Evaluating Interpreter Design in Prolog

Philipp Ko6rner, David Schneider and Michael Leuschel

Institut fiir Informatik, Heinrich Heine University Diisseldorf, Germany

{p.koerner, david.schneider}@hhu.de, leuschel@cs.uni-duesseldorf.de

Abstract. The semantics and the recursive execution model of Prolog
make it very natural to express language interpreters in form of AST
(Abstract Syntax Tree) interpreters where the execution follows the tree
representation of a program. An alternative implementation technique is
that of bytecode interpreters. These interpreters transform the program
into a compact and linear representation before evaluating it and are
generally considered to be faster and to make better use of resources.
In this paper, we discuss different ways to express the control flow of
interpreters in Prolog and present several implementations of AST and
bytecode interpreters.

On a simple language designed for this purpose, we evaluate whether
techniques best known from imperative languages are applicable in Prolog
and how well they perform. Our ultimate goal is to assess which interpreter
design in Prolog is the most efficient as we intend to apply these results
to a more complex language. However, we believe the analysis in this
paper to be of more general interest.

1 Introduction

Writing simple language interpreters in Prolog is pretty straightforward. The data
structures and language semantics are a natural match to the evaluatation of
programs, in particular if those are represented as trees. Selecting which predicate
to execute in order to evaluate a part of a program is done by unifying the part
of the program to be executed next with the set of rules in Prolog’s database that
implement the language semantics. Subsequent execution steps can be chosen
using logic variables that are bound to substructures of the matched node.

Although this approach to interpreter construction is a natural match to
Prolog, the question remains if it is the most efficient way to implement the
instruction dispatching logic for any language implemented in Prolog. In par-
ticular, we have developed such an interpreter [4] for the full B language and
wanted to evaluate the potential for improving its performance, by using alternate
implementation techniques.

Interpreters implemented in imperative languages, especially low-level lan-
guages, often make use of alternative techniques for implementing the dispatching
logic, taking advantage of available data structures and programming paradigms
that might be available in higher-level languages.

In this article, we try to explore if some of these techniques can be implemented
in Prolog or applied in interaction with a Prolog runtime with the goal to assess

if the instruction dispatching for language interpreters can be made faster while
keeping the language semantics in Prolog.

In order to examine the performance of different dispatching models in Prolog,
we have defined a simple imperative language named ACOL, which is described
in section 2. For ACOL we have created several implementations described in
section 3, that use different paradigms for the dispatching logic. Finally, in
section 4, we present a set of benchmarks written in ACOL used to evaluate the
implemented interpreters when running on SICStus and SWI Prolog.

2 A Simple Language

As a means to evaluate the different interpreter designs described in section 3,
we have defined a very simple and limited language named AcoL!.

AcoL is an imperative language consisting of three kinds of statements: while-
loops, if-then-else statements and variable assignments. The only supported value
type is integer. Furthermore, ACOL offers a few arithmetic operators (addition,
subtraction, multiplication and modulo), comparisons (less than (or equal to),
greater than (or equal to) and equals), as well as a boolean not operator.

A simple AcoL program is shown in fig. 1.

the initial environment (i.e. input):
base = 2
exponent = 5

the program

val = 1;

while exponent > 0 {
val = val * base;
exponent = exponent - 1;

}

Fig. 1: A small program

3 Interpreter Implementations

There are many ways to implement ACOL, in C as well as in Prolog. Considering
several different interpreter implementation techniques, in this section we will
describe possible designs of interpreters and the closely related representations of
the ACOL programs. The interpreters are based on either traversing the abstract
syntax tree representation of a program or on compiling the program to bytecode
first and evaluating this more compact representation instead.

All interpreters share the same implementation of the language semantics
exposed by an object-space API [5]. In order to keep the implementations

1 AcoL is not a backronym for ACOL is a computable language

simple and compatible, they all call into the same object space. Nonetheless, the
interpreters differ very much in the representation of the program and, hence, in
the process of dispatching.

In order to discuss the differences, we will translate a small example program
shown in fig. 1 into the different representations and show an excerpt of the
interpretation logic for each paradigm. In fig. 2, the AST for the example program
is depicted.

