
A Data-Flow Approach for Compiling the
Sequentially Constructive Language (SCL)

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

www.informatik.uni-kiel.de/rtsys/
{ssm,cmot,rvh}@informatik.uni-kiel.de

Abstract. The Sequentially Constructive Language (SCL) is a mini-
mal synchronous language that captures the essence of the Sequentially
Constructive Model of Computation (SCMoC), a recently proposed ex-
tension of the classical synchronous model of computation. The SCMoC

uses sequential scheduling information to increase the class of construc-
tive (legal) synchronous programs. This facilitates the adoption of syn-
chronous programming by users familiar with sequential programming in
C or Java, thus simplifying the design of concurrent reactive/embedded
systems with deterministic behavior. The theoretical foundations of the
SCMoC are fairly well covered by now, and also the upstream compilation
from SCCharts (a Statechart dialect) and SCEst (a variant of Esterel)
to SCL. In this paper, we focus on how to compile SCL down to data-flow
equations, which ultimately can be synthesized to hardware or executed
in software.

1 Motivation & Related Work

Reactive systems are characterized by their regular interaction with the envi-
ronment, typically under real-time constraints. Physical time is conceptually di-
vided into a sequence of discrete ticks, and during each tick, the reactive system
reads inputs from the environment, processes them according to some inter-
nal system state, and then updates the system state and produces outputs to
the environment. Reactive systems may implement safety-critical applications
where determinate behavior is essential. However, they often entail concurrent
threads of control and interact through shared memory, which makes deter-
minacy challenging. This has motivated the development of synchronous lan-
guages [3], which have been used successfully in the industry since the 1990s,
e. g., for the development of avionics software or power plant control. Edwards [4]
and Potop-Butucaru et al. [11] provide good overviews of compilation challenges
and approaches for concurrent languages, including synchronous languages.

Synchronous languages achieve determinacy for concurrent systems by the
synchrony hypothesis, which abstracts from computation time and thus assumes
outputs to occur synchronously with the inputs they react to. This is achieved by
demanding unique, stable values for all shared variables throughout each tick.

www.informatik.uni-kiel.de/rtsys/

This simplifies formal reasoning, and has a natural, physical analogy of well-
defined, stable voltages on all wires on a hardware circuit. We thus say that a
synchronous program is causal, or constructive, if and only if it corresponds to a
circuit where all wires have well-defined voltages for all possible inputs and all
possible internal states, independent of variations in signal propagation delays
in an actual hardware realization.

This Synchronous Model of Computation (SMoC) for concurrent program-
ming contrasts with, e. g., the programming model offered by Java or Posix
threads. There the outcome of a program with concurrent threads that share
variables may depend on run-time scheduling decisions out of control of the
programmer. In Java, achieving determinacy often requires additional, brittle
constructs such as semaphores, monitors, barrier synchronizations etc. [9].

However, the classic realization of the synchrony hypothesis comes with re-
strictions that may be difficult to realize, in particular for novice programmers
used to imperative languages such as C or Java. Specifically, the requirement
that shared variables cannot change within a tick may come as a surprise. For
example, a construct such as “if (x) { x = false }” would be forbidden in the clas-
sical SMoC, because x could be true and false within a tick. Instead, one could
write for example “if (pre(x)) { x = false }” which states that if x was true in the
previous tick, then set it to false in the current tick. This, however, would intro-
duce an artificial tick boundary in a computation that conceptually has nothing
to do with the passage of physical time. Conversely, the computation in question
is purely sequential, with an obvious order of computation: first the test whether
x is true, second the possible assignment to false. Thus there is no race condition
between the read and the write of x, and a compiler should have no difficulty to
produce determinate code.

