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Abstract. SAC (Single Assignment C) is a purely functional, data-
parallel array programming language that predmoninantly targets
compute-intensive applications. Thus, clusters of workstations, or more
generally distributed address space supercomputers, form an attractive
compilation target. Notwithstanding, SAC today only supports shared
address space architectures, graphics accelerators and heterogeneous com-
binations thereof.
In our current work we aim at closing this gap. At the same time we
are determined to uphold SAC’s promise of entirely compiler-directed
exploitation of concurrency, no matter what the target architecture is. It
is well known that distributed memory architectures are going to make
this promise a particular challenge.
Despite SAC’s functional semantics, it is generally not straightforward to
infer exact communication patterns from memory architecture agnostic
code. Therefore, we intend to capitalise on recent advances in network
technology, namely the closing of the gap between memory bandwidth
and network bandwidth. We aim at a solution based on an implementa-
tion of software distributed shared memory (SDSM) and large per-node
software-managed cache memories. To this effect the functional nature of
SAC with its write-once/read-only arrays provides a strategic advantage
that we aim to exploit.
Throughout the paper we further motivate our approach, sketch out our
implementation strategy and show preliminary experimental evaluation.

1 Introduction

Single Assignment C (SAC) [9] is a functional data parallel language specialised
in array programming. The goal of the language is to combine high productiv-
ity programming with efficient parallel execution. Data parallelism in SAC is
based on array comprehensions in the form of with-loops that are used to create
immutable arrays and to perform reduction operations. At this point, we can



compile SAC source code into data parallel programs for shared memory archi-
tectures, CUDA-enabled graphics accelerators including hybrid systems and the
MicroGrid architecture. However, the SAC compiler and runtime system do not
yet support symmetric distributed memory architectures like clusters.

Our goal is to add efficient support for distributed memory architectures to
the SAC compiler and runtime system. We aim to achieve competitive speedups
for high-performance computing applications.

In a shared memory system, all nodes share a common address space. By
contrast, in a distributed memory system, each node has a separate address
space. In order to access remote data in a distributed memory programming
model, the programmer must be aware of the data item’s location and use explicit
communication. While distributed memory systems can scale to greater size,
the shared memory model is simpler to program. Distributed Shared Memory
(DSM) aims to combine both models; it provides a shared memory abstraction
on top of a distributed memory architecture. DSM can be realised in software
or in hardware; hybrid solutions also exist. Partitioned Global Address Space
(PGAS) is a programming model that lies in between the local and global view
programming models. PGAS logically partitions a global address space such that
a portion of it is local to each process, thereby exploiting locality of reference.
PGAS is the underlying model of programming languages like Chapel [5].

In the remainder of this paper we will first give an introduction to the SAC
language and then motivate our current work, SAC for clusters. Subsequently,
we will discuss our implementation and show preliminary performance results.

2 Single Assignment C

Single Assignment C (SAC) is a data parallel language for multi- and many-core
architectures. For an introduction to SAC see [9]. The language aims to combine
the productivity of high-level programming languages with the performance of
hand-parallelized C or Fortran code. As the name suggests, the syntax is inspired
by C. Other than C, however, SAC is a functional programming language without
side-effects.

SAC is specialised in array programming; it provides multi-dimensional ar-
rays that can be programmed in a shape-independent manner. While the lan-
guage only includes the most basic array operations it comes with a comprehen-
sive library. Conceptually, SAC’s functional semantics requires to copy the full
array whenever a single element is updated. To minimise the resulting overhead,
SAC uses reference counting. This facilitates in-place updates of data structures
when they are no longer referenced elsewhere. See [12] for SAC’s memory man-
agement.

