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Abstract. Prohibiting external control is one of the key principles en-
gineers apply when building time-predictable computer systems (e.g.,
time-triggered computer systems do not react to any external interrupts
from sensors or devices, but all actions of these computer systems are
triggered solely by the progression of the local clock). In this paper we
apply this principle of prohibiting external control to code generation:
The single-path code generator is a compiler that produces real-time
code that does not contain any input-dependent control flow. All input-
dependent control-flow dependencies are eliminated by if-conversion or
by the generation of loops whose iteration counts are fixed. We explain
the principle of operation of single-path code generation and illustrate
how single-path code generation contributes to the time-predictable be-
havior of real-time computer systems.
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1 Introduction

Real-time computer systems are used in safety-critical application domains like
the automotive and aerospace domains. In these application domains computer
systems must not only deliver functionally correct results. They must also pro-
duce these results at the right time. Otherwise a catastrophe like a plane crash
might occur. Thus, an important property of each computer system used in a
safety-critical real-time application is the temporal correctness of its operation.
The worst-case analysis has to identify and analyze all worst-case timing sce-
narios such that the timely operation of the real-time computer system can be
guaranteed for all phases of system operation.

Providing timing guarantees is a highly complex issue, especially as both the
hardware and the software used in safety-critical real-time computer systems
are getting more complex themselves. To keep systems nonetheless simple, the
pre-planning design strategy for so-called time-triggered systems constructs a
time schedule for all activities of the computer system at system design time [4,
3]. This means, the points in time when user tasks or operating-system tasks
are started or when messages are sent is planned and written into scheduling



tables before the system is started. At runtime, the system software of the real-
time computer system interprets these tables as time progresses (time-triggered
activation), thus strictly controlling the execution of all actions as planned. Such
time-triggered systems do not allow for a dynamic change of the plan once the
system is in operation, i.e., any external control over the sequencing of actions
in the computer system is prohibited.

In this work we take the principle of prohibiting external control on actions
in a real-time computer system one step further, from the scheduling level to the
code level of single tasks. We present the single-path code-generation strategy
that compiles C source code to machine code in such a way that the resulting
machine code does not contain any input-dependent control flow. The absence
of input-dependent control flow makes the execution of the machine code always
take the same path through the instructions of the program and thus produces
the same instruction trace every time the code is executed (therefore the name
single-path code [10]).

Within this paper we will explain our approach to single-path code genera-
tion. We will first provide more motivation for using single-path code and then
present the main idea behind single-path code generation (Section 2). We will
then show how the LLVM compiler framework [5] can be extended with a single-
path code generator (Section 3). We have run a number of experiments with
the extended LLVM compiler framework. In these experiments, we compiled
benchmark programs to single-path code and executed the compiled code on the
Patmos time predictable processor [14]. These experiments and lessons learned
are summarized in Section 4. Following this evaluation, we conclude the paper.

2 The Single-Path Approach

In this section, we would like to introduce the single-path code-generation strat-
egy. In particular, we will answer the questions of (a) why one would like to
generate and run single-path code and (b) how imperative code for real-time
systems can be made to execute on the same instruction path for any inputs.

Above, we have motivated the use of single-path code by the fact that remov-
ing control-flow alternatives simplifies the worst-case execution-time (WCET)
analysis of the generated code. In fact, the generation of single-path code elimi-
nates the task of identifying (in)feasible program paths, one of the main subtasks
of WCET analysis [9, 15], from WCET analysis. Besides, there are further ad-
vantages of using single-path code. The main advantages are summarized in the
following paragraphs.

– The first and main advantage is that single-path code is much easier to
analyze for its (worst-case) timing than traditional code – analyzing a single
stream of instructions has a lower complexity than accounting for the timing
of code that allows for a multitude of different instruction sequences.

– Second, if the instruction trace of a piece of code is always the same one
can expect smaller execution-time variations than for code that executes



different instructions on each execution. This type of execution-time stability
is advantageous for control software where a variable latency between inputs
and outputs adversely affects control quality.

– Third, single-path code can be used to thwart certain side-channel security
attacks: if all inputs are processed along the same instruction stream and
with identical execution time (e.g., by using a processor with invariable in-
struction timing, [14]) then attackers cannot exploit observations of the code
execution times to draw conclusions about the actual data being processed.

– Finally, precise knowledge about the instruction stream can be beneficial for
speeding up code execution, e.g., by using the knowledge about the execution
path to control the prefetching of code blocks into the fast levels of the
memory hierarchy right before they are executed [2].

