
An Optimizing Translation Framework for Strongly
Mobile Java

Arvind Saini and Gerald Baumgartner

Division of Computer Science and Engineering
School of Electrical Engineering and Computer Science

Louisiana State University
Baton Rouge, LA 70803, USA

Abstract. Strongly mobile agents provide a convenient abstraction mechanism
for migrating applications to the location of their data or as a container for de-
ploying computational tasks in a cloud computing environment. They are difficult
to implement on a stock Java VM, however, since it does not allow the computa-
tion state to be captured. We describe an implementation approach that translates
strongly mobile Java into weakly mobile Java in which the generated code main-
tains serializable run-time stacks for the agent threads at all times. We discuss the
optimizations that are needed for generating efficient weakly mobile code.

1 Introduction

For certain distributed applications, mobile agents (or mobile objects) provide a more
convenient programming abstraction than remote method invocation (RMI). If an ap-
plication needs to process large amounts of remote data, it may be less communication
intensive to ship the computation in the form of a mobile agent to the location of the
data than to use RMI calls to get the data and perform the computation locally. Mobile
agents are also less affected by network connectivity. While the mobile agent is com-
puting at a remote site, the home machine does not need to remain connected to the
internet, which is especially useful if the home machine is a mobile device.

In mobile agent applications, agents typically operate autonomously using one or
more threads that conceptually run within the agent. Existing mobile agent libraries
for Java, such as Aglets [11, 10] or ProActive [2], however, only provide support for
weak mobility, which allows migrating the agent object but requires that all threads
are terminated before migration. However, Strong Mobility, which allows an agent to
migrate seamlessly with running threads, would be the preferable programming ab-
straction. It allows a more natural programming style, since the logic for how and when
an agent should migrate can be expressed procedurally and since it does not require
the programmer to manually terminate all threads before migration and restart them at
the destination. It also separates the migration mechanism from the application logic.
Strong mobility, unfortunately, is difficult to implement since the Java Virtual Machine
(VM) does not provide access to the run-time stacks of threads.

In previous research, we implemented support for strong mobility as a source-to-
source translator from strongly mobile Java into weakly mobile Java [6, 20]. We also



demonstrated that strongly mobile agents can be used as containers for deploying appli-
cations on a desktop grid [4, 5] or in the cloud [14]. They allow migrating an application
that is encapsulated within the agent without the application programmer having to be
aware of the migration.

Our mobility translator generates weakly mobile code by implementing the run-time
stack of a thread as a serializable Java data structure. Compared to other approaches to
strong mobility this has the advantage that it allows multi-threaded strongly mobile
agents without modifying the Java VM. The disadvantage, however, is that it results in
very inefficient code. Since a run-time stack is modified by the thread that owns it as
well as by a thread that wants to migrate the agent, a locking mechanism is required
to protect the integrity of the stacks. With fine-grained locking, this results in a high
run-time overhead.

In this paper, we describe an optimization framework for our mobility translator.
We present measurements for comparing the cost of different locking mechanisms. We
also present a translation approach that can improve the performance of the generated
code in exchange for a higher latency for migrations. Finally, we outline how standard
compiler optimization techniques can be used for further optimizing the code.

In the next section, we provide more background on strong vs. weak mobility. Sec-
tion 3 discusses related work on strong mobility. We explain our language and API
design in Section 4 and the details of our mobility translator in Section 5. Section 6
presents experimental results on the potential speed improvements for mobile agents
and Section 7 provides concluding remarks.

2 Background

Mobile agents and remote method invocation have the same expressive power. Any
agent program can be translated into an equivalent RMI program and vice versa. In
fact, either mechanism can be implemented on top of the other. Similar to loops and
recursion, however, some problems are more naturally expressed in one of these pro-
gramming styles.

In actual implementations, RMI is implemented on top of TCP together with object
serialization to allow objects to be sent as arguments to remote methods. An agent mi-
gration is then implemented by the agent environment on the home machine performing
a remote method invocation on the agent environment of the destination machine and
passing the agent itself as argument to the remote method. In the case of weak mobility,
only the agent object is sent to the destination. For strongly mobile agents, the execution
state must be transferred as well.

