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Abstract. Information systems have become distributed over large dis-
tance networks to serve an ever-increasing demand for fast data ac-
cess at global scale. This trend lead to a growing popularity of NoSQL
data stores as they provide better performance and response times in
the distributed setting than standard relational databases. To achieve
these properties, these data stores sacrifice consistency guarantees for
the data stored in favor of availability and robustness under network
failures and partitions. Consequently, it is more difficult to secure such
systems against unauthorized data access without introducing perfor-
mance bottlenecks. Due to the weak consistency guarantees, it became
much harder to build access control systems coupled with the data store
because the policies are replicated and can become inconsistent. Using
a separate strongly consistent system to implement access control seems
more feasible, but this architectural design adds additional complexity
and results in performance loss and single points-of-failure.
In this paper, we outline the challenges when building access control
systems for distributed information systems based on weakly consistent
data stores. Based on a formal model, we present a solution that cor-
rectly applies access control policies. It guarantees convergence of policy
modifications that are concurrently issued at different datastore replicas.
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1 Introduction

Traditionally, information systems where built in a centralized fashion with a
single replica of all data. Information systems today are distributed all over the
globe to provide fast response times and low latency. However, the techniques for
developing information systems has drastically changed in the last years. This
change was triggered by new trends such as the Internet of Things and Industry
4.0 as well as the rapid growth of the Internet.

These demands have lead to an increasing popularity of weakly consistent
data stores. The main focus of these data stores is availability and fast response
times they achieve by sacrificing the strong consistency guaranties that are at
the core of traditional relational database systems. One consequence of this sac-
rifice is that the semantics of data stores have become more complex because
weaker consistency guaranties allow more interleaving of operations, which leads
to surprising behavior developer might be unaware of. Recently[4, 5, 12, 13],



Replicated Data Types have gained a lot of interest, partly also in industry. But
the question of how to implement access control on weakly consistent data stores
is an open question.

Access control systems guarantee that every action performed adheres to a set
of rules, which can be dynamically changed at runtime. In traditional systems,
this guarantee can be enforced by relying on a central server. This server fixes
a total order of the operations which avoids conflicts. Using such a centralized
architecture is not possible in a highly available, globally distributed system
that requires low latency. A central access control server introduces a severe
bottleneck and increases the total latency of all actions in the system. To reduce
the latency we can sacrifice part of the consistency guarantees offered by the
access control system. Gilbert and Lynch [8] have shown that high availability,
partition tolerance and strong consistency cannot be achieved by any distributed
system at the same time. This theorem is also known as the CAP theorem. One
possible solution is to not handle the policies by a central server, instead they
are replicated to different servers. This introduces a security threat since the
rules can be modified on different servers in non-consistent ways. The access
restrictions are based on the local copy of these policies, which can be outdated.

We show the importance of the causal relation between data operations and
access control operations for the correctness of an access control system (Section
3). We describe the design-space of access control systems for weakly consistent
data stores with replication (Section 4). We created a formal model for such
a system which works applicative and achieves convergence of the policies of
different replicas and sketch the most important proofs of the model includ-
ing the proof of eventual consistency (Section 5). The model is formalized in
Isabelle/HOL.

2 Information System Model
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Fig. 1. Overview of the system model

We model an information system as a set of replicas where each replica repre-
sents a server with a local copy of the data managed by the information system.



Figure 1 shows an overview of the system. The replicated data consists of the
data state and the access control state. The data state consists of the cooperative
operations which make up the state of the part of the world represented in the
information system. The state can be accessed using read and write operations.
The access control state consists of access control policies, which influence the
decision of the access control system. Policies in the access control state can be
changed using the grant and revoke operations, which grant and revoke rights
of a user to read and modify the data state and to grant or revoke rights of other
users. In addition, the current set of policies can be inspected and system oper-
ations can be checked for compliance with the current policies using the check
operation. Each replica has a local access control system allowing or disallowing
execution of local operations on the replica. The decision of the access control
system is only based on the local copy of the access control state. We assume
the level of rights to be the level of replicas which means in order to restrict
the rights of individual users each user has to work on his/her own replica. A
generalization of this model to individual users and more complex access control
policy patterns such as groups is left as future work.