Array operations are typically implemented by with-loops, a type of array
comprehension, which comes in three variants. See Figure 1 for examples. Both
genarray and modarray with-loops create an array; modarray does so based
on an existing array. For individual indices or sets of indices, expressions define
the value of the corresponding array element(s). Independently for each index,



the associated expression is evaluated and the corresponding array element is
initialised. The third with-loop variant, fold, performs a reduction operation
over an index set. As we have do not distribute these with-loops, we will not
discuss them in this paper.
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arr 1 =

arr1 = with {
    ( [0, 0] <= iv < [0, 2]) : 4;
    ( [0, 2] <= iv < [0, 4]) : 5;
    ( [1, 0] <= iv < [2, 1]) : 6;
  } : genarray( [3, 4], 7);

5 5 6 6

7 7 7 7
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arr 2 =
arr2 = with {
      ( . <= iv <= .) : arr1[iv] + 1;
    } : modarray( arr1);

Fig. 1: Examples of genarray and modarray with-loops and resulting arrays

All variants of with-loops have in common that the compiler may evaluate in-
dividual expressions independently of each other in any order and that write-
accesses are very restricted. These properties allow us to parallelise with-loops
in an efficient way. While with-loops denote opportunities for parallelism, the
decision whether they are actually executed in parallel or not is taken by the
compiler and runtime system. At all times, program execution is either sequential
or a with-loop is processed in parallel.

The SAC compiler is a many-pass compiler and emits platform-specific C
code. The compiler spends a lot of effort on combining and optimising with-
loops [10]. Currently, the compiler includes backends for symmetric multi-cores
[8], GPUs (based on CUDA) [14] and the MicroGrid many-core architecture [15].
Heterogeneous systems are supported as well [6] and there have been experiments
with OpenMP as a compilation target.

3 Motivation

In this section we argue why it is useful to add support for distributed memory
architectures to SAC, why we followed a software DSM-based approach and why
we decided to build a custom compiler-integrated DSM system.

3.1 Why support distributed memory architectures?

Distributed memory architectures are more cost-efficient, more scalable, and
distributed memory architectures dominate high-performance computing. Cur-
rently, 86% of the TOP500 supercomputers are clusters and 14% have a Mas-
sively Parallel Processing (MPP) architecture [1] which is also a type of dis-
tributed memory system. While they are still predominant in commodity hard-
ware, typical shared memory architectures have long vanished from the TOP500



list: single processors by 1997 and Symmetric multiprocessing (SMP) architec-
tures by 2003 [1].

Message passing, and in particular MPI, is still the prevailing programming
model for distributed memory systems [7]. While such a local view or fragmented
programming model meets the performance requirements, it lacks programma-
bility [5]. The programmer is responsible for the decomposition and distribution
of data structures. Algorithms operate on the local portion of data structures
and require explicit communication to access remote data. Data distribution and
communication statements obscure the core algorithm.

By contrast, global view programming represents a higher-level alternative.
In this model, the programmer works with whole data structures and writes
algorithms that operate on these whole data structures. Data transfers and work
distribution are handled implicitly. The algorithm is specified as a whole and not
interleaved with communication. SAC offers a global view of computation to the
programmer. By adding support for distributed memory architectures to SAC,
we can utilise its global view programming model to make programming for
distributed memory systems more efficient.

3.2 Why a software DSM-based solution?

Distributed Shared Memory (DSM) provides a shared memory abstraction on
top of a physically distributed memory. An overview of issues of Distributed
Shared Memory (DSM) systems can be found in [17]. DSM can be realised in
software or hardware; hybrid systems also exist. In the context of this work, we
focus on software solutions. According to [19], the first software DSM system
was Ivy which appeared in 1984. Until the early 1990’s, several other software
DSM systems were proposed. Examples include Linda, Munin and Shiva [17].

These early DSM systems have not been adopted on a large scale due to
shortcomings in performance. Explicit message passing, and in particular MPI,
remain the predominant programming model for clusters. However, Bharath et
al. suggest that it is time to revisit DSM systems [18]. They argue that early
DSM systems were not successful because of slow network connections at the
time. In the meantime, the picture has changed. Network bandwidth is com-
parable to main memory bandwidth and network latency is only one order of
magnitude worse than main memory latency. According to Bharath et al. these
developments reduce DSM to a cache management problem. They propose to use
the improved network bandwidth to hide latency. As we will discuss in Section 4,
our implementation uses that trick as well.