A language with support for strong mobility provides an simple mental model for
writing mobile agents. As an example, consider a network broadcast agent that prompts
the user for input, relaying the input message to a number of other host machines. Using
a Java-like language supporting strong mobility the solution is straightforward:

public void broadcast(String hosts[]) {
System.out.println("Enter message:");
String message = System.in.readln();



for(int i = 0; i < hosts.length; i++) {
try {

dispatch(hosts[i]);
System.out.println(message);

}
catch(Exception exc) {}

}
dispose();

}

Weak mobility does not allow migration of the execution state of methods (i.e., lo-
cal variables and program counters). The dispatch operation simply does not return. In-
stead, the framework allows the developer to tie code to certain mobility-related events.
E.g., in IBM’s Aglets framework, the developer can provide callback code that will
execute when an object is first created, just before an object is dispatched, just after
an object arrives at a site, etc. Consider the above application written in an Aglets-like
framework:

private String hosts[];
private int i = 0;
private String message;

public void onCreation(String hosts) {
this.hosts = hosts;
System.out.println("Enter message:");
message = System.in.readln();

}

public void onArrival() {
System.out.println(message);

}

public void run() {
if(i == hosts.length)

dispose();
dispatch(hosts[i++]);

}

Because weak mobility does not allow the execution state to be transferred, pro-
grammers must manually store the execution state in agent fields (which are transferred)
and must reconstruct the information of where the agent is and what it needs to do next
using the event handling methods. This scatters the logic for how the agent moves from
host to host across multiple methods and, therefore, results in an unnatural and difficult
programming style.

While weak mobility is a conceptually simple mechanism and relatively straightfor-
ward to implement, it results in complex mobile agent code that may have to be written
by expert programmers. By contrast, strong mobility provides a simple programming
paradigm but it is more difficult to implement, e.g., to ensure freedom of race conditions
and deadlocks.



3 Related Work

There are two main techniques for implementing strong mobility: modifying the Java
VM or via translation of either source code or bytecode.

Java Threads [3] , D’Agents [8], Sumatra [1], Merpati [17], and Ara [13] extend
the Sun JVM. CIA [9] modifies the Java Platform Debugger Architecture. JavaThread,
CIA, and Sumatra to not support forced migration, i.e., the ability of an outside thread or
agent dispatching an agent. Also, D’Agents, Sumatra, Ara, and CIA do not support the
migration of multi-threaded agents. NOMADS [18] uses a customized virtual machine
called Aroma that supports forced mobility and multi-threaded agent migration. The
drawback of all these approaches is that relying on a modified or customized VM make
it difficult to port and deploy agent applications. NOMADS and Java Threads are only
compatible with JDK 1.2.2 and below, D’Agents needs the modified Java 1.0 VM, and
Merpati and Sumatra are no longer supported. Furthermore, NOMADS, Sumatra, and
Merpati do not support just-in-time compilation.

WASP [7] and JavaGo [16] implement strong mobility in a source-to-source trans-
lator that constructs a serializable stack just before the migration using the exception
handling mechanism. Neither system is able to support forced mobility. Also, JavaGo
does not support multi-threaded agent migration and does not preserve locks on mi-
gration. Correlate [19] and JavaGoX [15] are implemented using byte code translation.
While they support forced mobility, they do not support multi-threaded agent migration.

Instead of using a source-to-source or bytecode translator for creating a serializ-
able stack before migration like the previous translation approaches, in our approach a
source-to-source translator ensures that serializable stacks are maintained at all times [6,
20]. This allows both forced migration and multi-threaded agent migration. Also, our
approach better maintains the Java semantics, e.g., by preserving synchronization locks
across migrations.

4 Language and API Design

Unlike a weak mobility library, which requires several event handlers and utility classes
to simplify programming of itineraries, strong mobility can be supported with a very
simple API. Our original support for strong mobility consisted simply of the interface
Mobile and the two classes MobileObject and ContextInfo. While the design
looks like a library API, it is really a language extension, since our proposed translation
mechanism compiles away the interface Mobile and the class MobileObject.