The desire to combine the foundations and nice properties of synchronous
languages with instantaneous memory updates has motivated the development
of the Sequentially Constructive model of computation (SCMoC) [17,1]. The basic
idea is to use any sequential scheduling information in the program to schedule
computations in a determinate fashion, and to use a particular scheduling pro-
tocol to order concurrent variable accesses. The SCMoC may still reject certain
programs as not being sequentially constructive, such as “fork x=y par y=x join”,
where the SCMoC does not know how to order the concurrent accesses to x and
y and which is therefore not determinate. However, the SCMoC accepts many
more programs than the SMoC.

The SCMoC is formally defined with the Sequentially Constructive Graph
(SCG), which is textually represented as the Sequentially Constructive Language
(SCL). The SCL is rather low-level and very simple yet rich enough to be used
as an intermediate language for compiling higher-level languages that want to
build on the SCMoC. So far, two such higher-level languages have been proposed.
The first language is Sequentially Constructive Statecharts (SCCharts) [15], a di-
alect of Harel’s statecharts [7]. The second language is Sequentially Constructive
Esterel (SCEst) [12], an extension of Esterel [11].

(a) Transformations of the
high-level compilation as
presented before [10]. The
intermediate result of the
high-level synthesis is an
SCG.

(b) Transformations of the
low-level data-flow synthesis.

Fig. 1. Single-Pass Language-Driven Incremental Compilation (SLIC) approach trans-
forming SCCharts to code.

Outline and Contributions

The original paper on SCCharts [15] briefly sketched two approaches to compile
SCL further into software or hardware, namely the data-flow approach and the
priority-based approach. We here present the data-flow approach in detail.

In Sec. 2 we explain the SCL and recapitulate definitions that are impor-
tant for the remainder of the paper. The previously presented compilation chain
(cf. Fig. 1) shows that the data-flow approach transforms from the generated
SCG to a sequentialized variant and then eventually into code. This transforma-
tion is executed in several steps depicted in Fig. 1b. Each step is described in
Sec. 3, which is the technical core of this paper. We here follow the Single-Pass
Language-Driven Incremental Compilation (SLIC) approach [10] where every
step is executed as a Model-to-Model (M2M) transformation, which facilitates a
modular compilation chain.

We have validated our compilation chain with a range of test cases. This
includes fairly extensive use in the class room. In Sec. 4 we report on a medium-
sized railway project that uses the data-flow approach to synthesize a railway
controller. We conclude in Sec. 5.

Fig. 2. Matrix showing the entire mapping throughout the transformation process from
SCCharts to circuits.

2 The Sequentially Constructive Language (SCL)

This section gives an overview of SCL. It only gives the necessary explanation
to understand the data-flow transformations. We refer to the sequentially con-
structive foundations [17] for a more formal and wider introduction.

The minimal SCL is adopted from C and Esterel. The concurrent and sequen-
tial control-flow of an SCL program is given by an SCG, which acts as an internal
representation for elaboration, analysis and code generation. Rows two and three
of Fig. 2 present an overview of SCL and SCG elements and the mapping between
them. SCL is a concurrent imperative language with shared variable communica-
tion. Variables can be both written and read by concurrent threads. Reads and
writes are collectively referred to as variable accesses. SCL programs consist of
one or more sequentially ordered statements with the following abstract syntax
of statements

s ::= x = e | s ; s | if (e) s else s | l: s | goto l | fork s par s join | pause

where x is a variable, e is an expression and l ∈ L is a program label. The state-
ments s comprise the standard operations assignment, the sequence operator,
conditional statements, labelled commands and jumps.

The sublanguage of expressions e used in assignments and conditionals is not
restricted. However, we rule out side effects when evaluating e. Our notion of

sequential constructiveness is based on the idea that the compiler guarantees a
strict “initialize-update-read” (iur) execution schedule during each macro tick.
The initialize phase is given by the execution of a class of writes which we
call absolute writes (e. g., “x = 1”), while the update phase consists of executing
relative writes where scheduling order does not matter (e. g., “x += 2” and “x +=3”
can be scheduled in any order, with the same result). All the read accesses, in
particular the conditional statements which influence the control-flow, are done
last.

