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Abstract. It is increasingly important to analyze system security quan-
titatively using concepts such as trust, reputation, cost, and risk. This
requires a thorough understanding of how such concepts should interact
so that we can validate the assessment of threats, the choice of adopted
risk management, and so forth. To this end, we propose a declarative
language Peal+ in which the interaction of such concepts can be rig-
orously described and analyzed. Peal+ has been implemented in tool
PEALT using the SMT solver Z3 as the analysis back-end. PEALT ’s
code generators target complex back-ends and evolve with optimizations
or new back-ends. Thus we can neither trust the tool chain nor feasi-
bly prove correctness of all involved artefacts. We eliminate this need
for trust by independently certifying scenarios found by back-ends in a
manner agnostic of code generation and choice of back-end. This sce-
nario validation is compositional, courtesy of Kleene’s 3-valued logic and
potential refinement of scenarios. We prove the correctness of this vali-
dation, discuss how PEALT presents scenarios to further users’ under-
standing, and demonstrate the utility of this approach by showing how it
can express attack-countermeasure trees so that the interaction of attack
success probability, attack cost, and attack impact can be analyzed.

1 Introduction

It is well recognized that the analysis of threats to system security goes beyond
the exposure and fixing of vulnerabilities and that it has to take account of
contextual influences such as risks, trust assumptions, the reputation of domains,
and so forth. However, it is often not clear how such different concepts interact
in the threat space (which the attacker controls) or how they should interact in a
system design space (which the designer thinks he controls). For example, when
the Heartbleed vulnerability became known even security experts could not agree
on whether users should immediately change their passwords on web accounts
that used versions of OpenSSL vulnerable to this attack [20]. In particular, it
was difficult to know whether the account was compromised, and renewing a
password in a compromised account might leak that password to an attacker.

In general, threat analysts have a host of techniques and models at their dis-
posal that allow them to assess security threats, let us mention here attack trees



[19, 13, 12] and Stackelberg games for security (see e.g. [10]) as two prominent
examples. Also, probabilistic risk analysis [2] offers a rich set of tools that threat
analysts may use to study the interaction of factors that influence security. Alas,
tools from risk analysis view attackers as passive environments (e.g. modeling
mean time between failures of a hard disk) and not as active agents (e.g. a cy-
ber terrorist who seeks access to programmable logic controllers in a SCADA
system). We therefore would like support for modeling the interaction of con-
cepts such as protection cost, impact of successful attacks, perception of risk,
reputation of agents, and so forth, in a system exposed to active attacks. The
active nature of attackers suggests to model action and reaction with AND/OR
structures, e.g. as present in two-person games or first-order logic. The desire to
study interaction of quantitative concepts suggests use of an expressive logical
language with appropriate theories for reals; expressiveness means we can easily
extend studies to new concepts or interaction modes, and theories enable us to
do correct quantitative reasoning. We cannot assume, though, that threat ana-
lysts are trained logicians, so we require automated reasoning support for such
logics to build auto-interactive verifiers. SMT solvers, e.g. Z3 [14], thus look like
apt vehicles for expressing and analyzing such interaction in this manner.

Choosing an SMT solver as the back-end also poses problems. Its input
language is too complex and universal, but security analysts prefer languages
specific to their modeling domain. For code generators from domain-specific lan-
guages into SMT back-ends we need assurance that results computed by back-
ends are correct and sensible in modeled domains. Security analysts want results
communicated in forms appreciable to them. Finally, users may formulate con-
ditions that are vacuously true, or vacuously false in the modeled domain. This
may identify a specification error or may instead validate that an analyst has
realized an important invariant – e.g. that the risk is always below an acceptable
threshold. Our paper presents results that directly address these problems.

Figure 1 shows how our contributions reported in this paper are realized in
the tool PEALT . Users specify Peal+ conditions to be analyzed, and domain-
specific knowledge or assumptions; PEALT converts these specifications into Z3
code which the SMT solver Z3 solves; the raw output of Z3 results is then post-
processed and analyzed over the Peal+ conditions; and feedback is reported so
that all scenarios are certified. The user may then inspect that feedback and
either be satisfied or edit conditions or domain specifics for further analysis.

Outline of paper. In Section 2, we present language Peal+ in which threats
can be modeled and analyzed when quantitative information contains non-
deterministic uncertainty; and we discuss automated vacuity checking. In Sec-
tion 3, we discuss how the implementation of Peal+, its analyses, and certifica-
tion are supported by the use of partial evaluation to render certified scenarios to
users in compact ways that should facilitate users’ comprehension. In Section 4,
we present our algorithm that independently certifies that scenarios computed
from analyses by back-ends such as Z3 are correct for the modeled problem –
eliminating the need to trust our code generation methods or back-ends. In
Section 5, we show Peal+’s utility as an intermediate language for analyzing



Fig. 1. Overview of our approach of auto-interactive verification with tool PEALT ,
showing activities done by users, by PEALT or by its back-end SMT solver Z3

the interaction of threat concepts in tree-like models. In Section 6, we further
discuss and evaluate language Peal+ and its implementation in tool PEALT .
Section 7 features related work, and Section 8 concludes the paper.

2 Domain-specific language and its vacuity checks

Figure 2 shows a formal grammar for our language Peal+ that can express
interaction of security aspects as well as the logical/quantitative analysis of such
interaction. Peal+ shares the coarse structure of its predecessor Peal [4, 7]: rules
condition a score on a predicate, policies are built from rules, policy sets are built
out of policies, conditions are formed out of policy set comparisons; and analyses
have conditions as arguments. The meaning of analysis types is the intuitive one
of their names seen in Figure 2. The meaning of conditions is given by that
of propositional logic and of comparison operators over reals. Thus it suffices to
define how policy sets evaluate to reals in an environment in which all predicates
have truth values, all real variables have a real value, and all non-deterministic
uncertainties are resolved – so all scores evaluate to a real number.