3.3 Why a custom DSM system?

In order to support distributed memory systems, we could run a SAC program
on top of an existing software DSM system. Instead, we decided to integrate a
custom DSM system into the SAC compiler and runtime system. This allows
us to exploit SAC’s functional semantics and its very controlled parallelism in
with-loops. Since variables in sac have write-once/read-only semantics, we do



not have to take into account that they could change their value. Furthermore,
parallelism only occurs in with-loops and while arbitrary variables can be read
in the body with-loop, only a single variable is written to.

4 Implementation of our distributed memory backend

We added support for distributed memory architectures to the SAC compiler
and runtime system based on a page-based software DSM system. Every node
owns part of each distributed array and the owner computes principle applies.
All accesses to remote data are performed through a local cache. To abstract
from the physical network and provide portability, we utilise existing one-sided
Remote Direct Memory Access (RDMA) communication libraries. Currently,
we support GASNet [4], GPI-2 [13], ARMCI [16] and MPI-3. In order to add
support for a communication library, one only has to provide implementations
for a small set of operations. These include initialisation and shut down of the
communication system, an operation to load a memory page from a remote node
and barriers.

4.1 Distributed arrays and memory model

Distributed execution is triggered by with-loops that generate distributed arrays.
The runtime system decides whether an array is distributed based on the size of
the array, the number of compute nodes and the execution mode at allocation
time (see Section 4.4 for execution modes). Arrays are always distributed block-
wise along their first dimension. The minimum number of elements per node
such that an array gets distributed can be configured at compile time.

In memory, a distributed array does not form one contiguous block, but
instead it is split into number-of-nodes blocks of memory corresponding to the
elements that are owned by each node. We will motivate the choice for this
memory model in Section 4.5.

For an illustrative example of the memory model, see Figure 2. The example
uses two arrays, denoted by different colours, with fourteen and eight elements,
respectively, and four compute nodes. The numbers in the boxes denote the
element indices. Every node owns a share of each distributed array. The portion
of the array that is owned by a node is located in that node’s shared segment
(e.g. elements 0 - 3/0 - 1 of the first/second array on Node 0). Note that the
array sizes were chosen to simplify the example; in practise only arrays that are
some orders of magnitudes bigger would be distributed. Furthermore, we assume
for this example that a memory page can hold three array elements only.

Each node’s DSM memory consists of memory for the shared segment and
memory for the local caches. At program startup, each node pins a configurable
amout of memory for its shared segment and reserves an address space of the
same size for the caches of each other node’s data. (De-)allocation of distributed
arrays in DSM memory is taken care of by an adapted version of the SAC private
heap manager [11]. When a distributed array is allocated, the runtime system
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Fig. 2: Memory model for two distributed arrays (distinguished by different
colours)

also reserves an address space of the same size within the local caches for all
other nodes. To simplify locating array elements, the shared segment and caches
are aligned. In the example, the second array starts at offset 4 in the shared DSM
segment and all three cache segments on all four compute nodes. Non-distributed
arrays, scalars and array descriptors are not allocated in DSM memory.

4.2 Array element pointer calculations

SAC supports multi-dimensional arrays; the translation of multi-dimensional
array indices into vector offsets for memory accesses is taken care of by the
compiler [3]. For the remainder of this paper, we assume that this conversion
has already taken place. As explained in Section 4.1, a distributed array does
not form a contiguous block of memory. The runtime system, therefore, needs
to translate an offset to an array element to a pointer to the actual location of
the element. This section describes how this is done and how we optimise this
process.

In SAC, arrays have descriptors that hold a reference counter and, if not
known at compile time, shape information. For each distributed array, we add
two fields to the array descriptor: first elems and arr offs. The value of
first elems is the number of elements that are owned by each node except for
the last node, which owns the remaining elements. The value of arr offs is the
offset at which the array starts within the shared segment of its owner node and
within the cache for the owner at each other node. The formula for the pointer



calculation is shown in Listing 1. The variable segments contains pointers to the
local shared segment and the local caches; the rank of a node is the index of its
segment within segments. The value of elem offs is the offset of the requested
element within the array assuming that the array would be allocated as one
contiguous block of memory.