4.1 Basic Mobility Support

Every mobile agent must (directly or indirectly) implement the interface Mobile. Sim-
ilar to Java RMI, a client of an agent must access the agent through an interface variable
of type Mobile or a subtype of Mobile.

Interface Mobile is defined as follows:

public interface Mobile extends java.io.Serializable {
public void go(java.net.URL dest)



throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

}

Like Serializable, interface Mobile is a marker interface. It indicates to a com-
piler or preprocessor that special code might have to be generated for any class imple-
menting this interface.

As explained in Section 5 below, we used the IBM Aglets library for implementing
our support for strong mobility. This is currently reflected in the list of exceptions that
can be thrown by go(). In a future version, we will add our own exception class(es) so
that the surface language is independent of the implementation.

Class MobileObject implements interface Mobile and provides the two meth-
ods getContextInfo() and go(). To allow programmers to override these meth-
ods, they are implemented as wrappers around native implementations that are trans-
lated into weakly mobile versions.

public class MobileObject implements Mobile {
private native ContextInfo realGetContextInfo();
private native void realGo(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

protected ContextInfo getContextInfo() {
return realGetContextInfo();

}
public void go(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException {

realGo(dest);
}

}

A mobile agent class is defined by extending class MobileObject.
The method getContextInfo() provides any information about the context in

which the agent is currently running, including the host URL and any system objects or
resources that the host wants to make accessible to a mobile agent.

The method go() moves the agent to the destination with the URL dest. This
method can be called either from a client of the agent or from within the agent it-
self. If go() is called from within an agent method foo(), the instruction following
the call to go() is executed on the destination host. Typically, an agent would call
getContextInfo() after a call to go() to get access to any system resources at
the destination.

A mobile agent class could then simply be defined as a subclass of class Mobile-
Object and would typically contain a thread that carries out the agent actions and
moves to remote machines when needed.

4.2 Language Extensions

In a non-mobile applications, static fields of a class are shared between all the instances
of that class. I.e., only one copy of a static field exists in the application. In a mobile



application, when the code is migrated to a remote machine together with an agent, a
new copy of a static field will be created at the destination. Depending on the use of the
static field this may or may not be the desirable behavior. If a static field is used, say, to
count the number of instances of a class, it may be preferable to have a globally unique
field. Similar to static fields, we propose a declaration for global variables,

global int n;

such that an agent always accesses global variable on the home machine, not on the
machine the agent currently resides on.

We also propose a new language construct immobile, both as a modifier for meth-
ods and as a block of code,

immobile int foo() { ... }
int bar() { ... \immobile{ ... } ... }

that inhibits migration of an agent while it is executing immobile code. This gives pro-
grammers better control of mobility for multi-threaded agents, e.g., by postponing a
migration until a large intermediate data structure has been deallocated.

4.3 Mobile Threads and Thread Pools

In our original implementation of strong mobility for multi-threaded agents, we used
Thread and ThreadGroup objects in the strongly mobile code and generated the
wrapper classes MobileThread and MobileThreadGroup as part of the weakly
mobile code. These mobile threads were not available to programmers, though. We are
exploring a redesign of the API that would use either thread pools or executors instead
of thread groups and that would make a mobile thread API available to the programmer.
This would allow programmers to use serializable mobile threads standalone without
using agents.

Migration for mobile agents is a similar problem to checkpointing a high perfor-
mance computing application. With checkpointing, a thread is serialized and written to
disk. If the processor fails, the thread is read back in and restarted. This is the same
mechanism needed for thread migration with the disk acting as a very slow commu-
nication link. Providing an API for mobile threads and thread pools would allow our
mobility translator to be used for automatically generating checkpointing code.

5 Translation from Strong to Weak Mobility

5.1 Single-Threaded Agents

For efficiency reasons it would be desirable to provide virtual machine support for
strong mobility. However, a preprocessor or compiler implementation has the advan-
tage that the generated code can run on any Java VM, and that it is easier to implement
and to experiment with the language design.

For our initial prototype, we chose to design the translation mechanism for a pre-
processor that translates strongly mobile code into weakly mobile code that uses the



Aglets library. For our current reimplementation, we will generate code for the ProAc-
tive library [2].

