
Sharing Software Configuration

via Specified Links and Transformation Rules

Markus Raab
markus.raab@complang.tuwien.ac.at

Institute of Computer Languages
Vienna University of Technology

Abstract

Configuration files are the dominant tool for local configuration man-
agement today. Up to now, applications cannot access any configura-
tion file of their system, because they lack the knowledge where the
configuration files reside, which syntax they use, and how a value is
interpreted correctly. As a result, software systems are often poorly
integrated. In this paper, we propose a specification for configuration
files to mitigate these issues. Developers specify links and transforma-
tion rules to share configuration items between applications. We im-
plemented tools and a library that integrate existing configuration files
as well as a C/C++ code generator that makes sure that newly writ-
ten applications are consistent with their specification. Our approach
bridges across configuration file standards. It integrates configuration
files we do not have control over. In a case study we demonstrate
that our approach saves time, when unmodified applications need to
be integrated into a coherent system. Additionally, we show that the
run-time overhead of these links does not have significant impact on
applications.

1 Introduction

Only a few factors determine how well-integrated an application, with respect to a software system, is: logging,
external interfaces, user interfaces (such as dialogues), and user interaction (such as shortcuts and menus). In
modern software these aspects are configurable. We only need to configure the software in a way that the system
feels as if made from one piece. Currently, such endeavor is cumbersome in a heterogeneous system. Specific
technologies only provide solutions within their respective field. Thus usually many technologies are involved,
and a näıve approach often fails.

We faced this issue, next to many domain-specific ones, during an one-year project. The staff of the software
engineering project varied between 3 and 5 software developers, who wrote about 50.000 lines of C and C++.
The aim of the project was to engineer a platform for integrating different software applications from multiple
customers. The platform enabled the modification of more than 200 configuration items which affect the behavior
and features of the platform and the integrated applications.

Due to complexity of that specific system, caused by the domain-specific issues, we present our approach by the
means of another issue instead: Nearly every graphical user interface (GUI) provides a shortcut for quitting the
application. Also, nearly every application provides a way to use a different shortcut to change the default (that
is often Ctrl+Q). Currently, no generic way exists that one application uses the shortcut of another application.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

Submission to: 18. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS), Pörtschach, Austria, Oct-2015

We propose the following solution to give our applications access to configuration items of other applications:
First, during installation of applications, we register their configuration files with information about their syntax.
During startup of our application, we parse all necessary configuration files into key/value pairs with properties.
A specification describes links and transformations between these abstract configuration items. Finally, we map
the configuration items to variables of the programming language the application uses.

In the present paper, we will explain how a specification is used to drive the last two steps. In this specification,
the developer defines which configuration items of other applications are used and how values are transformed.
The specification is independent from a concrete programming language and extensible, e.g. for an editor:

[/ our_editor/quit]
fallback /#0=/ kde/kate/ActionProp/Default/file_quit
fallback /#1=/ vim/map/:qa<CR >
fallback /#2=/ emacs/keyboard -escape -quit

The first and the only required line of the specification defines the configuration item. We will call this
unique id key name. The other lines of the section are properties of this configuration item. In this example, we
introduced one property, called fallback. Using this property we establish a link to another key name. It tells
the system that, whenever the configuration item itself was not found, the value should be used from a fallback
configuration item instead. We see that we add an array of such fallbacks, using the syntax #<number> for
indexing.

The novelty of the approach is that it is transparent for any external tool in which order keys will be searched
for. The specification is present at runtime and will be automatically enforced by a library. Additionally, code
generation makes sure that applications use the configuration items in a type-safe way.

Our paper will answer the question: “Which properties in a specification are needed to share configuration
items?”. This question is significant because it enables the developer to reuse configuration items in less time
than building ad-hoc solutions for every single integration needed.

The paper is structured as follows: In Section 2 we explain the details of our approach and in Section 3 we
describe Elektra, a framework that implements our approach. In Section 4 we evaluate and benchmark Elektra,
then in Section 5 we compare our approach with other work and finally we conclude our paper in Section 6.

2 Elektra

2.1 Technology

Configuration files have a countless number of syntactic differences. E.g. lenses [1] are one way to describe
syntax of configuration files. The repository of Augeas [7] (only covers some parts of Linux configuration files)
already contains 181 lenses. Semi-structured data, e.g. JSON, YAML, XML and self-describing data [16], e.g.
S-expressions and also JSON [3], are very popular for configuration.

