
High-Performance Language Composition:
Supporting C Extensions for Dynamic Languages

An abbreviated version of [10].

Grimmer Matthias1, Chris Seaton2, Thomas Würthinger2 and Hanspeter
Mössenböck1

1 Johannes Kepler University, Linz, Austria
{grimmer,moessenboeck}@ssw.jku.at

2 Oracle Labs
{chris.seaton,thomas.wuerthinger}@oracle.com

Abstract. Many dynamic languages such as Ruby offer functionality for
writing parts of applications in a lower-level language such as C. These C
extension modules are usually written against the API of an interpreter,
which provides access to the higher-level language’s internal data struc-
tures. Alternative implementations of the high-level languages often do
not support such C extensions because implementing the same API as
in the original implementations is complicated and limits performance.
In this paper we describe a novel approach for modular composition
of languages that allows dynamic languages to support C extensions
through interpretation. We propose a flexible and reusable cross-language
mechanism that allows composing multiple language interpreters. This
mechanism allows us to efficiently exchange runtime data across different
interpreters and also enables the dynamic compiler of the host VM to
inline and optimize programs across multiple language boundaries.
We evaluate our approach by composing a Ruby interpreter with a C
interpreter. We run existing Ruby C extensions and show how our system
executes combined Ruby and C modules on average over 3× faster than
the conventional implementation of Ruby with native C extensions.

1 Introduction

Most programming languages offer functionality for calling routines in modules
that are written in another language. There are multiple reasons why program-
mers want to do this, including to run modules already written in another lan-
guage, to achieve higher performance than is normally possible in the primary
language, or generally to allow different parts of the system to be written in the
most appropriate language.

Dynamically typed and interpreted languages such as Perl, Python and Ruby
often provide support for running extension modules written in the lower-level
language C, known as C extensions. C extensions are written in C or a language,
which can meet the same ABI such as C++, and are dynamically loaded and
linked into the interpreter as a program runs. The APIs that these extensions are

2

written against often simply provide direct access to the internal data structures
of the primary implementation of the language. For example, C extensions for
Ruby are written against the API of the original implementation of Ruby, known
as MRI3. This API contains functions that allow C code to manipulate Ruby
objects at a high level and to add C implementations of functions.

This model for C extensions worked well for the original implementations of
these languages. As the API directly accesses the implementation’s internal data
structures, the interface is powerful, has low overhead, and was simple for the
original implementations to add: all they had to do was make their header files
public and support dynamic loading of native modules. However, as popularity
of these languages has grown, alternative projects have increasingly attempted
to re-implement them using modern virtual machine technology such as dynamic
or just-in-time (JIT) compilation or advanced garbage collection. Such projects
typically use significantly different internal data structures to achieve better
performance, so the question therefore is how to provide the same API that the
C extensions expect.

For these reasons, modern implementations of dynamic languages often have
limited support for C extensions. For example, the JRuby [17] implementation
of Ruby on top of the Java Virtual Machine (JVM) [4] had limited experimental
support for C extensions until this was removed after the work proved to be too
complicated to maintain and the performance too limited [2,6]. Lack of support
for C extensions is often given as one of the major reasons for the slow adoption
of modern implementations of such languages.

We would like to enable modern implementations of languages to support
C extensions with minimal cost for implementing the existing APIs, and with-
out preventing any advanced optimizations that these implementations use to
improve the performance.

Our goal is to run multi-language applications on separate language inter-
preters, but within the same virtual machine and based on a common frame-
work and using the same kind of intermediate representation. We propose a
novel mechanism that allows composing these interpreters, rather than access-
ing foreign functions and objects via an FFI. Foreign objects and functions are
accessed by sending language-independent messages. We resolve these messages
at their first execution with language-specific IR snippets that implement effi-
cient accesses to foreign objects and functions. This approach allows composing
interpreters at their AST level and makes language boundaries completely trans-
parent to VM performance optimizations.