For implementing strong mobility in a preprocessor, it is necessary to save the state
of a computation before moving an agent so it can be recovered afterwards. Fünfrocken
describes a translation mechanism that inserts code for saving local variables just before
moving the agent [7]. This has the disadvantage that the go() method cannot be called
from arbitrary points outside the agent.

Our translation approach is to maintain a serializable version of the computation
state at all times by letting the agent implement its own run-time stack. This increases
the cost of regular computation as compared to Fünfrocken’s approach, but it simplifies
restarting the agent at the remote site.

5.2 Translation of Methods

For making the local state of a method serializable, we implement activation records
of agent methods as objects. For each agent method, the preprocessor generates a class
whose instances represent the activation records for this method.

An activation record class for a method is a subclass of the abstract class Frame:

public abstract class Frame
implements Cloneable, java.io.Serializable {
public Object clone() { ... }
abstract void run();

}

Activation records must be cloneable for implementing recursion as explained below.
The translated method code will be generated in method run().

For example, given an agent class C with a method foo of the form

void foo(int x) throws AgletsException {
int y = x + 1;
go(new URL(dest));
System.out.println(y);

}

(and ignoring exception handling and synchronization for simplicity) we might generate
a class Foo of activation records for foo of the form

class Foo extends Frame {
C This;
int x;
int y;
int pc = 0; // program counter

Foo(C t) { this.This = t; }
void setArgs(int x) { this.x = x; }
void run() {

if (pc == 0) { pc++; y = x + 1; }
if (pc == 1) { pc++;



go(new URL(This.dest)); This.run1(); }
if (pc == 2) { pc++; System.out.println(y); }

}
}

The parameter and the local variable of method foo() became fields of class Foo. In
addition, we introduced a program counter field pc and a variable This for accessing
fields in the agent object.

The method run() contains the original code of foo() together with code for
incrementing the program counter and for allowing run() to resume computation af-
ter moving. Calls of agent methods are broken up into a call of the generated method
followed by This.run1(), as explained below. For allowing the agent to be dis-
patched by code outside the agent class, the program counter increment and the follow-
ing instruction must be performed atomically, which requires additional synchroniza-
tion code.

For efficiency, the preprocessor could group multiple statements into a single state-
ment and only allow the agent to be moved at certain strategic locations.

5.3 Translation of Agent Classes

An agent now must carry along its own run-time stack and method dispatch table.
The generated agent class contains a Frame array as a method table and a Stack
of Frames as the run-time stack. When calling a method, the appropriate entry from
the method table is cloned and put on the stack. After passing the arguments, the run
method executes the body of the original method foo while updating the program
counter.

Suppose we have an agent class AgentImpl of the form

public class AgentImpl extends MobileObject implements Agent{
int a;
public AgentImpl() { /* initialization code */ }
public void foo(int x) throws AgletsException { ... }

}

Since this class indirectly implements interface Mobile, the preprocessor translates it
into the following code:

public class AgentImpl extends Aglet {
int a;
Frame[] vtable = { new Foo(this) };
final int _foo = 0;
Stack stack = new Stack();

public void onCreation (Object init) {
/* initialization code */

}

public void foo(int x) {
Foo frame = (Foo) (vtable[_foo].clone());



stack.push(frame);
frame.setArgs(x);

}

public void run1() {
Frame frame = (Frame) stack.peek();
frame.run();
stack.pop();

}

class Foo extends Frame { /* as described above */ }
}

The preprocessor eliminates interface Mobile and class MobileObject and lets
the agent class extend class Aglets.

For implementing method dispatch, the agent includes a method table vtable of
type Frame[]. The constant _foo is the index into the method table for method foo.
The field stack implements the run-time stack.

The constructor of class AgentImpl is translated into the method onCreation.
Since Aglets only allows a single Object as argument of onCreation(), any orig-
inal constructor arguments must be packaged in an array or vector by the preprocessor.

As described above, the original agent method foo() gets translated into a local
class Foo of activation records. The method foo() in the generated code implements
the call sequence: it allocates an activation record on the stack and passes the argu-
ments. The code for executing the method on the top of the stack and for popping the
activation record in method run1() is shared between all methods. A client must first
call foo() followed by a call to run1().

