
Moldable Applications on Multi-Core Servers:
Active Resource Management

instead of
Passive Resource Administration

Clemens Grelck

University of Amsterdam
Informatics Institute

System and Network Engineering Lab
Science Park 904

1098XH Amsterdam, Netherlands
c.grelck@uva.nl

Abstract. Malleable applications are programs that can, in principle,
run with varying numbers of threads and thus on varying numbers of
cores of a mult-core parallel system. Malleability is characteristic for
many programming models from data-parallel to divide-and-conquer and
streaming data flow where the actual amount of concurrency is applica-
tion and data dependent and varies over time while the runtime system
maps the actual concurrency to fixed number of kernel threads / cores.
We argue that such a fixed choice of kernel threads is suboptimal in two
scenarios. Firstly, an application may temporarily expose less concur-
rency than the underlying hardware offers. In this case the cores waste
energy. Secondly, the number of hardware cores effectively available to an
application may dynamically change in multi-application and/or multi-
user environments. This leads to an over-subscription of the available
hardware by individual applications, costly time scheduling by the oper-
ating system and, as a consequence, to both waste of energy and loss of
performance.
We propose an active resource management service developed in the con-
text of the data parallel array language SAC and the streaming macro
data flow coordination language S-Net. Both languages are examples of
malleable runtime systems where the set of resources could be changed
dynamically without affecting the consistency of a running application.
A system-wide resource management service controls the computing re-
sources and assigns them to applications on the basis of dynamically
changing intra-application requirements as well as on dynamically chang-
ing inter-application scenarios in a near-optimal way.

1 Introduction

Malleable applications are programs that can, in principle, run with varying
numbers of threads and thus on varying numbers of cores of a mult-core parallel
system. Malleability is a characteristic feature of many parallel runtime systems.



For example, in data-parallel applications the number of iterations of a paral-
lelised loop and thus the available concurrency typically exceeds the total number
of cores in a system by several if not many orders of magnitude. Consequently,
data-parallel applications typically scale down the structurally available con-
currency in the application to the actually available concurrency of the execu-
tion platform. This is done by applying one of several available loop scheduling
techniques, such as block scheduling, cyclic scheduling, block-cyclic scheduling,
(guided) self scheduling or data locality aware variations of them.

The same even compiled binary application can in principle and within cer-
tain limits run on any number of cores. Typically, however, the number of
cores/threads used is provided at application start through a command line
parameter or an environment variable and then remains as set throughout the
entire application life time. Dynamic malleability is usually not exploited. Com-
mon examples of such data-parallel runtime systems are OpenMP[1] or our own
functional data-parallel array programming language Single Assignment C [2, 3].

The principle of malleable applications that do not exploit this property dy-
namically is not at all limited to the data-parallel scenario. In divide-and-conquer
style applications written for instance in modern versions of OpenMP[4] using
explicit task parallelism or in Cilk[5]. In either case the divide-and-conquer style
parallelism, in beneficial scenarios, just like the data parallel approach exposes
much higher levels of concurrency than general-purpose multi-core systems can
exploit. The solution here in one way or another is to employ a fixed number
of worker threads and work stealing techniques to balance the intra-application
workload.

As a last example we mention streaming applications as for instance writ-
ten in the declarative coordination language S-Net [6, 7]. S-Net defines the
coordination behaviour of networks of asynchronous, stateless components and
their orderly interconnection via typed streams. S-Net achieves a near-complete
separation of concerns between the engineering of sequential application build-
ing blocks (i.e. application engineering) and the composition or orchestration of
these building blocks to form a parallel application (i.e. concurrency engineer-
ing). S-Net effectively implements a macro data flow model where components
represent non-trivial computations. Again the level of concurrency is not de-
termined by the S-Net streaming application, but instead by characteristics of
individual program runs. The S-Net runtime system [8] effectively maps the
available concurrency to a number of threads that is determined upon program
startup by the user and then remains fixed throughout the application’s runtime.

To summarise, it is common across a wide range of concurrent programming
models to expose concurrency to the underlying compiler and runtime system
tool chain on a certain level of granularity that typically is finer-grained than
what the execution platform effectively offers. Among others this choice is moti-
vated by the fact that in many scenarios the exact properties and characteristics
of the to be used execution platform are not known at compile time. The com-
mon solution is to map down the finer-grained concurrency exposed by some
application to a fixed set of kernel worker threads launched at program startup



and mapped to the actual computing resources such as processors (sockets),
cores and hyperthreads (hardware execution contexts) by the operating system.

This immediately raises the question as to how many such worker threads to
use. In practice, two solutions prevail: either an application determines the actual
execution machinery it runs on and launches as many worker threads as it finds
hardware execution units (the greedy approach) or an application simply asks the
user (the clueless approach). The latter, of course, provides ample opportunity
for exprimentation, but in this work we focus on the non-expert user who simply
aims at making good use of available resources without extra effort.