To evaluate our approach we composed a Ruby interpreter with a C inter-
preter to support C extensions for Ruby. In our C interpreter, we substitute
all invocations to the Ruby API at runtime with language-independent mes-
sages that use our cross-language mechanism. Our system is able to run existing
unmodified C extensions for Ruby written by companies and used today in pro-

3 MRI stands for Matz’ Ruby Interpreter, after the creator of Ruby, Yukihiro Mat-
sumoto.

3

duction. Our evaluation shows that it outperforms MRI running the same C
extensions compiled to native code by a factor of over 3.

In summary, this paper contributes the following:

– We present a novel language interoperability mechanism that allows pro-
grammers to compose interpreters in a modular way. It allows exchanging
data between different interpreters without marshaling or conversion.

– We describe how our interoperability mechanism avoids compilation bar-
riers between languages that would normally prevent optimizations across
different languages.

– We describe how we use this mechanism to seamlessly compose our Ruby and
C interpreters, producing a system that can run existing Ruby C extensions

– We provide an evaluation, which shows that our approach works for real C
extensions and runs faster than all existing Ruby engines.

2 System Overview

We base our work on Truffle [26], a framework for building high-performance
language implementations in Java. Truffle language implementations are AST
interpreters. This means that the input program is represented as an AST, which
can be evaluated by performing an execution action on nodes recursively. All
nodes of this AST, whatever language they are implementing, extend a common
Node class.

An important characteristic of a Truffle AST is that it is self-optimizing [27].
Nodes or subtrees of a Truffle AST can replace themselves with specialized ver-
sions at runtime. For example, Truffle trees self-optimize as a reaction to type
feedback, replacing an add operation node that receives two integers with a node
that only performs integer addition and so is simpler. The Truffle framework en-
courages the optimistic specialization of trees where nodes can be replaced with
a more specialized node that applies given some assumption about the running
program. If an assumption turns out to be wrong as the program continues
to run, a specialized tree can undo the optimization and transition to a more
generic version that provides the functionality for all required cases. This self-
optimization via tree rewriting is a general mechanism of Truffle for dynamically
optimizing code at runtime.

When a Truffle AST has arrived at a stable state with no more node re-
placements occurring, and when execution count of a tree exceeds a predefined
threshold, the Truffle framework partially evaluates [26] the trees and uses the
Graal compiler [18] to dynamically-compile the AST to highly optimized ma-
chine code. Graal is an implementation of a dynamic compiler for the JVM that
is written in Java. This allows it to be used as a library by a running Java
program, including the Truffle framework.

In this research we have composed two existing languages implemented in
Truffle, Ruby and C.

4

OS
HotSpot Runtime

Interpreter GC …
Truffle

JRuby+Truffle TruffleC

Ruby Application C Extension

Graal
Compiler

Fig. 1: The layered approach of Truffle: The Truffle framework on top of the
Graal VM hosts JRuby+Truffle and TruffleC.

JRuby+Truffle: The Truffle implementation of Ruby [20]. JRuby is the foun-
dation, on which our implementation is built, but beyond the parser and
some utilities, little of the two systems are currently shared and JRuby+Truffle
should be considered entirely separate from JRuby for this discussion.

TruffleC: TruffleC [9] is the C language implementation on top of Truffle and
can dynamically execute C code on top of a JVM.

Figure 1 summarizes the layered approach of hosting language implemen-
tations with Truffle. The Truffle framework provides reusable services for lan-
guage implementations, such as dynamic compilation, automatic memory man-
agement, threads, synchronization primitives and a well-defined memory man-
agement. Truffle runs on top of the Graal VM [18,21], a modification of the
Oracle HotSpotTM VM. The Graal VM adds the Graal compiler but reuses all
other parts, including the garbage collector, the interpreter, the class loader and
so on, from HotSpot.