Operations performed by a replica are broad-cast to the other replicas using
messages. Each messages can be uniquely identified and caries only a single data
or access control operation. Sending and receiving messages is asynchronous, so
the sending replica does not wait for the message to be accepted by all replicas.
To simplify things we assume reliable transport of messages, which means mes-
sage loss has to be compensated on the network level, and full replication, that
is every replica has a full copy of the data available.

3 Causal Consistency

To illustrate the importance of the causality of operations we start with an
example system. Consider a social network where users can create a personal
page, galleries for uploaded pictures and it is possible to invite friends to look at
your personal data. By default, the system denies access to your personal page
to all users. Other users can be added to a friend list. Users on this friend list
have full access to all personal data including the posts on the personal page as
well as all galleries.

Anne has an existing list of friends. One of these friends is Paul. After a heated
discussion with Paul, Anne removes him from her friend list before uploading
her new photos of the last party. Anne does not want Paul to have access to her
new photos after removing him as a friend.

There is a causal relation between the remove operation of Paul and the
upload of the new photos. In a system with strong consistency guarantees, it
would not be possible for Paul to access the new photos as long as he is not
readded to the friend list of Anne. When considering a replicated system which
does not retain the causal relation between operations, there might be a server
that receives the upload of the photos before the update of the friend list. This
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Fig. 2. Undesired semantics because of causality violation.

gives Paul the possibility to access the new photos before the change to the
friend list of Anne is known to this local server.

As we see in the example above, it is important for the correctness of an ac-
cess control system to preserve the causal relation between operations. We can
distinguish several cases: (1) an operation on some data is performed because
it is allowed by the current policies of the system; (2) the application computes
new values based on the data state it sees in the system; and (3) the applica-
tion changes the policies of the access control system based on previous policy
changes.

Case (1) sketches the usual operation of the system: The data operations in
the system are checked by the access control system to comply with the current
policies. Only operations allowed by the access control policies may be performed
by the system.

Case (2) describes the normal operation of the system without access control.
Every computation reads values from the system, computes new values and
enters them into the system. This relation between the values read and the
values entered should be kept intact by the data store.

The last case (3) is how access control policies evolve. The initial state of
the access control system consists of an initial set of policies. These policies can
be adapted over time, for example because responsibilities and roles of persons
change.

The causality between data operations can be loosened depending on the data
types used and the guarantees needed by a specific application. Loosening the
causality between access control policy changes and data operations invalidates
the guarantees an access control system should offer.

4 Distributed Access Control

When designing an access control system for a distributed system there are some
issues that cannot be avoided. We sketch these issues and their influence on the
access control system.

As discussed in Section 3, the causal relation between access control policy
changes and data operations have to be retained. The problem is illustrated in
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Fig. 3. Possible inconsistencies because of local decision.

Figure 2. There are existing data stores that offer causal consistency guaranties
such as SwiftCloud [9] and Antidote [1]. Therefore, we can assume in our model
of the access control system that the data store offers causal consistency as
an option and will not go into the details of implementing causal consistency
for the access control system. Even though the causal relation between access
control operations and data operations is important, it is not sufficient for the
convergence, and thus for the correctness of the access control system.

Since the access control state is local to the replica and synchronized using
message broadcast, the access control state of different replica is temporarily
inconsistent. Figure 3 shows such a scenario. Replica R1 performs an operation
which revokes the right of user u to perform write operations on object o. This
change of the access control policies is transmitted to replica R2 using a message.
While this message was not yet accepted by R2, u tries to write to o, which is
accepted by R2 according to the current local version of the policies. If the same
operation would have been performed on R1, the access control system on R1
would have denied the operation. When the revoke message arrives at R2, it
becomes clear that the access control state was inconsistent.

To avoid such inconsistencies, there are two possible solutions. Receiving the
revoke operation on R2 could result in undoing of the write operation. This
approach is favored by Cherif et al. [6] and Samarati et al. [10] and is known as
optimistic approach. Alternatively, the write operation takes priority over the
revoke operation, since the revoke was not yet accepted while executing the
write on R2 and cannot easily be undone. This interprets the write operation
as if it would have happened before the revoke operation. This approach needs
access to the history of previous access control policies, since R1 has to check
the validity of the write operation before accepting it1.