To handle this diversity, as a first step, we transform such configuration files to an abstract syntax tree
(AST). We use an AST that consists only of key/value pairs with properties. Using this abstraction we get rid of
specialties in syntax. We use plugins as described in [9] that parse the configuration files and yield an AST. After
the transformation to an AST, the nodes refer to key names and the properties store details that are necessary
to reconstruct the configuration file. Let us consider a JSON file as example:

{
"boolean_key": true

}

Elektra’s JSON plugin will transform this file to an AST. If we serialize the AST to the syntax we already used
for the previous example we would get the following output:

[/ boolean_key]
value=true
type=boolean

The example illustrates that self-describing data already has properties even without a specification. In a
specification we directly link to /boolean_key regardless if a specification was written for it. Nothing novel so far,
but using this technique we get an abstraction over the concrete syntax of configuration files. As a specialty, our
approach handles specifications the same way as configuration files.

2.2 Resolve Sources

The location of the configuration’s file name differs between different OS and distributions of the same OS. In
our approach, the configuration file names from all applications are registered globally at installation time when
we know the file name and its syntax. We use further configuration files to store this information. For every
configuration file we add an OS-dependent plugin, called resolver, to handle the dynamic properties of the file
name resolving. Depending on the OS context, resolvers will yield different file names.

Our approach introduces the abstraction that we will call key database. The key database is a tiny middleware
between the plugins and the applications. Its main responsibility is the splitting and merging of the AST: plugins
always get their part of the AST. The key database bootstraps itself whenever it is opened. It is library-based,
that means the bootstrap process happens during the start of every application:

1. First the key database reads from a hard coded configuration file to know where the other configuration files
are and which plugins (resolver, syntax of configuration file and others) should be used for each of them.

2. The resolvers determine the full configuration file names with information from the OS.

3. With the information from the previous steps, the key database builds up a data structure. In the data
structure we lookup key names without any knowledge of the file name (and its syntax).

For example, consider that an application registers a JSON configuration file app.j, with the content as displayed
above, in the key database at /myapplication. Then the full filename is the concatenation of a directory and app.j

and the key name is /myapplication/boolean_key.

2.3 Namespace

Another dimension of configuration items is their namespace. Elektra supports following namespaces related to
configuration files:

spec if the configuration file contains the specification.

dir if the configuration file is in a special directory (e.g. .htaccess of the apache web server).

user if the configuration file is in the user’s home directory.

system if the configuration file is located system wide (e.g. below /etc).

In our approach, applications lookup all keys using the method lookup of a library. It has two arguments: the
complete configuration conf (AST with all key/value pairs) and a key key without a namespace. No namespace is
encoded in the application’s source code. Instead, keys in different namespaces are considered for every lookup.
The algorithm is straight-forward:

lookup(conf , key)
{

s = lookupByKey(conf , spec / key);
if (!s) return lookupBySpec(conf , s);

ret = lookupByKey(conf , dir / key);
if (ret) return ret;

ret = lookupByKey(conf , user / key);
if (ret) return ret;

ret = lookupByKey(conf , system / key);
if (ret) return ret;
return 0;

}

First we search for the key, that contains the specification by using the spec namespace. If found, the internal
method lookupBySpec is invoked with it. Otherwise, we do a cascading search of all namespaces. The operator
/ specifies that key is in the given namespace. The specification is only configuration represented by keys and
defines how the lookup of keys work.

An abstraction of the configuration has been established. It enables us to uniquely identify configuration
items. We do not have to care about the path to configuration files anymore.

2.4 Links

We already introduced the property array fallback. It specifies which configuration items should be used as
fallback when the configuration item itself was not found. The property array override complements the linking
functionality. If this property is available, the configuration items linked will be preferred to the item itself. The
property array namespace defines which namespaces should be considered and in which order. Finally, the
property default completes the linking functionality. It will be used if every configuration item mentioned was
not found.