For resuming execution after arriving at the destination, we must also generate a
method run() inside class AgentImpl:

public void run() {
while (! stack.empty())

run1();
}

5.4 Protection of Agent Stacks

It is imperative that an agent cannot be dispatched by another thread between incre-
menting the program counter and executing the following statement. If the program
counter increment and the following statement were not executed atomically, a thread
could be dispatched after the program counter increment and incorrectly miss execu-
tion of the statement upon arrival. Since by definition this type of synchronization need
not be maintained across VM boundaries, standard Java synchronization techniques are
used. For a single-threaded agent, we simply synchronize on the agent object itself. For
method calls, we only need to protect the call to set up the activation record. The actual
execution of run1() does not need to be synchronized since by then a new activation
record with its own pc will be on top of the stack:



synchronized(This) { pc++; go(new URL(This.dest)); }
This.run1();

For preventing the agent from being dispatched between the program counter incre-
ment and the next instruction, the call of realGo() in MobileObject.go() must
also be synchronized on the agent object.

If two agents try to dispatch one another, this synchronization code could lead to a
deadlock. For executing the statement b.go(dest), Agent a would first synchronize
on itself. Then a synchronization on b would be required to protect the integrity of b’s
stack. If similarly b would execute a.go(dest), a deadlock would result. To prevent
this, the call of realGo() is synchronized on the agent context instead of on the caller.

public class MobileObject implements Mobile {
public void go(java.net.URL dest)

throws IOException, RequestRefusedException {
synchronized(TheAgentContext) {

synchronized(this) { realGo(dest); }}
}

The only time any thread synchronizes on two objects is now in the call of realGo(),
in which case the first synchronization is on the agent context. Deadlocks are, therefore,
prevented.

This synchronization mechanism ensures that only one agent can migrate at a time.
If two agents a and b try to dispatch one another, the first one, say a, will succeed. By
the time b tries to dispatch a, a is already on a different host. The call to a.go() will,
therefore, throw an exception that must be handled by b.

5.5 Multi-Threaded Agents

Our mobility translator supports migration of multithreaded agents. Unfortunately, the
Java library classes Thread and ThreadGroup are not serializable. Therefore, for
each use of the classes Thread and ThreadGroup we need to generate a serializ-
able wrapper of classes MobileThread and MobileThreadGroup, respectively.
The go() method on an agent can be invoked by another agent in the system or by
a thread within the agent itself. The go() method calls the realgo() method to
check whether the agent is already on the move. If so, a MoveInterrupt excep-
tion is thrown. Otherwise, each MobileThread calls the interrupt() method
of the underlyingThread class. This terminates any wait(), join(), or move()
functions if they are being executed. The time remaining to completely execute these
function calls is saved so that the function can resume execution at the destination from
the point where it had been interrupted.

The next step is to call the packUp() method of the main agent wrapper of the
thread group. This in turn calls the packUp() methods of the wrappers for all the
threads and the thread groups. The underlying state of execution of each thread and
thread group is saved to the corresponding wrappers. All the threads are forced to halt
any further executions and subsequently the agent is shipped to the destination by the
dispatch() call. At the destination, the reinit() method of the main agent



thread group wrapper is invoked. This method calls the reinit() method of each
wrapper. The called reinit() methods create Thread or ThreadGroup objects
from their corresponding wrappers and the execution states of the threads are restored.

After the restoration of the execution states, the start() method of the main
thread group wrapper is called. This method invokes the start() methods of all the
MobileThread wrappers. Then start() method of the underlying thread is called,
which then calls the run() method of the MobileThread wrapper. The run()
method checks the stack of the MobileThread wrapper. If the stack is empty, then
the run() method of the Runnable target is called. Otherwise, the activation records
in the stack are executed.