2.1 SCG Representation

An SCG is a labelled graph G = (N,E) whose statement nodes N correspond
to the statements of the program, and whose edges E reflect the sequential
execution ordering and data dependencies between the statements. Nodes and
edges are further described by various attributes. A node n is labelled by the
statement type. Nodes labelled with x = e are referred to as assignment nodes,
those with if (e) as condition nodes, all other nodes are referred by their statement
type (entry nodes, exit nodes, etc.). Fig. 2 sketches how SCG elements correspond
to an SCL program. A technical report [16] describes this mapping in detail.

Every edge e has a type e.type that specifies the nature of the particular
ordering constraint expressed by e. Edges that follow the initialize-update-read
schedule are labeled iur -edges. iur -edges combined with the sequential control-
flow edges are termed instantaneous edges. An SC-schedule is a subset of in-
stantaneous edges of an SCG. A structural SC-schedule is an SC-schedule that
is solely derived by analysis of the program structure. A program for which the
structural SC-schedule is acyclic is structurally acyclic SC, abbreviated SASC.
The data-flow approach presented here requires that the SCG is SASC; this, for
example, forbids any loops that are instantaneous, i. e., where the loop body is
not interrupted by a tick boundary.

2.2 The ABO Example

The ABO example shown in Fig. 3a illustrates the concepts of core SCCharts,
namely synchronous ticks, concurrency, deterministic scheduling of concurrent
shared variable accesses, and sequential overwriting of variables.

The execution of an SCChart is divided into a sequence of logical ticks. The
interface declaration of ABO states that A and B are boolean inputs, which are
initialized by the environment at the beginning of each tick, as well as outputs,
which are fed back to the environment at the end of each tick. O1 and O2 are
boolean outputs, which here are initialized to false, and which are persistent
from one tick to the next.

Initially, the system is in state WaitAB, which consists of regions (threads)
HandleA and HandleB. HandleA stays in the initial state WaitA until the boolean
input A becomes true. Then it sets B and O1 to true and transitions to state
DoneA, which is final and hence terminates HandleA. Similarly, WaitB waits for

(a) Core SCChart ABO.

-A

A,
B,O1

O1

B

B,
O2

-A

A,B,
O2

(b) Possible execution
traces, with inputs
above the tick time line
and outputs below.

(c) The SCG. Basic blocks (BBs) are
denoted as (purple) rectangles, denoted
with their guards; gi guards BB i. The
data dependence on B (dashed arrow)
splits BB 7 into two scheduling blocks.

1 module ABO
2 input output bool A, B;
3 output bool O1, O2;
4 {
5 O1 = false;
6 O2 = false;
7

8 fork
9 HandleA:

10 if (! A) {
11 pause;
12 goto HandleA;
13 }
14 B = true;
15 O1 = true;
16

17 par
18 HandleB:
19 pause;
20 if (! B) {
21 goto HandleB;
22 }
23 O1 = true;
24

25 join ;
26

27 O1 = false;
28 O2 = true;
29 }

(d) SCL code.

Fig. 3. The ABO example, illustrating the Core SCChart features [15].

B to become true, sets O1 to true, and transitions to final state DoneB. Once
both HandleA and HandleB have terminated, WaitAB is left, O1 is set to false, O2
to true, and state GotAB is entered. The dashed edge denotes the transition to
DoneA to be immediate, meaning that HandleA does not pause for a tick before
it is ready to detect the transition trigger. In contrast, the transition to DoneB
in HandleB is delayed and thus does not get triggered in any tick in which WaitB
is entered.