(segments[elem_offs / first_elems] + arr_offs) + (elem_offs % first_elems)

Listing 1: Formula for array element pointer calculations

In a naive implementation we would have to perform this pointer calculation
for every access to an array element. However, we implemented three optimisa-
tions for write accesses, remote read accesses and local read accesses, respectively,
so that the calculation can be avoided in most cases.

When writing distributed arrays we know that the elements we are writing
to are local to the writing node because of the owner computes principle. We,
therefore, simply keep a pointer to the start of the local portion of the array.

For remote read accesses we implemented a pointer cache. For each dis-
tributed array, we keep a pointer to the start of the array within the local cache
for the node that owns the least recently accessed remote element of that array.
In addition, we keep the offset of the first and last element that are owned by
the same node.

For local read accesses we use the same pointer to the start of the local
portion of the array that we use for write accesses. In addition, we keep the
offset of the first and the last element that are local to the current node.

When a read access to an array element occurs, we first check whether the
element is local to the current node by comparing its offset to the offsets of the
first and last node that are local to the current node. If the element is local,
we can use the pointer to the start of the local portion of the array in the local
shared segment.

If the element is not local, we check whether it is owned by the same node as
the last remote element of the same array that was accessed by comparing the
offsets. If that is the case, we can use the pointer to the start of the array in the
local cache for that node. Otherwise, we have to perform a pointer calculation
as shown in Listing 1 to update the pointer cache.

4.3 Communication model and cache

According to the owner computes rule, a node only writes array elements that
it owns. By contrast, every node can read all elements of a distributed array,
including remote elements. This section describes the required communication
for read accesses to remote array elements.

As mentioned in Section 4.1, the address space for the caches of remote
elements is reserved when a distributed array is allocated. Initially, the caches



are protected page-wise against all accesses by means of the mprotect system
call. When a node tries to access remote data through its local cache, a SIGSEGV

signal is raised. A custom handler then copies the appropriate memory page from
the remote node into the local node’s cache and allows accesses to it. Subsequent
accesses to the same memory page can then be served directly from the local
cache. The signal handler can calculate the requested array element and its
location from the address where the segfault occurred. See Listing 1 for how to
calculate the memory location of array elements.

When part of the cache becomes outdated, the corresponding memory pages
are protected again. Distributed arrays are written in with-loops and we do not
need any communication to trigger the required cache invalidations. Every node
participates in the write operation and, therefore, knows that it has to invalidate
the cache for that array on completion.

When a remote element is not in the local cache yet, we always load entire
memory pages rather than single array elements. For an example, see Figure 2.
When Node 0 first accesses Element 8 of the first array, Elements 9 and 10 will
also be fetched from Node 2. Likewise, when Node 1 accesses Element 4 of the
second array for the first time, Element 5 of the second and Element 11 of the
first array will also be fetched from Node 2.

The rationale for loading entire pages is that thanks to advances in network
technology, available bandwidth has increased so much that we can use it to
hide latency [18]. Furthermore, the page-based approach allows us to use the
operation system’s memory page protection mechanism to decide whether an
element is present in the cache or not.

4.4 Execution modes and barriers

A distributed memory SAC program is always in one out of three execution
modes: replicated, distributed or side effects execution mode. See Figure 3 for
an illustrating example. In the following, we call the node with rank 0 master
node and the remaining nodes worker nodes.

Program execution starts in replicated execution mode in which every node
executes the same instructions on the same data. This way all nodes maintain
the same execution environment without requiring communication.

In distributed execution mode, each node works on its share of the data.
Currently, genarray and modarray with-loops are distributed iff the result array
is distributed. Distributed memory SAC supports one level of distribution, an
array and the with-loop that writes that array are not distributed if the program
is already in distributed execution mode when the array is allocated.

In side effects execution mode, only the master node is executing and the
workers are waiting until it is done. This is important because functions that
have side effects, such as I/O, must not be executed more than once. If functions
with side-effects yield any results, they are broadcast to the workers when the
master is done.