We state this semantics informally here, and formally in Figure 3. A rule rule
returns its declared score when its declared predicate is true; otherwise, it has
no effect. The meaning of a policy is then given as follows: if none of its rules has
a true predicate, its meaning is that of its default score; otherwise, its meaning
is obtained by first computing the meaning of all scores from its rules with true
predicates, and then applying operator op to that set of computed reals.

The grammar for scores allows us to write expressions such as 0.45, −124.5,
0.67 ∗ x, 0.5 ∗ p.sc, 0.4 ∗ x [−0.1, 0.1], or 0.5 ∗ p.sc [−0.05, 0.05] where x is a
real-valued identifier and p is a policy set. In a given environment, the meaning
of scores without intervals [l, u] is that of normal arithmetic with variable values
given by the environment. The meaning of expressions s [l, u] is x+ y where x is
the meaning of s in the environment, and y from [l, u] is the non-deterministic
choice of the environment from interval [l, u]. The latter may, e.g., express the
level of confidence that an expert has in choosing a subjective probability s. To
ensure consistency, we require l ≤ 0.0 ≤ u. For example, u < l would be logically
inconsistent and l > 0 would suggest to change s [l, u] to the equivalent but



alys ::= satisfiable? cond | always true? cond | always false? cond

equivalent? cond cond | different? cond cond | implies? cond cond

cond ::= q | ¬cond | cond || cond | cond&& cond | pSet ≤ pSet | pSet < pSet

op ::= min | max | + | ∗
pSet ::= pol | op (pSet, pSet)

pol ::= op (rule∗) default score

rule ::= (q score)

score ::= rawScore | rawScore [realConst , realConst]

rawScore ::= realConst | realV ar | realConst ∗ realV ar

realV ar ::= identifier | pSet.sc

Fig. 2. Syntax of Peal+ where q ranges over some language of predicates; con-
stants and variables occurring in score expressions range over real numbers, and
[realConst , realConst] ranges over closed real intervals. For sake of clarity, keywords
of Peal+ are written in boldface here, e.g., pSet.sc denotes the score of pSet

Ee(op(pS1, pS2)) = op(Ee(pS1), Ee(pS2))

Ee(op((q1 s1) . . . (qn sn)) default s) = op(Z) (if Z 6= ∅)
Ee(op((q1 s1) . . . (qn sn)) default s) = Ee(s) (if Z = ∅)

Ee(a) = a (constant a)

Ee(x) = e(x) (x not of form p.sc)

Ee(a ∗ x) = a · e(x) (x not of form p.sc)

Ee(p.sc) = Ee(p) (evaluate policy p)

Ee(a ∗ p.sc) = a · Ee(p) (evaluate policy p)

Ee(r [l, u]) = Ee(r) + e(p, qi, [l, u]) ([l, u] declared in p for predicate qi)

Ee(r [l, u]) = Ee(r) + e(p, default, [l, u]) ([l, u] declared in default score s of p)

Fig. 3. Semantics Ee(pSet) of policy sets (acyclic as in Def. 1), given an environment
e that maps predicates to truth values, scores to reals, and resolves non-deterministic
choice of uncertainty intervals. Scores r range over raw scores, a over constants, x over
variables, and p.sc over policy scores. Set Z equals {Ee(si) | 1 ≤ i ≤ n, e(qi) = true}



more comprehensible (s + l) [0.0, u − l] when l ≤ u. The meaning of variable
pSet.sc is that of pSet computed by the operational semantics just described.
For this to be well-defined, the set of declared policy sets must not create cyclic
dependencies in Peal+:

Definition 1. Let p1 and p2 be in a set P of Peal+ policy sets. Then p1 depends
on p2 (written p2 ≺ p1) if there is a score s in p1 that contains or equals variable
p2.sc. Set P is acyclic if the transitive closure of ≺ over P × P is acyclic.

Peal+ extends Peal in important ways: scores may have variables and non-
deterministic uncertainty, policy sets have the same composition operators as
policies, conditions subsume propositional logic and may compare policy sets,
and the result of a policy set can be referred to as variable within a score ex-
pression. With these extensions, Peal+ is expressive enough to capture metrics,
tree-like models, cost functions, and basic probabilistic computations.

Let us illustrate the use of Peal+ with an example modeling risks that a
car rental company may face when renting out cars to clients. Figure 4 shows
how rules, policies, policy sets, and conditions for this example are declared in
the input language of our tool PEALT . Declarations are divided into blocks by
keywords such as POLICIES and lines that begin with % are used for comments.

A notable feature of the tool input language is the declaration block
DOMAIN SPECIFICS in which specifiers can enter code from the input language
of the SMT solver Z3 [14] to further constrain the model. This would typically
be used to express assumptions or knowledge of the modeled domain, and uses
Z3 syntax since Z3 is the current back-end of our tool. For example, the second
assertion in Figure 4 uses this to express that luxury cars must not be rented
out for off-road driving. It represents risk and trust as values in [0, 1], and uses
f(x) = 1 − x to convert one into the other. More sophisticated relationships
between trust and risk may be captured in Peal+ as well. This Peal+ model
is conceptually similar to the use of score cards that assess risks in mortgage
applications [17]. Next, we discuss vacuity checking and how we support this.

Vacuity checking. The analyses always true? and always false? reduce to
satisfiability checks but their intent is to check for so called vacuities [11]: a
condition that is always true or always false may be a specification error (as in
temporal logic verification of hardware [11]), evidence for a desired invariant,
or may require further scrutiny of the specifier. Our tool automatically enforces
both types of vacuity check on all declared conditions. The reason is that de-
clared conditions are likely to contribute to input of a declared analysis, and so
we want to alert users to those conditions that are vacuously true, resp. false.