Making Code Execute on a Single Path

Traditional compilers generate code with input-data dependent branches in the
control flow to realize input-data dependent code behavior. Such input-data
dependent control flow realizes (a) the branching to conditional or alternative
code of if-then, if-then-else or multi-way branches (e.g., switch-case) and (b)
loop-exit branches for all types of loop statements. A single-path compiler, in
contrast, must generate code that executes the same stream of instructions for all
inputs. I.e., a single-path compiler has to provide code-generation patterns that
bring forth data-invariant control flow for alternatives as well as loop constructs.

The single-path code generation uses the following strategies to generate code
for alternatives respectively loop constructs:

Alternative constructs with input-dependent conditions are translated by
means of if-conversion [1]: Instead of using conditional branches to achieve
data-dependent code behavior, the single-path compiler generates predicated
code [7], i.e., it serializes the code of input-dependent alternatives and uses
predicates to control the activation of instructions and achieve the right code
semantics at runtime.

Loops with input-data dependent exit conditions are translated into simple
counting loops with a constant iteration count. Thereby, the iteration count
of the generated loop is set to the maximum iteration count of the original
loop1. The exit condition of the original source-code loop is used to compute
a predicate for the execution of the loop body of the new loop that is itself
translated into predicated code.

Further details about the single-path approach can be found in [10, 11]. The
following part of the paper provides details about the realization of the single-
path code generation in the LLVM compiler framework.

1 We assume that the source code is is real-time code for which all loop bounds are
known.



3 Generation of Single-Path Code

As a modern state-of-the-art compiler framework, LLVM operates in several
phases. The frontend translates the source language to bitcode. Most optimiza-
tions are operating on this source language- and target-agnostic intermediate
representation of LLVM. A backend translates the bitcode to target-specific ma-
chine instructions. Because the source code is not translated to machine code
directly, the translation schemata described in [11] are not applicable directly.
Where in the compilation process can the single-path code generation be inte-
grated?

3.1 The Single-Path Graph Transformation

For the Patmos compiler, the single-path code generator is a set of program
transformation passes that are executed late in the backend. As such, the prob-
lem of generating single-path code requires a suitable formulation on the program
representation at that stage. To this end, we have developed the single-path graph
transformation [8], that operates on the control-flow graph of a given function.
Based on the algorithm of Park and Schlansker [7], it transforms the control-flow
graph into a graph with linear structure, simple loops, and predicated nodes. It
extends the algorithm [7] by transforming any reducible control-flow graph (not
only the body of innermost loops) and by producing loops with constant iter-
ation counts. Following the graph structure and the constraints regarding the
loop back edges, there exists only a single path through the resulting graph. Fur-
thermore, the transformation involves the insertion of instructions that control
the value of the predicates assigned to the nodes.

Predicates are Boolean-valued variables that enable or disable operations. If
the predicate is true, the operations are performed as usual, if the predicate is
false, the operations have no effect. In terms of nodes in a control-flow graph, a
predicate controls all the instructions of that node. Informally, the single-path
graph transformation achieves the following:

For every valid path in the original control-flow graph, the sequence of
nodes on that path is equal to the sequence of nodes on the resulting
graph with a predicate value of true.

The single-path graph transformation is best illustrated by an example. Fig-
ure 1a shows a control-flow graph before the single-path graph transformation.
Figure 1b shows the single-path control-flow graph, with constant counts on
the loop back-edges. Consider example paths π1, π2 in the original control-flow
graph in the following table:
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Fig. 1: Example illustrating the original control-flow graph and the control-flow
graph after the single-path graph transformation.

Original control flow graph Single-path control flow graph

π1 = abdebcbdegh πSP
1 = abcdebcdebcdeffffgh

π2 = abcbcbdfffgh πSP
2 = abcdebcdebcdeffffgh

In the corresponding paths in the single-path control flow graph, πSP
1 and

πSP
2 , respectively, the nodes with predicate value of true are underlined and

their sequence equals the nodes of the original path. The singleton execution
path always contains the same sequence of nodes, albeit with different predicate
values.

Details on the single-path graph transformation, including how the predicates
are assigned and changed along the execution path, can be found in [8].