Two possible execution traces are shown in Fig. 3b. The first trace begins with
A set to true by the environment in the initial tick. This triggers the transition
to DoneA and sets both B and O1 to true. As this is the initial tick, the non-
immediate transition from WaitB to DoneB does not get triggered by the B. In
the next tick, all inputs are false, no transitions are triggered, and O1 stays at
true. In the third and last tick, B then triggers the transition to DoneB, which
sets O1 to true, but sequentially afterwards, O1 is set to false again as part of
the transition to GotAB, which is triggered by the termination of HandleA and

HandleB. Hence, at the end of this tick, only O2 will be true because the SCMoC

allows O1 to be overwritten sequentially. The second trace illustrates how A in
the second tick triggers the transitions to DoneA as well as to DoneB, hence
emission of B and O2 and the termination of the automaton.

3 Data-Flow M2M Transformation

As depicted in Fig. 1 the transformation of the SCG mapped from a normalized
SCChart to a sequentialized SCG is done in several distinct steps. Following the
SLIC approach [10] every step is executed as an M2M transformation. This section
explains each of these steps, namely dependency analysis, basic block arrangement,
guard creation, scheduling, and sequentialization. For the subsequent analyses we
assume that superfluous fork-join-constructs, i. e., containing only one thread,
and dead code were removed.

3.1 Dependency Analysis

The analysis of dependencies between different expressions is done straight-
forwardly. Every assignment and conditional in the program is checked for vari-
able accesses. The type of the access is stored during the compilation. For each
pair of accesses it is determined if the access is concurrent and/or confluent.
Confluence means that the scheduling order does not matter, as is the case for
example for the aforementioned relative writes.

All non-concurrent (confluent or non-confluent) dependencies are handled
according to the sequential control-flow, whereas concurrent accesses are sched-
uled following the “initialize-update-read” protocol. According to Sec. 2.1, SCL

programs that contain immediate dependency cycles are not constructive and
are rejected.

In the ABO example applying the dependency analysis reveals one concurrent
dependency as depicted in Fig. 4a. The concurrent dependency is shown as
green, dashed line between the two threads connecting the B = true assignment in
HandleA with the B conditional of HandleB. Furthermore, there are several other
dependencies indicated by the red solid edges. These dependencies would cause
conflicts in a purely concurrent context if they were not confluent. However, in
ABO they can be executed sequentially. For example, the assignment to O1 at
the top before the fork gets always executed before the assignment to O1 after
the join.1

1 Non-conflicting non-concurrent dependencies are normally not shown in our tool
chain. Here, we activated the visualization to demonstrate the dependency analy-
sis. However, concurrent non-confluent dependencies, which represent conflicts, are
always shown.

(a) The SCG of ABO after ex-
ecuting the dependency trans-
formation. All dependencies are
visible. However, the red solid
edges, which would cause con-
flicts in a concurrenct context,
are unproblematic because they
either can be solved sequentially
or are confluent.

(b) The SCG of ABO after proceeding with the BB

and guard creation transformations. The nodes are
encapsulated in their SB and, hence, BB. Each BB

has its guard expression attached.

Fig. 4. Transformation of the SCG following the SLIC approach executing the depen-
dency, the basic block, and the guard creation transformations.

3.2 Basic Block Arrangement

The data-flow compilation approach converts all control flow, be it sequential
or concurrent, into a flat sequence of guarded commands. As a consequence,
we cannot handle instantaneous loops with this code generation approach, as
mentioned before. A guarded command is a statement that gets executed in the
current tick if and only if a specific guard evaluates to true in the current tick;
guards have a unique value throughout each tick.

To economize on the number of guards, we make use of the standard concept
of Basic Blocks (BBs). In our setting BBs denote sets of statements that are
executed together in a tick, i. e., either all or none of them are executed in a
tick. Thus, all statements within a BB may share the same guard. The following
rules, defined in a more formal way elsewhere [13], define BBs:

– A BB begins if the SCG representation of that statement has two or more
incoming control-flow edges.

– A BB ends with a statement that forks the SCG control-flow and hence, has
two or more outgoing control-flow edges. The last instruction of a thread
may also be the closure of a BB.