Statements

Fig.2: AST

3.1 AST Interpreter

The most natural way to implement an interpreter in Prolog is in form of an
AST-interpreter since it synergises very well with its execution model.

The data structure used for this interpreter is the tree representation of the
program as generated by the parser, the AST (abstract syntax tree). In Prolog,
the AST can be represented as a single term as shown in fig. 3. The program
itself is a Prolog list of statements. However, every statement is represented as its
own tree. Block statements, i.e. if and while, will contain a list of statements
themselves.

[assign(id(val), int(1)),

while (gt (id(exponent), int(0)),
[assign(id(val), mul(id(val), id(base))),
assign(id(exponent), sub(id(exponent), int(1)))1)]

Fig. 3: Prolog representation of the AST

ast_int([], Env, _Objspace, Env).
ast_int([H|T], EnvIn, Objspace, EnvOut) :-

ast_int(H, EnvIn, Objspace, Env), ast_int(T, Env, Objspace, EnvOut).
ast_int(if(Cond, Then, Else), EnvIn, Objspace, EnvOut) :-

eval(Cond, EnvIn, Objspace, X),

(X == true -> ast_int(Then, EnvIn, Objspace, EnvOut)

; ast_int(Else, EnvIn, Objspace, EnvOut)).

ast_int(assign(id(Var), Expr), EnvIn, Objspace, EnvOut) :-

eval(Expr, EnvIn, Objspace, Res), Objspace:store(EnvIn, Var, Res, EnvOut).
ast_int(while(Cond, Instr, _Invariant, _Variant), EnvIn, Objspace, EnvOut) :-

ast_while(Cond, Instr, EnvIn, Objspace, EnvOut).

Fig. 4: Dispatching in a Prolog AST interpreter

The AST interpreter will examine the first element of the list, execute this
statement and continue with the rest of the list, as can be seen in fig. 4. Every
tree encountered this way is evaluated recursively.

Choosing the implementation for each node in the tree is done by unifying
the current root node with the set of evaluation rules. This approach benefits
from the first argument indexing [7] optimisation done by most Prolog systems.

3.2 Bytecode Interpreters

We have defined a simple set of bytecodes, described below, as a compilation
target for ACOL programs. Based on these instructions we will introduce a series
of bytecode-interpreters that explore different implementation approaches in
Prolog and C.

As many bytecode interpreters for other languages, ours are stack-based. Some
opcodes may create or load objects and store them on the evaluation stack, e.g.
push or load. Yet others may in turn consume objects from the stack and create
a new one in return, e.g. add. Lastly, a single opcode is used to manipulate the
environment, i.e. assign. An exhaustive list is shown in table 1.

Imperative Bytecode Interpreter Usually, bytecode interpreters are written
in imperative languages, that are rather low-level, e.g. C, that allow more control
about how objects are laid out in memory and provide fine grained control over
the flow of execution.

To introduce the concept of a bytecode interpreter, we present an implemen-
tation of AcoL beyond Prolog, that is purely written in C.

The bytecode is stored as a block of memory, that can be interpreted as an
array of bytes. The index of this array that should be interpreted next is called
the program counter. After that opcode is executed, the program counter is
incremented by one plus the size of its arguments. However, it may be set to an
arbitrary index by opcodes implementing jumps. Integer arguments are encoded
in reverse byte order. An example for a bytecode based on the program above is
shown in fig. 5.