Given the AST conf and the key with properties key we define the search order by the following algorithm:

lookupBySpec(conf , key)
{

for (number: 0 .. length(key , override)-1)
{

m = lookupByProperty(key , "override/#<number >");
k = lookup(conf , m, withoutDefault);
if (k) return k;

}

if (lookupByProperty(key , namespace))
{

for (number: 0 .. length(key , namespace)-1)
{

m = lookupByProperty(key , "namespace/#<number >");
k = lookupByKey(conf , m / key);
if (k) return k;

}
}
else // if no property namespace exists
{

k = lookup(conf , key , withoutKey);
if (k) return k;

}

for (number: 0 .. length(key , fallback)-1)
{

m = lookupByProperty(key , "fallback/#<number >");
k = lookup(conf , m, true , withoutDefault);
if (k) return k;

}
return lookupByProperty(key , "default");

}

The method lookupBySpec iterates over the three property arrays fallback, namespace, and override. We
see that the algorithm works recursively, but with special options for recursive invocations. The code shown here
is not cluttered with those branches for clarity. If the property namespace is not specified (else branch), we use
the cascading lookup as defined previously in the method lookup, but obviously do not search for the same key in
spec again. The expression m / key means that key is in the namespace as stated by m and "#<number>" is the syntax
for indexing. If neither an override, the key itself, nor any fallback was found, the algorithm returns the value
as specified in the property default.

For example, suppose we have no other configuration than the specification:

[/ our_editor/quit]
namespace /#0= system
fallback /#0=/ vim/quit
default="Ctrl+Q"

[/vim/quit]
namespace /#0= user
default=":q"

Then a call to lookup with /our_editor/quit as key will:

1. first lookup the key /our_editor/quit in the namespace spec successfully and call lookupBySpec with this key,

2. then skip override (because no property override is present),

3. then fail in searching for the key in the system namespace (because no configuration file is present),

4. then lookup the key /vim/quit in spec successfully and call lookupBySpec with this key,

5. skip override again,

6. then fail in searching for the key /vim/quit in the user namespace and

7. finally use the default value Ctrl+Q.

2.5 Value Transformation

The override/fallback mapping covers only the rare situation that the provider and consumer of the configuration
item happens to interpret the same bit pattern in exactly the same way. In general, we need a unidirectional
mapping of values from one bit pattern to another one if we want to reuse a configuration item. The straight
forward way is to use a map:

[/ our_editor/shortcut/quit]
transform =/kate/quit
transform/map/Ctrl+A=CTRL+A
transform/map/Ctrl+B=CTRL+B
transform/map/Ctrl+B=CTRL+C
... (23 more)

The property transform is similar to override/fallback. On keys with this property, however, the key itself
does not exist in a file. Instead its value is the result of a transformation specified by one of the properties
transform/type, where “type” describes the type of the transformation. In the example, the transformation
type is map. Such a mapping is practical for situations where an enumeration of all values is straight-forward, but
cumbersome for others. Thus we use existing programming languages for sophisticated transformations:

[/ our_editor/shortcut/quit]
transform =/kate/quit
transform/haskell=map toUpper

Which is much shorter than the previous example but has the same behaviour for valid input. In general, the
transform code snippets must take one argument and return the transformed value. Obviously this specification
language now is expressive enough for any transformation of values between applications, but we lack semantics
when such a transformation should not happen or fails.

2.6 Skip Transformation

Sometimes the transformation is not possible or avoided on purpose:

• If the input value is not within the domain.

• If a runtime error (e.g. failed memory allocation) occurs.

• If someone decides that in the specific case it is better not to use the configuration item.

To support these semantics we use, depending on the programming language, either exceptions, errors, optional
values or omit the return value. In such situations the configuration item will not be present for the application.
The behavior is identical to a not-found key name.

For example, a typical request is that the application should only be adapted for an OS or desktop when the
application is executed within the specific environment:

[/ our_editor/shortcut/quit]
default =:qa!
transform =/kate/quit
transform/python=if kde_running ():

return value.upper()

In this example our_editor will use the quit shortcut from kate (which is part of KDE) only if KDE is the
currently running desktop. Otherwise the key /our_editor/shortcut/quit will not exist.

2.7 Types and Code Generation

In our approach, every parameter has a type. If no property type is given, an abstract top type will be assumed.
This behavior guarantees that configuration items without the property type still type-check safely [6].