3 Language Interoperability on Top of Truffle

The goal of our work is to retain the modular way of implementing languages
on top of Truffle but make them composable by implementing a cross-language
interface. Given this interface, composing two languages, such as C and Ruby,
requires very little effort. We do not want to introduce a new object model that
all Truffle guest languages have to share, which is based on memory layouts and
calling conventions. We introduce a common interface for objects that is based
on code generation via ASTs. Our approach allows sharing language specific
objects (with different memory representations and calling conventions) across
languages. Finally, we want to make the language boundaries completely trans-
parent to Truffle’s dynamic compiler, in that a cross-language call should have
exactly the same representation as an intra-language call. This transparency
allows the JIT compiler to inline and apply advanced optimizations across lan-
guage boundaries without modifications.

We use the mechanism to access Ruby objects from C and to forward Ruby
API calls from the TruffleC interpreter back to the JRuby+Truffle interpreter.

5

Send Read “[]=”

array

Send Execute

0 value

(a) Using messages to ac-
cess a Ruby object.

Message
Resolution

Send Read “[]=”

array

Send Execute

is Ruby?

is Ruby?

Method []=

Call

(b) Performing message
resolution.

array

is Ruby?

is Ruby?

Method []=

Call

0 value

Send Execute

Send Read

(c) Accessing a Ruby ob-
ject after message resolu-
tion.

Fig. 2: Language independent object access via messages.

Using ASTs as an internal representation of a user program already abstracts
away syntactic differences of object accesses and function calls in different lan-
guages. However, each language uses its own representation of runtime data such
as objects, and therefore the access operations differ. Our research therefore fo-
cused on how we can share such objects with different representations across
different interpreters.

In this paper we call every non-primitive entity of a program an object. This
includes Ruby objects, classes, modules and methods, and C immediate values
and pointers. An object that is being accessed by a different language than the
language of its origin is called a foreign object. A Ruby object used by a C
extension is therefore considered foreign in that context. If an object is accessed
in the language of its origin, we call it a regular object. A Ruby object, used by
a Ruby program is therefore considered regular. Object accesses are operations
that can be performed on objects, e.g. method calls or property accesses.

3.1 Language-independent Object Accesses

In order to make objects (objects that implement TruffleObject) shareable
across languages, we require them to support a common interface. We implement
this as a set of messages:

Read: We use the Read message to read a member of an object denoted by the
member’s identity. For example, we use the Read message to get properties
of an object such as a field or a method, and to read elements of an array.

Write: We use the Write message to write a member of an object denoted
by its identity. Analogous to the Read message, we use it to write object
properties.

Execute: The Execute message, which can have arguments, is used to evaluate
an object. For example, it can evaluate a Ruby method or invoke the target
of a C function pointer.

Unbox: If the object represents a boxed numeric value and receives an Unbox
message, this message unwraps the boxed value and returns it. For example,
if an Unbox message is sent to a Ruby Fixnum, the object returns its value
as a 4 byte integer value.

6

We call an object shareable if we can access it via these language-independent
messages. Truffle guest-language implementations can insert language-independent
message nodes into the AST of a program and send these messages in order to
access a foreign object. Figure 2a shows an AST that accesses a Ruby array via
messages in order to store value at index 0. This interpreter first sends a Read
message to get the array setter function []= from the array object (in Ruby
writing to an element in an array is performed via a method call). Afterwards
it sends an Execute message to evaluate this setter function. In Figure 2a, the
color blue denotes language-independent nodes, such as message nodes.

3.2 Message Resolution

The receiver of a cross-language message does not return a value that can be
further processed. Instead, the receiver returns an AST snippet — a small tree
of nodes designed for insertion into a larger tree. This AST snippet contains
language-specific nodes for executing the message on the receiver. Message reso-
lution replaces the AST node that sent a language-independent message with a
language-specific AST snippet that directly accesses the receiver. After message
resolution an object is accessed directly by a receiver-specific AST snippet rather
than by a message.