– BBs are split at pause statements.
– SCG fork nodes close a BB, whereas join nodes start a new one.
– Any statement of a given program can only be included in one BB at any

time.

The statements in a BB are not necessarily executed atomically, in the sense
that BBs of concurrent threads may be interspersed with each other in order
to satisfy dependencies induced by shared variables. Therefore, we may further
divide each BB in Scheduling Blocks (SBs). With the BBs defining what set of
instructions becomes active in the current tick, the SBs take the dependencies
into account and define when a particular instruction set is executed, thus,
defining the execution order. Therefore, a SB subdivides a BB if an incoming
dependency edge targets an instruction inside the BB because the scheduler
might want to reschedule here.

The arrangement of the blocks for the ABO example is depicted in Fig 4b.
Building the blocks according to the rules imposed earlier in this section, each
instruction is included in a SB directly surrounding it. The SB itself is included
in a BB. In ABO most BBs only comprise one SB. A BB containing two SBs can
be seen at the top of HandleB marked with the guard g7. This block gets divided
due to the dependency found in Sec. 3.1.

3.3 Guard Creation

In every tick instance a BB may be active or inactive. The activity state of a BB

depends on previous BBs and is called the guard of the BB. The BB determines
the guard expression, whereas the SB defines the order of execution as described
in Sec. 3.2.

Simple Guards directly depend on their predecessors. The guard of the first block
in an SCL program depends on the GO start signal of the environment usually
emitted at the initialization or reset of the program. Outgoing control-flows of
a BB may serve as guard expressions, or activators, for succeeding BBs. Thus, a
guard is a disjunction of all preceding activators and evaluates to true as long
as one incoming activator is true. Generally speaking, a BB is active, if and only
if at least one of its guard expressions is active in the same tick.

Not all BBs need an own guard if their order of activation is determined
statically at compile-time. Therefore, we use standard compiler techniques such
as copy propagation [2] to reduce the amount of needed unique guards.

The guards generated for the ABO example are shown in Fig. 4b. Each BB

has caption lines at the top. The first line shows the guard of the block and
the guard expression generated for this block is displayed in the second line.
For instance, the first block of ABO is named g0. Since it is the first block of
the program, it gets activated once the program starts (and at every reset).
Therefore, the guard expression is equal to the GO signal of the environment.
Another example is g8 in HandleB. Here, the guard depends on its predecessor g7.
Furthermore, the BB of g8 is a successor of the true branch of the conditional
in the block of g7 which evaluates to true if B is true. Therefore, the guard
expression of g8 is g7 & B.

Notice that the BB of g7 includes two SBs due to the incoming dependency
edge. SBs are named like their parent BB and suffixed alphabetically after the
first one. As explained in Sec. 3.2, the scheduler may reschedule between any
two SBs. However, as both SBs live inside the same BB, the guard expression
of both SB are identical as explained earlier. The guard expression of g7 is
pre(g6) meaning that it is set to the activation status of g6 in the tick before.
This implements a tick boundary, and we also say that a program resumes the
execution at the depth here if it was paused at the surface in the preceding tick.

Also, the effects of the copy propagation can be seen in the figure. SB g1
in HandleA will immediately become active after program activation because it
solely depends on g0. Hence, the GO signal also triggers this block.

Complex Guards cannot simply depend on their direct predecessors. In SCL pro-
grams, forked threads must be joined at some point in time. The join instruction
will not proceed unless each thread has finished. Hence, a BB including a join
node only activates if all preceding threads are terminated and at least one
of them exited in the actual tick instance. Each thread status is signaled by
an empty flag which describes whether or not a thread is inactive. All empty
flags are combined in a conjunction together with a combination of exit codes
that signal whether at least one thread terminated in this tick instance. The
empty flag is combined with the GO signal of the preceding circuit to detect
active instantaneous threads. BBs that are responsible for joining threads are
also called synchronizer. The construction of the synchronizer is done similar to
the synchronizer circuit described in Compiling Esterel [11].

