
Distribution Class Analysis

Hans Moritsch

Vienna University of Technology
Institute of Computer Languages

Argentinierstraße 8
A-1040 Vienna, Austria

hans.moritsch@tuwien.ac.at

Abstract. The compilation of languages for parallel computations which
provide constructs to control the dynamic allocation of data structures
to processors requires the analysis of the relationship between array ref-
erences and data distribution functions. Expressions representing classes
of distribution functions constitute the basic data flow information. For
the interprocedural analysis, they are represented symbolically. A back-
ward phase over the call graph calculates precise procedure summaries, a
subsequent forward phase, by propagating calling context, eliminates the
symbols therein. The meet operation allows for subsumptions, subclasses
of already occurring classes are ignored. If the control flow is affected by
the distribution class related to a reference, the data flow information is
masked with the decisive condition. The analysis is based on a reduced
flow graph containing only the nodes relevant to the analysis outcome.

1 Introduction

Information about the distribution of arrays is essential for a compiler for a
data parallel programming language to generate efficient code. Optimization
strategies can improve the code considerably, if detailed knowledge about the
use of data and work distributions in a program is available. Extensive analysis
has to provide this information.

The distribution of an array is a function that defines how the elements of the
array are partitioned into subsets—often rectangular segments—and mapped to
processors. This has various implications, most importantly, with respect to the
allocation of arrays in the processors’ memories, and the processors’ responsibil-
ities for preforming calculations with arrays.

The array distribution is specified in connection with the array declaration,
after the keyword dist, for each array dimension as a reference to an intrinsic
distribution function such as block or cyclic, or the keyword none for “no
distribution”.1 For example, a dist (block block) specifies a blockwise distri-
bution for array a in both dimensions, whereas b dist (block none) defines,
that array b is distributed blockwise in the first dimension, and not distributed

1 none for every dimension specifies a replicated array, yet this is seen as a special
case of distribution.

in the second dimension i.e., b is is partitioned into blocks of rows. Vice versa,
(none block) specifies blocks of columns (see Figure 1).

processor 0

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

processor 0

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

p
ro

ce
ss

o
r

0

p
ro

ce
ss

o
r

1

p
ro

ce
ss

o
r

2

p
ro

ce
ss

o
r

3

p
ro

ce
ss

o
r

4

p
ro

ce
ss

o
r

5

p
ro

ce
ss

o
r

6

p
ro

ce
ss

o
r

7

Fig. 1. Segments of a (block block), (block none), and (none block) distribution

The distribution of an array may be changed at runtime by means of the
distribute statement. Through

distribute b (none block)

b will be redistributed to a (none block) distribution.
The current distribution of an array can influence the control flow in the

program by means of a distribution query in the form of a test for “Identical
Distribution Types”.

if a idt (block ∗) then . . . else . . . ,

restricts the execution of the then-part to states in which a is distributed block-
wise in the first dimension, independent of its distribution in the second dimen-
sion. The complementary condition is relevant to the else-part. The wildcard “∗”
is used in the standard manner.

Whenever a distributed array is passed as a parameter in a procedure call, its
distribution is passed as well. On procedure return, the actual parameter adopts
the distribution of the formal parameter.2

The language constructs presented show, in a simplistic syntax, a small subset
of the features for distributed arrays in data parallel languages [5, 4]. Primarily,
they are supposed to serve as the basis for the presentation of our analysis.

This analysis delivers a range of possible distribution states for each state-
ment of a program composed of several procedures. It includes an intra- and an
interprocedural level, connected with each other through a symbolic representa-
tion of distribution classes (see Section 4, Section 3).

As a special feature, the analysis deals also with classes of distributions con-
stituted by use of wildcards. This gives reasons for the definition of a subsumption
relation between more general and more specific classes of distributions.