For example, condition c1 of the Car Rental Risks example in Figure 4 is
reported to be always true, so the “insurance risk” which multiplies monetary loss
with its associated risk is never above 50,000. If Z3 can’t decide a vacuity check
(output UNKNOWN), PEALT reports checked conditions as “may be” vacuities.
PEALT only reports names of vacuously true or false conditions. Users who
want more detailed feedback as described below need to “promote” such a vacuity



POLICIES

% policy capturing risk of financial loss dependent on type of rented car

b1 = max ((isLuxuryCar 150000) (isSedan 60000) (isCompact 30000)) default 50000

% policy capturing trust in rentee dependent on type of his or her driving license

b2 = min ((hasUSLicense 0.9) (hasUKLicense 0.6) (hasEULicense 0.7)

(hasOtherLicense 0.4 [-0.1,0.1])) default 0

% policy that captures potential risk dependent on type of intended car usage

% this policy happens not to be used in the conditions below

b3 = max ((someOffRoadDriving 0.8) (onlyCityUsage 0.4) (onlyLongDistanceUsage 0.2)

(mixedUsage 0.25)) default 0.3

% policy that accumulates some signals that may serve as additional trust indicators

b4 = + ((accidentFreeForYears 0.05*x) (speaksEnglish 0.05) (travelsAlone -0.2)

(femaleDriver 0.1)) default 0

% convert trust b2 into risk b2 using f(x) = 1-x

b2_risk = +((True 1.0) (True -1*b2_score)) default 0.0

POLICY_SETS

% casting b2_risk into policy set

pSet0 = b2_risk

% policy set that multiplies risk with potential financial loss

pSet1 = *(b1,pSet0)

% casting policy p4 into a policy set

pSet_b4 = b4

CONDITIONS

% condition that the risk aware potential financial loss is below a certain bound

c1 = pSet1 <= 50000

% condition that the accumulated trust is above a certain threshold

c2 = 0.4 < pSet_b4

% condition that insists that two previous conditions have to hold

c3 = c1 && c2

DOMAIN_SPECIFICS

% real x models accident-free years of driving, ’truncated’ at value 10

(assert (and (<= 0 x) (<= x 10)))

% capturing a company policy: luxury cars must not be used for off road driving

(assert (implies (isLuxuryCar (not someOffRoadDriving))))

% capturing that the different types of rental cars are mutually exclusive

(assert (and (implies isLuxuryCar (and (not isSedan) (not isCompact)))

(implies isSedan (and (not isLuxuryCar) (not isCompact)))

(implies isCompact (and (not isSedan) (not isLuxuryCar)))))

% capturing that cars that are only used in cities are not used in a mixed sense

(assert (implies onlyCityUsage (not mixedUsage)))

% capturing that cars used only for longdistance driving are not used in a mixed sense

(assert (implies onlyLongDistanceUsage (not mixedUsage)))

% capturing domain constraints (or company policy?) that city driving cannot happen off road

(assert (implies onlyCityUsage (not someOffRoadDriving)))

% capturing that cars used only for longdistance driving must drive off road

(assert (implies onlyLongDistanceUsage (not someOffRoadDriving)))

ANALYSES

% is condition c1 always true? this would suggest an invariant

name1 = always_true? c1

% is condition c3 always true? this would suggest a specification error

name2 = always_true? c3

Fig. 4. Peal+ model of Car Rental Risks



analysis into the ANALYSES section, where more detailed feedback is provided.
Users may turn automated vacuity checking on or off under “Settings”. We
recommend vacuity checks to be done at least once for model validation.

3 Feedback for users

As described in [7], we extract raw Z3 output and render it in pretty printed
form, as seen in the initial part of Figure 5. But for larger case studies, it be-
comes hard to digest even pretty printed information: one often cannot see the
forest for all the trees. So we now also output for each analysis a summary of
the scenario, its certification (detailed in Section 4), and supporting information.
Figure 5 shows typical such output for the Car Rental Risks example. Scenar-
ios also report any non-deterministic choices of uncertainty as seen for variable
b2 hasOtherLicense U – which functions as t2 in eval(0.4 [−0.1, 0.1], env) as de-
tailed in Figure 7 – in that figure. PEALT reports the certification outcome and

Result of analysis [name2 = always_true? c3]

c3 is (pSet1 <= 50000.0) && (pSet_b4 > 0.4)

c3 is NOT always true, for example, in the scenario in which:

accidentFreeForYears is True, femaleDriver is True, isLuxuryCar is True,

mixedUsage is True, speaksEnglish is True, travelsAlone is True, ...

hasEULicense is False, hasOtherLicense is False, hasUKLicense is False, ...,

b1_score is 150000, b2_hasOtherLicense_U is 0, b2_risk_score is 1, ...

Certification of analysis [name2] succeeded.

Additional predicates set to false for certification: Set(hasUSLicense, hasEULicense)

Policy scores statically inferred in this certification process:

b1 has score 150000, b2 has score 0.6, b2_risk has score 0.4,

b3 has score 0.25, b4 has score 0.55

Policies in analysis [name2] partially evaluated in certified scenario:

b1 = max (([isLuxuryCar] 150000)) default 50000 ...

b4 = + (([accidentFreeForYears speaksEnglish] 0.55)) default 0

Fig. 5. Output format of analyses (hand-edited to save space): scenario (if applicable),
certification status and possible refinements, policy scores inferred during certification,
and policies partially evaluated in certified scenario.

refinements of predicates and real variables that certification may have brought
about (when applicable), lists scores of all policies that certification could stati-
cally infer, and then partially evaluates only relevant policies (not for b3 in Fig-
ure 5) over the successfully certified scenario to then display them in this more
compact and meaningful manner. For the latter, true predicates are grouped



within square brackets and reported with aggregated score in red (colors not
shown in figure), as this is the score for the policy as well. Rules with false pred-
icates aren’t shown; in particular, if all predicates are false, an empty policy with
red default score is shown. Rules whose predicates have unspecified truth values
are shown individually (in green) where “?” marks them as don’t care rules.

PEALT uses Z3’s push and pop constructs for incremental solving of more
than one analysis. The efficiency may also raise usability issues: the output in
Figure 5 was obtained after all other analyses were commented out. If we run
all these analyses in their declared sequence, however, the scenario reported for
name2 will be different. Similar effects may happen when automated vacuity
checking changes its OFF/ON status. On the other hand, this seems at worst to
make the user temporarily confused and so we don’t think this issue is serious
enough to give up the efficiency gains of using the push and pop constructs.