In the ABO example the BB with guard g9 is activated by a complex guard
expression. The conjunction consists of three parts. The first two parts (g2 e1
| g2) & (g8 e2 | g8) indicate if the threads HandleA and HandleB are inactive or
terminated in this tick. g2 and g8 are the SBs that are active if their thread is
exited in this tick because they include the corresponding exit node. The empty
flags, suffixed with ex, are set to true if the registers, i. e., pause instructions,
are inactive. To activate the block with the join node, at least one thread must
have been exited in this tick. Therefore the third part (g2 | g8) is checked.

(a) The SCG after the scheduling
transformation depicting the route the
scheduler has chosen. Here, only one
context switch is necessary.

(b) The SCG after the sequentialization
transformation showing the code that will be
executed within the main loop of the reactive
tick cycle.

Fig. 5. Transformation of the SCG following the SLIC approach executing the schedul-
ing and sequentialize transformations.

3.4 Scheduling

In the scheduling step (cf. Fig. 1) the transformation returns a valid schedule for
the given program if one exists. Therefore, the blocks, and hence their included
instructions, are ordered topologically according to their guard expressions and
with respect to any dependencies between the blocks. This may result in arbitrar-
ily many context switches between threads. However, to support any low-level
analysis on threads that may be executed later on, it is desirable to perform as
few switches between threads as possible. One example for a low-level analysis is
a worst-case execution time (WCET) analysis. Hints about superfluous context
switches can be found in our work towards interactive timing analysis [5]. Here,

any context switch results in the insertion of an so called timing program points.
As these points may influence measurements, one should not include more than
necessary.

The schedule chosen for ABO can be seen in Fig. 5a. The bold purple arrow
depicts the path chosen as schedule. As one would expect the program starts at
the first entry node. Then, at the fork, the scheduler chooses to proceed with
HandleA. It switches to HandleB not until HandleA has finished and proceeds to
the join after both threads completed.

This is not the only possible schedule. Nevertheless, every valid schedule will
produce the same deterministic output [17]. It would have been valid to start
with HandleB and then switch to HandleA. However, the scheduler could not have
finished HandleB completely as it has done with HandleA because HandleB depends
on HandleA due to the conditional node testing B. Therefore, beginning the other
way around would lead to more context switches.

3.5 Sequentializing

Finally, from the schedule we can derive the sequentialized program. Therefore,
the guards created before are written in the order defined by the scheduler. If an
SB contains assignments they must be executed if the BB is active. Hence, these
are added to the sequentialized program guarded by the guard of their block.

The fully sequentialized program for the ABO program is shown in Fig. 5b.
One will recognize the guard expressions from Fig. 4b. Here, they are ordered
according to the schedule depicted in Fig. 5a. Whenever a guard is responsible
for any assignments, a conditional is added which holds the guard as condition.
For instance, at the beginning of the program g0 is set to the GO signal of the
environment. Hence, it will be true in the first tick and therefore O1 and O2 will
be initialized with false. If A is also true in the first tick, B and O1 are set to true.
However, as described in Sec. 2.2 the join g9 is not activated because HandleB
cannot reach its exit node in g8 in the first tick. g8’s expression is g7 & B and
g7 depends on pre(g6). Thus, g6 must have been active in the tick before so that
HandleB may terminate in the actual tick. This is not possible in the first tick.

Fig. 5b also depicts the empty flags g2 e1 and g8 e2 needed for the synchro-
nizer. As discussed in Sec. 3.3 these indicate whether a thread is inactive in
the actual tick. Therefore, they negate the status of the concurrent depth nodes
which abstractly resemble registers. The complex guard expression is then con-
structed as explained earlier in Sec. 3.3. The sequentialized program is now
ready to be deployed. It can be translated to various languages such as C, Java
or VHDL. Deployment to hardware requires the final deployment step to apply
an SSA transformation to the variables used in the program if they are written
more than once [8].