Types give a better understanding how the parameter is used and provide a foundation to check if a concrete
configuration is valid. In our approach we generate code for easy access to the configuration items in the same

way as [12]. Then types become a necessity because only with types the compiler ensures that the usage of the
configuration values is correct.

We conclude that every type used in the property type must have an exact counterpart in the type systems
of the target languages. CORBA IDL already defines a consistent mapping for many programming language and
can be used with our approach.

3 Implementation

Figure 1: Architecture of Elektra

generate

config. files

delegate
w
ork

AST

access

specification type safe
access code

kdb-gen code generator key database

access

program code

uses

plugins

tooling

access

access

load, store
and check

uses
libelektra

We call our framework Elektra. It consists of following parts:

1. A library (called libelektra) that transforms configuration files to an AST. It contains an implementation of
the key database as discussed before.

2. We use a code generator (called kdb-gen) to ensure that the usage of the variables match the specification
in statically typed programming languages. kdb-gen generates both C and C++ front ends and different
documentation artifacts by using different templates.

3. The front end is a type safe access code that is generated by the specification.

The user of our approach has to implement only two parts (bold, blue boxes in Figure 1):

1. The specification with the properties fallback, override, etc. (as discussed in Section 2).

2. The program code of the application consuming the configuration files has to be adapted to use Elektra
(also called elektrify). The programmer must make sure that the program code uses the type safe access
code and not directly configuration files nor environment variables so that the links will work.

We see in Figure 1 that the program code, that uses other configuration files, needs to use the key database in
order to enable the consumption of other configuration files. Because of the plugins, however, other applications
providing configuration files do not need to be modified. Elektra can use their configuration files directly.

3.1 Front end

The generated classes (C++) and functions (C) provide type safe and context aware access to configuration
items [12] [10]. This layer is very thin. It is only responsible for looking up the configuration value and lexical
casting the resulting string to a native data variable. It is straight forward to provide support for additional
programming languages.

If desired, the front end can have a built-in copy of the specification. Using this technique, the application
starts up without any configuration files.

In order to support the properties override and fallback, we enhanced the lookup of values in the AST.
Using the property transform it will be transformed with the given rules. In rather static languages, e.g.
C++, the transformation rule will be included in the generated code. In our C++ implementation we use
policy-based design. Using policies programmers can modify the behavior of the front end. Additionally, it
supports a separation of hand-written and generated parts.

E.g. the specification,

[/myapp/shortcut/quit_myapp]
default=CTRL+Q
type=string
transform =/kate/quit
transform/cpp=

std:: transform(value.begin(), value.end(),
value.begin(), :: toupper);
return value

will generate the following policy code (shortened for the sake of brevity):

class QuitMyappGetPolicy
{
public: typedef std:: string type;
static type get(kdb:: KeySet &ks , kdb::Key const&) {

type value = "CTRL+Q";
kdb::Key found = ks.lookup("/kate/quit", 0);
if (found) {

value = found.get <std::string >();
std:: transform(value.begin(), value.end(),
value.begin(), :: toupper);
return value;

}
return value;

} };

The policy classes GetPolicy are responsible to lookup a configuration item in the case of a cache miss of the type
safe access code [12]. The AST is denoted as kdb::KeySet. We see that the default value and the transformation
are hard coded.

The generic tools we saw in Figure 1 cannot rely on code generation. Instead they read the specification
dynamically. The implementation for both cases (code generated and dynamically) is a straightforward imple-
mentation of the pseudo-code as given in Section 2.

3.2 Key Database

The key database is a very thin layer that delegates all the work to Elektra’s plugins. The plugins are responsible
to resolve the configuration file name, as described in Section 2 and to parse and write configuration files. Different
parsers are used for different formats:

1. JSON, INI and XML libraries handle semi-structured data.

2. Elektra’s augeas [7] plugin handles most Linux configuration files, e.g. sshd, security/limits.conf.

3. Hand-written parsers handle other INI dialects and other configuration files, e.g. hosts, fstab.

The only responsibility left to the key database is to bootstrap the system and to pass the correct parts of the
AST to the correct plugins.

4 Evaluation

We implemented the described artefacts and plugins in Elektra. Based on the experiences of the one-year project
mentioned in Section 1 and later measurements, we will discuss the development time. The rest of the evaluation,
however, is based on programs we wrote specifically for that purpose.