One design decision to be made for a replicated access control system is
whether to trust the other replicas or to put the trust only in the access control
policies. When not trusting in the correctness and reliability of replicas, the
broadcast messages have to be checked and accepted by the local access control
system in order to protect the system from malicious actions. On the other hand,
expecting the replicas to be distrusted makes it possible to place replicas in an

1 We expect the data state to converge with the help of a different strategy such as
convergent replicated data types
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untrusted environment such as the computer of a user. Figure 4 shows a simple
attack scenario. An attacker u can run a manipulated replica which sends a
forged message to replica R. Using this message, u can try to grant himself the
right to read a secret object, even though u might not have the right to perform
this policy change. If the message was accepted by R, this would lead to a set
of access control policies which would grant a future read access to the secret
object by u until the policies are repaired. This inconsistency is not acceptable
with respect to the semantics of the access control system. Wobber et al. [14]
describe a system that uses public and private key certificates to achieve trust
in policies changes. A different way is to only accept policy changes that can be
deduced to be allowed by the default policy set and already accepted changes.

The access control state has to converge on all replicas. Since the policies are
changed locally and forwarded asynchronously, we cannot directly avoid incon-
sistent changes to the policies by different replicas. Other systems [6, 10] solve
this problem by assigning one replica as the owner of an object. Only the owner
replica can make the final decision about policy changes regarding the object
owned. Since we want to support partitioning for the network, we have to follow
a different direction. If, for example, we consider groups in social networks, the
members of these groups may be distributed over the world and specific replicas
may be separated because of network errors. Fixing a replica which may change
the membership of a group would lead to unacceptable down-times.

If we accept that multiple replicas may change the access control policies for
each object we also have to accept that there will be a window where the policies
will not be consistent. The messages that distribute these changes to the access
control state of remote replicas can arrive in any order because of the concurrent
nature of the system and the delay caused by the network. Therefore we need
a merge algorithm that incorporates remote changes into the local policies such
that the outcome on all replicas is the same after processing all pending messages.
We call this property the convergence of the access control state.

The naive approach of just accepting policy changes as they arrive at a replica
can lead to different decisions on two replicas. Figure 5 shows the problem. The
messages have to be extended by meta-data which allows to order the messages
and this order is the same on all replicas.
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5 Access Control Model for Distributed Information
Systems

In the previous section we described the design space of implementing an access
control system for globally distributed replicated information systems. In the
following, we present a solution.

5.1 Formal Model of the Data Store

Replicas r ∈ R

Data operations opD ∈ OpD = R×OT × N
Admin. operations opAC ∈ OpAC = AOT ×R×OT × N
Messsages msg ∈M = R×OpD ∪OpAC

Global State gs ∈ R×RS × opDeps

Replica state rs ∈ RS = OpD × P (OpAC)×M × P (M)

Dependencies opDeps :: M 7→ P (M)

Operation Type ot ∈ OT

Adm. Context actx ∈ N
Adm. Op. aot ∈ AOT = {Grant,Revoke}

Fig. 6. Definitions used in the formal model

The over-bars symbolize sequences. For example ms ∈ M stands for a se-
quence of messages where the ith element can be accessed by ms@i.

We assume the set of replicas to be fixed, meaning neither can new replicas be
added to the system nor can existing replicas be removed. Further, we simplify
the model by assuming that each user works on his/her own replica.



State The global data store state gs consists of a set of replica (replicas(gs)),
their local states (replicaState(gs)) as well as the operation dependencies (called
operationDeps(gs)). The operation dependencies is a mapping from a message
m to the set of messages deps that m causally depends on. The local state
of a replica consists of the data state (persistentOps(ls)), in form of a list of
data operations that have been performed on the replica, and the access con-
trol state (admOps(ls)), in form of a set of administrative operations or policy
changes performed on the replica. In addition to that, the local state also con-
sists of a list of accepted message (acceptedMessages(ls)) and an incoming queue
(incomingQueue(ls)), the queue of messages that have been sent by other repli-
cas but were not yet accepted by the replica. The incoming queue is modeled
as a set to reflect the non-determinism involved in transferring messages over a
switching network. In this way the order in which the broadcast messages are
handled by each replica is not fixed by the incoming queue.