Name Arguments Semantics
10 jump 4 bytes encoded PC jumps to new PC
11 |jump-if-false 4 bytes encoded PC jumps to new PC if top element is falsey
12 | jump-if-true 4 bytes encoded PC jumps to new PC if top element is truthy
20 pushl 1 byte encoded integer push the argument on the stack
21 push4 4 bytes encoded integer push the argument on the stack
40 load 4 bytes encoded variable ID push variable on the stack
45 assign |4 bytes encoded variable ID store top of the stack in variable
197 mod - pop operands, push result of operation
198 mul - pop operands, push result of operation
199 sub - pop operands, push result of operation
200 add - pop operands, push result of operation
240 not - pop operand, push negation
251 eq - pop operands, push result of comparison
252 le - pop operands, push result of comparison
253 It - pop operands, push result of comparison
254 ge - pop operands, push result of comparison
255 gt - pop operands, push result of comparison
Table 1: A bytecode for the described language
unsigned
char bc[] = {20, 1, // push integer 1 on the stack
45, 2, 0, 0, 0, // store it in variable at index 2
// (i.e. val)
40, 1, 0, 0, 0, // load the variable at index 1
// (i.e. exponent)
20, 0, // push 0O
255, // greater than
11, 54, 0, 0, O, // jump behind loop
// if condition is falsey
40, 2, 0, 0, 0, // load val
40, 0, 0, 0, 0, // load base
198, // mul
45, 2, 0, 0, 0, // store val
40, 1, 0, 0, 0, // load exponent
20, 1, // push 1
199, // sub
45, 1, 0, 0, 0, // store exponent
10, 7, 0, 0, 0, // jump to beginning of loop
0} // terminate

Fig. 5: Example

bytecode in C

while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bclpcl) {

while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bclpcl) {
case JUMP:

pc = decode_arg4(arg); break;

case LOAD:
index = decode_arg4(arg) ;
push(stack, env[index]);
pc += 5; break;
case ASSIGN:
env[arg] = pop(stack);
pc += 5; break;
case ADD:
b = pop(stack);
a = pop(stack);

case JUMP:
pc = decode_argé4(arg); break;
case LOAD:
index = decode_arg4(arg)
push(stack, env[index]);
pc += 5; break;
case ASSIGN:
index = decode_arg4(arg);
PL_put_term(env[index], pop(s));
pc += 5; break;

case ADD:
argl = PL_new_term_refs(3);
arg2 = argl + 1;

var = argl + 2;
PL_put_term(arg2, pop(s));
PL_put_term(argl, pop(s));
PL_call_predicate(NULL,

push(stack, add(a, b)); PL—QfNORMAL)
pc++; break; predicate_add,
// ... many further cases argl);
} push(s, var);
} pc++; break;
// ... many further cases

Fig. 6: Dispatching logic in C

Fig. 7: Dispatching logic using SWI’s
C-Interface

The dispatching logic is implemented as a switch-statement, that is contained
in a loop. An excerpt of the implementation of our bytecode-interpreter in C is
shown in fig. 6. Every case block contains an implementation of that specific
opcode. After the opcode is executed, the program counter is advanced or reset
and the next iteration of the main loop is commenced.

C-Interfaces We made the digression into an interpreter written in C not only
to present the concept of bytecode interpreters. Instead, we can utilise the same
dispatching logic, but instead of calling an object space that is implemented
in C, we can use the C interfaces provided by the Prolog runtimes we consider
(SICStus and SWI) to call arbitrary Prolog predicates. This way, we can query
the aforementioned object space that contains the semantics of AcoL, but is
implemented in Prolog. An excerpt when using the C interface of SWI Prolog is
shown in fig. 7.

Then, the main loop dispatches in C, but the objects on the evaluation stack
are created and the operations are executed by Prolog predicates.

Prolog Facts The main issue with bytecode interpreters in Prolog is to efficiently
implement jumps to other parts of the bytecode. With an interpreter in C, all we
have to do is re-assigning the program counter variable. Prolog, however, does
not offer arrays with constant-time indexing.

The idiomatic way to simulate an array would be to use a Prolog list, but
on this data structure we can perform lookups only in O(n). However, there are
other representations of the program that allow jumping to another position
faster.

One way to express such a lookup in O(1) is to transform the bytecode into
Prolog terms bytecode (ProgramCounter, Instruction, Arguments). Those
terms are written into a seperate Prolog module that is loaded afterwards. The
first argument indexing optimisation then allows performing lookups in constant
time.