4 Scenario certification

Users from high-assurance domains need compelling evidence that scenarios com-
puted by back-ends from code PEALT generates are valid for analyzed Peal+
conditions, and they want to be able to relate scenarios to conditions in a com-
prehensible manner. We report additional support for the latter below. As for
the former, what if our Z3 code generation method contains logical mistakes?
What if we make wrong assumptions about the operation of the tool Z3? What
if some Z3 features we use contain implementation flaws? We think these ques-
tions make a compelling case for independently proving the validity of a scenario
discovered for a Peal+ condition; we refer to such independent proof as certifica-
tion. Back-ends such as Z3 compute scenarios that are very compact in that they
don’t define values for some variables. Certification is therefore non-trivial as it
has to reason that these are indeed “don’t care” variables. Such a certification
should be comprehensible to non-experts and efficient – giving it the flavor of
an NP problem although the underlying decision problems may be undecidable.
We propose a compositional certification of don’t care variables that may lose
precision and so may have an inconclusive output. In the latter case, one of the
predicates of the scenario may not have a specified truth value. We then set that
value to false and repeat the certification algorithm on this refined scenario.
This process is efficient as it examines conditions compositionally and greedily
refines scenarios until it succeeds or not. Refined predicates are set to false and
not to true: users want to see as few trees in the forest as possible, and false
predicates only have an effect in a policy when all its predicates are false.

This certification process represents a scenario, a model returned by Z3, as a
function I that maps real variables to real numbers or ⊥, and predicates to true,
false or ⊥. Symbol ⊥ models that the scenario did not specify a value for the
variable in question. For predicates, ⊥ (“unknown”) is also the third truth value
of Kleene’s 3-valued logic [9]. Figure 5 shows how PEALT reports a scenario
for analysis name2 from Figure 4. To explain our certification, we need to define



the refinement of environments, which are all well typed in that they map any
variable either to value ⊥ or a value of its declared data type – Real or Boolean.

Definition 2. Let env1, env2 be environments over a set of variables V. Then
env2 refines env1 if for all x in V, env1(x) 6= ⊥ implies env1(x) = env2(x).

This means that refinements can change ⊥ values of variables to any value of
their declared data type Real or Boolean, but they cannot change non ⊥ values.

The function recursivelyCertify, depicted in Figure 6, is first called as
recursivelyCertify(c, I, v, ∅) which checks whether condition c has claimed truth
value v in the scenario/Z3 model I. It outputs true if this claim could be certi-
fied, false if a logical flaw in the claim was detected, and outputs ⊥ otherwise.
Wrapper function certifyWrapper(c, I, v) in Figure 6 converts true, false and
⊥ into certification success, failure, and inconclusive, respectively.

certifyWrapper(c, I, v) { % condition c, scenario I, and v in {false, true}
if (recursivelyCertify(c, I, v, ∅) == true) { return success; }
if (recursivelyCertify(c, I, v, ∅) == false) { return failure; }
elseif { return inconclusive; }

}

recursivelyCertify(c, env, v, cp) { % returns true, false or ⊥
cp′ = collectCertifiablePolicyScores(env);
env′ = env + cp′; % program point L1: extend env with bindings of cp′

o = certCond(c, env′, v);
if (o == ⊥) {

if (cp 6= cp′) {
return recursivelyCertify(c, env′, v, cp′);

} elsif (∃q: env′(q) = ⊥) {
pick one q with env′(q) = ⊥;
env′ = env′ + [q 7→ false];
return recursivelyCertify(c, env′, v, cp′);

} else {return o; } % triggers exception upstream (not shown here)
} else { % program point L2

return o; % output true means success, false means failure
}

}

Fig. 6. Function recursivelyCertify(c, I, v, ∅) checks whether condition c has claimed
truth value v in empty hash map cp (written ∅) and scenario I where it may refine the
latter. Function certifyWrapper wraps this into success, failure, or inconclusive result

The truth value v used in recursivelyCertify(c, I, v, ∅) is determined by the
type of analysis. For example, if always false? c returns SAT, it means the found
scenario should be evidence for c being true, and so v equals true. The treatment
of analyses with two arguments is similar. For example, for a SAT outcome of
implies? c1 c2, the scenario should be evidence for c1 being true and c2 being



false. So we need to achieve two certifications, recursivelyCertify(c1, I, true, ∅)
and recursivelyCertify(c2, I, false, ∅) for this.

Function recursivelyCertify refines I into an environment env′ by set-
ting predicates to false or adding a statically inferred score to a policy. The
latter means that environments are not only defined on predicates and real
variables but may also map policy names to their inferred scores. At pro-
gram point l2, such static inference of policy scores is delegated to function
collectCertifiablePolicyScores in Figure 7. In this extended environment env′,
function certCond, shown in Figure 8, determines the truth value of the condi-
tion in that environment under Kleene’s 3-valued logic [9]. If that value is ⊥, we
call recursivelyCertify again but with a refined environment that either inferred
at least one new policy score or set a predicate to false. If the truth value of the
condition is 6= ⊥, function recursivelyCertify outputs that value.

Parameter cp is a hash map that has policies as keys and their stati-
cally inferred scores as values. We check “progress” of cp since static infer-
ence of a policy score may then enable more such inferences for other poli-
cies. Function collectCertifiablePolicyScores(env) initializes in cp an empty
hash map. For each declared policy pol it stores in score the output of func-
tion certPolicy(pol, env) depicted in Figure 7. Thus we statically infer the score
of pol (rather than consulting env(p score) if that were 6= ⊥), so that policy
scores are certified before their use in certification of policy scores they depend
on. Then either an equality check of certPolicy(pol, env) and env(p score) is
performed – whose failure will fail certification – or we check whether the static
analysis returns a real value (i.e. not ⊥), in which case we extend the hash map
so that key pol has value score. Finally, the hash map is returned.

Function certPolicy(pol, env) first checks whether some predicate q within
policy pol has unspecified truth value in environment env. If so, it returns ⊥
since the score of pol cannot be determined. Otherwise, if all predicates in pol
are false in environment env, the default case applies and the evaluation of the
default score s in environment env is returned. Finally, if some predicates in
pol are true (and none are then false), we return the application of op to the
evaluation eval(si, env) of all “true” score expressions si in environment env.