During the execution of a program the receiver of an access can change,
and so the target language of an object access can change as well. Therefore
we need to check the receiver’s language before we directly access it. If the
foreign receiver object originates from a different language than the one seen
so far we access it again via messages and do the message resolution again. If
an object access site has varying receivers, originating from different languages,
we call the access language polymorphic. To avoid a loss in performance, caused
by a language polymorphic object access, we embed AST snippets for different
receiver languages in an inline cache [12].

Figure 2b illustrates the process of message resolution and Figure 2c shows
the AST of Figure 2a after message resolution. Message resolution replaced the
Read message by a Ruby-specific node that accesses the getter function []=. The
Execute method is replaced by a Ruby-specific node that evaluates this getter
method. Message resolution also places other nodes into this AST, which check
whether the receiver is really a Ruby object.

Message resolution and building object accesses at runtime has the following
benefits:

Language independence: Messages can be sent to any shareable object. The
receiver’s language of origin does not matter and messages resolve themselves
to language-specific operations at runtime.

No performance overhead: Message resolution only affects the application’s
performance upon the first execution of an object access for a given language.
Once a message is resolved and as long as the languages used remain stable,
the application runs at full speed.

7

Cross-language inlining: Message resolution allows the dynamic compiler to
inline methods even across language boundaries. By generating AST snippets
for accessing foreign objects we avoid the barriers from one language to
another that would normally prevent inlining.

3.3 Shared Primitive Values

In order to exchange primitive values across different languages we define a set
of shared primitive types. We refer to values with such a primitive type as shared
primitives. The primitive types include signed and unsigned integer types (8, 16,
32 and 64 bit versions) as well as floating point types (32 and 64 bit versions)
that follow the IEEE floating point 754 standard.

3.4 JRuby+Truffle: Foreign Object Accesses and Shareable Ruby
Objects

In Ruby’s semantics there are no non-reference primitive types and every value
is logically represented as an object, as in the tradition of languages such as
Smalltalk. Also, in contrast to other languages such as Java, Ruby array ele-
ments, hash elements, or object attributes cannot be accessed directly but only
via getter and setter calls on the receiver object. For example, a write access to
a Ruby array element is performed by calling the []= method of the array and
providing the index and the value as arguments.

In our Ruby implementation all runtime data objects as well as all Ruby
methods are shareable in the sense that they implement our message-based in-
terface.

Ruby objects that represent numbers, such as Fixnum and Float that can be
simply represented as primitives common to many languages, and also support
the Unbox message. This message maps the boxed value to the relative shared
primitive.

3.5 TruffleC: Foreign Object Accesses and shareable C Pointers

TruffleC can share primitive C values, mapped to shared primitive values, as
well as pointers to C runtime data with other languages. In our implementation,
pointers are objects that implement the message interface, which allows them
to be shared across all Truffle guest language implementations. TruffleC repre-
sents all pointers (so including pointers to values, arrays, structs or functions)
as CAddress Java objects that wrap a 64-bit value [11]. This value represents
the actual referenced address on the native heap. Besides the address value, a
CAddress object also stores type information about the referenced object. De-
pending on the type of the referenced object, CAddress objects can resolve the
following messages: A pointer to a C struct/array can resolve Read/Write mes-
sages, which access members of the referenced struct/a certain array element.
Finally, CAddress objects that reference a C function can be executed using the
Execute message.

8

!1!!typedef!VALUE!void*;!
!2!!typedef!ID!void*;!
!3!!!
!4!!//!Define!a!C!function!as!a!Ruby!method!
!5!!void!rb_define_method-
!6!!(VALUE!class,!const!char*!name,!!
!7!!VALUE(*func)(),!int!argc);!
!8!!!
!9!!//!Store!an!array!element!into!a!Ruby!array!
10!!void!rb_ary_store-
11!!!!!!!(VALUE!ary,!long!idx,!VALUE!val);!
12!!!
13!!//!Invoke!a!Ruby!method!from!C!
14!!VALUE!rb_funcall(VALUE!receiver!ID!method_id,!
15!!!!!!int!argc,!...);!
16!!!
17!!//!Convert!a!Ruby!Fixnum!to!C!long!
18!!long!FIX2INT(VALUE!value);!