4.1 Development time

Measuring the overall time in a larger project was unfortunately not possible for us because using our approach
individual configuration related tasks are done in a few minutes, which is difficult to track. We will only
discuss development time of individual tasks. Additionally, we will show representative code to give a better
understanding of necessary effort. The time measurement is based on the commits of our version control system.

The basic setup to use Elektra only consists of the following straight-forward lines:

#include <editor.hpp >

int main()
{

using namespace kdb;
KDB kdb;
KeySet conf;
Context c;
Parameters par(conf ,c);
std::cout << par.myapp.shortcut.quitMyapp << "\n";

}

In the first line we include the code generated from the specification. After creating a handle to the key
database, an AST for the configuration (called KeySet) and a Context [12], we finally create an instance of the
generated class Parameters. Then we directly access configuration variables with the key name. The only difference
to the specification is the usage of . instead of / to denote the key name.

The needed time to add one parameter is noteworthy: In only two minutes we were able to add a new
configuration item that was fully documented and used in the application. The needed time does not change
significantly if a small number of links exist. To add transformation keys, however, can take much longer,
especially, if the original configuration item is not documented properly. To add command-line parsing ability
for all parameters in a small application, we only needed six minutes (the template for generating the code
already exists within Elektra).

We developed a large application (50.000 lines of C and C++) based on a specification describing configuration
with Elektra. In that project we used several properties not described in this paper. Nevertheless, we experienced
an improved development time and especially debugging time compared to another project with rather traditional
means of configuration access: the direct use of a data structure along with a XML Schema Definition (XSD)
validating configuration files written in XML. While one configuration change in our approach needed only a
single change in the specification, up to more than 10 places needed to be modified in the project using XSD.

Adding new plugins to support new configuration file standards, unsurprisingly, takes significantly longer.
Small tasks, e.g. integrating existing configuration parsers or writing a template similar to existing ones, were
done by us within a day. For example, the INI plugin ni, that parses the syntax of the examples in this paper,
has 158 lines of C code and was developed within a day (10:41:54 - 16:22:01). To support parsing properties
following code in Elektra was needed:

Ni_node mcur = NULL;
while ((mcur = Ni_GetNextChild(current , mcur)) != NULL)
{

keySetMeta (k, Ni_GetName(mcur , NULL), Ni_GetValue (mcur , NULL));
}

Explanations of the API and other details about development of the plugins are given in [9].
Adding new templates to support new programming languages or properties often takes a similar amount

of time. For example, to add long option parsing support took less than one hour (10:53:30 - 11:33:04). The
whole template that parses command line options has 261 lines of code. Templates are written in cheetah [15]
with many utilities provided by Elektra, e.g. the fallback mechanism for C and C++ is included easily in new
templates.

Here is a part of the template that implements the property fallback:

@set $fa = $support.fallback(info)
@if len(fa) > 0
@for $f in $fa

found = ks.lookup("$f", 0);
if (found) {

value = found.get <$support.typeof(info)>();
$support.transform($info , $fa.index($f));

}
@end for
@end if

Note that in cheetah template code (lines starting with @) is interwoven with C code. The array fa contains the
properties fallback. For every property fallback the code for a lookup invocation and the value transformation
is generated. The generated code from that template is shown in the earlier example class QuitMyappGetPolicy.

4.2 Links within a single specification

We implemented a word counting utility in C that internally relies on the links as described in this approach.
The wc tool has the following features: it counts lines, words, chars, bytes and the length of the longest line.
Without any option the tool will print lines, words and chars. With any configuration item given, it will only
print the requested counters. Such interdependencies within configuration item are easily represented with the
following links:

[/sw/wc/show/max_line_length]
type=boolean
default=false
opt=L
opt/long=max_line_length

[/sw/wc/show/no_default_args]
type=boolean
default=false
override /#0=/sw/wc/show/lines
override /#1=/sw/wc/show/words
override /#2=/sw/wc/show/chars
override /#3=/sw/wc/show/bytes
override /#4=/sw/wc/show/max_line_length

Using links avoids an implementation of the override/fallback logic in the application and has following
advantages:

Changeability: Even when multiple applications use the specification item no_default_args we only have a single
place to change the logic.