In some cases we need barriers to preserve the correctness of the program
in a distributed environment. For examples see Figure 3; the horizontal bars



dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
        ( [0] <= iv < [310]) : a[iv];
        ( [210] <= iv < [400]) : x * x;
      } : genarray( [400]);

y = b[[5]] + y;

print( b);

x = fun2();

x = fun3();
y = fun4();

y = fun5();

dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
       ( [200] <= iv < [310]) : a[iv];
       ( [310] <= iv < [400]) : x * x;
     } : genarray( [400]);

y = b[[5]] + y;

x = fun2();

x = fun3();
y = fun4();

y = fun5();

Source program Execution node 1 (worker)Execution mode

Replicated

Distributed

Replicated

Side effects

Replicated

dsm_init();

dsm_exit( y);

x = fun1();

a = with {
        ( [0] <= iv < [10]) : x;
      } : genarray( [10]);

b = with {
        ( [0] <= iv < [200]) : a[iv];
      } : genarray( [400]);

y = b[[5]] + y;

print( b);

x = fun2();

x = fun3();
y = fun4();

y = fun5();

Execution node 0 (master)

Fig. 3: Execution modes and barriers (horizontal bars)

denote barriers. In general, we require barriers after program startup and before
program termination, before and after a distributed with-loop and before a
function application with side effects.

The barrier after a distributed with-loop ensures that no stale data is read
by other nodes because there were write accesses to the distributed array in
the with-loop. The barrier before a distributed with-loop ensures that, in case
memory is reused (see [12] for SAC’s memory management), no other node needs
to read the old data anymore before it is overwritten.

4.5 Motivation for memory model

As described in Section 4.1, distributed arrays do not form one contiguous block,
but instead are split into number-of-nodes blocks of memory corresponding to
the elements that are owned by each node. We explained in Section 4.2 that it
is relatively expensive to calculate pointers to array elements with this memory
model and proposed a pointer cache as a solution. Given this disadvantage, why
do we propose the described memory model? For our argumentation we will
assume that we use a page-based DSM system. We will, therefore, first elaborate
on the reasons why we decided to build a page-based DSM system: to hide
latency and to avoid overheads when checking whether an element is present in
the cache.

On a cache miss, we fetch a whole memory page rather than a single el-
ement from the remote node that owns the element. Subsequent accesses to
neighbouring elements can then be served from the cache. This allows us to use
the available bandwidth to hide latency. In addition, if we fetch whole memory
pages, we can use the operating system’s page protection mechanism to decide
whether a page is present in the cache or not. If a page is not present in the
cache, a SIGSEGV signal is raised when we try to access it and the fetch from the
remote node is taken care of by our custom signal handler. If a page is present in



the cache, however, the access simply returns the data. The alternative to using
the page protection mechanism would be to keep track of the cached elements
ourselves, but that would involve a search in a possibly large data structure.
This search would incur additional overheads, also in the case that an element
is already present in the cache.

Having decided that we want to use a page based DSM system, why do
we use the described memory model? SAC supports multi-dimensional arrays
and with-loops that generate multi-dimensional arrays are compiled to complex
nested loop structures with a loop for each array dimension. We need to make
sure that the distribution happens along a single dimension; in practise along
the outermost dimension. Otherwise, the iteration of the index space becomes
impractically complex, especially when considering that the size and dimension-
ality of arrays is often not known at compile time.

We have established that we want to use a page-based DSM system and that
the distribution of the array should happen along the outermost dimension. If
an array was to form a single contiguous form of memory we would then have
to partition it at memory page borders. However, we have also established that
the distribution should happen along the outermost dimension. Unfortunately,
these two demands generally cannot be met at the same time.

Another benefit of our memory model is that it allows us to solve larger
problems. With contiguous arrays, we would need to allocate the entire array
within the DSM segment so that remote nodes can read the local portion of it.
Unfortunately, the size of the DSM segment is limited by hardware constraints.
In any case, it cannot be larger than the node’s physical memory. By contrast, in
our memory model, we only allocate the local part of the array within the DSM
segment. The caches are allocated outside of the DSM segment using mmap. Until
a memory page is accessed for the first time, only an address space is reserved
but no phyiscal memory is provided.

5 Evaluation of our distributed memory backend

We evaluate the performance of our distributed memory backend for SAC by
means of experiments in the areas of image convolution, matrix multiplication
and N-body simulation. In the following, we will first describe the experimental
setup and then discuss the results of the individual experiments.

