to be (basic) tree-like. In case of string-like graphs, this condition is sufficient to
capture exactly the regular word languages (if the direction of edges is ignored),
because every such grammar corresponds to a right-linear grammar. If arbitrary
graphs are considered, however, there are more subtle cases.

Example 7. Figure 3 (left) depicts an HRG G with three production rules p, q, r.
L(G) is the set of “doubly-linked even stars”, i.e. a single node u connected by
an incoming and an outgoing edge to each of 2n nodes for some n ≥ 0. An HG
H ∈ L(G) is illustrated in Figure 3 (right). Again, L(G) is not MSO2-definable.
In particular, no derivation tree can be reconstructed from H by identifying
nodes (or edges) in H with positions in a derivation tree, because |VH | = 5 and
|EH | = 8, but |dom(t)| = 9. The problem emerges from the fact that all anchor
nodes are merged with the central node u. Hence, we additionally require that
anchor nodes are never merged with each other.

..

S1 →

. 1.

2

.

3

.

S2

.

S2

.

1

.

1

.

2

.

2

.

p

...

1

.

q

.

S2 →

. 1.

2

.

S1

.

1

.

r

. p.

r

.

r

.

q

.

p

.

r

.

r

.

q

.

q

.........

t

..

u

.....

H ∼= yield(t)
Fig. 3. An HRG G where production rules p, q, r map to tree-like HGs (left) and a
generated graph H ∈ L(G) (right)

Formally, for any X ∈ N , H ∈ L(G[X]) contains merged anchor nodes if for
some t ∈ D(G[X]) with H ∼= yield(t), there exist x, y ∈ dom(t), x ̸= y such that
⚓t(x) ≃t ⚓t(y). The set of all HGs in

∪
X∈N L(G[X]) containing merged anchor

nodes is denoted by M(G).

Definition 10 (Tree-Like Grammar). G = (ΣN , P, S) ∈ HRG is a TLG if
M(G) = ∅ and for each p ∈ P , rhs(p) is a basic tree-like HG. The set of all
TLGs is denoted by TLG.

The condition M(G) = ∅ is, admittedly, not syntactic. However, it is possible
to automatically derive an HRG generating exactly the graphs satisfying it.

Theorem 2. For each HRG G, one can construct a TLG G′ such that L(G′) =
L(G) \M(G).

Tree-Like Grammars and Separation Logic 11

Remark 1. We call an HG H tree-like if it can be composed from basic tree-
like HGs, i.e. there exists a TLG G with L(G) = {H} (where nonterminals
of H are considered to be terminal). Although only basic tree-like HGs are
considered in all proofs, our results also hold for tree-like HGs. In particular,
if all non-free nodes of an HG H are reachable from the anchor node without
visiting an external node, a context node or a nonterminal hyperedge, H is tree-
like. Intuitively, the anchor nodes of corresponding TLG production rules are
determined by a spanning tree with the anchor of H as root. Analogously, the
initial nonterminal S may be mapped to an arbitrary HG provided that it never
occurs on the right-hand side of a production rule.

Example 8. According to the previous remark, the recurring example HRG TLL
illustrated in Figure 1 is a TLG.

As already stated in the introduction, our main result is the following.

Theorem 1. For each TLG G, there exists an MSO2 sentence φG such that for
each H ∈ HG, H ∈ L(G) if and only if H |= φG.

An important observation to show this theorem is that every graph H gen-
erated by a TLG G has two properties:

1. A derivation tree t of H is MSO2-definable in H, i.e. TLGs generate recognis-
able graph languages in the sense of Courcelle [8].

2. Every edge e ∈ EH can be uniquely associated in MSO2 with some x ∈ dom(t)
corresponding to the production rule t(x) which added e to H.

Hence, given MSO2 formulae encoding t in H and defining EΣ
t(x) for each

x ∈ dom(t), one can easily obtain a formula φ ensuring that all edges in every
model of φ are edges introduced by the proper application of a production rule.
In particular, K =

⊎
x∈dom(t) rhs(t(x)) is a model of φ for each t ∈ D(G). By

Lemma 4, it is sufficient to extend φ to an MSO2 sentence φ′ such that only
graphs H with H ∼= [K]/≃t

∼= yield(t), i.e. graphs that resulted from hyperedge
replacement steps where exactly the [K]/≃t

-equivalent nodes were merged, are
models of φ′. For any given pair of nodes, this property can be verfied by a finite
(string) automaton running on a path in the derivation tree t.