2 A different behavior can be achieved through appropriate placements of distribute
statements at procedure boundaries.

2 Intraprocedural Data Flow Analysis

2.1 Data Flow Information

A distribution expression is a list, equal in length to the number of array dimen-
sions; each element corresponds to an array dimension and is

– an intrinsic distribution function name (such as block or cyclic),
– or none,
– or the wildcard “∗”, which stands for any of the above.

A distribution expression specifies a class of distributions, which is called a
distribution type [5].

A distribution state is a vector of distribution expressions, in which each com-
ponent is assigned to a declared (distributed) array. Alternatively, a component
can be formed from an array identifier, namely of a formal parameter array,
which accepts its distribution type from the corresponding actual parameter.
The array identifier is in fact a symbol representing the transferred distribution
type.

A masked distribution state is a distribution state with a distribution mask,
a distribution mask is a set of pairs (array identifier, distribution expression).
A pair may be labeled with a negation “¬”. The same array identifier can occur
in more than one pairs, thus an arbitrary number, including zero, of distribution
expressions can be assigned to an array. It is also possible, that no array occurs,
i.e., the mask is the empty set. A distribution state without a (non-empty) mask
is called immediate.

The data flow information set consists of sets of masked distribution states.

Example 1. The masked distribution state

{a (block ∗),¬ c (block none)} · [a : (block cyclic) b : â c : (∗ block)]

at a program point denotes the following.3 If, on procedure entry, array a is
block distributed in the first dimension, irrespective of its distribution in the
second dimension, and array c is not (block none) distributed, then a is
(cyclic block) distributed at that point, and array b has the same distri-
bution type as a on procedure entry, and array c is block distributed in the
second dimension, whereas its distribution in the first dimension is not specified
and can be any of block, cyclic, none.4

A distribution expression is called generic in the presence of one or more
wildcards.5 A distribution expression which is not generic is called terminal. A
distribution state is called generic, if it contains at least one generic distribution
expression, otherwise it is called terminal.

3 A pair (a, δ) in a mask is written as a δ, and an array identifier component as â.
4 “a is δ distributed”, “a has a δ distribution”, and “a has the distribution type δ”

have the same meaning.
5 The genericity is an extension of the definition in [5].

2.2 Subsumption

Based on genericity, we define a relation on distribution expressions. A distribu-
tion expression δ is said to subsume a distribution expression δ′, δ � δ′, iff δ and
δ′ are equal in length, and δ contains n ≥ 0 wildcards, and δ′ contains at most
n wildcards, and for each wildcard in δ′ there is a wildcard in δ at the same
position (i.e., for the same array dimension). By this definition a distribution
expression subsumes itself. In contrast to this, a distribution expression δ is said
to properly subsume a distribution expression δ′, d � δ′, iff d � δ′ and δ′ � d.
Note that d � δ′ implies d 6= δ′ and δ being generic.

Let τ(δ) denote the set of terminal distribution expressions represented by
δ. Iff δ subsumes δ′, τ(δ′) is a subset of τ(δ).

A distribution state s is said to subsume a distribution state s′, s � s′, iff s
and s′ are equal in length, and every component of s formed from a distribution
expression subsumes the corresponding component of s′, and every component
formed from an array identifier is equal to the corresponding component of s′.

A distribution mask m specifies a predicate S(m) on the distribution state
of the formal parameter arrays on procedure entry. A distribution masks m is
said to subsume a distribution mask m′, m � m′, iff m′ represents the same or
a stronger condition than m, i.e., iff S(m′) ⊆ S(m).

A masked distribution state w = m · s is said to subsume a masked distribu-
tion state w′ = m′ · s′, w � w′, iff m = m′ and s � s′, or m � m′ and s = s′,
or both m � m′ and s � s′ hold, i.e., at least one of its parts subsumes the
corresponding part of w′.