We argue that both approaches are undesirable for a number of reasons. As
soon as the user of an application is not its programmer at the same time, he
or she may not be able to make an educated choice, in particular as the number
of cores continues to rise and, thus, the design space. Furthermore, any fixed
number of worker threads used throughout a program run is suboptimal for two
reasons.

Firstly, we waste energy for operating all computing resources initially chosen
as soon as the application effectively exposes less concurrency in certain phases
of the program execution. Both the divide-and-conquer as well as the streaming
model of parallel program organisation are characterised by ramp-up and fade-
out phases of concurrency. In non-trivial applications it is fairly common that
such phases occur repeatedly. Even in the data-parallel model non-trivial phases
of low-concurrency execution appear in multi-scale method implementations.

Secondly, in typical multi-application or even multi-user environments we
cannot expect any single application to have exclusive access to the hardware
resources. Consequently, applications compete for resources in an uncontrolled
and non-cooperative way as multiple applications start and stop at unpredictable
and unforeseeable times. The operating system layer organises the resulting re-
source oversubscription in a correct but not in an efficient way, as we discuss in
the following section.

2 Resource administration vs resource management

The operating system is the canonical layer that administrates computing re-
sources and makes them available to running applications, as illustrated in Fig. 1.
However, the operating system does not have any understanding of the inter-
nal organisation of concurrent applications. Neither does the operating system
know the user’s preferences regarding the placement of compute tasks with re-
spect to the hierarchical memory organisation and the resulting opportunities
for performance and energy saving.

In an undersubscribed system the operating system could follow essentially
one of two policies. Compute tasks could be spread out as much as possible over
the system. For instance, four tasks could be run on one core of each processor.
As a consequence, each task would benefit from the entire cache memory and
the whole memory bandwidth of the socket. Alternatively, the operating system
could choose to concentrate all four tasks on a single socket. In this case the



corecore corecorecore corecorecorecorecore corecore corecorecore core

L2

Operating System Scheduler

Malleable Application

Shared Memory

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

Fig. 1. Architectural model of a cache-coherent shared memory system with four sock-
ets, each equipped with a quad-core processor, and a hierarchical memory organisation
with shared L3 caches per processor and individual L2 and L1 (instruction and data)
caches for each core

tasks must share the limited cache capacity and memory bandwidth, but on the
other hand, the tasks could very efficiently communicate via the shared L3 cache
and the other three sockets could be shut down for maximum energy savings in
the absence of sufficient useful computing tasks.

In an oversubscribed system the situation changes profoundly. Now, all cores
would be busy computing all the time, but in order to ensure fair progress of all
tasks, despite the limited computing resources, the operating system resorts to
pre-emptive scheduling and time slicing, i.e., an executable task is assigned to a
core for execution for a bounded time interval only at whose end it is replaced by
another task waiting for execution. This solution stems from the times when uni-
processor systems were mimicking parallel systems where multiple interactive
applications were supposed to all make progress and remain responsive. In our
scenario of compute-bound applications time-slicing has a rather negative effect
on performance.

With multiple compute-bound tasks time-slicing mainly causes overhead for
stopping one task, saving its execution state and re-installing another task from
the ready queue for execution. In addition to executing the necessary instructions
we need to switch from user mode execution to kernel mode execution, which
is particularly expensive. Moreover, a task over time is typically scheduled to
different cores for execution. This has a detrimental effect on data locality as
the task’s data may still partially by available in core- or socket-local cache
elsewhere, but after a context switch needs to be reloaded into a different part
of the memory hierarchy.

To avoid costly over-subscription of resources we need runtime systems that
specific to a certain concurrent execution model (e.g. streaming, divide-and-
conquer or data-parallel) map the concurrency effectively exposed by an appli-
cation to a fixed set of worker kernel threads as the common software abstraction



of shared memory parallel systems. Fig. 2 illustrates the resulting system archi-
tecture. In this model the runtime system cooperates with the operating system
such that the runtime system makes the educated decisions while it employs the
runtime system to actully implement the descisions.

corecore corecorecore corecore core corecorecorecorecorecore core core

thread

worker

thread

worker
thread

worker

thread

worker

thread

worker

thread

worker

Shared Memory

Malleable Application

Concurrency Model Specific Runtime System

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L3 cache

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

L1 L1
DI

L2

Operating System Services

thread

worker
thread

worker

thread

worker

thread

worker

Fig. 2. Architectural model of a cache-coherent shared memory system, as in Fig. 1,
with two layers of system software between applications and hardware: operating sys-
tem and concurrency-model specific runtime system

A resource management server dynamically allocates execution resources to
a running S-Net program. The (fine-grained) tasks managed by the runtime sys-
tem are automatically mapped to the dynamically varying number of effectively
available kernel threads. Their number is continuously adapted to the effective
level of concurrency exposed by the running S-Net streaming network.