Function eval(s, env) has two types of input for s depending on whether s
is a raw score t1 or contains an uncertainty interval [l, u] that we translate into
Z3 code as a real variable t2. This function does a static analysis that consults
env(p) when evaluating variables of form p.sc and consults env(x) for all other
variables x. This consults env(p) and not env(p.sc) so that policy scores get
certified based on certified scores of policies that they depend upon. Although ⊥
is strict for +, we relax its strictness for ∗ in expressions a ∗ x when a evaluates
to 0.0, in which case a ∗ x also evaluates to 0.0.

Last, but not least, we turn to function certCond(c, env, v) in Figure 8. It
compositionally evaluates over the structure of c whether this condition com-
putes to truth value v in environment env. This makes use of 3-valued propo-
sitional logic of Kleene [9], where for example ⊥ ∨ x = x and ¬⊥ = ⊥. The
intuition is that ⊥ stands for either true or false and that equations are valid



collectCertifiablePolicyScores(env) {
% returns hash map of some policies, with their statically inferred scores as keys

cp = ∅;
for (all declared policies pol) {

score = certPolicy(pol, env);
if (env(pol score) 6= ⊥){

if (score 6= env(pol score)){
report certification exception; break;

}
}
if (score 6= ⊥) {cp = cp + [pol 7→ score]; }

}
return cp;

}

certPolicy(pol, env) { % returns statically inferred policy score or ⊥
if (∃(qi si) ∈ pol: env(qi) = ⊥) { return ⊥; }
elseif (Xpol

env == ∅) { return eval(s, env); }
else { return op(Xpol

env); }
}

eval(s, env) {
% s = t1 or s = t1 + t2 with t1 being constant a, variable x or product a ∗ x
% and t2 being variable x not of form p.sc (modeling uncertainty)

if (t1 of form a) {acc = a; }
elseif (t1 of form p.sc) {if (env(p) 6= ⊥) {acc = env(p); } else {return ⊥; }}
elseif (t1 of form x) {if (env(x) 6= ⊥) {acc = env(x); } else {return ⊥; }}
elseif (t1 of form a ∗ p.sc) {

if (a == 0.0) {acc = 0.0; }
elseif (env(p) 6= ⊥) {acc = a ∗ env(p); }
else {return ⊥; } % here a non-zero but env(p) equals ⊥

}
elseif (t1 of form a ∗ x) { % here x is not of form p.sc

if (a == 0.0) {acc = 0.0; }
elseif (env(x) 6= ⊥) {acc = a ∗ env(x); }
else {return ⊥; } % here a non-zero but env(x) equals ⊥

}
if (s of form t1 + t2) {

if (env(t2) 6= ⊥) {acc = acc + env(t2); }
else {return ⊥; } % here env(t2) equals ⊥, strict for +

}
return acc;

}

Fig. 7. Function collectCertifiablePolicyScores(env) returns hash map for policies
pol with values score statically inferred as result of pol in env. Function certPolicy
certifies whether the score of policy pol of the form op ((q1 s1) . . . (qn sn)) default s
or op () default s in environment env is inferable. Set Xpol

env denotes {eval(si, env) |
env(qi) = true} and function eval(s, env) statically infers the value of score s in envi-
ronment env



certCond(c, env, v) { % returns true, false or ⊥; comparisons to ⊥ return ⊥
if (c of form q) { return (v == env(q)); }
elseif (c of form ¬c1) { return certCond(c1, env,¬v); }
elseif (c of form (c1 ∧ c2)) { if (v == true) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (c1 ∨ c2)) { { if (v == false) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (pS1 ≤ pS2)) {

if(v == true) { return certPSet(pS1, env) ≤ certPSet(pS2, env); }
else { return certPSet(pS2, env) < certPSet(pS1, env); }

} elseif (c of form (pS1 < pS2)) {
if(v == true) { return certPSet(pS1, env) < certPSet(pS2, env); }
else { return certPSet(pS2, env) ≤ certPSet(pS1, env); }

}
}

certPSet(pSet, env) { % returns true, false or ⊥; if env(pol) not found, returns ⊥
if (pSet of form pol) {return env(pol); }
} elseif (pSet of form op(pS1, pS2)) { return op(certPSet(pS1, env), certPSet(pS2, env)); }

}

Fig. 8. Function certCond(c, env, v) decides whether condition c has truth value v in
environment env, and certPSet(pSet, env) covers this for policies and their composition

under this interpretation. This is an abstraction as q ∨¬q evaluates to ⊥ in this
logic whenever q has value ⊥. We note that ⊥ is strict for comparison operators
==, ≤, and < in function certCond. If the condition c is atomic q, we check
whether claimed truth value v matches what the environment says about q. If c
is ¬c1, we reduce this to the certification that c1 has the negated truth value ¬v
in the same environment. The cases of conjunction and disjunction are dual and
need to consider whether v equals true or false. This structure is also seen in
comparing policy sets in a condition, which compares their scores as computed
by the environment in function certPSet (⊥ indicates no score is present).

The correctness theorem for certification refers to the meaning of Peal+ in
environments where all variables have a value from their declared data type Real
or Boolean. This operational semantics was given in Section 2 and Figure 3.

Theorem 1. Let c be a Peal+ condition such that the set of policy sets oc-
curring in c is acyclic. Let v be a truth value true or false. Let I be a scenario
produced for c from a back-end. Let function recursivelyCertify(c, I, v, ∅) return
true and let env′ be the value of this environment at program point L2. Let env′′

refine env′ such that env′′ maps no variable to ⊥. Then condition c evaluates to
v in environment env′′ under the operational semantics of Peal+.

Proof (Sketch). We only have to show the claim for function certCond, given
the code structure of recursivelyCertify. The claim is proved using structural
induction over the condition c, noting that sub-conditions also have acyclic sets of



policy sets. The cases rely on that fact that ⊥ is strict for all algebraic operators
with the noted exception of eval(0.0 ∗ ⊥, env) = 0.0.