5.1 Experimental setup

All experiments were performed on the VU cluster side of the DAS-4 supercom-
puter system [2]. The VU cluster side consists of 74 dual quad-core 2.4 GHz
compute nodes with 24 GB of memory each. The nodes are interconnected by
Gigabit Ethernet as well as high speed InfiniBand. We used the following versions
of the supported communication libraries for our experiments: GASNet 1.24.0,
GPI-2 1.1.1, ARMCI as included in Global Arrays 5.3 and the Open MPI 1.6.5
implementation of MPI-3.



In our experiments, we compare the runtimes of the program compiled for
our distributed memory backend (dm) to the runtimes of the sequential SAC pro-
gram (seq). With the distributed program, we start each process on a separate
compute node. For N ≤ 8 (as the nodes of the DAS-4 system have eight cores),
we also compare the performance of our distributed memory backend program
run by multiple processes on a single node (dm-sn) to the performance of the
multi-threaded SAC program mt.

For all included measurements, we compared the output of the distributed
memory backend program to the output of the sequential program to ensure
that the program yields correct results. We measure the kernel execution time
of the calculations and not the total execution time of the program. The reason
is that the setup of the communication libraries and the printing of the result
arrays to check the correctness take a considerable amount of time and that
would otherwise distort our results. For real-world applications, the compute
time would be much longer, whereas the setup time remains nearly constant
and, thus, can be neglected.

We performed all experiments at least three times or more often if there was
a high variance in the results. From all measurements, we take the minimum
execution time for each program version rather than the average execution time.
Our justification is that there may be background processes running on the
compute nodes that have an influence on our experiments. All reported speedups
are with respect to the sequential SAC program (seq).

5.2 Image convolution

First, we present our image convolution experiments. We include image convo-
lution in our evaluation because it is a simple application where array element
accesses show a high degree of locality. We have optimised our implementation
for that by fetching entire pages on a cache miss and by using optimisations such
as array pointer caches (see Section 4.2).

The gaussBlurOpt test program performs twenty iterations of a 3 x 3 kernel
Gaussian blur on a 50,000 x 8,000 = 400,000,000 elements integer array. Figure 4
shows the performance results for gaussBlurOpt. For this program, we achieve
speedups of more than 80% of linear for up to sixteen nodes.

5.3 Matrix multiplication

We also include experiments with matrix multiplication, because, compared to
image convolution, it requires more communication. In this way, the matrix
multiplication experiments are a stress test for the communication performance
of our distributed memory backend for SAC.

The matmulBigDiff program performs ten iterations of a multiplication of
two matrices with 2,000 x 2,000 = 4,000,000 double-precision floating point
elements each. Implementation-wise, we first transpose the second matrix be-
fore we calculate the result matrix. Figure 5 shows our measurements for the
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Fig. 4: Speedups for the gaussBlurOpt program (twenty iterations of a 3 x 3
kernel Gaussian blur on a 50,000 x 8,000 = 400,000,000 elements integer array)

matmulBigDiff program: for eight nodes we achieve a speedup of 3.2 (40% of
linear) and for sixteen nodes a speedup of 4.2 (26% of linear).
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Fig. 5: Speedups for the matmulBigDiff program (ten iterations of a multipli-
cation of two matrices with 2,000 x 2,000 = 4,000,000 double-precision floating
point elements each)

5.4 N-Body simulation

Finally, we present the measurements for our all-pairs N-body problem exper-
iments. The SICSA N-body challenge simulates the movements of a system of
planets in three-dimensional space over time. Our program is based on the SAC
implementation proposed in [20].



The nbodyBig program performs fifty iterations for 16,384 planets. Figure 6
show the measurements for the nbodyBig program. We achieve approximately
50% of linear speedups for up to sixteen nodes.

For the nbodyBig program, we also compare the minimum runtimes with
the different communication libraries GASNet, ARMCI, GPI-2 and MPI-3. In
Figure 7, we can see that MPI shows the weakest overall performance. Overall,
GASNet is slightly faster than ARMCI and GPI-2.
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Fig. 6: Speedups for the nbodyBig program (N-body simulation: movements of
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6 Conclusions and future work

6.1 Conclusion

In this paper, we have presented our implementation of a new compiler backend
for SAC that supports symmetric distributed memory architectures like clusters
of workstations. A particular challenge in doing so is upholding SAC’s promise
of entirely compiler-directed exploitation of concurrency.