In this way, we actively control the energy consumption of a system and
reduce the energy footprint of a resource management enabled application com-
pared to greedy resource utilisation, assuming that the underlying operating
system automatically reduces the clock frequency and potentially the voltage of
underutilised processors and cores or switches them off entirely. Furthermore,
we create the means to simultaneously run multiple independent and mutually
unaware resource management enabled applications on the same set of resources
by continuously negotiating resource distribution proportional to demands.

In contrast to an application-unaware operating system our approach has
the advantage that the resource management server understands both sides:
the available resources in the computing system and the parallel behaviour of
the resource management aware running applications. This is why we expect to
achieve better performance and less energy consumption compared to today’s
multi-core operating systems.



3 Managing resource under-subscription

With resource over-subscription effectively solved by a system of worker threads
we now come back to a question raised earlier: how many worker threads to
actually use in practice. Obviously, using more worker threads than cores leads
to resource over-subscription and thus is undesirable. However, as argued earlier
any fixed number of worker threads throughout the entire application live time
is likely not to be ideal either as soon as applications expose varying levels of
exploitable concurrency. If an application at certain times cannot make effective
use of all resources, it would be very desirable to either shut down surplus re-
sources for energy saving or, alternatively, make the resources available to other
applications.

Active resource management is a runtime system service that dynamically
allocates execution resources on demand. A dedicated resource server (thread)
is responsible for dynamically spawning and terminating worker threads as well
as for binding worker threads to execution resources like processor cores, hy-
perthreads or hardware thread contexts, depending on the architecture being
used.

Upon program startup only the resource server thread is active; this is the
master thread of the process. The resource server thread identifies the hardware
architecture the process is running on. Next, the resource server sets up the
static property graph, which is to be shared by all worker threads. Once the set
up is completed, the resource server launches the first worker thread.

Creation (and termination) of worker threads is controlled by the resource
service making use of two resource level indicators. The first one is the obvious
number of currently active worker threads. This is initially zero. The second
resource level indicator is a measure of demand for compute power. This reflects
the number of work queues in the runtime system. The demand indicator is
initially set to one. Both resource level indicators are restricted to the range
between zero and the total number of hardware execution resources found in the
system.

If the demand for computing resources is greater than the number of work-
ers (i.e. the number of currently employed computing resources), the resource
server spawns an additional worker thread. Initially, this condition holds trivially.
The creation of an additional worker thread temporarily brings the (numerical)
demand for resources into an equilibrium with the number of actively used re-
sources. Before increasing the demand the new worker thread must actually find
some work to do. Once doing productive work, the worker signals this to the
resource server, and the resource server increments the demand level indicator,
unless demand (and hence resource use) has already reached the maximum for
the given architecture. This procedure guarantees a smooth and efficient organ-
isation of the ramp up phase.

If an application exposes less concurrency work queues of workers may run
empty. The worker signals this state to the resource server, which in turn re-
duces the demand level indicator by one. The worker thread does not imme-
diately terminate because we would like to avoid costly repeated termination



and re-creation of worker threads in not uncommon scenarios of oscillating re-
source demand. The worker thread, however, does effectively terminate with a
configurable delay following an extended period of inactivity.

4 Multiple independent applications

The next step in advancing the concept of active resource management is to
address multiple independent and mutually unaware applications (or instances
thereof) that run at overlapping intervals of time on the same set of execution
resources. Fig. 3 illustrates our approach with two applications. We effectively
split our resource management service into two parts: a local resource service
manages the worker threads within an application, whereas a system-wide re-
source service is in charge of the computing resources as a whole and effectively
mediates these resources between multiple competing applications. This system
resource service is started prior to any resource management enabled application
process.

Whenever an application has reason to spawn one more worker thread, it first
must contact the system resource service to obtain another execution resource.
The system resource service either replies with a concrete core identifier or it
does not reply at all. In the former case the aplication resource service spawns
another worker thread and binds it to the given core. In the latter case the
number of execution resources currently occupied by this application remains as
is.

Fig. 3 illustrates the simulation of two malleable applications on an 8-core
system. For simplicity we ignore any hierarchy in system architecture here. We
begin with the start of application 1 on an idle system. Application 1 incre-
mentally allocates all 8 cores via the system resource service. As application 1
apparently exposes sufficient concurrency internally that the application-level
resource service actually decides to go this way. At some point application 1
runs concurrently on all 8 cores of the system.

Now we start application 2. Initially, there are no resources whatsoever to
run application 2. Thus, application 2 merely requests one core from the system
resource service. The system resource service currently has no resources to allo-
cate, but it requests from application 1, more precisely from that application’s
resource service, to vacate one core. The runtime system of application 1 reacts
to this request in an appropriate way and vacates one core at the earliest possi-
ble time. Once returned to the system resource service, the latter immediately
assigns that core to application 2, which only now effectively begins to run.