3.2 The Patmos Processor

Before elaborating on the compiler passes, we briefly describe the relevant char-
acteristics of the Patmos processor [14] that make it a suitable target for single-
path code. Time predictability is the key principle in the design of Patmos. The



timing of the instructions of the fully predicated instruction set is independent
from the operands (except for latencies originating from the memory hierarchy).
Features like dynamic instruction reordering and dynamic branch prediction are
avoided in favor of static alternatives. Delays in the in-order dual-issue pipeline
are exposed at instruction set architectural level (branch delay slots, load de-
lays). The memory hierarchy is organized as a split cache architecture [13]. The
caches are either software managed or at least controllable to obtain a known
state, e.g., by flushing the cache contents.

3.3 Compiler Passes for Single-Path Code

As mentioned before, single-path code generation is performed late in the back-
end. This is due to following reasons. First, LLVM bitcode is SSA-based and
predication-oblivious. Although there is support for partial predication in the
form of a select instruction, which creates a new value as one of two operands
depending on a Boolean operand, this form of predication is not sufficient to deal
with the difficulties arising from instructions with side effects. Computing the
values for alternative paths and discarding the unnecessary ones is only an op-
tion when safe values are provided, for example, to memory accesses and division
operations in order to prevent access to invalid addresses and division by zero,
respectively [6]. The machine instructions of the backend are predication-aware
and have predicate operands. Second, the code structure is final at that stage
and no instructions are inserted that could invalidate the single-path property.
Calls to software arithmetic functions are already visible and the final number
of required predicates is known. Third, we can perform optimized register allo-
cation for predicate registers with detailed knowledge of the target, which we
explain below.

The compiler passes for generation of single-path code are categorized as
(i) preparatory passes, and (ii) the main transformation pass. The preparatory
passes include a unify return pass, to guarantee that there is only one sink
node in the control flow graph of each function, a lower switch pass to convert
indirect jumps to a cascade of if-else statements, and function cloning to restrict
single-path functions only to where they are required.

The main transformation pass performs the single-path graph transformation
as described in the previous section. After computing predicates for each node
in the graph, a specialized predicate register allocator is invoked, which assigns
machine registers to the virtual predicates, on basic block (= node) level. Space
for spilling predicate registers is allocated on Patmos’ stack cache, and the 1-bit
registers are stored packed into machine words. Live-ranges of predicates are
predominantly nested and cover whole inner loops. This observation is exploited
in Patmos to obtain a new set of available predicate registers when a loop is
entered by spilling the whole predicate register file, and restoring it when the
loop is left. After the assignment of physical registers, the instructions of each
block are predicated accordingly. Function calls are executed unconditionally,
passing the predicate to the called function. Then, instructions for manipulation
and for spilling and restoring of predicate registers are inserted.



Finally, the basic blocks of the transformed control flow-graph are merged
wherever possible, as illustrated in Figure 1c. This removal of basic block bound-
aries leads to a simplified control-flow graph structure with large basic blocks,
which gives the final instruction scheduler more opportunities to generate com-
pact and efficient instruction schedules.

4 Experiments

Having a compiler at hand that produces single-path code, we were particularly
interested in answering following questions:

– How does the generated single-path code perform in the worst case, compared
to conventionally generated code?

– How do latencies caused by the memory hierarchy affect the execution time?

To obtain answers to these questions, we evaluated the single-path code gen-
erator on a benchmark based on a real-world application. The debie1 benchmark
is based in the on-board software of the DEBIE-1 satellite instrument for mea-
suring impacts of small space debris or micro-meteoroids, developed by Space
Systems Finland Ltd for Patria Aviation Oy.2

We generated both conventional code and single-path code for the main tasks
of the benchmark. We executed the conventional code to measure the observable
range of execution times and additionally applied static analysis. For the mea-
surement, we used pasim, the cycle-accurate simulator for Patmos. Each task is
executed at least several hundred times in a benchmark run.3 We used platin

for static WCET analysis, a toolkit which is part of the compilation tool chain
for Patmos [12].

We performed the evaluation with two different hardware configurations:

1. Ideal memory (ideal) - Memory accesses do not entail any additional access
latency.

2. Ideal data cache (dcideal) - Only accesses that go through the data cache do
not entail any additional latency. Memory accessed via Patmos’ stack cache
(2 kB) and method cache (4 kB) exhibits actual memory access latencies.