5.6 Synchronization in Multi-Threaded Agents

An agent should not be shipped to the destination while a thread is in the middle of
executing a statement. To prevent this from happening, the program counter update and
a statement execution should be performed atomically. Neither should any two agents
dispatch each other at the same time nor should two threads within the same agent try to
move the agent simultaneously. For example, each statement in the thread is protected
by a lock mechanism as shown below:

Acquire lock;
Program counter update;
Statement execution;
Release lock;

The problem of lock synchronization for multi-threaded agents is comparable to the
readers-write problem with writers priority. Each thread in the agent is assigned a lock.
The threads that are executing statements are considered to be readers and the thread
that invokes the go() method to move the agent is considered to be the writer. After
the reader thread is done executing the statement, the lock is released and acquired by
the writer thread. When the writer thread has acquired the locks of all the readers, only
then can the agent be allowed to relocate.

The drawback by having a locking mechanism around each program counter update
and statement, is that it incurs a large overhead. On the other hand, synchronizing on an
entire agent instance reduces the degree of parallelism in the system.

5.7 Optimizations

Our translation mechanism introduces several sources of inefficiencies. Migration of a
strongly mobile agent is slower than that of a handwritten weakly mobile agent, because
the run-time stacks need to be serialized and shipped along with the agent. However,
since the expected behavior of mobile agents is that they spend a significantly larger
amount of time computing than migrating, the overhead imposed on regular computa-
tion is of much more concern. The computation overhead comes from three sources:
the locking mechanism for protecting the run-time stacks, the frequency of locking and
the associated overhead of testing and incrementing the program counter, and pushing
activation records onto the run-time stacks.



A straight-forward optimization is to combine multiple consecutive statements, e.g.,
multiple assignments, into a single block without releasing and re-acquiring the lock
after each statement. This increases the latency slightly until a call to go() is honored
and the agent can migrate, but given the infrequency and cost of migration, even a
latency of up to 1 second would likely not be a problem for most applications.

Much of the locking overhead itself comes from insuring that writers (i.e., threads
that want to move an agent) do not starve. A readers-writer lock with reader priority
would be significantly cheaper but it could not insure freedom of starvation for writers.
Since writers occur very infrequently, it is possible to keep the stack locked for readers
by default and only allow a writer to proceed if one is pending. E.g., instead of releasing
and re-acquiring the lock, we could use

if (Writer is present) { Release lock; Acquire lock; }

using an atomic Boolean or atomic integer to test for the presence of writers.
Such a locking-scheme then allows a different code structure. Instead of having

lock-unlock pairs around statements or consecutive groups of statements, it would be
possible to have these if-conditions with unlock-lock pairs only in a few strategic places
in the code. Again, this would increase the latency until a migration can take place, but
it has the potential to drastically improve performance.

In addition, it would be possible to use standard compiler optimizations to further
reduce the run-time overhead. The overhead of maintaining the program counter for a
loop can be reduced by unrolling the loop. Inlining of methods can be used to eliminate
the expensive method call sequence. Methods that do not contain loops may not need
to be translated at all. Finally, with worst-case execution time analysis, it would be
possible to give a bound on the run-time of a method or code fragment and only generate
locking code to test for the presence of writers if the worst-case execution time is more
than the acceptable migration latency.

6 Experiments

To indicate the overhead of our translation mechanism and the potential for optimiza-
tions, we first present the results of manual optimizations and measurements that had
been performed in prior work [6]. These measurements were made on a quad-core
UltraSparc-II 296MHz processor with 1GB of memory running Solaris and using the
Sun JDK 1.4.0 Hotspot VM.

For these measurements, standard Java benchmarks were rewritten in the form of
both strongly mobile agents and Aglets. This did not involve changing the timed code
significantly. The only changes that needed to be made to the original benchmarking
code were made to avoid method calls inside expressions, since the preprocessor did
not yet handle these.

The strongly mobile agents were passed through the translator. We then used simple
manual optimization techniques to improve the performance of the translated agents.
These are: the grouping of simple statements to form logical, atomic statements; the
acquiring and releasing of locks only every 10,000 simple statements for a loop; and
the inlining of calls to simple methods that in turn do not contain method calls.



The running times and memory footprints of the translated agents and the manually
optimized agents were compared with the equivalent weakly mobile Aglets. The results
have been presented in Table 1. A major contributor to the poor running times of the
recursive benchmark programs is the garbage collector that runs several times a second
during their execution.

Table 1. Execution time of strongly mobile agents compared to corresponding Aglets code.