Fig. 3: Excerpt of the ruby.h implementation.

!1!!VALUE!array!=!…!;!//!Ruby!array!of!Fixnums!
!2!!VALUE!value!=!…!;!//!Ruby!Fixnum!
!3!!!
!4!!rb_ary_store(array,!0,!value);!

Fig. 4: Calling rb ary store from C.

TruffleC allows binding foreign objects to pointer variables declared in C.
Hence, pointer variables can be bound to CAdress objects as well as shared
foreign objects.

4 C Extensions for Ruby

Developers of a C extension for Ruby access the API by including the ruby.h

header file. We want to provide the same API as Ruby does for C extensions,
i.e., we want to provide all functions that are available when including ruby.h.
To do so we created our own source-compatible implementation of ruby.h. This
file contains the function signatures of all of the Ruby API functions that were
required for the modules we evaluated, as described in the next section. We
believe it is tractable to continue the implementation of API routines so that
the set available is reasonably complete.

Figure 3 shows an excerpt of this header file.
We do not provide an implementation for these functions in C code. Instead,

we implement the API by substituting every invocation of one of the functions at
runtime with a language-independent message send or directly access the Ruby
runtime.

We can distinguish between local and global functions in the Ruby API:

9

Local Functions: The Ruby API offers a wide variety of functions that are used
to access and manipulate Ruby objects from within C. Consider the function
rb ary store (Figure 4): Instead of a call, TruffleC inserts message nodes into
the AST that are sent to the Ruby array (array). The AST of the C program
(Figure 4) now contains two message nodes (namely a Read message to get
the array setter method []= and an Execute message to eventually execute the
setter method, see Figure 2a). Upon first execution these messages are resolved
(Figure 2b), which results in a TruffleC AST that embeds a Ruby array access
(Figure 2c).

Global Functions: The Ruby API offers various different functions that allow
developers to manipulate the global object class of a Ruby application from C
or to access the Ruby engine.

The API includes functions to define global variables, modules, or global
functions (e.g., rb define method) etc. In order to substitute invocations of
these API functions, TruffleC accesses the global object of the Ruby application
using messages or directly accesses the Ruby engine.

Given this implementation of the API we can run C extensions without
modification and are therefore compatible with the Ruby MRI API.

5 Evaluation

We evaluated the performance in terms of running time for our implementation
of Ruby and C extensions against other existing implementations of Ruby and
its C extension API. Ruby is primarily used as a server-side language, so we
are interested in peak performance of long running applications after an initial
warm-up.

5.1 Benchmarks

We wanted to evaluate our approach on real-world Ruby code and C extensions
that have been developed to meet a real business need. Therefore we use the
existing modules chunky png [23] and psd.rb [19], which are both open source
and freely available on the RubyGems website. chunky png is a module that
includes routines for resampling, PNG encoding and decoding, color channel
manipulation, and image composition. psd.rb is a module that includes color
space conversion, clipping, layer masking, implementations of Photoshop’s color
blend modes, and some other utilities.

Both modules have separately available C extension modules to replace key
routines with C code, known as oily png [24] and psd-native [14], which allows
us to compare the C extension against the pure Ruby code. There are 43 routines
in the two gems for which a C extension equivalent is provided.

10

5.2 Compared Implementations

The standard implementation of Ruby is known as MRI, or CRuby. It is a
bytecode interpreter, with some simple optimizations such as inline caches for
method dispatch. MRI has excellent support for C extensions, as the API directly
interfaces with the internal data structures of MRI. We evaluated version 2.1.2.