Independence: The links are available as data and can be used in any programming language or technology.

Traceability: The links exist explicitly and are traceable without program analysis.

Extensibility: Both the configuration items and the links can be extended with any desired property, e.g. opt

in the example above permits us to generate commandline parameter parsing code that accepts -L and
--max_line_length.

Performance: In a previous paper [12] we show that access of the configuration item has no overhead compared
to access of native C++ variables.

4.3 Links between applications

We implemented a minimalist editor with configurable shortcuts in C++. The tool sloccount measured 3,106
total physical source lines of code. In this case study, we confirmed that other editors do not need any modification
to share their configuration.

Elektra supports a large number of configuration file standards, including those mentioned in this paper
(JSON, XML), those supported by Augeas (e.g. apache, ssh), some basic Linux configuration files (e.g. hosts)
and various INI formats. To support a large number of standards is especially important for software integration
between applications.

For vim and Emacs, however, none of these parser worked because their configuration file contains code.
For such situations we implemented a plugin, called regexstore, that uses regular expressions ignoring all non-
matches. In contrast to lenses regexstore only takes care of the parts of the configuration files we are interested
in and does not understand the rest of the file. Given regexstore, we are able to integrate even vim and Emacs
configuration files. Up to now, we did not find any configuration file we could not integrate and because plugins
are written in universal programming languages we argue that any way to store configuration can be integrated
into Elektra.

4.4 Benchmark Setup

We conducted the benchmarks on a hp R© EliteBook 8570w using the CPU Intel R© Core
TM

i7-3740QM @ 2.70GHz.
The operating system is GNU/Linux Debian Wheezy 7.5. We used the gcc compiler Debian 4.7.2-5. We measured
the time using gettimeofday. We executed each benchmark eleven times for the box-plots. The benchmark setup
is identical to our previous benchmark [12].

We implemented a static and a dynamic variant of our algorithm:

In the dynamic variant keys contain the properties. That means that lookupByProperty of our algorithm is a
dynamic lookup in a data structure. The application reads the specification in configuration files at runtime.
In this variant, we have to lookup every property, even if they are not available.

In the static variant the override and fallback mechanism is compiled in the application. In this variant the
code generator adds code for every link as specified. We already saw examples of this variant (the class
and the template of QuitMyappGetPolicy). Only recursive links (not used in our benchmarks) are resolved in the
same way as in the dynamic variant. That means also in this variant the specification needs to be read at
runtime. Obviously, this approach has no overhead when no links are used.

4.5 Lookup Time

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
Number of override properties

T
im

e
[s

]

dynamic

static

Figure 2: Lookup time in static and dynamic variant
with linear scale for 200,000 lookups.

In the first benchmark we will measure the time
needed for the lookup in the data structure. We
generated 10 variables that have 0 to 9 properties
override, e.g. the first and second configuration
items:

[/ benchmark /#0]
default =33
type=unsigned_long

[/ benchmark /#1]
default=benchmark
type=unsigned_long
override /#0=/ benchmark/override /#0

Using these configuration items we make 200,000
lookups. If we would only access the variable, we
would not have any performance overhead (with any
number of links) as described in [12]. In order to
actually measure the lookup time, we synchronize
the cache in every iteration. In Figure 2 we see the
time grows linearly for a larger number of over-
ride-properties.

For the second benchmark measuring the dy-
namic variant we use the same specification and the
same number of iterations. We see that we have a
larger overhead because of the additional lookups required for every property. In the dynamic variant even not
specified properties cause overhead.

Next to the constant difference of factor 1.8 the overhead also grows 22% faster in the dynamic variant
because of additional property lookups needed. Another drawback of the dynamic variant is, that it does not
allow compiled code to be used. Instead transformations need to be interpreted, again adding overhead. We
conclude the static variant is faster, but it has a severe problem: applications directly using the key database

without code generation (e.g. tooling) sees not transformed, i.e. incorrect, values. To answer the question if
dynamic or static should be preferred, we have to answer the question if the lookup overhead is significant in an
application.