Sets of masked distribution states, which do not contain elements properly
subsumed by other elements, are called subsumption free. They constitute the
elements of the data flow information set L. Let W denote the set of masked
distribution states. Then L = P(W), and for all ` ∈ L, w,w′ ∈W

w ∈ ` ∧ w � w′ → w′ /∈ `.

2.3 Meet Operation

The meet operation is a modified set union operation such that the result does
not contain elements which are properly subsumed by other elements, the sub-
sumption free union ∪̃. Let `1, `2 ∈ L. Then

`1 ∪̃ `2 := `1 ∪ `2 − {w′ ∈W | ∃w ∈ `1 ∪ `2 ∧ w � w′ }.

Based on ∪̃ a partial order on L can be defined,

`1 ≤ `2 ⇔ `1∪̃`2 = `1.

≤ is the modified superset relation ⊇̃,

`1⊇̃`2 ⇔ ∀w′ ∈ `2 [w′ ∈ `1 ∨ ∃w ∈ `1 (w � w′)].

2.4 Transfer Functions

The distribution state can change due to (i) redistributions, (ii) distribution
queries, and (iii) procedure calls. For the pertaining types of flow graph nodes
the transfer functions are given; for all other types the transfer function is the
identity function.

In the following, let s[a] denote the component of a distribution state s as-
signed to array a (the “a-component”), w.m denote the mask part of a masked
distribution state w = m · s, w.s denote the state part of w, and ` ∈ L denote
the incoming data flow information at a node.

2.4.1 Redistribution The effect of the redistribution

distribute a δ,

where a is an array and δ is a distribution expression, is defined by the transfer
function fD : L → L of a distribute node (a node representing a distribute
statement). It sets in all elements of ` the a-component to δ. I.e., fD(`) executes,
∀w ∈ `,

w.s[a]← d.

In case of a statement

distribute a = b,

where both a and b are arrays, it sets the a-component to the distribution ex-
pression, or the array identifier, which is currently assigned to array b. Thus
fD(`) executes, ∀w ∈ `,

w.s[a]← w.s[b].

Example 2. The redistribution

distribute a (block cyclic)

in the state

[a : (block block), b : (block none)]

yields

[a : (block cyclic), b : (block none)],

whereas

distribute a = b,

in the same state, yields

[a : (block none), b : (block none)].

2.4.2 Distribution Query A node n in the flow graph representing a distri-
bution query

if a idt δ then . . . else . . . ,

where a is an array and δ is a distribution expression, has two successor nodes,
corresponding to the two possible outcomes. For processing distribution queries,
prior to the analysis, two assertion nodes, ntrue and nfalse, are added to the flow
graph between n and its successors.6 The effect of the query is specified through
the transfer function fA : L → L of an assertion node; the transfer function of
n itself is the identity function.7

We have to distinguish, whether the a-component of a distribution state in
`, w.s[a], is (i) a distribution expression η, or (ii) an array identifier û.

In the first case, for ntrue, the query is evaluated through determining the
intersection δ ∩ η; for nfalse, the intersection ¬δ ∩ η is calculated, respectively.
If the result is empty, the entire distribution state is removed from `, otherwise
the a-component is set to the intersection. So, fA(`) for ntrue executes, ∀w ∈ `,

w.s[a]← δ ∩ w.s[a].

In the second case, as the query depends on û, it cannot be evaluated. Its
effect is expressed symbolically, through adding the pair (û, δ) for ntrue (the
pair (û,¬δ) for nfalse, respectively), to the mask. Thus fA(`) for ntrue executes,
∀w ∈ `,

w.m← w.m ∪ (w.s[a], δ).

fA(`) for nfalse is specified analogously.

Example 3. The effect of the query

a idt (block ∗)

on the state (in the then-part)

[a : (∗ block), b : (block none)]

is, with (block ∗) ∩ (∗ block) = (block block),

[a : (block block), b : (block none)].

In contrast, for the state

[a : â b : (block none)],

fA yields

{a (block ∗), } · [a : â b : (block none)].