Benchmark Translated Code Optimized Code
Crypt (array size: 3,000,000, no threads) 5.61X 1.23X
Crypt (array size: 3,000,000, 1 thread) 5.96X 1.30X
Crypt(array size: 3,000,000, 2 threads) 6.00X 1.41X
Crypt(array size, 3,000,000, 5 threads) 5.60X 1.31X
Linpack (500 X 500) 10.00X 1.75X
Linpack (1000 X 1000) 9.48X 1.65X
Tak (100 passes) 245.30X 220.83X
Tak (10 passes) 247.00X 213.60X
Simple recursion (sum 1–100, 10,000 passes) 68.27X 60.75X

We performed further optimzations on the Linpack benchmark, a matrix multipli-
cation implementation. The inner-most loop of Linpack is inside a dot-product method.
We manually inlined this method, and measured execution time with the inner-most
loop untranslated, and with the translated loop unrolled. The running time comparisons
are presented in Table 2.

Table 2. Potential performance improvements for inner loop transformations of strongly mobile
Linpack code relative to Aglets.

Linpack Version Untranslated Unrolled 2X Unrolled 10X
Linpack (500 X 500) 1.02X 1.21X 0.75X
Linpack (1,000 X 1,000) 1.02X 1.15X 0.76X

For finding the cheapest locking mechanisms, we performed micro-measurements
of lock-unlock pairs for several different locking mechanisms as well as using atomic
integers or Booleans as guards for a lock. These measurements were performed on a
quad-core, 2.4GHz Xeon workstation running Linux. Since all code is sequential and
to make the measurements more predictable, we disabled multi-core support, hyper-
threading, Intel Turbo Boost (overclocking), and Intel Speed Step (CPU throttling), and
turned off all network interfaces, the X window system, and unnecessary background
processes. The Java Version 1.7.0 21 and ran the measurements on the Java server VM
with the command line options -XX:CICompilerCount=1 and -Xbatch to en-
sure that the measurements are not distorted by background compilation. We took 100
measurements of 10,000 lock-unlock pairs each in a 10X-unrolled loop. The average
times are shown in Table 3.



Table 3. Average execution time for one lock-unlock pair.

Locking Mechanism Time (ns)
Semaphore 18.32
ReentrantLock 16.41
ReentrantReadWriteLock (Read Lock) 26.77
ReentrantReadWriteLock (Write Lock) 23.84
AtomicBool (as guard for lock) 16.09
AtomicInt (as guard for lock) 15.92

As our measurements show, the cheapest combination would be to use an atomic
integer or Boolean (the difference between them is not statistically significant) as a
guard for a ReentrantLock instead of our original counting Semaphore. With
guarded locks it would be possible to generate code that unlocks and re-acquire the
lock less frequently. This, together with compiler optimizations such as not translating
inner loops or methods without loops, inlining, and loop unrolling has the potential to
reduce the overhead to less than 20% for non-recursive applications, which would be
acceptable.

7 Conclusion

We have presented a framework for translating strongly mobile Java code into weakly
mobile code. Compared to existing approaches to strong mobility, our approach has the
advantages that it allows multi-treaded agents and forced mobility, accurately maintains
the Java semantics, and can run on a stock Java VM. The disadvantage is that without
further optimizations, the run-time overhead would be prohibitively large.

The main contribution of this paper is that it presents an optimization framework
for improving the performance of the generated weakly mobile code. Preliminary mea-
surements show that with a combination of a cheaper locking mechanism and a code
structure that trades off migration latency for performance, the overhead can become
acceptably small. Finally, standard compiler optimization techniques can be used to
further improve the performance of the generated code. We are currently working on a
reimplementation of our mobility translator in the Polyglot compiler framework [12].

References

1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A language for resource-aware mobile
programs. In J. Vitek, editor, Mobile Object Systems: Towards the Programmable Internet,
volume 1222 of Lecture Notes in Computer Science, pages 111–130. Springer-Verlag, 1996.

2. F. Baude, D. Caromel, F. Huet, and J. Vayssı̀ere. Communicating mobile active objects in
Java. In M. Bubak, H. Afsarmanesh, R. Williams, and B. Hertzberger, editors, Proceedings
of HPCN Europe 2000, volume 1823 of Lecture Notes in Computer Science, pages 633–643.
Springer Verlag, May 2000.