4.6 Overall Runtime Overhead

process 64%

kdbOpen 17%

kdbGet 11%

overhead 5%
lookup 3%

kdbGet 11%

kdbOpen 17%

lookup 3%

overhead 5%

process 64%

Figure 3: Full application using a static variant

Considering a full application, in our approach fol-
lowing steps are necessary:

kdbOpen: The bootstrapping as described in Sec-
tion 2.

kdbGet: The reading of (other) configuration files.

process: The functionality of the application.

Our setup is as follows. We benchmark the
word counting tool already described earlier with the
LATEX file document of this paper (32KB size). We
have a small configuration file that is read during
startup. We profiled the application using Callgrind
3.7.0. Only two configuration files were involved: the
bootstrapping configuration file (read during kdbOpen)
and one configuration file for the application (read
during kdbGet).

In Figure 3 we see that the processing of the file
dominates with 64%. What obviously matters is the
size of the configuration files. The transformation to an AST (using the ni plugin [9]) unfortunately is much
slower than just counting the words (by a factor of 12 on files with the same size). Because of this kdbOpen() takes
17% and kdbGet() needs 11% of the overall cycles even with a small configuration files.

Without the links in the specification the number of lookups are reduced to 9 (from otherwise 27) cascading
lookups (see the algorithm lookup in Section 2). Based on this, we know that the overhead of the links is only 5%
in this application.

4.7 Threats to Validity

The main problem of our evaluation is that the applications used are rather small. The development times are
only taken from a single project and need to be validated by additional case studies for external validity.

5 Related Work

Configuration management (CM) tools, e.g. [2] solve the problem stated in this paper differently. They copy
each value to every place as needed. This approach, however, fails to work, when the user modifies configuration
locally. Most computer systems today, however, are configured locally: mobile devices, laptops, tablets and
non-business desktop systems. CM tools will not work when no distribution system between the nodes exists.

Reuse of software components facilitates reuse of software configuration. Modern desktop environments have
a tight integration based on that principle. In this approach every software component is responsible for its own
configuration. These components enable programs to modify settings in one place and taking effect for the whole
system. Zdun [17] even argues that the concern “behavioral composition and configuration” should be treated as
a first-class entity. While this approach has many advantages, its application is often difficult (e.g. programming
language barriers) or even not possible (e.g. because of licensing issues).

Using lenses [1] as implementations allows us to quickly cover a lot of different configuration file formats, but
lenses seem to fail [7] when we need complete abstraction from the concrete syntax of the configuration file.
Type-safe lenses are only based on regular expressions and the resulting AST is very similar to the configuration
file syntax and its internal order. In our approach we do not have such a limitation because we can transform
keys to the desired structure.

Ontologies are used for sharing data. Gruber [5] describes general design criteria so that every specification
has a minimal ontological commitment, e.g. we should tolerate that one date is “1993” and the other “March

1993”. Enforcing a canonical representation would be an encoding bias. In our approach we solve this problem
by transformations. Gruber also introduces references to uniquely identify publications. In our approach key
names cover this concept.

XPointer [4] permits us to create links within XML documents. The main difference is that they are heavily
dependent on XML technology. So they cannot be used for configuration files, where XML is not dominant.
XPointer is not able to achieve the same as the properties override, fallback and default we described in
this paper. XInclude [8] is also tied to XML technology, but different from XPointer, XInclude has an element
fallback that is similar to the property default as described in this paper. For the other properties we described,
no equivalents exist.

Context-oriented programming [12] [10] is supplementing the approach described in this paper. It allows
applications to be aware in which context they are, but does not enable them to be aware of other applications.

We are positive that possible extensions of our approach also improve safety [11].
A different type of configuration links are explained in [13] and formally developed in [14]. Similarities to our

approaches are advantages regarding specification evolution, and the potential usage for internal fallbacks as we
discussed in the evaluation. They are different because they:

– only refer from target to source specifications while Elektra supports references within specifications and
directly to configuration items,

– are evaluated during generation of configuration and therefore cannot be as flexible as Elektra’s run-time
evaluation,

– only provide propositional logic to determine selection while Elektra facilitates programming languages to
determine if transformation should be skipped, and

– seem not to support transformation rules which further limits their use.