Rubinius is an alternative implementation of Ruby using a significant VM
core written in C++ and using LLVM to implement a simple JIT compiler, but
much of the Ruby specific functionality in Rubinius is implemented in Ruby. To
implement the C extension API, Rubinius has a bridging layer. We evaluated
version 2.2.10.

JRuby is an implementation of Ruby on the Java Virtual Machine. JRuby
used to have experimental support for running C extensions, but after initial
development it became unmaintained and has since been removed. We evaluated
the last major version where we found that the code still worked, version 1.6.0.

JRuby+Truffle is our system, using Truffle and Graal. It interfaces to Truf-
fleC to provide support for C extensions. To explore the performance impact of
cross-language dynamic inlining, which is only possible in our system, we also
evaluated JRuby+Truffle with this optimization disabled.

5.3 Experimental Setup

All experiments were run on a system with 2 Intel Xeon E5345 processors with
4 cores each at 2.33 GHz and 64 GB of RAM, running 64bit Ubuntu Linux
14.04. Where an unmodified Java VM was required, we used the 64bit JDK
1.8.0u5 with default settings. For JRuby+Truffle we used the Graal VM version
0.3. Native versions of Ruby and C extensions were compiled with the system
standard GCC 4.8.2.

We ran 100 iterations of each benchmark to allow the different VMs to warm
up and reach a steady state so that subsequent iterations are identically and
independently distributed. This was verified informally using lag plots [13]. We
then sampled the final 20 iterations and took a mean of their runtime as the
reported time. We summarize across different benchmarks and report a geometric
mean [1].

5.4 Results

Figure 5 shows a summary of our results. We show the geometric mean speedup
of each evaluated implementation over all benchmarks, relative to the speed at
which MRI ran the Ruby code without the C extension. When using MRI the
average speedup of using the C extension (MRI With C Extension, Figure 5)
over pure Ruby code is around 11×. Rubinius (Rubinius With C Extensions,
Figure 5) only achieves around one third of this speedup. Although Rubinius
generally achieves better performance than MRI for Ruby code [20], its perfor-
mance for C extensions is limited by having to meet MRI’s API, which requires
a bridging layer. Rubinius failed to make any progress with 3 of the benchmarks

11

11

04
03

32

15

00

05

10

15

20

25

30

35

MRI w. C Ext. Rubinius w. C Ext. JRuby w. C Ext. JRuby+Truffle w. C
Ext.

JRuby+Truffle w. C
Ext. (No Inline)

M
ea

n
S

pe
ed

up
 R

el
at

iv
e

to
 M

R
I

W
ith

ou
t C

 E
xt

en
si

on
 (s

/s
)

Fig. 5: Summary of speedup across all benchmarks.

in a reasonable time frame so they were considered to have timed out. The per-
formance of JRuby (JRuby With C Extensions, Figure 5) is 2.5× faster than
MRI running the pure Ruby version of the benchmarks without the C exten-
sions. JRuby uses JNI [15] to access the C extensions from Java, which causes
a significant overhead. Hence it can only achieve 25% of the MRI With C Ex-
tension performance. JRuby failed to run one benchmark with an error about
an incomplete feature. As with Rubinius, 17 of the benchmarks did not make
progress in reasonable time. Despite a 8GB maximum heap, which is extremely
generous for the problems sizes, some benchmarks in JRuby were spending the
majority of their time in GC or were running out of heap.

When running the C extension version of the benchmarks on top of our
system (JRuby+Truffle With C Extension, Figure 5) the performance is over
32× better than MRI without C extensions and over 3× better than MRI With
C Extension. When compared to the other alternative implementations of C
extensions, we are over 8× faster than Rubinius, and over 20× faster than JRuby,
the previous attempt to support C extensions for Ruby on the JVM. We also
run all the extensions methods correctly, unlike both JRuby and Rubinius.

