
Efficiency considerations in heterogeneous
cluster systems

Valon Raca and Eduard Mehofer

Faculty of Computer Science
University of Vienna, Austria

{valon.raca,eduard.mehofer}@univie.ac.at

Abstract. The importance of heterogeneous asymmetric clusters has
grown steadily over the last years. Such architectures pose new chal-
lenges with respect to execution time and energy consumption. Work
distribution for homogeneous systems has been done typically by divid-
ing the work by the number of compute nodes and assigning equal-sized
portions to each of them. Such an approach is not adequate any more for
heterogeneous systems. The amount of work has to be adjusted to the
computational power of the individual devices. Moreover, heterogene-
ity of devices raises in addition to execution time a second issue – the
energy consumed to fulfill a task. A work distribution approach could
e.g. exclude low-performing, high-energy-consuming devices from execu-
tion. Optimization in one direction only, i.e. execution time or energy
consumption, does not meet the requirements. In this paper we discuss
different work distribution approaches and report our experiences.

Keywords: heterogeneous clusters, runtime efficiency, energy efficiency

1 Introduction

The trend of using accelerators for solving time-consuming problems is contin-
uing to increase steadily. Devices such as GPUs, Intel Xeon PHI, or FPGAs
are performing much better than CPUs for many data-parallel classes of ap-
plications, thus becoming a mainstream architecture in HPC. However, hetero-
geneous systems require adequate support for handling programming obstacles
resulting from the variety of hardware characteristics of those devices. The emer-
gence of OpenCL has alleviated very much the burden of programmers dealing
with different types of devices. OpenCL provides a platform for abstracting the
hardware disparities through its transparent model which assists programmers
writing codes which can be executed on any OpenCL enabled device.

Large clusters consisting of heterogeneous computing nodes with different
computing devices provide the opportunity to scale-up the performance. OpenCL
can adapt codes for a large number of devices from different vendors, but it does
not support data transfers and coordination tasks within a cluster. In addition
libraries like MPI are required. Further, the arrangement of accelerators in clus-
ter compute nodes needs not to be symmetric. The devices can be distributed



2 Valon Raca and Eduard Mehofer

unevenly between the nodes resulting in an asymmetric configuration of a clus-
ter.

Work distribution for such heterogeneous, asymmetric clusters becomes a
major problem. Whereas for homogeneous clusters usually equal-sized portions
of work has been distributed to the compute nodes, this approach is not adequate
for heterogeneous systems any more. The amount of work has to be adjusted to
the computational power of the individual devices. Moreover, energy-efficiency
is another issue introduced by heterogeneous systems which is gaining increasing
attention. A work distribution approach could e.g. exclude low-performing, high-
energy-consuming devices from execution. Optimization in one direction only,
i.e. execution time or energy consumption, does not meet the requirements.
Energy-efficiency together with performance has to be taken into account in the
time-energy problem space when dealing with efficiency issues.

We consider applications with a workload that is partitioned into work pack-
ages which are assigned to devices to be processed. Our programming and hard-
ware model is described in detail in [12]. Runtime efficiency and energy efficiency
basically boils down to the problem of mapping work packages to devices. Dif-
ferent work distributing strategies are possible resulting in different solutions
exhibiting different efficiency characteristics. An assessment of a solution heav-
ily depends on the requirements of the programmer. When we optimize in two
directions, the mapping of work packages to devices results in a solution space
containing 4 distinguished solutions exhibiting optimality criteria:

– best performance: one dimensional problem–energy consumption neglected
– minimal energy: one dimensional problem–execution time neglected
– minimal energy with restrictions to performance: two dimensional problem
– best performance with restrictions to energy: two dimensional problem

In addition to the 4 solutions above, trade-off solutions between time and
energy can be considered as well. This papers discusses all the different solutions
in detail and presents the impacts in practice.

The rest of the paper is organized as follows. Section 2 outlines our pro-
gramming approach for heterogeneous, asymmetric clusters. Section 3 gives the
motivation for efficiency considerations in heterogeneous asymmetric clusters.
Optimization problems are discussed in Section 4. We survey the related work
in Section 5 and conclude with a summary in Section 6.

2 Programming Support for Heterogeneous Asymmetric
Clusters

In this section we give a brief overview of our framework [12] which supports
heterogeneous, asymmetric cluster architectures. The goal of the framework is
to assist a programmer to run an application efficiently in such an heterogeneous
environment. Our strategy to deal with such clusters is to partition the work into
work packages which are assigned to compute devices to be processed. As shown



Efficiency considerations in heterogeneous cluster systems 3

in Fig. 1, the input is partitioned in smaller data chunks called work packages
WP1,...,WPn which are equal-sized. The size of work packages is determined by
taking various hardware and application characteristics into account like memory
capacity or peak performance.