This choice is motivated by the fact that the serialization of control flow
alternatives leads to an increase of the path lengths through the tasks. Masking
the impact of the memory hierarchy enables us to quantify this effect solely at
the instruction level. By allowing memory access for instructions and call frames,
we can evaluate the single-path code in the context of real memory latencies,
while maintaining execution-time invariability: On the single execution path,
functions are called unconditionally, and space for call frames is allocated on the
stack cache for those functions. Hence, every execution has the same sequence

2 The source code is available at http://www.tidorum.fi/debie1/debie1-e-free.zip
3 To be more precise, the number of executions of a task is in the range between 394

and 17795.
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TC InterruptService 1 55
ideal [17, 157] 163 306 1.88

dcideal [70, 445] 459 696 1.52

TM InterruptService 1 10
ideal [27, 38] 47 68 1.45

dcideal [78, 132] 141 163 1.16

HandleHitTrigger 3 31
ideal [44, 7502] 12586 13879 1.10

dcideal [106, 7890] 13245 14351 1.08

HandleTelecommand 7 311
ideal [67, 994] 994 3013 3.03

dcideal [179, 1294] 1294 5590 4.32

HandleAcquisition 17 234
ideal [68, 26878] 29332 35695 1.21

dcideal [176, 29985] 36106 39824 1.10

Table 1: Results for the debie1 benchmark.

of accesses to the caches. In addition, we clear the caches before each entry
to a single path function to obtain a well defined cache state. As a result, the
generated single-path code has a singleton execution time by construction.

4.1 Results

The results of our experiments are shown in Table 1. The column “SP Func-
tions” shows the number of functions that are involved in the tasks’ execution
and require transformation. This contains the entry function of the task itself
and all functions reachable in the call-graph. Column “Predicates” shows the
total number of predicates required for the single-path version of the task. This
number gives a hint about the breadth of the involved control-flow graphs. The
column “Measured” shows the interval [min, max] containing the observed ex-
ecution times of the conventional variants, while “Static Analysis” shows the
WCET bound as computed by platin. The execution time of the single-path
task code is given in column “Single-Path”. Because it is not known whether
the actual worst-case path has been observed for the conventionally generated
code, though we are primarily interested in worst-case guarantees, we have to
consider the statically computed bound for a performance comparison with the
single-path code. Column “Ratio” shows the execution time of the single-path
code relative to the WCET bound of the conventionally generated code.



For these experiments, we can make some interesting observations. In all
cases, the linearization of control flow alternatives leads to an increase in the
execution time (bound), hence a ratio greater than 1. The highest ratio was
obtained for HandleTelecommand (3.03 for ideal). In this particular task, the
additional cost stems from serialization of a switch-statement: In the program,
a message is read and processed accordingly depending on the message type. In
the single-path variant, code for all the different cases is fetched and executed.
The effect is even more pronounced when the code is loaded to the method
cache (4.32 for dcideal). In the other tasks, the original control-flow structure
has fewer alternatives in the control flow. As a result, the relative additional cost
for loading code from main memory is lower, yielding a lower ratio in the dcideal
case than in the ideal case.

4.2 Lessons learned

Our single path code generator is able to produce code without input-data de-
pendent control flow. Targeting the time-predictable Patmos processor, this code
generation strategy further results in code for real-time tasks that not only has a
singleton execution path, but also is completely free from execution time jitter,
making timing analysis trivial.

This property comes at a cost, as the experiments have shown. The execution
time of the single-path code is higher than the statically computed worst-case
execution time of the conventionally generated code. This is due to the serial-
ization of control flow alternatives. One way to address the problem is to avoid
input-data dependent control flow in the first place. But this has limited use,
especially, when one has to deal with legacy code.

Another way would be to incorporate input-data dependence on a higher
level of modeling. For example, the HandleTelecommand task of our benchmark
performs different actions according to the message type of the incoming mes-
sage. A type has its particular action, and the set of actions could be considered
as modes of the task. There is little point in serializing all actions. Instead, by
generating single-path code for each action individually, we would obtain a set
of execution paths, where each path can be tied to the corresponding action.

5 Conclusion

Single-path code is free from input-data dependent control flow. Our single-path
code generator is integrated in the compiler backend for the Patmos processor
by adopting the single-path graph transformation. Patmos is a suitable target
for single-path code, because it provides a predictable instruction set with full
predication and software-controllable caches. Our experiments with the debie1
benchmark have shown that the generated single-path code is competitive with
conventionally generated code in terms of worst-case performance, yet it is easier
to analyze and exhibits stable execution-time behavior.



As future work we plan to implement compiler optimizations tailored to
single-path code, for minimizing the cost introduced by control-flow serializa-
tion. Mode-specific single-path code will avoid complete serialization of input-
dependent alternatives. It will provide a means to leave branches to mode-specific
sections in the code, and the resulting mode-specific execution times could be
used in a more differentiated way.
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