Assuming both applications expose ample concurrency, the procedure re-
peats 3 times until both applications share the 8 cores in a fair way. At times
applications run through phases of less concurrency. At some time application 1
deliberately returns a core to the system resource service, which is immediately
given to application 2. In a later stage both applications can only make effective
use of 3 cores each, and, thus, 2 cores remain empty and could be powered down
if the hardware allows.



a
p

p
li

c
a

ti
o

n
 1

a
p

p
li

c
a

ti
o

n
 2

tim
e

2 3 4 5

cores

6 7 8

1 2 3 4 5 6 7 8

1

Fig. 3. Simulation of a fictive example with two independent applications

Eventually, application 1 approaches termination and its concurrency fades
out. The vacant resources are immediately transferred to application 2 by the
system resource service before also application 2 begins to fade out and step-by-
step returns cores to the system resource service.

5 Related work

The work closest to our’s is the concept of invasive computing, advocated by
Teich et al [9, 10]. Here, application programs execute a cycle of four steps:

1. explore resources,
2. invade resources,
3. compute,
4. retreat / vacate resources.

Whereas these steps in one way or another can also be found in our proposal, the
fundamental difference between their work and our’s is the following: Teich et al
demand every application to explicitly implement the above steps and provide
an API to do so. In contrast, we develop a runtime system that automatically
mediates between malleable but otherwise resource-unaware applications and a



set of hardware resources that only become known at application start and are
typically shared by multiple applications.

Other related work can be found in the general area of operating system
process/thread scheduling. Operating systems have long had the ability to map
dynamically changing numbers of processes (or kernel threads) to a fixed set
of computing resources. However, operating systems do this in an application-
agnostic way as they cannot affect the number of processes or threads created.
They can merely admister them. As long as the number of processes is less than
the number of resources, various mapping policies can be thought of like in our
solution. As soon as the number of processes exceeds the number of resources,
an operating system resorts to preemptive time slicing.

This all makes sense as long as one takes the resource demands of applications
as fixed, but exactly that assumption does not hold for malleable applications.
More precisely, malleable applications do have the freedom to adjust resources
internally. Trouble is that the application programmer effectively can hardly
make use of this opportunity as she or he has no indication of what a good policy
could be at application runtime. The operating system, on the other hand, can
only react on applications’ demands, but not control or affect them in any way.
This is exactly where our runtime system support kicks in.

6 Conclusion and future work

We presented active resource management for malleable applications. Instead
of running an application on all available resources (or some explicitly defined
subset thereof), our runtime system service dynamically adjusts the actually
employed resources to the continuously varying demand of the application as well
as the continuously varying system-wide demand for resources in the presence
of multiple independent applications running on the same system.

Our motivation for this extension is essentially twofold. Firstly, we aim at
reducing the energy footprint of streaming applications by shutting down system
resources that at times we cannot make effective use of due to limitations in the
concurrency exposed. Secondly, we aim at efficiently mediating the available
resources among several S-Net streaming applications, that are independent
and unaware of each other.

We are currently busy implementing the proposed runtime system techniques
within the Front runtime system of S-Net, which is one of many variants of
the model runtime system described earlier in the paper. As future work we
plan to run extensive experiments demonstrating the positive effect on system-
level performance of multiple applications as well as their accumulated energy
footprint.

References

1. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Transactions on Computational Science and Engineering 5
(1998)



2. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming 34 (2006)
383–427

3. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming 15 (2005) 353–401

4. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems 20 (2009) 404–418

5. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An Efficient Multithreaded Runtime System. Journal of Parallel and Distributed
Computing 37 (1996) 55–69

6. Grelck, C., Scholz, S.B., Shafarenko, A.: A Gentle Introduction to S-Net: Typed
Stream Processing and Declarative Coordination of Asynchronous Components.
Parallel Processing Letters 18 (2008) 221–237

7. Grelck, C., Scholz, S., Shafarenko, A.: Asynchronous Stream Processing with S-
Net. International Journal of Parallel Programming 38 (2010) 38–67

8. Gijsbers, B., Grelck, C.: An efficient scalable runtime system for macro data flow
processing using s-net. International Journal of Parallel Programming 42 (2014)
988–1011

9. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schröder-Preikschat,
W., Snelting, G.: Invasive computing: An overview. In Hübner, M., Becker, J.,
eds.: Multiprocessor System-on-Chip. Springer (2011) 241–268

10. Teich, J., Weichslgartner, A., Oechslein, B., Schröder-Preikschat, W.: Invasive
computing — concepts and overheads. In: Forum on Specification and Design
Languages (FDL 2012). Number 217–224, IEEE (2012)