The cases that compare two policy sets require proof of an auxiliary lemma:
“Whenever the output of certPSet(pS, env′) is not equal to ⊥, then that output
is the score of policy set pS in all environments that refine environment env′.”
This is shown for policies and composed policy sets by structural induction.

For the first case of a policy set being a policy, we require a second auxiliary
lemma: “Let pol be a policy and env′ an environment such that env′(pol) is not
equal to ⊥. Then env′(pol) is the score of policy pol in all environments that
refine environment env′.” The proof of this lemma appeals to the linear order in
which statically inferred scores of policies are added as hash values, where env′

is of form env+ cp′ as seen at program point L1 in function recursivelyCertify.
Since the set of policies occurring in condition c is acyclic, this order is indeed
well founded and so we can use well founded induction to prove this lemma. ut

The above theorem says that successful certification of the computed envi-
ronment env′ means that all “completions” of env′ that resolve ⊥ values with
any legal value of the respective data type will compute the claimed truth value
for the condition in question. In particular, variables x with env′(x) = ⊥ are
genuine “don’t care” variables for this successful certification.

Our certification runs in polynomial time in its input: the number of recur-
sions is bounded by m + n, with m the number of declared policies and n the
number of predicates occurring in rules. The static analysis of conditions evalu-
ates their parsetree over 3-valued logic; truth values of leaves are computed by
static analyses that are linear in the size of the respective policy sets.

5 Case study: attack-countermeasure trees

Peal+ and its tool PEALT can be used as an intermediate language into which
domain-specific languages can be translated and analyzed. Such use has two
benefits: analysis results can be certified, and PEALT may perform analyses
that are not supported within the frameworks of those domain-specific languages.
All scenarios found in this case study certified without refining any predicates.

We illustrate these benefits for attack-countermeasure trees (ACTs) [18] by
means of an example ACT for a BGP reset of a session as discussed in [18].
The PEALT input code for this example would not really be meant for human
consumption, as it would just be an intermediate syntax for facilitating analy-
ses. Our translation extends the semantics of ACTs in that we may turn attack
leaves, detection mechanisms, and mitigation mechanisms “on” or “off” – with-
out compromising the computation of attack success probabilities, attack impact
or attack cost. This, combined with the expressive conditions in PEALT , gives
us richer analysis capabilities, discussed in detail below. The full PEALT code
for this case study is built into the PEALT tool as an example case study.

Figure 9 shows the ACT taken from [18] where we merely annotated some of
its nodes with policy names that we will use in our translation. This tree contains



AND and OR nodes as familiar from attack trees [12]. But it also contains three
NOT nodes that all feed into parent AND nodes the possible effects of a pair of
detection and mitigation mechanisms. Qualitatively, this means that such a pair
of working detection and mitigation mechanisms will feed false into the parent
AND node. The probabilistic interpretation in [18] is that both mechanisms have
a probability of working, and so NOT nodes take as probability the complement
of the product of these two probabilities of working mechanisms [18].

Goal: reset a BGP session

Or1

a1: Send 
message to 

router causing 
reset

 
Not1

And1
And2

And3

Or2

a111: Send 
RST message 
to TCP stack 
0.08, 50, 200

a112: Send 
BGP message

Or3

a1121:  Notify 
0.1, 60, 130

a1122: Open 
0.15, 70, 100

a1123: Keep alive 
0.2,100, 300

And4

d1: Trace-route 
check 0.5

m1: Randomize 
Seq. Num. 0.6

And6

a12: TCP seq. 
num. attack  
0.1, 150, 250

 
Not3

And7

d12: TCP seq. 
num. check 0.8

m12: MD5 
authentication 

0.5

a2: Alter conf. via 
compromised 

router 
 0.4, 190, 275

d2: Router 
firewall alert 0.7

 
Not2

And5

m2: Secure 
router 0.5

Fig. 9. ACT from [18] for reset of a BGP session, with detection/mitigation leaves’
probability of working and attack leaves’ success probability, cost, and impact (resp.)

The probability of attack success and impact cost are computed over the
structure of the ACT [18], whereas attack cost is computed by first producing
the set of all min-cuts (as used in fault tree analysis [2]) of the ACT [18]. This



makes it hard to reason about the interaction of success probabilities, impact,
and cost. Also, it faces scalability issues as the number of min-cuts may be
exponential in the size of the ACT. We here want to demonstrate that the use of
SMT solvers, facilitated with Peal+ and PEALT as the intermediate language
and tool, allows us to reason about such interactions and avoids the need to
enumerate all min-cuts.

The declaration of policies for the probability of attack success, the result of
policy goal, is shown in Figure 10. A predicate True, asserted to always be true,
is used to compose results of children in the ACT. The probability at an OR
node with n children xi is 1−

∏n
k=1(1−prob(xk)), and we expand this arithmetic

term in stages using policy scores for stage composition, as seen for policy or1.
The probability at an AND node with m children yj is

∏m
k=1 prob(xk), and we

similarly encode this arithmetic expression, as seen for policy and1.

For the encoding of attack leaves, their success probability is the score of
a sole rule that captures that attack event. Since attack leaves are not under
the scope of a NOT node, their default score is 0.0. The encoding of a NOT
node is simply 1− x where x is the result of its child AND node. For that AND
node, the staged computation checks whether both detection and mitigation
are present, in which case it computes the product of the probabilities of both
mechanisms working; otherwise, it returns 0.0. This default score is sound as it
makes the NOT node default to 1.0 which has no effect on its predecessors in
the ACT (there is no NOT node in the scope of another NOT node). Thus this
translation works for ACTs since they don’t have nested NOT nodes.

In Figure 11, cost of attacks to an attacker and overall attack cost are spec-
ified. Default scores capture cost in the absence of attacks and so equal 0.0.
In contrast to [18], overall cost is here the sum of all occurring, i.e. true, at-
tacks since analyses ask whether attacks succeed within cost budgets and Z3
will search for such solutions by turning attack leaves “on” or “off” as desired.
The specification of attack impact (now shown in this paper) reflects that the
impact of an OR node is the maximum of the impact of all its children – mod-
eling a worst-case scenario for the system [18]; and that the impact of an AND
node is the sum of the impact of all its children. As in [18], NOT nodes don’t
contribute to impact of attack success, although it is noted in [18] that detection
and mitigation mechanisms can reduce risk.