Operations A data operation opD = (r, ot, actx) consists of the origin replica
r the operation was first performed on, the operation type ot, which can also
include the target object of the operation, and the administrative context actx.
The administrative context is needed by the access control system to determine
the policy that allowed this operation on the origin replica. An administrative
operation opAC = (aot, r, ot, actx) consists of the type of the administrative oper-
ation aot, either Grant or Revoke, the replica r and operation type ot this policy
change regulates and the administrative context. The messages distributing the
changes to other replicas are data messages msgD = (r, opD) and administra-
tive messages msgAC = (r, opAC) and each consist of the sending replica and
the operation to be transfered. We assume that each message can be uniquely
identified and from the models point of view no message is sent or received twice.

Initial State When starting-up for the first time, the system is in its initial
state, which means all replicas are in initial local state, there are no dependencies
between messages and the policies are equal for all replicas. These initial policies
can for example state that the root-user (in our case the root-replica) may assign
rights to other users (replicas) and all other users have no rights at all. A replica
is in initial local state if the data state and the access control state is empty and
no messages have been accepted and the incoming queue is empty.

Access Control Policies Before we come to the steps such a system can make we
first have to clarify what the access control policies are. The default policies apply
when no other policy in admOps(ls) applies for the operation on the replica. The
access control policies of a replica state is the set of default policies plus the set
of administrative operations processed by a replica

acPolicies(ls) = defaultPolicies∪ admOps(ls)

Each administrative operation carries an administrative context which is an
element of a totally ordered kind such as the natural numbers. This context is



like a version number for policy updates. The relevant policy for an operation
on a replica relevantPolicy(r, ot, ls) is a policy p = (aotp, rp, otp, actxp) where
rp = r and otp = ot and

p ∈ acPolicies(ls) ∧
∀ (aot′p, r

′
p, ot

′
p, actx

′
p) ∈ acPolicies(ls). (r′p = r ∧ ot′p = ot) =⇒ actxp ≥ actx′p

In other words: The relevant policy is the policy in the set of the access control
policies with the greatest access control context. A data message is allowed to
be sent by a replica sendOK(ls,msgD) where msgD = (r, opD) and opD =
(r, ot, actx) if the relevant policy for this message allows the operation in the
current administrative context

relevantPolicy(r, ot, ls) = (Grant, r, ot, actx)

The operation is performed on r and broadcast to the other replicas.
A administrative message is allowed to be sent by a replica sendOK(ls,msgAC

where msgAC = (r, opAC) and opAC = (aot, r, ot, actx) if the relevant policy is
the inverse of the operation

relevantPolicy(r, ot, ls) = (¬aot, r, ot, actx− 1)

The inverse of Grant is Revoke, ¬Grant = Revoke and the other way round
¬Revoke = Grant.

The allowing policy for a data message allowingPolicy(msgD) where msgD =
(r, opD) and opD = (r, ot, actx) is the corresponding policy (Grant, r, ot, actx).
r in this case is the replica which originally executed the operation first and
also the sender of the corresponding message. The allowing policy for an ad-
ministrative messages allowingPolicy(msgAC) where msgAC = (r, opAC) and
opAC = (aot,R, ot, actx) is (¬aot, r, ot, actx− 1). This means an administrative
operation may only be performed if the inverse policy with the previous ad-
ministrative context is already part of the current policy set. This construction
enforces that the administrative context is monotonically increasing for each
policy change and therefore makes each relevant policy unique. A message is
allowed to be processed processOK(ls,msg) if the allowing policy is in the local
access control policy set allowingPolicy(msg) ∈ acPolicies(ls).