Fig. 1: Main application processing steps

Usually the number of work packages are orders of magnitude greater than
the number of available devices in the system. This problem coupled with differ-
ent performance and energy consumption numbers for each of the devices leads
to the requirement for a strategy in distributing work packages. The different
types of mappings is realized by a dispatcher which manages the distribution of
work packages. As shown in Fig. 1, the dispatcher can perform different distri-
bution strategies (S1, S2, ...) which define different mappings; e.g. strategy S1
requires that 14 WPs are assigned to device D1, 25 WPs to D2, and so forth,
whereas strategy S2 requires that 18 WPs are assigned to device D1 and 21



4 Valon Raca and Eduard Mehofer

WPs to D2. The output is constructed from the partial results of the processed
work packages. The framework helps the programmer to run applications in
such heterogeneous environments without dealing with hardware configurations
or communication issues explicitly.

3 Examples for Selecting Devices and Distributing Work

As discussed above, work distribution is done by mapping work packages onto
compute devices. Hence, different mappings result in different execution times
and different power draws. Depending on whether execution time or energy con-
sumption is favored by a programmer, some mappings fit better to the needs
than others. In the following we will discuss three examples which have the com-
mon property that better performance is achieved at the cost of higher energy
consumption. Or in other words: longer execution times may help to save en-
ergy. These examples show that getting better in one dimension may degrade the
other dimension which means that an optimization has to take both dimensions
into account.

The first example is taken from a paper by Liu and Luk [11]. As shown there,
the FPGA is the most energy-efficient device for executing function SGEMM
(matrix-matrix operation C = αAB + βC) followed by GPU and CPU. Using
only the FPGA for processing SGEMM leads to the smallest amount of energy
consumption, but it may take about 40 times longer to complete than using the
GPU.

We have done a similar experiment on our PHIA cluster which consists of
8 compute nodes with devices such as NVIDIA GPUs and Intel XEON Phi
accelerators arranged in an asymmetric configuration. Our experimental results
confirm that execution time and energy consumption can be influenced to a
great extent based on the devices used in computing. In Fig. 2 we show the
execution time and energy consumption in normalized units for a molecular
analysis kernel with different problem sizes. As it is shown in Fig. 2a when
we use only most energy-efficient devices the execution time (circular markers)
increases in comparison to the program version where we use all available devices
of the system (triangular markers). The gap between the two execution scenarios
increases steadily with bigger problem sizes. However, in Fig. 2b it can be seen
that energy consumption is reduced significantly when only the most energy-
efficient devices are used in computation (circular markers). The figures show
that for all problem sizes a loss in performance is rewarded by a reduction of
energy consumption.

In addition to selecting devices for execution, the next example shows that
the distribution of work onto the selected devices plays an important role as
well. To demonstrate this, let us assume we have 5 equally-sized work packages
and two devices with the following time and energy values per work package
T = {2, 5} and E = {10, 5}, i.e. 2 and 5 time units are taken for a work package
on device 1 and 2, and 10 and 5 energy units on the devices, respectively. Further
a time constraint is specified which requires that execution should finish within



Efficiency considerations in heterogeneous cluster systems 5

0

1

2

3

4

5

6

7

32
k 
x 
32

k

40
k 
x 
40

k

48
k 
x 
48

k

56
k 
x 
56

k

64
k 
x 
64

k

72
k 
x 
72

k

80
k 
x 
80

4

88
k 
x 
88

k

96
k 
x 
96

k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EN
ER

G
Y 
CO

N
SU

M
PT
IO
N

GRID SIZE (POINTS)

ENERGY (all devices) ENERGY (only energy‐efficient devices)

0

2

4

6

8

10

12

32
k 
x 
32

k

40
k 
x 
40

k

48
k 
x 
48

k

56
k 
x 
56

k

64
k 
x 
64

k

72
k 
x 
72

k

80
k 
x 
80

4

88
k 
x 
88

k

96
k 
x 
96

k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EX
EC

 T
IM

E

GRID SIZE (POINTS)

EXEC TIME (all devices) EXEC TIME (only energy‐efficient devices)

(a) Execution time for all devices used vs. energy-efficient devices only

0

1

2

3

4

5

6

7

32
k 
x 
32
k

40
k 
x 
40
k

48
k 
x 
48
k

56
k 
x 
56
k

64
k 
x 
64
k

72
k 
x 
72
k

80
k 
x 
80
4

88
k 
x 
88
k

96
k 
x 
96
k

10
4k
 x
 1
04
k

11
2k
 x
 1
12
k

12
0k
 x
 1
20
k

12
8k
 x
 1
28
k

EN
ER

G
Y 
CO

N
SU

M
PT
IO
N

GRID SIZE (POINTS)