6 For queries without else-part, only what is said about ntrue applies.
7 However, fA knows both a and δ.

2.4.3 Procedure Call A procedure call can, by some redistribution in the
called procedure, change the distribution type of a parameter array. Further, the
effect can, through a distribution query, depend on the current (i.e., before the
call) distribution type of the same, or a different, actual parameter.

Transfer functions for procedure call and return nodes are involved in han-
dling a procedure call. We assume only one return node in a procedure’s flow
graph.

Return Node The purpose of the transfer function fR : L→ L for a return node
of a procedure p is to summarize the effect of a call of p on the formal parameter
arrays’ distribution types. Local arrays in p do not affect the analysis of the
calling procedure, hence fR shrinks ` to information about formal parameter
arrays. fR(`) executes, ∀w ∈ `,

w.s← ΠFp(w.s),

where ΠFp
denotes the projection onto the set Fp of formal parameter arrays of

p. Components of s assigned to local arrays, if they exist, are removed. Since
only formal parameter arrays can occur in a mask, fR has no effect on the latter.

After completion of the analysis of a procedure, Rp, the set of return states,
identical with the result of fR, describes the effect of a call.

Call Node The processing of a procedure call requires the previous analysis of
the called procedure. The transfer function of the call node fC : L→ L is based
on Rp and has to interpret the parameter transfer. Masks in distribution states
in `, i.e., at the calling site, remain unaffected by fC. In the following, let A
denote the set of actual parameters of a call of p, and ϕp : A → Fp denote the
mapping to corresponding formal parameters.8

Immediate Return States At first we consider distribution states in Rp without
masks. fC(`) executes, for ∀w ∈ `, r ∈ Rp, acting on a temporary copy w′ of w,

∀ a ∈ A : t← r.s[ϕ(a)],

where t is the component of r corresponding to the actual parameter a. If t is a
distribution expression, then the component’s new value is ready, so

w′.s[a]← t.

Otherwise, t is an identifier of a formal parameter array. The corresponding
actual parameter is ϕ−1(t), and the respective component at the call site will
become the new value

w′.s[a]← w.s[ϕ−1(t)],

regardless of whether it is a distribution expression or an array identifier. In the
latter case, it refers to a formal parameter of the calling procedure (currently
analyzed) and thus represents a distribution type passed to it from its caller.

8 We consider only array parameters.

Components of w′ assigned to other arrays than actual parameters of the call
remain unmodified. The ultimate result of fCp is formed from the subsumption
free union of all temporary states w′ built as described,

fCp (`) =
⋃̃

w∈`,r∈Rp

w′.

Example 4. The analysis of the procedure p(x, y, z) reveals the return state

r = [x : (block block), y : ẑ, z : x̂].

The call p(a, b, c) in state

w = [a : (block cyclic), b : (block none), c : b̂, d : (∗ block)]

produces, by

r.s[ϕ(a)] = r.s[x] = (block block),

r.s[ϕ(b)] = r.s[y] = ẑ, w.s[ϕ−1(z)] = w.s[c] = b̂,

r.s[ϕ(c)] = r.s[z] = x̂, w.s[ϕ−1(x)] = w.s[a] = (block cyclic),

the state

w′ = [a : (block block), b : b̂, c : (block cyclic), d : (∗ block)].

Example 5. The analysis of the procedure q(x, y) reveals the return state

r = [x : (block cyclic), y : ŷ].

The call q(a, b) in the state

w = [a : (block block), b : (block none)]

produces, by

r.s[ϕ(a)] = r.s[x] = (block cyclic),

r.s[ϕ(b)] = r.s[y] = ŷ, w.s[ϕ−1(y)] = w.s[b] = (block none),

the state

w′ = [a : (block cyclic), b : (block none)].

In contrast, the call q(a, b) in the masked state

w = {a (block ∗)} · [a : (block block), b : (block none)]

produces, retaining the mask,

w′ = {a (block ∗)} · [a : (block cyclic), b : (block none)].