We expect the data store to be causally consistent. A data store is causally
consistent if for all messages accepted by a replica all dependencies have been
accepted before. We write l@i to denote the ith element of list l.

causallyConsistent(gs) ≡
∀r ∈ replicas(gs),∀rs = replicaState(gs, r),∀m1, i.m1 = acceptedMessages(rs)@i,

∀m2 ∈ operationDeps(gs,m1).∃i′ < i. acceptedMessages(rs)@i′ = m2

A message is causally ready on a replica if all its dependencies have already
been accepted.



causallyReady(gs,msg, ls) ≡ ∀m ∈ operationDeps(gs,msg)

∃i. acceptedMessages(rs)@i = m

Steps With these definitions we can define the possible steps how the system
can evolve: When doing a step from one global state to the next gs −→ gs′, we
can either accept a message from the incoming queue gs

accept−−−−→ gs′, or a replica
can perform an operation and send a new broadcast message gs

send−−−→ gs′. A
message msg may only be accepted by a replica r with replica state rs if

msg ∈ incomingQueue(rs) ∧ causallyReady(gs,msg, rs)∧
acceptMessage(msg, rs, rs′) ∧ processMessage(msg, rs, rs′)

The message may only be accepted if it is causally ready and currently in
the incoming queue. It is accepted by removing it from the incoming queue and
appending it to the list of accepted messages of the replica.

acceptMessage(msg, rs, rs′) ≡
acceptedMessages(rs′) = acceptedMessages(rs) + [msg]∧
incomingQueue(rs′) = incomingQueue(rs)− {msg}

The system processes the message only if the message is allowed to be pro-
cessed. Otherwise the effect of the message is not visible on the receiving replica.
If the message is allowed to be processed, the operation of a data message is
added to the data state and the administrative operation of an administrative
message if added to the set of access control policies.

processMessage(msgD, rs, rs′) ≡ processOK(rs,msgD) =⇒
persistentOps(rs′) = persistentOps(rs) + [opD]

processMessage(msgAC , rs, rs
′) ≡ processOK(rs,msgAC) =⇒

acPolicies(rs′) = acPolicies(rs) ∪ {opAC}

A message msg may only be sent by a replica r with replica state rs if

msgSender(msg) = r∧
sendOK(rs,msg)∧
broadcast(gs, r,msg)∧
acceptedMessages(rs′) = acceptedMessages(rs) + [msg]∧
incomingQueue(rs′) = incomingQueue(rs)∧
processMessage(msg, rs, rs′)∧
operationDeps(gs′,msg) = set(acceptedMessages(rs))



Replica r has to be registered as the sender of the message, so the message
has the form msg = (r, op) where op is either a data operation or an administra-
tive operation. Message may only be sent and therefore operations on the replica
only be performed if they are allowed by the local policies sendOK(rs,msg). If
the permission is granted, the message is locally accepted and processed and
broadcast to the other replicas. Broadcasting in our case means to add the mes-
sage to the incoming queue of all other replicas. The operation dependencies of
the message are registered to be all the messages that have been accepted by
the replica at the time of sending the message.

5.2 Properties of the Data Store

Next, we want to show that the system we have described using the above model
is causally consistent. For this, we first show an intermediate lemma.

Lemma 1. If the global state gs is causally consistent, message msg is causally
ready on replica r, r accepts the message and the resulting state is gs′, then gs′

is also causally consistent.

Proof. Because gs is causally consistent, we know that for each message m that
has been accepted by each replica, the dependencies of m have already been
accepted before m. Only r accepts a new message and for all other replicas the
list of accepted messages stays the same and the operation dependencies are not
changed between gs and gs′. So, regarding the other replicas that systems stays
causally consistent. Accepting msg on r means appending msg to the end of the
list accepted messages of r

acceptedMessages(replicaState(gs′, r)) =

acceptedMessages(replicaState(gs, r)) + [msg]

For the prefix of the list that consists of the accepted messages in gs, we
known, that all dependencies have already been accepted in this sublist. It re-
mains to show that the newly added message msg does not break the causal
consistency. Because we known that msg is causally ready, we also known that
the operation dependencies of msg have already been accepted by r, which is
the definition of causally ready. This also means that each message in the set
of operation dependencies can be found in the list of accepted messages of r, so
adding msg to the end of the list of accepted message does also not break causal
consistency. Thus we can follow that gs′ is also causal consistent. ut

Next we can use Lemma 1 to show that steps on the system will not break
causal consistency.