We can explain this speedup as follows:

In a conventional implementation of C extensions, where the Ruby code runs
in a dedicated Ruby VM and the C code is compiled and run natively, the call
from one language to another is a barrier that prevents the implementation from
performing almost any optimizations. In our system the barrier between C and
Ruby is no different to the barrier between one Ruby method and another. We
found that allowing inlining between languages is a key optimization, as it per-
mits many other advanced optimizations in the Graal compiler. For example,
partial escape analysis [22] can trace objects, allocated in one language but con-
sumed in another, and eventually apply scalar replacement [22] to remove the
allocation. Other optimizations that benefit from cross language inlining include
constant propagation and folding, global value numbering and strength reduc-
tion. When disabling cross-language inlining (JRuby+Truffle With C Extension
(No Inline), Figure 5) the speedup over MRI is roughly halved, although it is
still around 15× faster, which is around 39% faster than MRI With C Extension.

12

In this configuration the compiler cannot widen its compilation units across the
Ruby and C boundaries, which results in performance that is similar to MRI.

If we just consider the contribution of a high performance reimplementation
of Ruby and its support for C extensions, then we should compare ourselves
against JRuby. In that case our implementation is highly successful at on average
over 20× faster. However we also evaluate against MRI directly running native C
and find our system to be on average over 3× faster, indicating that our system
might be preferable even when it is possible to run the original native code.

6 Related Work

We can compare our work against other projects that seek to compose two
languages, and against existing support for C extensions or alternatives in Ruby
implementations.

6.1 Unipycation

The work that is closest to our interoperability mechanism is that of Barret et
al. [8], in which the authors describe a novel combination of Python and Prolog
called Unipycation. We share the same goals, namely to retain the performance
of different language parts when composing them and to find an approach that
is applicable for any language composition.

However, our approach is quite different both in application and technique.
We are concerned in this research in running existing C extensions, so there is
immediate utility.

In contrast, Unipycation is a novel combination with no immediate industrial
application. Unipycation composes Python and Prolog by combining their inter-
preters using glue code (which is specific to Python and Prolog) and compiles
code using a meta-tracing JIT compiler. In contrast, we do not write glue code
for a specific pair of interpreters but rather create this glue code at runtime for
any pair of interpreters. Since the IR nodes themselves implement interpretation
we can combine IR nodes of different origin without needing glue code.

6.2 Common Language Infrastructure

The Microsoft Common Language Infrastructure (CLI) supports writing lan-
guage implementations that compile different languages to a common IR and
execute it on top of the Common Language Runtime (CLR) [16]. The Common
Language Specification (CLS) describes how language implementations can ex-
change objects across different languages. This standard defines a fixed set of
data types and operations that all language implementations have to use. CLS-
compliant language implementations generate metadata to describe user-defined
types. This metadata contains enough information to enable cross-language oper-
ations and foreign object accesses. Also, the CLS specifies a set of basic language
features that every implementation has to provide and therefore developers can

13

rely on their availability in a wide variety of languages. This approach is differ-
ent from ours because it forces CLS-compliant languages to use the same object
model. Our approach, on the other hand, allows every language to have its own
object model.

6.3 Interface Description Language

Interface Description Languages (IDLs) are also widely used to implement cross-
language interoperability. To compose software components, written in different
languages, programmers use an IDL to describe the interface of each component.
Such IDL interfaces are then compiled to stubs in the host language and in
the foreign language. Cross-language communication is done via these stubs [7].
However, an IDL is much more heavyweight. It is mainly targeted to remote
procedure calls and often not only aims at bridging different languages but also at
calling code on remote computers. Our approach is different because we neither
require new interfaces nor a mapping between languages. Foreign objects can
be accessed via messages without needing any boilerplate code that converts or
marshals an object.