In contrast to an interpreter written in C, it does not perform well to encode
integer arguments into reverse byte-order arguments. Instead, we use the Prolog
primitives, i.e. integers for values and atoms for variable identifiers.

bytecode(0, 20, 1).
bytecode(2, 45, val).
bytecode(7, 40, exponent).
bytecode (12, 20, 0).
bytecode(14, 255, [1).
bytecode(15, 11, 55).
bytecode (20, 40, val).
bytecode (25, 40, base).
bytecode (30, 198, [1).
bytecode (31, 45, val).
bytecode (36, 40, exponent).
bytecode (41, 20, 1).
bytecode (43, 199, [1).
bytecode (44, 45, exponent).
bytecode (49, 10, 7).
bytecode(54, 0, [1).

Fig. 8: Bytecode as Prolog facts

Figure 8 shows a module that is generated from the bytecode. The interpreter
fetches the instruction located at the current program counter, executes it and
increments the program counter accordingly. This is repeated until it encounters
a special zero instruction that denotes the end of the bytecode.

The dispatching mechanism is shown in fig. 9. Similar to an interpreter in C,
every opcode has an implementation in Prolog that calls into the object space.
Any rule of fact_int is equivalent to a case statement in C.

Sub-Bytecodes Another design is based on the idea that a program is executed
block-wise, i.e. a series of instructions that is guarenteed to be executed in this
specific order. This is very simple since ACOL does not include a goto-statement
that allows arbitrary jumps. From a programmer’s point of view, blocks are the
body of while-loops or those of if-then-else statements.

Instead of linearising the entire bytecode, only a block is linearised at once.
In order to deal with blocks that are contained by another block (e.g. nested
loops), two special opcodes are added. They are used to suspend the execution

fact_int(PC, Objspace, Env, Stack, REnv) :-
generated:bc(PC, Instr, Args), % fetch the instruction
fact_int(Instr, Args, PC, Stack, Env, Objspace, REnv).
fact_int (200, _Args, PC, [Y, X|Stack], Env, Objspace, REnv) :-
Objspace:add(X, Y, Res), NewPC is PC + 1,
fact_int(NewPC, Objspace, Env, [Res|Stack], REnv).
% fact_int also has implementations of all the other bytecodes...

Fig.9: Dispatching in the facts-based interpreter

of the current block and look up the sub-bytecodes of the contained blocks that
are referenced via its arguments. After those sub-bytecodes are executed, the
execution of the previous bytecode is resumed.

The special if-opcode references the blocks of the corresponding then- and
else- branches. After the condition is evaluated, only the required block is looked
up and executed. The other special opcode for while-loops references the bytecode
of the condition that is expected to leave true or false on the stack, as well as the
body of the loop. The blocks corresponding to condition and body are evaluated
in turn until the condition does not hold any more, so the execution of its parent
block can continue.

Similar to the facts in the interpreter above, the sub-bytecodes are asserted
into their own module to allow fast lookups.

Figure 10 shows an example that includes the special opcode for the while-
statement.

[20, 1, 45, val, % val =1
2, 0, 1] % while (condition encoded in sub-bytecode O,
% body encoded in sub-bytecode 1)

% Sub-bytecodes
sbc(0, [40, exponent, 20, 0, 255]).
sbc(1, [40, val, 40, base, 198, 45, val, 40, exponent, 20, 1, 199]).

Fig. 10: Bytecode with sub-bytecodes

Figure 11 shows an excerpt of the dispatching logic used for this interpreter.
The recursion in bc_int2 will update the bytecode-list with its tail instead of
manipulating a program counter. Hence, in this implementation, the interpreter
can only move forward inside of a block. If it is required to move backwards in
the program, it is only possible to re-start at the beginning of a block.