Finally, we may specify questions about this ACT in Peal+. Using basic
conditions such as 549.0 < impact overall and binary conjunction, we express
condition c6 which asks whether the attack impact can be strictly above 549.0,
the attack cost can be less than or equal to 440.0, and the probability of attack
success can be strictly above 0.41199 – all in the same scenario. PEALT reports
that this is possible in a scenario in which attacks a1123, a2, and a12 occur (i.e.
are true), as well as detection mechanisms d1 and mitigation mechanism m2.
The latter two may be unexpected. But in the scenario neither the mitigation
mechanism m1 of d1 nor the detection mechanism d2 of m2 occur (i.e. are false).
Therefore, none of the two respective NOT nodes contribute to the probability
of attack success; and NOT nodes contribute neither to impact nor to cost.



goal = +((True or1_score)) default 1.0

or1 = +((True 1.0) (True -1.0*or1_aux_score)) default 1.0

or1_aux = *((True or1_aux1_score) (True or1_aux2_score)) default 1.0

or1_aux1 = +((True 1.0) (True -1.0*and1_score)) default 1.0

or1_aux2 = +((True 1.0) (True -1.0*and2_score)) default 1.0

and1 = *((True and3_score) (True not1_score)) default 1.0

and3 = *((True or2_score) (True and6_score)) default 1.0

or2 = +((True 1.0) (True -1.0*or2_aux_score)) default 1.0

or2_aux = *((True or2_aux1_score) (True or2_aux2_score)) default 1.0

or2_aux1 = +((True 1.0) (True -1.0*a111_score)) default 1.0

or2_aux2 = +((True 1.0) (True -1.0*or3_score)) default 1.0

a111 = +((sendRSTmessageToTCPStack 0.08)) default 0.0

or3 = +((True 1.0) (True -1.0*or3_aux_score)) default 1.0

or3_aux = *((True or3_aux1_score) (True or3_aux2_score)

(True or3_aux3_score)) default 1.0

or3_aux1 = +((True 1.0) (True -1.0*a1121_score)) default 1.0

or3_aux2 = +((True 1.0) (True -1.0*a1122_score)) default 1.0

or3_aux3 = +((True 1.0) (True -1.0*a1123_score)) default 1.0

a1121 = +((notify 0.1)) default 0.0

a1122 = +((open 0.15)) default 0.0

a1123 = +((keepAlive 0.2)) default 0.0

not1 = +((True 1.0) (True -1.0*and4_score)) default 1.0

and4 = +((traceRouteCheck and4_aux1_score)) default 0.0

and4_aux1 = +((randomizeSequenceNumbers and4_aux2_score)) default 0.0

and4_aux2 = *((True 0.5) (True 0.6)) default 1.0

Fig. 10. Policies that compute probability of attack success, even when certain attacks,
detection mechanisms or mitigation mechanisms may be absent. Policies for sub-ACTs
And2, And5, And6 and And7 are similar and not shown

cost_a111 = +((sendRSTmessageToTCPStack 50.0)) default 0.0

cost_a1121 = +((notify 60.0)) default 0.0

cost_a1122 = +((open 70.0)) default 0.0

cost_a1123 = +((keepAlive 100.0)) default 0.0

cost_a12 = +((TCPsequenceNumberAttack 150.0)) default 0.0

cost_a2 = +((alterConfigurationViaCompromisedRouter 190.0)) default 0.0

cost_overall = +((True cost_a111_score) (True cost_a1121_score)

(True cost_a1122_score) (True cost_a1123_score)

(True cost_a2_score) (True cost_a12_score)) default 0.0

Fig. 11. Computing cost of attack leaves and overall cost of occurring attacks



Threshold values chosen in condition c6 are co-dependent: we can’t decrease
440.0 by 1 or more, increase 549.0 by 1 or more, or increase 0.41199 by 0.00001 or
more without making condition c6 unsatisfiable. These values were determined
by repeated analysis that adjusted values with bisection search using SAT and
UNSAT results to drive the bisection method. If we add to condition c6 a con-
junct, saying that the detection/mitigation pair d2 and m2 also has to occur,
PEALT informs us that this is now impossible.

We can approximate maxima of security metrics, e.g., a measure of expected
system damage f(p, i, c) = p · max (0, 2i − c) for attack success probability p,
attack cost c, and attack impact i where we exploit that p, i, and c are ex-
pressed as policies. For example, 271.919999999999 < f(p, i, c) is satisfiable for
the ACT in Figure 9 whereas 271.92 < f(p, i, c) is not. In PEALT , we have
also implemented a bisection-based non-linear optimization for global maxima
within specified accuracy – which can determine approximate maxima such as
the one for the above security metric.

6 Discussion and Evaluation

We analyzed and tried to certify about 20, 000 random Peal+ conditions with
uncertainties but a few of these conditions failed to certify. We isolated the source
of these failures to be an anomaly of the Z3 push command. With help of Arie
Gurfinkel, Nikolaj Bjorner was able to attribute this to Z3 work item 108 (see
http://z3.codeplex.com/workitem/108): if some constraints are non-linear, the
use of push invokes a legacy solver that may report incorrect models for SAT
outcomes. Since PEALT won’t use push when a sole analysis executes, we can
eliminate this Z3 bug as the source of certification failure by turning off vacuity
checking and commenting out all other analyses. We think PEALT therefore
strikes a good balance between performance (which the use of push on more
than one analysis greatly improves) and correctness (since failed certifications
are rare and mostly caused by typos as discussed next).

If a user declares a policy p but also writes p in a score instead of p score,
the SMT solver may find a real value for real variable p (implicitly declared
in that rule!) and so env(p) would have that value. If this is not the value
one would statically infer for policy p, such aliasing will fail certification. Also,
spelling mistakes in variable names may declare new variables that can result
in inconclusive certification. Anecdotal evidence suggests that almost all failed
or inconclusive certifications are results of such typos, which incidentally won’t
occur whenever PEALT is used as intermediate language by code generators.