3. S. Bouchenak, D. Hagimont, S. Krakowiak, N. D. Palma, and F. Boyer. Experiences imple-
menting efficient Java thread serialization, mobility and persistence. In Software — Practice
and Experience, pages 355–394, 2002.



4. A. J. Chakravarti and G. Baumgartner. Self-organizing scheduling on the Organic Grid. Int.
Journal on High Performance Computing Applications, 20(1):115–130, 2006.

5. A. J. Chakravarti, G. Baumgartner, and M. Lauria. The Organic Grid: Self-organizing com-
putation on a peer-to-peer network. Trans. Sys. Man Cyber. Part A, 35(3):373–384, May
2005.

6. A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baumgartner. Implementation of strong
mobility for multi-threaded agents in Java. In Proceedings of the International Conference
on Parallel Processing, pages 321–330. IEEE Computer Society, Oct. 2003.

7. S. Fünfrocken. Transparent migration of Java-based mobile agents: Capturing and reestab-
lishing the state of Java programs. In K. Rothermel and F. Hohl, editors, Proceedings of the
Second International Workshop on Mobile Agents, volume 1477 of Lecture Notes in Com-
puter Science, pages 26–37, Stuttgart, Germany, September 1998. Springer-Verlag.

8. R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a multiple-language,
mobile-agent system. In G. Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 154–187. Springer-Verlag, 1998.

9. T. Illmann, T. Krueger, F. Kargl, and M. Weber. Transparent migration of mobile agents using
the Java platform debugger architecture. In Proceedings of the 5th International Conference
on Mobile Agents, MA ’01, pages 198–212, London, UK, 2002. Springer-Verlag.

10. D. B. Lange and M. Oshima. Mobile agents with Java: the Aglets API. World Wide Web
Journal, 1998.

11. D. B. Lange and M. Oshima. Programming & Deploying Mobile Agents with Java Aglets.
Addison-Wesley, 1998.

12. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework
for Java. In G. Hedin, editor, Compiler Construction, 12th International Conference, CC
2003, volume 2622 of Lecture Notes in Computer Science, pages 138–152. Springer-Verlag,
Apr. 2003.

13. H. Peine and T. Stolpmann. The architecture of the Ara platform for mobile agents. In
R. Popescu-Zeletin and K. Rothermel, editors, First International Workshop on Mobile
Agents, volume 1219 of Lecture Notes in Computer Science, pages 50–61, Berlin, Germany,
Apr. 1997. Springer Verlag.

14. B. Peterson, G. Baumgartner, and Q. Wang. A hybrid cloud framework for scientific com-
puting. In 8th IEEE International Conference on Cloud Computing, CLOUD 2015, pages
373–380, New York, NY, June 2015.

15. T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode transformation for portable thread
migration in Java. In Proceedings of Agent Systems, Mobile Agents, and Applications, vol-
ume 1882 of Springer Verlag Lecture Notes in Comuter Science, 2000.

16. T. Sekiguchi, H. Masuhara, and A. Yonezawa. A simple extension of java language for
controllable transparent migration and its portable implementation. In In Proceedings of the
3 rd Intl. Conference on Coordination Models and Languages, 1999.

17. T. Suezawa. Persistent execution state of a Java virtual machine. In Java Grande, pages
160–167, 2000.

18. N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers, and T. S. Mitro-
vich. An overview of the NOMADS mobile agent system. In C. Bryce, editor, 6th ECOOP
Workshop on Mobile Object Systems, Sophia Antipolis, France, 13 June 2000.

19. E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Verbaeten. Portable support
for transparent thread migration in Java. In Proceedings of the Joint Symposium on Agent
Systems and Applications / Mobile Agents, pages 29–43, Zurich, Switzerland, September
2000. Springer-Verlag.

20. X. Wang, J. Hallstrom, and G. Baumgartner. Reliability through strong mobility. In Proc.
of the 7th ECOOP Workshop on Mobile Object Systems: Development of Robust and High
Confidence Agent Applications (MOS ’01), pages 1–13, Budapest, Hungary, June 2001.