3.3 Rational Trees

Based on [1], we have created implementations of an AST- and a bytecode-
interpreter for ACOL that use the idea of rational trees to represent the program

bc_int([], Env, Stack, _Objspace, Env, Stack).
bc_int ([H|R], Env, Stack, Objspace, REnv, RStack) :-
bc_int2(H,R, Env, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of an if-statement
bc_int2(1, [T, EIR], Env, [Cond|Stack], Objspace, REnv, RStack) :-
(Cond == true -> subbytecodes:sbc(T, Then),
h_bc_int(Then, [], Env, Objspace, TEnv)
; subbytecodes:sbc(E, Else),
h_bc_int(Else, [], Env, Objspace, TEnv)),!,
bc_int (R, TEnv, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of a while-loop
bc_int2(2, [C, II|R], Env, Stack, Objspace, REnv, RStack) :-
subbytecodes:sbc(C, Cond),
bc_int(Cond, Env, [], Objspace, Env, [Res]),
(Res == true -> subbytecodes:sbc(I, Instr),
h_bc_int(Instr, [1, Env, Objspace, T),!,
bc_int2(2, [C, IIR], T, Stack, Objspace, REnv, RStack)
; !, bc_int(R, Env, Stack, Objspace, REnv, RStack)).
bc_int2(200, R, Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res),!,
bc_int(R, Env, [Res|Stack], Objspace, REnv, RStack).
% bc_int2 also has implementations of all the other bytecodes...

Fig. 11: Dispatching on bytecodes with sub-bytecodes

being evaluated. This technique aims to improve the performance of jumps by
using recursive data structures containing references to the following instructions.

AST-Interpreter with Rational Trees Since ACOL does not include a con-
cept of arbitrary jumps as used in [1], it is not possible to achieve the speed-up
described in the referenced paper. However, we can make use of the basic idea
for the representation of programs: every statement has a pointer to its successor
statement.

In our naive AST interpreter, a new Prolog stack frame is used for every level
of nested loops and if-statements. Instead of returning from each evaluation to
the predicate that dispatched to the sub-statement, we can make use of Prolog’s
tail-recursion optimisation and continue with the next statements directly.

assign(id(val), int(1),
while (gt (id(exponent), int(0)),
assign(id(val), mul(id(val), id(base)),
assign(id(exponent), sub(id(exponent), int(1)),
while(gt(id(exponent), int(0)),
RES)))]
end))

Fig. 12: Rational tree representation

For our example program, we generate an infinite data structure for the
while-loop depicted in fig. 12. The concept of rational trees allows us to have the

while-term re-appearing in its own body, so it has not to be saved in a stack
frame.

The last statement end is artificially added to indicate the end of the program
so that the interpreter may halt.

Then, the dispatching logic is still very similar to the naive AST interpreter
as shown in fig. 13.

rt_int(end, Env, _, Env) :- !.
rt_int(assign(id(Var), Expr, Next), Env, Objspace, REnv) :-
eval (Expr, Env, Objspace, Res),
Ubjspace:store(Env, Var, Res, EnvQOut), !,
rt_int (Next, EnvOut, Objspace, REnv).
rt_int(if (Cond, Then, Else), Env, Objspace, REnv) :-
eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Then, Env, Objspace, REnv)
; !, rt_int(Else, Env, Objspace, REnv)).
rt_int(while(Cond, Instrs, Else), Env, Objspace, REnv) :-
eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Instrs, Env, Objspace, REnv)
; !, rt_int(Else, Env, Objspace, REnv)).

Fig. 13: Dispatching in a rational tree interpreter

Bytecode-Interpreter With Rational Trees In Prolog, Rational trees can
also be used for bytecodes. Jumps are removed from that representation entirely.
While-loops are unrolled into an infinite amount of alternated bytecodes of the
condition and if-statements that contain the body of the loop in their then-branch
and the next statement after the loop in their else-branch. An example is shown
in fig. 14.

At first glance, it looks weird that the opcode integers are replaced by human-
readable descriptions. However, functors are limited to atoms and then there is
not much difference between atoms that contain only a number or short readable
names. We chose the latter one because they are by far more comprehensible.

push(1, assign(val, % code before the loop
load(exponent, push(0, gt(% condition (1)
if (load(val, load(base, mul(store(val, % while-body (1)
load(exponent, push(1, sub(store(exponent, % while-body (1)

load(exponent, push(0, gt(% condition (2)
if (load(val, load(base(,))), % while-body (2)
end)))))))))))) % end of while (2)
end)))))) % end of while (1)