Masked Return States A mask in a return state can be evaluated to the extent
in which it does not relate (taking into account the formal–actual parameter
mapping) to distribution types transferred already to the calling procedure.

For every actual parameter, the distribution expression δ of every pair in the
mask, in which the formal parameter corresponding to the actual parameter a
occurs, will be compared with the a-component of the distribution state w

∀ a ∈ A : ∀ (ϕ(a), δ) ∈ m : t← w.s[a].

If t is a distribution expression η, the pair is evaluated through computing the
intersection δ ∩ η. Only if the result is non-empty for all pairs, w′ will be produced
as described, and added to the result of fCp .

If t is an array identifier û, the pair (û, δ) is added to the mask,

w′.m← w′.m ∪ (w.s[a], δ).

This is equivalent to the handling of queries in fA. However, here the condition
arises from a query in the called, not in the currently analyzed, procedure.

Example 6. The analysis of the procedure q′(x, y) reveals the masked return
state

r = {x (block ∗)} · [x : (block cyclic), y : ŷ].

The call q′(a, b) in the state

w = [a : (block block), b : (block none)]

evaluates (ϕ(a), (block ∗)) ∈ r.m, w.s[a] = (block block),
(block block) ∩ (block ∗) = (block block) 6= ∅.
As the intersection is non-empty, fC produces (see Example 5) the state

w′ = [a : (block cyclic), b : (block none)].

In contrast, the call q′(a, b) in the state

w = [a : (cyclic block), b : (block none)]

evaluates
w.s[a] = (cyclic block),
(cyclic block) ∩ (block ∗) = ∅,
hence nothing will be produced.

Example 7. The call q′(a, b) in the state

w = [a : â b : (block none)]

evaluates w.s[a] = â. The intersection â ∩ (block ∗) is unfeasible, hence the
result (see Example 6) will be equipped with an equivalent mask,

w′ = {a (block ∗)} · [a : (block cyclic) b : (block none)].

If q′(a, b) is called in the masked state

w = {b (∗ block)} · [a : â b : (block none)],

the mask will be expanded,

w′ = {a (block ∗), b (∗ block)} · [a : (block cyclic) b : (block none)].

2.5 Flow Graph Reduction

Most often, the nodes of the flow graph actually having an effect on the analysis
represent a very small fraction of all the nodes. It is obvious that excluding
the irrelevant rest (nodes with identity transfer functions) from the analysis can
significantly improve its performance. The flow graph can be reduced to the
minimum extent necessary. By inserting an edge from an irrelevant successor
k of a relevant node n1 to every relevant node n2 that can be reached from
k along a path (k, k1, . . . , kl, n2) of irrelevant nodes ki, i ≥ 1, the ki can be
eliminated. Subsequent to the analysis of a procedure, the data flow information
at the reduced flow graph’s node k is propagated to the nodes (k1, . . . , kl) in the
original flow graph.

3 Symbolic Interprocedural Analysis

3.1 Backward Pass

In a (first) backward pass, the masked distribution states data flow analysis
(see Section 2) is performed for each procedure, in reverse topological order along
the call graph. Unknown distribution types handed over from calling procedures
are represented by means of symbols (identifiers of formal parameters arrays, see
Section 2.1). The result of the analysis of a procedure is expressed—without loss
of precision—as a procedure summary (set of return states, see Section 2.4.3)
using these symbols.

A called procedure is always analyzed in advance of the calling one(s), so it is
possible to treat a call by interpretation of the procedure summary; there is no
need to analyze the called procedure specifically for different actual parameter
distribution types, or different call sites; every procedure needs to be analyzed
only once.