6 Conclusion and Further Work

This paper describes a novel way to establish links between configuration items. We use data as a specification
to define abstraction and to describe access on data. This specification alone suffices to share configuration,
and even saves time in the process. As the specification is just data we can easily extend the approach to other
programming languages. Nevertheless, the specification is powerful enough to allow applications to use any
configuration item of any configuration file. Our approach avoids the introduction of a new configuration file
format. Instead, existing configuration file formats are integrated using a global abstract syntax tree.

In the benchmark we compared a static and a dynamic implementation of our approach. The lookup time is
not significant in either way, and the dynamic implementation has the advantage that it also works with tooling
that does not use the code generator. So we prefer the dynamic variant.

To answer our research question: Three properties, namely fallback, override and transform are needed
to share configuration between applications. Additionally, these links are also useful to implement fallback and
override logic within a single program. In general, using the specification is superior to hard coding logic in the
application because:

– External tools use the specification and thus present the same configuration as the application.

– The specification is enforced for every application accessing the configuration.

– It is transparent to the administrator which configuration values are to be preferred.

Currently, types need to be annotated manually for every key. As further work we plan to reconstruct the
types using the links. By reconstructing the types of the transformation rules (e.g. when Haskell and ML are
used), we will even infer transformed types. Furthermore, other transformations are waiting to be explored
and evaluated. Last, but not least, we want to evaluate techniques which allow our approach to be used for
unmodified binaries, e.g. by preloading getenv().

Our contributions are:

• Describing an approach in which applications are aware of other applications’ configurations, leveraging easy
application integration.

• Implementing our approach for popular semi-structured data formats and Linux configuration files, down-
loadable from http://www.libelektra.org.

• Comparing a static and dynamic variant of the implementation.

• Providing experimental validation using a case study of significant complexity and evaluate performance.

References

[1] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt.
Boomerang: resourceful lenses for string data. In POPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 407–419, NY, USA, 2008.
ACM.

[2] Mark Burgess et al. Cfengine: a site configuration engine. USENIX Computing systems, 8(3):309–402, 1995.

[3] Douglas Crockford. Json: The fat-free alternative to xml. In Proceedings of XML, volume 2006, 2006.

[4] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer framework. W3c recommendation,
25, 2003.

[5] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, 43(5–6):907 – 928, 1995.

[6] Niklaus Haldiman, Marcus Denker, and Oscar Nierstrasz. Practical, pluggable types for a dynamic language.
Computer Languages, Systems & Structures, 35(1):48–62, 2009.

[7] David Lutterkort. Augeas–a configuration API. In Linux Symposium, Ottawa, ON, pages 47–56, 2008.

[8] Jonathan Marsh, David Orchard, and Daniel Veillard. Xml inclusions (xinclude) version 1.0. W3C Working
Draft, 10, 2006.

[9] Markus Raab. A modular approach to configuration storage. Master’s thesis, Vienna University of Tech-
nology, 2010.

[10] Markus Raab. Global and thread-local activation of contextual program execution environments. In Proceed-
ings of the IEEE 18th International Symposium on Real-Time Distributed Computing Workshops (ISOR-
CW/SEUS), pages 34–41, April 2015.

[11] Markus Raab. Safe management of software configuration. In Proceedings of the CAiSE’2015 Doctoral
Consortium, pages 74–82, urn:nbn:de:0074-1415-4, 2015. http://ceur-ws.org/Vol-1415/.

[12] Markus Raab and Franz Puntigam. Program execution environments as contextual values. In Proceedings
of 6th International Workshop on Context-Oriented Programming, pages 8:1–8:6, NY, USA, 2014. ACM.

[13] Mark-Oliver Reiser. Core Concepts of the Compositional Variability Management Framework (CVM): A
Practitioner’s Guide. TU, Professoren der Fak. IV, 2009.

[14] Mark-Oliver Reiser. Managing complex variability in automotive software product lines: subscoping and
configuration links. Südwestdt. Verlag für Hochschulschriften, 2009.

[15] Tavis Rudd, Mike Orr, and Ian Bicking. Cheetah-the python-powered template engine. In 10th International
Python Conference.—2002, 2007.

[16] J. Siméon and P. Wadler. The essence of XML. ACM SIGPLAN Notices, 38(1):1–13, 2003.

[17] Uwe Zdun. Tailorable language for behavioral composition and configuration of software components.
Computer Languages, Systems & Structures, 32(1):56 – 82, 2006.

