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Abstract. Work flow frameworks have become an integral part of mod-
ern information systems. They provide a clearly defined interface and
structure for interaction with a system. The specification of work flow
systems, however, is usually ad-hoc. Often, programmers simply define
a number of tasks (forms and actions) that are sequentially connected.
Users are then restricted to input data in this prescribed order.

In this paper, we propose a data-flow oriented work flow system where
the data flow is described by a purely functional program. This approach
offers the user and the system flexibility in the order of tasks while guar-
anteeing a consistent and correct result.

1 Motivation

Work flow frameworks are a common component in today’s content manage-
ment systems. They enable the modeling, structuring, support, and execution
of business processes. In this paper, we focus on a particular type of interactive
work flow, called case management [1], that dictates the tasks a user needs to
perform with the system (e.g. fill in a form, print a document, acknowledge some
information) to complete some business process. This could range from surveys
or tax forms to complexly structured financial consultation sessions.

This particular type of work flow is typically described with control flow
graphs (e.g. Apache ODE). The programming of such work flows and their tasks
fits neatly the imperative paradigm. However, such an approach forces the user
to perform the tasks in a rigid predefined order, even when this is not strictly
necessary to stay in compliance with the company’s policies and local laws.

For example, in financial or insurance consultation, the sessions are desirably
dynamic, with the consultant jumping back and forth through tasks, possibly
revising prior inputs, depending on the interaction with the client. Such behav-
ior is difficult to describe cleanly with control flow graphs, especially when it
contains dynamic elements like loops.

Therefore, we propose a functional approach, in which the work flows are
described with data flow graphs instead. The nodes of this graphs represent
tasks (effectively idempotent impure functions with localized side effects) and
the edges represent pure functions that map outputs of tasks to inputs of (other)
tasks. Arrows [4] provide the necessary scaffolding for the (dynamic) construction
of such graphs.



Two extensions of arrows are particularly important in this context: monadic
arrows allow the structure of the work flow to be dependent on inputs (e.g. to
generate a set of tasks for each client), and feedback loops model destructive
changes (e.g. finalizing or closing some tasks).

We present these ideas in a simplified setting as an embedded domain spe-
cific language using Haskell. We start with an example that demonstrates the
notation, then discuss its properties and its implementation in more detail.

2 Example

As an example, we consider a simple work flow consisting of three individual
tasks, given by the data flow chart in Figure 1. The tasks askName and askAge

ask for the name and age of the user, respectively. The task askAddress asks
for the address of the user if he is of full age, otherwise it asks for the address of
a parent or legal guardian. Therefore it depends on the return value of askAge.
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Fig. 1. Data flow of the example workflow.

While the data flow is fixed, the order in which the tasks have to be pro-
cessed is only partially determined by the data dependencies. The only restric-
tion is that the askAge task is executed before the askAddress task. Instead of
programming the control flow by hand, we want to define the individual tasks
independently of each other using pure and impure Haskell functions:

askName :: Task () String
askName = ...

askAge :: Task () Integer
askAge = ...

askAddress :: Task Integer String
askAddress = ...

In a second step, we combine them using Arrow constructors to model the data
flow given by the chart:



workflow :: Task () (String,String)
workflow = askName &&& (askAge >>> askAddress)

Afterwards, it should be possible to execute the complete work flow using an
automatically computed dynamic ordering of the tasks.

> runTask workflow ()
...
("Alice","Berlin")

where

runTask :: Task a b -> a -> IO b
runTask = ...

3 Implementation

In this section, we discuss the details of the task data type, the arrow combinators
and execution of (composed) tasks in our Haskell implementation in detail.

3.1 Type Definition

We define a new parametric data type Task a b to model tasks with input type
a and output type b. Since this type has to represent pure and impure tasks and
support the various ways in which arrows can be combined, we need multiple
constructors. In addition, we use a generalized algebraic data type(GADT) to
achieve the necessary flexibility when composing tasks.

data Task a b where
Pure :: (a -> b) -> Task a b
Impure :: (a -> IO b) -> Task a b
Serial :: Task a b -> Task b c -> Task a c
Parallel :: Task a b -> Task c d -> Task (a,c) (b,d)

The intended usage for the constructors is as follows:

Pure and Impure create single tasks out of pure functions and IO actions, re-
spectively. While the Impure constructor would be sufficient for all functions
(by simply lifting pure functions into the IO monad), this distinction allows
us to later optimize the execution of the task; since pure functions have no
side effects, the execution order is not important. In fact, we can rely on lazy
evaluation to only compute those tasks whose results are actually needed.

Serial allows to compose two tasks in series, using the output of the first task
as the input for the second. This dependency has to be considered later
in the evaluation of the task. The Serial constructor basically models the
composition (>>>) of arrows.

Parallel represents two tasks which are independent of each other and can
thus be evaluated in an arbitrary order. It also represents the composition
of two arrows with the (***) function.