4 Experimental Results

In summer term 2014 we launched a student project [14] where the task was
to build an SCCharts based controller for a rather large model railway system.

0

30.000

60.000

90.000

120.000

150.000

180.000

210.000

N
um

be
r

of
 M

od
el

 E
le

m
en

ts

Source

Reference

Complex Final State

Const

Entry

Abort Trigger/Eff.

Surface/Depth

SCG

Sequ. SCG

Transitions / Control Flow

Variables

Regions / Threads

States / Nodes

(a) Hiding complexity by using Extended SC-
Charts features: Expansion of SCCharts features
down to sequentialized SCG elements gives an
idea of the complexity of this model [14].

(b) Tickets as opened and closed in
the bug tracker during the period
of this project validating main-
tainability and extendability of the
model based SLIC compiler ap-
proach [14].

Fig. 6. The SCCharts SLIC based compilation approach turns out to be practically
usable even for complex models and to be maintainable and extendable.

The model railway system consists of a total track length of 127 meters split
into 48 individually controllable block segments with 28 switch points. The final
controller is able to drive 11 trains simultaneously with integrated dead-lock
and live-lock avoidance. The controller fully expands to 135,000 states, 152,000
transitions and 17,000 concurrent regions after eliminating all reference states by
a reference state compiler transformation. 1,628 states were modeled manually
together with 2,219 transition and 183 concurrent regions. Compared to David
Harel’s Wristwatch [7], which was considered a complex statechart back in 1986,
we would also call the SCCharts model railway controller at least a medium-size
real-world complex system. It compiles using the presented tool chain in 2-3
minutes and generates about 650,000 lines of C code. Still the response time of
the running controller was measured to be smaller than 2ms on a standard PC.

We measured the number of model elements for the SCCharts model railway
controller example at every intermediate stage of the SLIC compile chain (cf.
Fig. 1). Fig. 6a shows the result and suggests how much complexity of the re-
sulting sequentialized SCG model could be hidden by using Extended SCCharts
features for modeling the complex behavior of this controller. The students were
not only using our SCCharts compiler tool chain but also struggling with teething
troubles of our early prototype compiler. That resulted in many bug reports es-
pecially in the middle of the project when the students started modeling. As
Fig. 6b attests we were able to quickly resolve most of the problems without
introducing more new problems. This circumstance validates maintainability of
the model based SLIC approach used for the compiler. Additionally new fea-
ture requests like reference state expansion arose during the project and could
be integrated into the existing compiler validating extendability of our overall
approach.

5 Conclusions

As discussed before [10] being able to quickly prototype a modular compiler that
is easy to validate and to customize prompted us to follow the SLIC approach.
The SLIC approach showed that it is possible to use model-driven aspects to
build a compiler that is also fairly compact and efficient. Following this route we
here presented SLIC transformation rules for the data-flow approach, one of the
two proposed low-level methods for generating code for SCCharts [15]. Similar
to the high-level SCCharts transformation rules, the SCL transformations obey
the proposed pattern:

– The compilation steps are M2M transformations where the resulting model
contains all information. There are no other, hidden data structures.

– The intermediate transformation steps are in the same language. We just
apply a sequence of language operations, that added one analyses result at
a time.

We see numerous directions for future work. For example, we want to use
existing simulation tools to evaluate the activity state of each guard during run-
time. Hence, feeding the information back to the simulator and using the M2M

transformation information of the SLIC approach, it should be possible to dis-
play each active area of the SCCharts on modelling level. Synchronizing threads
as explained in Sec. 3.3 becomes difficult when dealing with instantaneous feed-
back loops. There are possibilities to handle such a feedback in the data-flow
approach as long as at least one thread is delayed to prevent instantaneous cy-
cles. We would like to further investigate possibilities to handle feedbacks and
implement these in our tool chain. Another active area is that of interactive tim-
ing analysis [6], where we investigate how to best preserve timing-information
across M2M transformations. The main advantage of our approach is its interac-
tivity. Nonetheless we envision a fully automatic compilation process including
the possibility to include our compiler in scripts (e. g., a Makefile) or using it
online in the Web. Another important question is how much parallelism should
we derive from the initial concurrency modeled by the modeler. Allowing pro-
grams to be executed partly in parallel without full sequentialization is ongoing
research.