Lemma 2 (Causal Consistency Preservation). If we start in a causal con-
sistent state gs and do a step gs −→ gs′, then gs′ is also causal consistent.



Proof. Case 1 (gs accept−−−−→ gs′ accept a message msg on replica r). We assumed
gs to be causal consistent and we known from the definition of accepting a
message that this message needs to be causally ready. It follows from Lemma 1
that accepting a causally ready message msg in a causal consistent state gs
yields a causal consistent state gs′.

Case 2 (gs send−−−→ gs′ send a message msg by replica r). The operation depen-
dencies are changed in gs′, the dependencies of msg are set to all messages
already accepted by r. So we would have to recheck all accepted messages for all
replicas. But we known that all message can be uniquely identified and that msg
is a fresh message. This means that none of the replicas have already accepted
msg before. In addition, we known that the other replicas except for r do not
directly accept msg, but instead have msg in their incoming queue first. From
this, we can deduce that causal consistency cannot be broken for the replicas
other than r.

In case of r we know, that the replica accepts msg which means we append
msg to the end of the accepted messages of r.

acceptedMessages(replicaState(gs′, r)) =

acceptedMessages(replicaState(gs, r)) + [msg]

We know thatmsg can not be the prefix of the accepted message that is equal
to the previously accepted messages because it is a fresh message. Thus this prefix
cannot break causal consistency. It is left to show that appending msg does not
break causal consistency. We know that the operation dependencies of msg are
set to the messages currectly accepted by r, acceptedMessages(replicaState(gs, r)).
Now we have to show that each of these messages have already been accepted
by r in gs, which is trivial to see. Thus we have shown that gs′ is causal consis-
tent. ut

From Lemma 2 we can deduce the correctness of the whole system with
respect to causal consistency.

Theorem 1. The data store as described in our model is causally consistent.

Proof. By induction on the evaluation steps. ut

The last important concept is that of the messages known to a replica. For
the list of messages accepted by a replica we can show that all messages are
accepted only once per replica. This means we can treat the list of accepted
messages as a set. This reinterpretation is done by the set(. . .) operator. The
incomingQueue is already treated as a set to model non-determinism of message
transport. The set of messages known to a replica is the set of messages accepted
by the replica plus the set of messages in the incoming queue

knownMessages(ls) ≡ set(acceptedMessages(ls)) ∪ incomingQueue(ls)



We can show that all replicas know the same messages by induction over the
steps performed.

Lemma 3. If all replicas known the same messages in gs and we do a step from
gs to gs′ gs→ gs′, then all replicas know the same messages in gs′:

∀r1, r2 ∈ replicas(gs). knownMessages(replicaState(gs, r1)) =

knownMessages(replicaState(gs, r2))∧
gs→ gs′ =⇒

∀r1, r2 ∈ replicas(gs′). knownMessages(replicaState(gs′, r1)) =

knownMessages(replicaState(gs′, r2))

Proof. We again distinguish which kind of step can be made

Case 1 (gs accept−−−−→ gs′ accept a message msg on replica r). The accepting replica
r removes msg from the incoming queue and adds it to the accepted messages.
The known messages stay the same. The known messages of the other replicas
also stay the same since their state does not change. ut

Case 2 (gs send−−−→ gs′ send a message msg on replica r). The messages msg is
directly processed by r and added to the accepted messages. The other replicas
get msg in their incoming queue. Overall, msg is added to the known messages
of all replicas and therefore the known messages of all replicas are the same. ut

5.3 Properties of the Access Control System

Based on the model of the data store we construct the model of the access control
system. We show some interesting properties of the access control policies before
proving the convergence of the access control state on all replicas.

The access control state is monotonically increasing, old policies are not
removed and changes are done by adding the changed policies to the access
control state. This can be seen by looking at the possible steps and how messages
are accepted by replicas. These changed policies are considered before the old
ones when looking for the relevantPolicy.