We collect two direct consequences of Theorem 1 and Lemma 1.

Theorem 3. The class of languages generated by TLGs is closed under union,
intersection and difference.
Theorem 4. Given G ∈ TLG and G′ ∈ HRG, it is decidable whether L(G′) ⊆
L(G). In particular, the inclusion problem for TLGs is decidable.

5 Tree-Like Separation Logic

As can be seen in Lemma 2, there exists a strong correspondence between SL and
HRGs. This correspondence leads to portability of the obtained TLG results to

12 Christoph Matheja, Christina Jansen, and Thomas Noll

analogous SL results. As SL is tailored to reason about heaps, we restrict ourselves
to data structure grammars (DSG), i.e. HRGs generating heaps only. We denote
the class of all DSGs by DSG.

The largest SL fragment considered in this paper is SLtl as defined in the
introduction (see Definition 1).
Theorem 5. For every SLtl formula φ there exists a language-equivalent tree-
like DSG G and vice versa.
Example 9. Consider the SLtl formula φ := σ(x1, x2, x3, x4) defined over an
environment Γ consisting of predicate definitions for two predicate symbols σ
and γ.

σ(x1, x2, x3, x4) := [∃x5, x6, x7 : x1.(p, l, r) 7→ (x2, x5, x6) ∗ σ(x5, x1, x3, x7)
∗ σ(x6, x1, x7, x4)] ∨ [∃x5 : x1.(p, l, r) 7→ (x2, x3, x5)

∗ x3.p 7→ x1 ∗ x5.p 7→ x1 ∗ γ(x5, x3, x4)]
γ(x1, x2, x3) := x2.n 7→ x1 ∗ x1.n 7→ x3

Applying Lemma 2 to φ and Γ yields a tree-like DSG generating the same lan-
guage as the HRG TLL shown in Figure 1, i.e. the set of all fully-branched binary
trees with linked leaves and parent pointers. In particular, the first disjunct of
σ(x1, x2, x3, x4) directly corresponds to the production rule in Figure 1(a), where
variable names match with node indices. The other two disjuncts, split across
two predicates, translate into basic tree-like HGs and correspond to the second
production rule.

We can exploit the additional requirements for DSGs to obtain a simple, yet
expressive, purely syntactical fragment of TLGs.
Definition 11 (∆-DSGs). Let ∆ ⊆ Σ be a nonempty set of terminal symbols.
Then G = (ΣN , P, S) ∈ DSG is a ∆-DSG if for each p ∈ P , rhs(p) is a tree-like
hypergraph and ⚓p has an outgoing edge labelled δ for each δ ∈ ∆.
Example 10. Our example HRG TLL shown in Figure 1 is a {p, l, r}-DSG.

Lemma 5 Every ∆-DSG with ∅ ̸= ∆ ⊆ Σ is a TLG. ..

S

.. 1.

3

.

4

.

2

.

S

.

S

.
p

.
h

.
p

.

1

.

1

.

2

.

2

... 1.

2

.
h

Fig. 4. Tree-like DSG

In terms of expressiveness, we may compare
∆-DSGs to SLbtw [16], which is, to the best of
our knowledge, the largest known fragment of SL
with a decidable entailment problem. In partic-
ular, consider the {h}-DSG G depicted in Fig-
ure 4 generating reversed binary trees with an
additional pointer to the head of another data
structure. The language generated by G is not SLbtw-definable, because the num-
ber of allocated locations from which the whole heap must be reachable is fixed
a priori for every SLbtw formula and a corresponding environment.
Theorem 6. ∆-DSGs are strictly more expressive than SLbtw, i.e. for every
SLbtw formula there exists a language-equivalent ∆-DSG, but not vice versa.