3.2 Instance Declarations

The next step is to write an instance for the Arrow type class as well as for
various subclasses. First, we have to turn Task into an instance of Category:

instance Cat.Category Task where
id = Pure id
t1 . t2 = Serial t2 t1

The identity in Catecory is simply the pure task consisting of the identity
function. The composition of two tasks is done with the Serial constructor.

Next, we can turn Task into an instance of the Arrow type class.

instance Arrow Task where
arr = Pure
t1 *** t2 = Parallel t1 t2
t1 &&& t2 = Pure (\a -> (a,a)) >>> t1 *** t2
first t = t *** Cat.id
second t = Cat.id *** t

The functions arr and (***) use the corresponding constructors Pure and
Parallel. The (&&&) operator is implemented by using a pure function to
feed the same input into both parallel tasks. first and second then simply use
(***) and the identity task.

3.3 Additional Instances

To use the full potential of arrows, we can also create instances for the vari-
ous arrow subclasses. For example, ArrowChoice allows the case distinction of
two arrows based on the return value of the previous arrows and can be easily
implemented by adding an additional constructor:

Or :: Task a c -> Task b c -> Task (Either a b) c

The instantiation of ArrowChoice is based on using Or to represent the
(|||) operator.

instance ArrowChoice Task where
(|||) = Or
f +++ g = (f >>> arr Left) ||| (g >>> arr Right)

left f = f +++ Cat.id
right f = Cat.id +++ f

Similarly, its possible to create instances for other subclasses like ArrowApply
or ArrowLoop, if necessary, by adding further constructors to the data type.

3.4 Optimizing the Instances

The given instances can be optimized to simplify the resulting data structures.
Using pattern matching, we can for example introduce special cases for pure
tasks. The composition of two pure tasks can be done with the creation of a
pure task containing the composition of the functions which results in a simpler
data structure:

(Pure f1) . (Pure f2) = Pure (f1 . f2)



In the same way, the other arrow operators can be optimized for pure tasks
by simply applying the operators to the contained functions and wrapping the
result in a new pure task:

(Pure f1) *** (Pure f2) = Pure (f1 *** f2)
(Pure f1) &&& (Pure f2) = Pure (f1 &&& f2)

Notice that we cannot do the same with impure tasks since that would in-
evitably fix the execution order.

3.5 Arrow Laws

While Task is now technically an instance of the Arrow type class, we have to
verify if it actually behaves like an arrow. As for many type classes, there are
laws which every Arrow instance should obey [5]:

1. arr id = id

2. arr (f >>> g) = arr f >>> arr g

3. first (arr f) = arr (first f)

4. first (f >>> g) = first f >>> first g

5. first f >>> arr fst = arr fst >>> f

6. first f >>> arr (id *** g) = arr (id *** g) >>> first f

7. first (first f) >>> arr assoc = arr assoc >>> first f

where assoc ((a,b),c) = (a,(b,c))

Note that there are similar laws for the ArrowChoice and ArrowApply type
classes.

We want to check now if our implementation actually satisfies these laws.
The first three are verified quite easily:

1.

arr id = Pure id

= Category.id

2.

arr (f >>> g) = Pure (f >>> g)

= Pure (g . f)

= (Pure g) . (Pure f)

= (arr g) . (arr f)

= arr f >>> arr g



3.

first (arr f) = first (Pure f)

= (Pure f) *** Cat.id

= (Pure f) *** (Pure id)

= (Pure f) *** (Pure id)

= Pure (f *** id)

= Pure (first f)

= arr (first f)

For the fourth law, everything works as long as both tasks are pure:

4. (a) f = Pure p and g = Pure q:

first (f >>> g) = first (g . f)

= first ((Pure q) . (Pure p))

= first (Pure (q . p))

= (Pure (q . p)) *** Cat.id

= (Pure (q . p)) *** (Pure id)

= Pure ((q . p) *** id)

= Pure (first (q . p))

= Pure (first (p >>> q))

= Pure (first p >>> first q))

= Pure ((p *** id) >>> (q *** id))

= Pure (p *** id) >>> Pure (q *** id)

= (Pure p) *** (Pure id) >>> (Pure q) *** (Pure id)

= f *** Cat.id >>> g *** Cat.id

= first f >>> first g

But if one of the tasks is not pure, the equality does not hold anymore:
(b) f 6= Pure p:

first (f >>> g) = first (g . f)

= first (Serial f g)

= (Serial f g) *** Cat.id

= Parallel (Serial f g) Cat.id

6= Serial (f *** Cat.id) (Parallel g Cat.id)

= Serial (f *** Cat.id) (g *** Cat.id)

= Serial (first f) (first g)

= first g . first f

= first f >>> first g



The laws 5, 6 and 7 behave similarly. This means that only the first three laws
hold in general; as soon as one of the tasks is not pure, they fail. This isn’t
surprising: For pure tasks, the laws are directly derivable from the fulfilled laws
for the Arrow instance of functions. For all other tasks, the internal structure
directly represents the order in which the arrows where combined. Hence, most
laws have to fail. But is this a problem? The laws are there to guarantee that
the instance actually behaves like an arrow. In our case, we are mostly interested
in the behavior when we actually execute the task. It is therefore sufficient to
check if the tasks are equivalent under execution.