The certification process in PEALT only works for scenarios (whose reported
values for policy scores are ignored in certification), not for a claim that no
scenario exists. We first focused our efforts on scenarios as they are likely to
be more useful to specifiers, and since certification of non-existence of scenarios
involves formal proofs extracted from back-ends (e.g. [3]), but general specifiers
cannot be expected to understand complex proofs.



The scope of certification does not expand into section DOMAIN SPECIFICS.
For example, assume that a predicate occurs in no rule but is cast to a condition
and declared in section DOMAIN SPECIFICS, which also defines its meaning. Our
certification will not inspect this definition of meaning as it is expressed outside of
Peal+ in an expressive logic. We did not find this to be limiting when writing and
certifying PEALT models, but it means that certification is a relative notion in
PEALT . On the other hand, it seems feasible to extend our 3-valued certification
to cover DOMAIN SPECIFICS as well for certain fragments of Z3’s input language.

Our implementation of Peal+ requires that policies be cast into policy sets
(when needed), predicates be cast into conditions (when needed), and operators
for policies, policy sets, and conditions be unary or binary (not n-ary). The latter
is a good thing, since it means that all sub-conditions of conditions are explicitly
declared and so subject to vacuity checking. PEALT does not check whether
predicates within a policy occur more than once. The latter is an issue when
two or more such occurrences have scores with uncertainty as this “binds” the
non-deterministic choice made for these expressions to the same value. A variant
of our BGP case study with uncertainties, built into tool PEALT , addresses this
be using True1, True2, and so forth to disambiguate this.

PEALT has no explicit ability to model state spaces and their transition;
one may see this as a weakness and opportunity for future work, or as a strength
as it avoids state space explosions.

7 Related work

For model checking, Namjoshi developed deductive techniques in [15] that can
independently verify the results of model checks for formulas of the modal mu-
calculus and where these proofs can be extracted from an (instrumented) model
checking run. For theorem proving, Gonthier [5] simplified the proof of the fa-
mous 4-color theorem, and proved it in the theorem prover Coq in such a manner
that the proof itself could be certified as well. In [16], Necula devised a proof as
a claim of certain program behavior, e.g. memory safety; it is efficient to verify
the correctness of the proof (though producing the proof may have been hard)
and one can check whether its claim is consistent with one’s own security policy.

Jha et al. [8] use model checking to automatically generate attack graphs
with nodes representing network states, develop techniques for choosing minimal
number of security measures and for trading off attack likelihood and attack
probability. Attack graphs that express dependencies of vulnerabilities instead,
such as those of Albanese et al. [1], have more scalable analyses than state-
based ones. Attack graph models in the literature appear to have a fixed model
signature, whereas PEALT can extend modeling domains as and when needed.

Peal+ extends Peal [4] and the PEALT tool over its version in [7]: PEALT
now supports the richer language Peal+, automated vacuity checking of all
declared analyses, the automated certification of all scenarios generated by Z3
for analyses, and the partial evaluation of policies over scenarios so that users
can comprehend scenario information directly on relevant policies.



In [6], we sketched Peal+ and illustrated it with mock-up syntax for a “score
card” model very similar to that from Figure 4. Although that paper discussed
usability issues, it focussed on the design of Peal+ and did not cover usability
issues of a supporting tool and its user feedback.

8 Conclusions and future work

We presented a domain-specific language Peal+ in which the interaction of con-
cepts that inform security and threat analysis can be formally expressed and
analyzed. We reported its implementation in the PEALT tool that statically
analyzes such conditions with two principal aims: to determine whether speci-
fied conditions meet expectations of how security-related concepts influence de-
cision making; and to validate that the expectations that users have do not have
unintended consequences when expressed and enforced in such conditions.

PEALT reflects the methodology of auto-interactive verification (see Fig. 1).
This means users can rely on automated verification tools that provide easily
comprehended feedback which may trigger subsequent modeling and automated
verification. And this process would be repeated until users are satisfied to have
captured conditions as desired. This paper realized this methodology via a lan-
guage Peal+, its implementation in the PEALT tool, and use of the SMT solver
Z3 as the back-end for automated reasoning and scenario generation.

We illustrated the utility of Peal+ and these support mechanisms by first
discussing a Car Rental Risks example and then attack-countermeasure trees.
We showed how ACTs can be translated into Peal+ so that we can reason about
interaction of the probability of attack success, attack cost, and attack impact
whilst at the same time allow the model to turn attack, detection, and mitigation
leaves “on” or “off” at will. Therefore, our ACTs actually represent an entire set
of ACTs and we can verify invariants of such interaction over that set of ACTs.

We created support for validating scenarios computed for conditions ex-
pressed in Peal+: an independent certification of the correctness of scenarios
with respect to the domain and policies in which they should be interpreted. We
stress that our certification is agnostic to the manner in which code for analy-
sis in back-ends is generated (since certification operates on Peal+ expressions
directly) and agnostic to the choice of back-end (apart from an interface for
the scenario to be certified and for variables modelling uncertainty). PEALT
partially evaluates all policies that certification seems to rely upon, with respect
to the certified scenario and provides this as auxiliary feedback, so that mod-
elers may more easily assess the impact of policies certified in possibly refined
scenarios.

We could extend Peal+ with judicious support for integer variables (a poten-
tial performance bottleneck for SMT solvers). We also mean to develop auxiliary
tools that can translate other threat modeling formalisms into PEALT for richer
analysis, as illustrated for ACTs in this paper. Finally, we mean to research how
we can extend Peal+, PEALT , and our certification to state transitions and to
conditions that analyse state changes through operators of temporal logic.



Open access: We refer to URL http://www.doc.ic.ac.uk/~hk2109/PEALT/

for the latest version of PEALT and installation instructions. Please consult
https://bitbucket.org/jimhkuo/pealapp-lift for the Scala source code.
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