Tree-Like Grammars and Separation Logic 13

6 Conclusion

SL and DSGs are established formalisms to describe the abstract shape of dy-
namic data structures. A substantial fragment of SL is known to coincide with
the class DSG. With this relationship, decidability of the satisfiability problem
for SL, for instance, follows directly from decidability of its graph theoretic coun-
terpart, the emptiness problem for DSGs. However, the entailment problem or,
equivalently, the inclusion problem is undecidable.

..SLRD. HRG. MSO2

.

TLG

.

DSG

.

SL

.

TL − DSG

.

SLtl

.

SLbtw

.

Γ− DSG

.

RGG

Fig. 5. Relationships between frag-
ments of HRG and SL

We introduced the class TLG of tree-
like grammars which generate MSO2 de-
finable languages only. From this, some
remarkable properties, like decidability
of the inclusion problem and closure un-
der intersection, directly follow by pre-
vious work on context-free and recognis-
able graph languages. Moreover, the close
correspondence between HRGs and SL
yields several fragments of SL, in partic-
ular SLtl, where an extended entailment

problem is decidable. The resulting fragments are more expressive than SLbtw,
the largest fragment of SL with a decidable entailment problem known so far.

Figure 5 depicts an overview of the SL and HRG fragments considered in this
paper, where an edge from formalism F1 to formalism F2 denotes that the class
of languages realizable by F2 is included in the class of languages realizable by
F1. All of these inclusion relations are strict. For completeness, we also added the
class SLRD of completely unrestricted Separation Logic with inductive predicate
definitions (cf. [16, 1]) and the class RGG of regular graph grammars [9].

With regard to future research, investigating decision procedures and their
tractability for the entailment problem for (fragments of) SLtl is of great in-
terest. Although the entailment and inclusion problem is effectively decidable
for the fragments presented in this paper, our reliance on Courcelle’s theorem
does not lead to efficient algorithms (see [19] for a recent survey of alternative
approaches). Still, a better understanding of the boundary between decidability
and undecidability of the entailment problem for SL and the inclusion problem
for HRGs might help to obtain more efficient algorithms for specialised frag-
ments. We hope that a combined approach - studying SL as well as context-free
graph languages - will lead to further improvements in this area.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: FOSSACS. Volume 8412 of LNCS. (2014) 411–425

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation
logic. In: FSTTCS. Volume 3328 of LNCS. (2005) 97–109

14 Christoph Matheja, Christina Jansen, and Thomas Noll

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: CAV. Volume 6806 of LNCS. (2011) 178–183

4. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: CADE-23. Volume 6803 of LNCS. (2011) 131–146

5. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic
and its neighbours. In: LICS. (2010) 130–139

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6(1-6) (1960) 66–92

7. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Science of
Computer Programming 77(9) (2012) 1006–1036

8. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85(1) (1990) 12–75

9. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap be-
tween definability and recognizability. Theoretical Computer Science 80(2) (1991)
153–202

10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Number 138. Cambridge University Press (2012)

11. Dodds, M.: From separation logic to hyperedge replacement and back. In: ICGT.
Volume 5214 of LNCS. (2008) 484–486

12. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Handbook of Graph Grammars and Computing by Graph Transformation.
(1997) 95–162

13. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking ma-
nipulation of dynamic data structures using separation logic. In: CAV. Volume
6806 of LNCS. (2011) 372–378

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. Volume 643 of
LNCS. (1992)

15. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: Graph grammar abstraction for un-
bounded heap structures. ENTCS 266 (2010) 93–107

16. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: CADE-24. Volume 7898 of LNCS. (2013) 21–38

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and Java. In: NFM.
Volume 6617 of LNCS. (2011) 41–55

18. Jansen, C., Göbe, F., Noll, T.: Generating inductive predicates for symbolic exe-
cution of pointer-manipulating programs. In: ICGT. Volume 8571 of LNCS. (2014)
65–80

19. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO
model-checking on tree-decomposable graphs. Computer Science Review 13-14
(2014) 39–74

20. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using
grammar-based shape analysis. In: ESOP. Volume 3444 of LNCS. (2005) 124–
140

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. (2002) 55–74

22. Salomaa, A., Rozenberg, G.: Handbook of Formal Languages, Vol. 3: Beyond
Words. Springer (1997)