3.2 Forward Pass

Information obtained in the analysis of the main procedure does not depend on
calling context and therefore does not refer to symbols. Consequently, it does not
contain masks, i.e., the result of the analysis of the main procedure is built from
immediate states only. In a (second) forward pass, this information is gradually
propagated into all called procedures where it allows for resolving the symbols,
and thus eliminating the masks (see Algorithm 1).

For each procedure, in topological order along the call graph, and for all
procedure calls therein, and for all—now immediate—states at such a call site
(call node), the actual parameter distribution types are mapped to the formal
parameters. In the called procedure, the—now known—distribution types of the
formal parameters can be substituted for the symbols, hence all masks can be
evaluated (cf. Section 2.4.3). A non-empty intersection for all pairs in a mask
must appear at least once (over all states at all call sites), otherwise the state
will eventually be removed.

The remaining states represent the result of the whole analysis.

Algorithm 1. Interprocedural Distribution Class Analysis

{backward pass:}
for each procedure p in reverse topological order do

solve masked distribution states on p’s flow graph
endfor

{forward pass:}
for each procedure p in topological order do

if p 6= main then
remove masked states with untagged masks in p
remove masks in p

endif
{all states in p are immediate, propagate them into called procedures:}
for each call of a procedure q do

for each state s at call site do
{evaluate masks in q:}
for each mask m in q do

if all pairs in m yield non-empty then tag mask
endfor

endfor
endfor

endfor

Figures 2 to 4 show the complete analysis of a program consisting of a main
procedure which calls a procedure p, which in turn calls a procedure q.

4 Conclusion

In this paper, we presented an interprocedural data flow analysis which deter-
mines for every program statement the set of possible states of array distribu-
tions, considering classes of distributions. It deals with dynamic redistribution
and the impact of distribution queries. The data flow information has a complex
structure and supports subsumption relationships through wildcards.

The data flow analysis of procedure calls avoids approximations; the result is
equivalent to the inline expansion of the calls. This is achieved by representing
in the data flow information the formal parameters’ properties as symbols, and
by carrying along the conditions involving formal parameters’ properties. In the
second pass the symbols and conditions are resolved.

In our opinion, the basic principle behind is very general and can be employed
for other kinds of data flow information and transfer functions than for the actual
analysis as well.

References

1. B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic Data Distributions
in Vienna Fortran. In Proceedings of the Supercomputing ’93 Conference. November
1993, Portland, Oregon.

2. B. Chapman, H. Moritsch, and H. Zima. Dynamically Distributed Arrays: Specifi-
cation of the Compilation Method. Deliverable D1Z-2, CEI Project PACT - Pro-
gramming Environments, Algorithms, Applications, Compilers, and Tools for Par-
allel Computation, April 1994.

3. B. Chapman, H. Moritsch, and H. Zima. The Implementation of Dynamic Data
Distributions in the Vienna Fortran Compilation System: Language, Compile- and
Run-Time Support. Deliverable D5.1f, ESPRIT III Project PPPE - Portable Par-
allel Programming Environments, July 1995.

4. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion, Version 2.0, January 1997.

5. H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran –
A Language Specification. ICASE Internal Report 21, ICASE, Hampton VA, 1992.

6. H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series, Addison-Wesley, 1990.

 DISTRIBUTE v (BLOCK NONE)

 return

procedure

 if !(u IDT (* BLOCK)) then

{u/(* B)}.[u ^u v(B N)]

 v DIST (NONE BLOCK)
 u DIST ()

q(u,v)

{u/(* B)}.[u ^u v(N B)]

 if y IDT (* B) then

 DISTRIBUTE x (B N)

procedure x DIST (NONE BLOCK)
 y DIST ()p(x,y)

{y(* BLOCK)}.[x(N B) y ^y]

 return

 call q(x,y)

{y/(* B)}.[x(N B) y(N B)]

{y(* B)}.[x(B N) y(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y(* B)}.[x(B N) y(B N)]

{y(* B)}.[x(B N) y(B N)]
{y/(* B)}.[x(N B) y(N B)]