Fig. 14: Bytecode with rational trees

rt_bc_int(end, Env, Stack, _Objspace, Env, Stack).
rt_bc_int(if (Then, Else), Env, [X|Stack], Objspace, REnv, RStack) :-
(X == true -> !, rt_bc_int(Then, Env, Stack, Objspace, REnv, RStack)
; !, rt_bc_int(Else, Env, Stack, Objspace, REnv, RStack)).
rt_bc_int(push(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:create_integer(Arg, Val),!,
rt_bc_int(Next, Env, [Vall|Stack], Objspace, REnv, RStack).
rt_bc_int(load(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:lookup(Arg, Env, Val), !,
rt_bc_int(Next, Env, [Vall|Stack], Objspace, REnv, RStack).
rt_bc_int(add(Next), Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res), !,
rt_bc_int(Next, Env, [Res|Stack], Objspace, REnv, RStack).
% rt_bc_int implements all other opcodes as well...

Fig. 15: Dispatching in a bytecode interpreter with rational trees

The dispatching is pretty similar to the AST interpreter that utilises rational
trees, as shown in fig. 15. The main difference between those two interpreters is
that this one uses a simulated stack to evaluate terms instead of Prolog’s call
stack.

4 Evaluation

To compare the performance of the different interpreters for ACoL, we selected a
set of different benchmarks. Because the language is very limited, it is hard to
design "real-world programs”.

In this section, we present those benchmarks and compare their results. Each
program was executed with every interpreter ten times. The runtime consists
only of the time spent in the interpreter, the compilation time is excluded.

The benchmarks were run on a machine that runs a linux with a 3.19.0-25-
generic 64-bit kernel on an Intel 15-2400 CPU @ 3.10GHz. Two Prolog implemen-
tations were considered: SICStus Prolog 4.3.2, a commercial product, and SWI
Prolog 7.2.2, a free open-source implementation. All C code was compiled by gcc
4.9.2. with the -03-flag.

Since AcoL does not offer complex features, we expect that the dispatching
claims a bigger share of the runtime than the actual operations.

4.1 Benchmarks

Prime Tester The first benchmark is a naive prime tester. The program is
depicted in fig. 16. The environment was pre-initialised with is_prime = 1,
start = 2, and V := 34 265 341.

Fibonacci Another benchmark is the calculation of the fibonacci sequence. How-
ever, we expect that most of the execution time will consist of the addition and
subtraction of two big numbers and that the interpreter overhead itself is rather

while (start < V) {
if (V mod start == 0) {

is_prime := 0;
} else {

is_prime := is_prime;
}
start := start + 1;

Fig. 16: Prime Tester Program

i:=1; iz=1;

while i < n { while i < n {
b :=b + a; b := b + a mod 1000000;
a:=b - a; a := b - a mod 1000000;
ic=1+1; i=1+1;

} }

Fig. 17: Fibonacci Programs

small. Therefore, a second version that calculates the sequence modulo 1000 000
is included.

Again, the environment is pre-initialised, in this case with a := 0, b := 1 and
n = 400000. To ensure a significant runtime for the second version, the input is
modified so it calculates a longer sequence, i.e. n := 10000 000.

Generated ASTs Lastly, some programs were generated pseudo-randomly. Such
a generated AST consists of 20 to 50 statements that are uniformly chosen
from while-loops, if-statements and assignments. The body of a loop and both
branches of if-statements also consist of 20 to 50 statements. However, if the
nesting exceeds a certain depth, only assignments are generated for this block.

In order to guarentee termination, while-loops are always executed 20 times.
An assignment is artifically inserted before the loop that resets a loop counter,
as well as another assignment that increments this variable at the beginning of
the loop.

For assignments and if-conditions, a small subtree is generated. The generator
chooses uniformly between five predetermined identifiers, constants ranging from
-1 to 3, as well as additions and subtractions. If-conditions have to include exactly
one comparison operator.

The generator does include neither multiplications, because they caused very
large integers that slowed down the Prolog execution time significantly, nor
modulo operations, to avoid division by zero errors.

Three different benchmarks were generated using arbitrary seeds. Their
purpose is to complement the other three handwritten benchmarks, which are
rather small and might benefit from caching of the entire AST.