ENERGY (all devices) ENERGY (only energy‐efficient devices)

(b) Energy consumption for all devices used vs. energy-efficient devices only

Fig. 2: Performance and energy figures in our PHIA cluster for DCS



6 Valon Raca and Eduard Mehofer

10 time units. The following mappings of work packages onto devices are feasible
and fulfill the time constraint:

– If we assign 4 work packages to the first device and 1 work package to the
second device, the overall execution time equals to max{8, 5} = 8 units of
time, while the overall energy consumption equals to 10 ∗ 4 + 5 = 45 units
of energy consumption.

– If we assign 3 work packages to the first device and 2 work packages to the
second device, the overall execution time equals to max{6, 10} = 10 units of
time, while the energy consumption equals 10 ∗ 3 + 5 ∗ 2 = 40 units.

Both work distributions satisfy the time constraint, however the second work
distribution is more energy-efficient than the first one.

4 Different Solutions Satisfying Optimality Criteria

Best performance. In principle the best performance approach leads to a
solution where all devices are used for computation. However, there are situations
where this might lead to sub-optimal solutions. Consider a system as depicted
in Fig. 3 with four devices with different processing times for work packages as
indicated by the different lengths of the bars and 12 equal-sized work packages.
In Fig. 3a the work packages are distributed at runtime to the devices just on
request basis. Unfortunately, device 3 gets assigned the last work package 12,
since the other devices are still busy.

However, a better distribution of work packages exists as shown in Fig. 3b.
Although device 3 finished processing and is idle, it should not request another
work package, but leave it to faster devices. Thus a simple on-request work pack-
age scheduler is not sufficient and more sophisticated techniques are required.

Minimal energy. An optimization directed at achieving minimal energy con-
sumption tends to ”serialize” the execution of an application. Minimal energy
consumption means that only the most energy-efficient devices are used. As a
consequence, in an heterogeneous environment only one type of devices with best
energy-efficiency will be used. If only one instance of that device type exists in
a cluster, the application will be executed on one device only.

Minimal energy with restrictions to performance. Since the minimal en-
ergy approach yields an extreme solution, there is a need for a relaxed approach.
One possibility is to define a maximal execution time which shall be met with
minimal energy preventing in this way the ”serializing” behavior. As shown in
Fig. 4a the programmer sets a time constraint for which the most energy-efficient
distribution shall be found. All distributions below the dotted line meet the time
constraint with the circular point being the most energy-efficient one.



Efficiency considerations in heterogeneous cluster systems 7

(a) Simple request-based mapping (b) More sophisticated mapping

Fig. 3: Different mappings of work packages onto devices

Best performance with restrictions to energy. Similar considerations as
above lead to the definition of a maximal amount of energy which shall be met
with best execution time possible. As shown in Fig. 4b the programmer sets an
energy constraint for which the most time-efficient distribution shall be found.
All distributions left to the dotted line meet the energy constraint with the
circular point being the most time-efficient one.

Time-energy trade-off. Next we address the problem that no constraints have
been specified by the programmer. Our goal is to propose a ”good” solution by
reasoning about time-energy trade-offs.

Fig. 5a shows the set of all possible distributions and Fig. 5b the correspond-
ing Pareto front. It is reasonable to assume that a distribution of the Pareto
front with minimal distance from the origin is a good compromise between ex-
ecution time and energy consumption–the selected distribution is highlighted
with a circular point.

5 Related work

Many research efforts have been undertaken to support cluster systems, but most
of them do not address optimizations taking both execution time and energy con-
sumption into account in an heterogeneous, asymmetric hardware environment.
One of the first cluster frameworks have been developed by Duato et al. [5] for
CUDA and Barak et al. [3] for OpenCL. A more recent approach is SnuCL [8]
which enables viewing of remote devices as part of a local context, while ab-
stracting the communication between cluster nodes. libWater [6] is similar to



8 Valon Raca and Eduard Mehofer

(a) Minimal energy with time constraint (b) Best performance with energy con-
straint