3.6 Task execution

Until now, we considered the static representation of tasks as a composition of
subtasks. Regarding their dynamic behavior, we needs a way to execute tasks.
The runTask function executes a task as an IO action, thus allowing input and
output of data:

runTask :: Task a b -> a -> IO b

The simplest way to do this is by remodeling the behavior of the Kleisli
arrow.

runTask :: Task a b -> a -> IO b
runTask (Pure f) = return . f
runTask (Impure m) = m
runTask (Serial t1 t2) = \a -> runTask t1 a >>= runTask t2
runTask (Parallel t1 t2) = \(u,v) -> do

r1 <- runTask t1 u
r2 <- runTask t2 v
return (r1,r2)

runTask (Or t1 t2) = either (runTask t1) (runTask t2)

This certainly works, and it is also easy to show that this function is compatible
with the arrow laws. For example, considering the fourth law,

first (f >>> g) = first f >>> first g

both sides of the equality evaluate to the execution of task f followed by the
execution of task g.

While this solution respects the laws, it is not very useful yet. The execution
order is fixed and not dynamic; in case of two parallel tasks, we always execute
the left one first. To actually gain an advantage over simply using Kleisli arrows,
we have to add some modifications. The easiest one would be to ask the user to
specify the order in which parallel tasks get executed:

runTask (Parallel t1 t2) = \(u,v) -> do
putStrLn "Run Task a or b first?"
l <- getLine
if l == "b" then do

r2 <- (runTask t2) v
r1 <- (runTask t1) u
return (r1,r2)

else do
r1 <- (runTask t1) u
r2 <- (runTask t2) v
return (r1,r2)



This is an improvement but still not flexible enough. After choosing for example
the left task, we have to finish all subtasks before we can start to execute the
right task.

We can circumvent this problem by writing a function that executes only a
single subtask:

runSingleTask :: (Task a b) -> a -> IO (Task a b)
runSingleTask t a = ...

We can then simply iterate over the subtasks of a composed task until all
impure tasks have been processed:

runEveryTask :: (Task a b) -> a -> IO b
runEveryTask (Pure f) a = return . f $ a
runEveryTask t a = do

s <- runSingleTask t a
runEveryTask s a

To make this even more useful, we can add names

Impure :: String -> (a -> IO b) -> Task a b

to the individual tasks to allow for an easier selection of which task to execute
next.

A more advanced system could also offer the possibility to redo already pro-
cessed tasks.

3.7 Example revisited

After all this work, we now return to our example from Section 2 and present an
implementation. We start with the specification of the three in monadic syntax,
assigning each a name:

askName :: Task () String
askName = Impure "askName" (const $ putStr "Please enter your name: " >>

getLine)

askAge :: Task () Integer
askAge = Impure "askAge" (const $ putStr "Please enter your age: " >> readLn)

askAddress :: Task Integer String
askAddress = Impure "askAddress" $ \age -> do

if age >= 18 then do
putStr "Please enter your address: "
getLine

else do
putStr "Please enter the address of a parent or legal guardian: "
getLine

Then, we combine them with arrow operators reflecting the data dependencies
to obtain the complete work flow:

workflow :: Task () (String,String)
workflow = askName &&& (askAge >>> askAddress)

When executing the tasks, we can dynamically choose the order in which the
questions will be asked. For example, a session can take the following form:



> runEveryTask workflow ()
Open tasks:
0. askName
1. askAge
Which task do you want to run?: 1
Please enter your age: 23
Open tasks:
0. askName
1. askAddress
Which task do you want to run?: 0
Please enter your name: Alice
Please enter your address: Berlin
("Alice","Berlin")

4 Related work

The ideas in this paper are closely related to those of the iTasks system [6],
which uses monads instead of arrows to describe work flows. Monads provide
a means to describe a sequential work flow using pure functions. Recently, the
authors seem to experiment with arrows as well [2]. Essential differences to our
work are that we are not considering concurrent processes (orchestration), and
instead enable different execution orders and revision of prior tasks.

These ideas are further a typical example of functional reactive program-
ming [3], in particular with respect to the interaction of user and system.

5 Conclusion

In this paper, we presented a simple, but flexible work flow management frame-
work. It allows to compose work flows from individual tasks and provides the
means to process the subtasks in a dynamically adaptable order. A previous
version of this work is incorporated in a real world financial application using
a propriety functional programming language. Due to practical considerations,
such as side effects in legacy code, that version used a mixture of control and
data flow graphs. In this work, we essentially prototyped the next version which
is based entirely on the work flow’s data dependencies, and verified that the
ideas are both viable and practical.

In future work, we will integrate our work flow management system into
some web framework. This will provide programmers with the means to specify
applications such as surveys and questionnaires in a simple and flexible way.
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