Using this monotonicity of the access control state, we can show that all
known messages can be processed by the sender of the message.

Lemma 4. All known messages msg ∈ knownMessages(gs) are allowed to be
processed by the original sender of the message.

Proof. We show the property by induction over the steps starting in the initial
state is.

Case 1 (Initial state). In the initial state none of the replicas have accepted any
messages and the incoming queues are empty. This means that there are no
known messages yet, so the property hold trivially.



The proofs for the steps can be split-up into two cases, accepting a message
and sending a new message:

We assume state gs can be reached from the initial state is by arbitrarily
many steps is→∗ gs and that all known messages in gs can be processed by the
sender on the message

∀m ∈ knownMessages(gs). r = sender(m) =⇒ processOK(r,m)

Case 2 (gs accept−−−−→ gs′ accept a message msg on replica r). We have to show
that all known messages can be accepted by their sender in gs′ after processing
msg on r. By using that the access control state is monotonically increasing we
know that the access control policies in gs are a subset of the access control
policies in gs′. We have already seen in the proof of Lemma 3 that the set of
known messages does not change during accepting a message. Being allowed to
process a message means that the allowing policy is in the access control policies
of the replica trying to process the message, in our case the original sender of the
message. Since the known messages are the same and the access control policies
of gs are a subset of the access control policies of gs′ for all replicas that means
that the sender is still allowed to process the message.

Case 3 (gs send−−−→ gs′ send a message msg by replica r). In this case have
to distinguish the previously known messages knownMessages(gs) and msg,
which is added as a new message knownMessages(gs′) = knownMessages(gs) ∪
{msg}. We can use the same reasoning as in the accepting case to show that
knownMessages(gs) can be processed by their sender in gs′. What is left to show
is that msg can be processed by its sender. We know that the sender of msg
is r and that msg is allowed to be sent by r. Hence, the allowing policy is the
relevant policy in the access control policies of r for the operation performed,
which means that the allowing policy is in the access control policies of r. Thus,
the known messages in gs′ are all allowed to be processed by their sender. ut

Using the causal consistency of the data store, we can transfer the property
of being able to accept the message to the receiver.

Theorem 2. All messages are allowed to be processed by the receiving replica
once the message is causally ready.

Proof (sketch). The proof uses Lemma 4 which states that the sender is allowed
to process the message. This also means that the policy allowing to process
the message is available on the sending replica and therefore gets registered
as a dependency of the message to be sent. When another replica r wants to
accept message msg, it has to wait until the message is causally ready. Thus all
dependencies of msg have been accepted by the replica before accepting msg
itself. This makes sure that the message msgAC carrying the policy change that
allowed sending the msg has been accepted by r before accepting msg. We can
show that the state of the replica is valid, meaning all accepted messages have



also been processed by the replica and the effects of the messages have been
materialized in the state. Because in a valid state the message msgAC has been
processed before processing msg the allowing policy is part of the access control
policies of r. This policy then allows processing msg so all messages are allowed
to be processed by the receiving replica.

Theorem 2 can be used to show the convergence of the access control state.
For the state to converge, no new messages may be sent and the pending mes-
sages have to be accepted meaning a system converges in a state where all known
messages have been accepted. In Theorem 2 we have shown that all accepted mes-
sages are processed by the replicas. This in combination with the set-semantics
of the access control state leads to convergence.

6 Conclusion

In this paper, we presented the design-space of access control systems for weakly
consistent data stores. We showed a formal model of an access control system
for causally consistent data stores. One of the main results is that the causally
between data operations and access control operations is important for the cor-
rectness of the access control system. In addition, we have shown that an ap-
plicative model in contrast to the optimistic models proposed by Cherif et al. [6]
and Samarati et al. [10] still works without undoing processed operations and
still the policies of all replicas eventually converge to a common state.

These results are still rather theoretical and abstract. The next steps will be
to develop an access control model inspired by popular models like role-based
access control [7, 11] or an authorization logic [2, 3] based on the lower-level
model we presented. An implementation of such as system will be based on
Antidote [1], a causal-consistent data store developed by the SyncFree Project
2.

2 https://syncfree.lip6.fr/
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