Benchmark H Interpreter ‘ SICSTus ‘ SWI

AST 66.46 =+ 0.32 (1.00)|438.05 £+ 6.32 (1.00)

Sub-Bytecodes 85.11 & 0.45 (1.28)|565.73 £ 27.28 (1.29)

Prime Tester Facts 96.77 + 1.82 (1.46)|537.64 £ 18.03 (1.23)
C-Interface 183.58 =+ 2.85 (2.76)| 82.11 & 1.77 (0.19)

AST w/ Rational Trees| 67.21 &£ o0.64 (1.01){426.76 £ 20.79 (0.97)

BC w/ Rational Trees | 78.32 & o0.s6 (1.18)|464.41 + 23.69 (1.06)

AST 9.99 £ 0.20 (1.00)] 10.49 £ 0.32 (1.00)

Sub-Bytecodes 10.11 £ 0.05 (1.on)| 11.91 & o0.26 (1.14)

Fibonacci Facts 10.47 &+ 0.07 (1.05)] 11.63 £ o0.35 (1.11)
C-Interface 10.57 &£ o.07 (1.06)| 3.86 £ 0.05 (0.37)

AST w/ Rational Trees| 10.16 =+ o.10 (1.02)| 10.39 £ o0.27 (0.99)

BC w/ Rational Trees | 10.11 % o0.06 (1.01)| 10.72 & 0.32 (1.02)

AST 27.86 == 0.52 (1.00){191.46 = 2.87 (1.00)

Sub-Bytecodes 35.10 % 0.31 (1.26)|231.86 % 10.55 (1.21)

. . . Facts 41.42 + 2.08 (1.49)|227.26 £ 9.98 (1.19)
Fibonacci (Maxmt) C-Interface 61.63 & 1.45 (2.21)| 32.19 £ o0.72 (0.17)
AST w/ Rational Trees| 28.62 £ o.ss (1.03)|187.49 £ 7.51 (0.98)

BC W/ Rational Trees | 33.23 & 1.01 (1.19)|200.34 £+ 5.38 (1.05)

AST 16.53 = 0.02 (1.00)[131.51 £ 3.86 (1.00)

Sub-Bytecodes 24.89 =+ 0.19 (1.51){144.96 £+ 2.86 (1.10)

Generated Facts 26.00 = 0.93 (1.57)|140.42 £+ 3.19 (1.07)
C-Interface NA 15.06 £ o0.29 (0.11)

AST w/ Rational Trees| 16.88 & 0.04 (1.02){129.03 £ 5.20 (0.98)

BC w/ Rational Trees | 20.41 =+ o0.10 (1.23){139.36 £+ 6.72 (1.06)

AST 24.31 &£ 0.12 (1.00)|199.75 + 5.85 (1.00)

Sub-Bytecodes 37.26 + 0.30 (1.53)|211.67 £ 5.00 (1.06)

Generated? Facts 38.45 + 1.36 (1.58)|204.97 £ 7.27 (1.03)
C-Interface NA 22.65 = o0.72 (0.11)

AST w/ Rational Trees| 25.02 =+ o0.06 (1.03){193.39 £ 5.42 (0.97)

BC w/ Rational Trees | 30.20 % 0.09 (1.24)[220.79 + 7.53 (1.11)

AST 15.98 =£ 0.04 (1.00){124.97 £+ 3.00 (1.00)

Sub-Bytecodes 24.14 & 0.23 (1.51){136.97 & 3.92 (1.10)

Generated3 Facts 27.93 £ 0.95 (1.75)[133.31 &= 4.39 (1.07)
C-Interface NA 14.47 £ 0.43 (0.12)

AST w/ Rational Trees| 16.04 &£ 0.03 (1.00)|121.68 £ 35.85 (0.97)

BC w/ Rational Trees | 19.43 & o.08 (1.22){128.45 £ 3.0 (1.03)

Table 2: Mean runtimes in seconds including the 0.95 confidence interval. The value

in parenthesis describes the normalised runtime (on the basis of the AST interpreter).
Fastest runtimes per benchmark and interpreter are highlighted.