References

1. J. Aguado, M. Mendler, R. von Hanxleden, and I. Fuhrmann. Denotational
fixed-point semantics for constructive scheduling of synchronous concurrency.
Acta Informatica, Special Issue on Combining Compositionality and Concurrency,
52(4):393–442, 2015.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques, and
Tools. Addison-Wesley, Reading, Massachusetts, 1986.

3. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-
mone. The Synchronous Languages Twelve Years Later. In Proc. IEEE, Special
Issue on Embedded Systems, volume 91, pages 64–83, Piscataway, NJ, USA, Jan.
2003. IEEE.

4. S. A. Edwards. Tutorial: Compiling concurrent languages for sequential processors.
ACM Transactions on Design Automation of Electronic Systems, 8(2):141–187,
Apr. 2003.

5. I. Fuhrmann, D. Broman, S. Smyth, and R. von Hanxleden. Towards interac-
tive timing analysis for designing reactive systems. Reconciling Performance and
Predictability (RePP’14), satellite event of ETAPS’14, Apr. 2014.

6. I. Fuhrmann, D. Broman, S. Smyth, and R. von Hanxleden. Towards interactive
timing analysis for designing reactive systems. Technical Report UCB/EECS-2014-
26, EECS Department, University of California, Berkeley, Apr. 2014.

7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

8. G. Johannsen. Hardwaresynthese aus SCCharts. Master thesis, Kiel University,
Department of Computer Science, Oct. 2013. http://rtsys.informatik.uni-kiel.de/∼biblio/
downloads/theses/gjo-mt.pdf.

9. E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.
10. C. Motika, S. Smyth, and R. von Hanxleden. Compiling SCCharts—A case-study

on interactive model-based compilation. In Proceedings of the 6th International
Symposium on Leveraging Applications of Formal Methods, Verification and Vali-
dation (ISoLA 2014), volume 8802 of LNCS, pages 443–462, Corfu, Greece, Oct.
2014.

11. D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel. Springer,
May 2007.

12. K. Rathlev, S. Smyth, C. Motika, R. von Hanxleden, and M. Mendler. SCEst:
Sequentially Constructive Esterel. In Proceedings of the 13th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design (MEM-
OCODE’15), Austin, TX, USA, Sept. 2015.

13. S. Smyth. Code generation for sequential constructiveness. Diploma thesis, Kiel
University, Department of Computer Science, July 2013. http://rtsys.informatik.uni-kiel.
de/∼biblio/downloads/theses/ssm-dt.pdf.

14. S. Smyth, C. Motika, A. Schulz-Rosengarten, N. B. Wechselberg, C. Sprung, and
R. von Hanxleden. SCCharts: the railway project report. Technical Report 1510,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Aug.
2015. ISSN 2192-6247.

15. R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado,
S. Mercer, and O. O’Brien. SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. In Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’14), Edinburgh, UK, June 2014.
ACM.

16. R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika,
S. Mercer, O. O’Brien, and P. Roop. Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation. Technical Report
1308, Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
Aug. 2013. ISSN 2192-6247.

17. R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika,
S. Mercer, O. O’Brien, and P. Roop. Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation. ACM Transac-
tions on Embedded Computing Systems, Special Issue on Applications of Concur-
rency to System Design, 13(4s):144:1–144:26, July 2014.

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf

	A Data-Flow Approach for Compiling the Sequentially Constructive Language (SCL)