Fig. 4: Solutions with constraints

(a) All possible distributions (b) Pareto optimal distributions

Fig. 5: Set of possible solutions and Pareto front optimal solutions



Efficiency considerations in heterogeneous cluster systems 9

the SnuCL approach, though it provides more efficient communication between
cluster nodes, which is handled transparently by its runtime. Hybrid OpenCL
[2] is based on FOXC runtime and enables communication between different
OpenCL implementations in the context of distributed computing, while our
framework targets HPC clusters. dOpenCL [7] allows using of different compute
devices in any of the cluster nodes in a single application. It provides a central
device manager which manages the assignment of the devices. clOpenCL [1] uses
a wrapper library similar to dOpenCL targeting HPC clusters. DistCL [4] is sim-
ilar to our approach, as it intends to abstract the multiple-devices in a cluster
providing the programmer a single-device view for launching a kernel. However,
DistCL runs its experiments across a symmetric cluster and only with one GPU
per cluster. VOCL [13] provides a virtualization framework for GPU clusters us-
ing remote GPUs through proxy processes in cluster nodes. pVOCL [9] utilizes
the VOCL framework and provides means for reducing energy consumption on a
cluster. However, this approach is restricted to GPU clusters and it does not take
into account actual energy consumption of applications but it is based on a table
power model which needs to be provided by data center administrators. Whereas
the cluster approaches presented so far have their origin in OpenCL, HeteroMPI
[10] is an extension to MPI to support heterogeneous networks of computers.
HeteroMPI provides the functionality to enable an application developer to deal
with a heterogeneous environment and to realize a required behavior, but does
not support the programmer with advanced features.

6 Conclusion

In this paper we discussed in detail the problem of distributing work onto devices
of an heterogeneous, asymmetric cluster when both execution time and energy
consumption should be taken into account. We presented different distribution
strategies and discussed their implications in practice.

References

1. Alves, A., Rufino, J., Pina, A., Santos, L.: clOpenCL - Supporting Distributed
Heterogeneous Computing in HPC Clusters. In: Euro-Par 2012: Parallel Processing
Workshops, LNCS, vol. 7640, pp. 112–122. Springer Berlin Heidelberg (2013)

2. Aoki, R., Oikawa, S., Nakamura, T., Miki, S.: Hybrid OpenCL: Enhancing OpenCL
for Distributed Processing. In: International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA). pp. 149–154 (May 2011)

3. Barak, A., Ben-Nun, T., Levy, E., Shiloh, A.: A package for OpenCL based hetero-
geneous computing on clusters with many GPU devices. In: 2010 IEEE Conference
on Cluster Computing Workshops and Posters. pp. 1–7 (Sept 2010)

4. Diop, T., Gurfinkel, S., Anderson, J., Jerger, N.: DistCL: A Framework for the
Distributed Execution of OpenCL Kernels. In: IEEE Symposium MASCOTS. pp.
556–566 (Aug 2013)

5. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Orti, E.: rCUDA: Reducing the
number of GPU-based accelerators in high performance clusters. In: HPCS. pp.
224–231 (June 2010)



10 Valon Raca and Eduard Mehofer

6. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: LibWater: Heterogeneous
Distributed Computing Made Easy. In: ICS. pp. 161–172. Eugene, Oregon (2013)

7. Kegel, P., Steuwer, M., Gorlatch, S.: dOpenCL: Towards a Uniform Programming
Approach for Distributed Heterogeneous Multi-/Many-Core Systems. In: Parallel
and Distributed Processing Symposium Workshops PhD Forum (IPDPSW). pp.
174–186 (May 2012)

8. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: An OpenCL Framework for
Heterogeneous CPU/GPU Clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing (ICS). pp. 341–352. San Servolo Island, Venice,
Italy (2012)

9. Lama, P., Li, Y., Aji, A.M., Balaji, P., Dinan, J., Xiao, S., Zhang, Y., Feng, W.c.,
Thakur, R., Zhou, X.: pVOCL: Power-Aware Dynamic Placement and Migration in
Virtualized GPU Environments. In: Proceedings of ICDCS. pp. 145–154. Philadel-
phia, USA (2013)

10. Lastovetsky, A., Reddy, R.: HeteroMPI: Towards a message-passing library for het-
erogeneous networks of computers. Journal of Parallel and Distributed Computing
66(2), 197 – 220 (2006)

11. Liu, Q., Luk, W.: Heterogeneous systems for energy efficient scientific computing.
In: Reconfigurable Computing: Architectures, Tools and Applications, LNCS, vol.
7199, pp. 64–75. Springer Berlin Heidelberg (2012)

12. Raca, V., Mehofer, E.: Device-Sensitive Framework for Handling Heterogeneous
Asymmetric Clusters Efficiently. In: 26th IEEE International Symposium on Com-
puter Architecture and High Performance Computing. Florianopolis, Brazil (Oct
2015)

13. Xiao, S., Balaji, P., Zhu, Q., Thakur, R., Coghlan, S., Lin, H., Wen, G., Hong, J.,
chun Feng, W.: VOCL: An optimized environment for transparent virtualization
of graphics processing units. In: InPar. pp. 1–12 (May 2012)