We propose a DSM-based implementation where all accesses to remote data
go through large local caches. Initially, the caches are protected by means of the
mprotect system call. When a memory page is first accessed, a SIGSEGV signal
is raised. A custom signal handler fetches the requested data from the remote
node and subsequent accesses to the same data can be served directly from the
cache.

While there is a lot of work to be done, our first results are promising. For
our convolution experiments, we achieve 80% of linear speedups, for our N-body
simulation approximately 50% of linear speedups and for matrix multiplication
about one third of linear speedups.

6.2 Future Work

Possible future research directions lie in the areas of general performance im-
provements, the combination with multi-threading, cache eviction and distributed
I/O. In the following, we briefly elaborate on these topics.

We want to improve overall performance by reducing the number of barri-
ers. Furthermore, we want to make read operations to distributed arrays more
efficient by avoiding locality checks and/or reducing overheads caused by them.

To fully utilise clusters of multi-core compute nodes, we want to combine
the distributed memory backend with SAC’s multi-threaded execution facilities
[8]. We expect that we can achieve higher speedups with a hybrid solution that
combines distributed execution and multi-threading.

Other than speeding up program execution, distributed execution has an-
other advantage: It allows us to solve problems that do not fit into the memory
of a single node. This is already possible to some extent in our solution, but to
support the general case, we would need to add a cache eviction scheme.

Currently, functions that have side effects including I/O are only executed
by the master node. We decided for this implementation to ensure that existing
SAC libraries work correctly with the distributed memory backend. However, in
many situations it would be more efficient to distribute I/O operations.

References

1. TOP500 supercomputer sites (2014), http://top500.org/, accessed on 19 Febru-
ary 2015

2. DAS-4: Distributed ASCI supercomputer 4 (2015), http://www.cs.vu.nl/das4/
home.shtml, accessed on 25 July 2015

http://top500.org/
http://www.cs.vu.nl/das4/home.shtml
http://www.cs.vu.nl/das4/home.shtml


3. Bernecky, R., Herhut, S., Scholz, S.B., Trojahner, K., Grelck, C., Shafarenko, A.:
Index Vector Elimination - Making Index Vectors Affordable, pp. 19–36. Imple-
mentation and Application of Functional Languages, Springer (2007)

4. Bonachea, D.: GASNet specification, v1. 1. Tech. rep., University of California at
Berkeley (2002)

5. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
Chapel language. International Journal of High Performance Computing Applica-
tions 21(3), 291–312 (2007)

6. Diogo, M., Grelck, C.: Towards heterogeneous computing without heterogeneous
programming, pp. 279–294. Trends in Functional Programming, Springer (2013)

7. Dongarra, J.J., der Steen, A.V.: High-performance computing systems: Status and
outlook. Acta Numerica 21, 379–474 (2012)

8. Grelck, C.: A multithreaded compiler backend for high-level array programming.
In: Applied Informatics. pp. 478–484 (2003)

9. Grelck, C.: Single Assignment C (SAC): High Productivity Meets High Perfor-
mance, pp. 207–278. Central European Functional Programming School, Springer
(2012)

10. Grelck, C., Scholz, S.B.: SAC: off-the-shelf support for data-parallelism on multi-
cores. In: Proceedings of the 2007 workshop on Declarative aspects of multicore
programming. pp. 25–33. ACM (2007)

11. Grelck, C., Scholz, S.B.: Efficient heap management for declarative data parallel
programming on multicores. In: 3rd Workshop on Declarative Aspects of Multicore
Programming (DAMP 2008), San Francisco, CA, USA. pp. 17–31 (2008)

12. Grelck, C., Trojahner, K.: Implicit memory management for SAC. In: Implementa-
tion and Application of Functional Languages, 16th International Workshop, IFL.
vol. 4, pp. 335–348 (2004)
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