>1,000x >1,000x >1,000x

[

g 7 |m AST

= Bl Sub-Bytecode

& M Facts

> 7 |8 C-Interface

2 O AST w/ Rational Trees

= [Bytecode w/ Rational Trees
o 4

R~

PrimeTester Fib FibMaxint Gen Gen2 Gen3

Benchmark

Fig. 18: Relative runtimes in SICStus, normalised to the runtime of the AST interpreter

1.4x
1.2x B
M

@ 0 i 0 &
g Ixr t o i d & a7
g l AST
g 08 -{ |l Sub-Bytecode
~ Il Facts
%) O C-Interface
2 0.6x - - | AST w/ Rational Trees
% [0 Bytecode w/ Rational Trees
X 04x - -

0.2x B

PrimeTester Fib FibMaxint Gen Gen2 Gen3

Benchmark

Fig. 19: Relative runtimes in SWI, normalised to the runtime of the AST interpreter

4.2 Results

The results of the benchmarks are shown in table 2. The mean value is determined
by the geometric mean as proposed by [2]. For the interpreter based on SICStus’
C-Interface, we cancelled the runs of the generated benchmarks after eight hours
without a result.

The most important result is that using either Prolog implementation, the
naive AST interpreter outperforms all of our pure Prolog implementations of
bytecode interpreters.

Figure 18 shows the results specific for SICStus Prolog. Independent of the
benchmark, all bytecode interpreters based on sub-bytecodes and on Prolog facts
are slow in comparison. The AST interpreter utilising rational trees performs
about as well as the naive AST interpreter. Surprisingly, the interpreter that
dispatches in C suffers heavy performance issues. At the time of writing, we do

not understand the reasons but are in contact with the SICStus support to clarify
this behaviour.

The results utilising SWI Prolog are shown in fig. 19. In comparison to any
bytecode-interpreter, the AST interpreter is faster. The AST interpreter with
rational trees seems to be slightly more performant. However, the difference is
small enough to be included in the uncertainty of measurement. The dispatching
in C, however, is very fast. Depending on the benchmark, it can achieve a speed-up
by an order of magnitude.

5 Conclusion, Related and Future Work

In this paper, we presented the language ACOL and multiple ways to implement
it as AST as well as bytecode interpreters. We designed several benchmarks in
order to evaluate their performance using different implementations of Prolog.

Our results suggest that if an interpreter is to be implemented in Prolog,
the implementation as an AST interpreter is very performant. Furthermore, it
does not involve any compilation overhead as it can work on the data structure
returned by the parser. Moreover, when using SWI Prolog, one can utilise C to
efficiently implement the dispatching and query Prolog predicates for the domain
logic.

In [6], Rossi and Sivalingam explored dispatching techniques in C based
bytecode interpreters, with the result that a less portable approach of composing
the code in memory before executing it yielded the best results. The techniques
discussed in [6] could be used in combination with SWI to further improve the
instruction dispatching performance in C.

An alternative for improving the execution time of a program, that was not
discussed here, is partial evaluation [3]. We intend to investigate the impact of
offline partial evaluation when compiling a subset of the described interpreters
for our benchmarks.

However, ACOL is a very simple language. Additional work is required to
determine whether these findings are applicable for more complex languages.
Furthermore, a richer language facilitates the creation of more benchmarks.

References

1. Manuel Carro. An Application of Rational Trees in a Logic Programming Interpreter
for a Procedural Language. CoRR, ¢s.DS/0403028, March 2004.

2. Philip J. Fleming and John J. Wallace. How not to lie with statistics: The correct
way to summarize benchmark results. Commun. ACM, 29(3):218-221, March 1986.

3. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

4. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for

the B method. STTT, 10(2):185-203, 2008.

. The PyPy Project. The Object Space, 2015.

6. M Rossi and K Sivalingam. A survey of instruction dispatch techniques for byte-code
interpreters. Seminar on Mobile Code, 1996.

ot

7. David H D Warren. An Abstract Prolog Instruction Set. Technical report, Artificial
Intelligence Center - SRI International, 1983.