{u(* B)}.[u ^u v(N B)]
{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y/(* B)}.[x(B N) y(N B)]

{y/(* B)}.[x(B N) y(N B)] {y(* B)}.[x(B N) y(B N)]

{y(* B)}.[x(B N) y ^y]

{y(* B)}.[x(B N) y ^y] {y/(* B)}.[x(N B) y ^y]

{u(* B)}.[u ^u v(N B)]

{u/(* B)}.[u ^u v(B N)]
{u(* B)}.[u ^u v(N B)]

{u/(* B)}.[u ^u v(B N)]

 [u ^u v(N B)]

 [x(N B) y ^y]

2nd Iteration

1st Iteration

Fig. 2. Solution of masked distribution states for the procedures q and p (pass 1)

main

 DISTRIBUTE a (NONE NONE)

 if !(a IDT (BLOCK *)) then

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)]

 call p(a,b)

[a(B B) b(B N)]

[a(B B) b(B B)]

[a(N B) b(N B)]

[a(B N) b(B N)]

[]

 a DIST (BLOCK BLOCK) b DIST (BLOCK BLOCK)

 DISTRIBUTE b (BLOCK NONE)

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)]

[a(B B) b(B N)]

[a(B B) b(B B)][a(B N) b(B N)]

[a(N B) b(N B)]

[a(B N) b(B N)]

[a(N B) b(N B)]

[a(N B) b(N B)]

[a(N N) b(N B)]

[a(B N) b(B N)]

[a(N N) b(N B)]

Fig. 3. Solution for the main procedure

procedure

 DISTRIBUTE v (BLOCK NONE)

 return

 if !(u IDT (* BLOCK)) then

 v DIST (NONE BLOCK)
 u DIST ()

q(u,v)

{u(B N) v(N B)] {u(B N) v(B N)]

 if y IDT (* BLOCK) then

 DISTRIBUTE x (BLOCK NONE)

procedure x DIST (NONE BLOCK)
 y DIST ()p(x,y)

 return

 call q(x,y)

[x(B B) y(B N)] [x(N N) y(N B)]

[u(B N) v(N B)]

[u(B N) v(B N)]

[u(B N) v(N B)]
[u(B N) v(b.:)]

[u(B N) v(B N)]

[u(B N) v(B N)]

[u(N B) v(N B)]

[u(N B) v(N B)]

[u(B N) v(B N)]
[u(N B) v(N B)]

{y (* B)}.[x(N B) y ^y]

{y (* B)}.[x(b:,) y ^y]

{y (* B)}.[x(b:,) y ^y] {y/(* B)}.[x(N B) y ^y]
{y (* B)}.[x(B N) y(B N)]

{y/(* B)}.[x(N B) y(N B)]

{y/(* B)}.[x(N B) y(N B)]

{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]

{u (* B)}.[u ^u v(N B)]
{u/(* B)}.[u ^u v(B N)]

{u/(* B)}.[u ^u v(B N)]
{u (* B)}.[u ^u v(N B)]

[u(B N) v(B B)] [u(N B) v(B N)]

[x(B B) y(B B)] [x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

{y (* B)}.[x(B N) y(B N)]

[x(N B) y(B B)]

[x(N B) y(N B)]

[x(N B) y(B N)]

[x(B N) y(B N)]

[x(B N) y(N B)]

[x(B N) y(B B)]

[x(N B) y(N B)]

[x(N B) y(B B)]

[x(N B) y(N B)]

[x(B N) y(B N)]
[x(N B) y(N B)]

[x(B N) y(B N)]

[x(B N) y(B B)]

[x(B N) y(N B)] [x(N B) y(B N)]

[x(B N) y(B N)]

 [x(N B) y ^y]

 [u ^u v(N B)]

{u/(* B)}.[u ^u v(N B)]

Fig. 4. Result for p and q after the down-propagation of states (pass 2)