6.4 Language-neutral Object Model

Another approach towards cross-language interoperability are language-neutral
object models. Wegiel and Krintz [25] propose a language-neutral object model,
which allows different programming languages to exchange runtime data. In their
system, the language-neutral objects are stored on an independent shared heap.
Each language implementation then transparently translates a shared object to
a private object. We argue that sharing objects between different languages and
VMs does not require a special object model. Instead, objects should be shared
between languages directly. Also, a shared object model would not solve the
performance problems that Ruby engines, other than MRI, have when running
C extensions.

6.5 Foreign Function Interfaces

Low-level APIs allow developers to integrate C code into another high-level lan-
guage. Java developers can use a wide variety of different FFIs to integrate C
code into Java, for example the Java Native Interface [15], Java Native Access [5],
or the Compiled Native Interface [3]. VM engineers that implement new inter-
preters for dynamic languages in Java, e.g. the original JRuby without Truffle,
could use these FFIs to support C extensions. However, the experience of JRuby,
described below, shows that this approach is cumbersome and also has limited
performance.

Rather than accessing precompiled C extensions via FFIs we follow a com-
pletely different approach. We use TruffleC to run these C extensions within
a Truffle interpreter and use an efficient cross-language mechanism to compose

14

the JRuby+Truffle and TruffleC interpreter. Our approach hoists optimizations
such as cross-language inlining and performs extremely well compared to existing
solutions.

6.6 Ruby C Extensions

MRI should have very straightforward support for C extensions as its implemen-
tation defines the API. However this does not mean that it poses no problems
for MRI. As the interface is well established, MRI is now bound by it as much
as any other implementation.

Rubinius supports C extensions through a compatibility layer. This means
that in addition to problems that MRI has with meeting a fixed API, Rubinius
must also add another layer that converts routines from the MRI API to calls
on Rubinius’ C++ implementation objects. The mechanism Rubinius uses to
optimize Ruby code, an LLVM-based JIT compiler, cannot optimize through
the initial native call to the conversion layer.

JRuby uses the JVM’s FFI mechanism, JNI, to call C extensions. This tech-
nique is almost the same as used in Rubinius, also using a conversion layer,
except that now the interface between the VM and the conversion layer is even
more complex. In order to exchange data between the JVM and native code,
JRuby must copy the data from the JVM onto the native heap. When the na-
tive data is then modified, JRuby must copy it back into the JVM. To keep both
sides of the divide synchronized, JRuby must keep performing this copy each
time the interface is passed.

7 Conclusion

We have presented a new approach to composing implementations of differ-
ent language interpreters. The cross-language mechanism composes interpreters
without additional infrastructure or glue code. We introduce an interface for
shareable objects, which allows different language implementations to exchange
objects. Language implementations access shared objects via object- and language-
independent messages. Our resolving approach transforms these messages to an
object- and language-specific access at runtime. The mechanism therefore re-
frains from converting objects, instead we adapt the IR of a program to deal
with the foreign objects. The resolved IR of a program completely obliterates
the language boundaries, which enables a JIT compiler to perform its optimiza-
tions across any language boundaries.

We use our mechanism to compose the JRuby+Truffle interpreter and the
TruffleC interpreter to support C extensions for Ruby. Our evaluation demon-
strates that this novel approach exhibits excellent performance. The peak per-
formance of our system is over 3× faster compared to Ruby MRI when running
benchmarks which stress interoperability between Ruby code and C extensions.

15

References

1. How Not To Lie With Statistics: The Correct Way To Summarize Benchmark
Results. Communications of the ACM, 29, March 1986.

2. Ruby Summer of Code Wrap-Up. http://blog.bithug.org/2010/11/rsoc, 2011.
3. CNI (Compiled Native Interface). http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html,

2013.
4. HotSpot JVM. Java version history (J2SE 1.3). http://en.wikipedia.org/wiki/Java_

version_history, 2013.
5. Java Native Access (JNA). https://github.com/twall/jna#readme, 2013.
6. jruby-cext: CRuby extension support for JRuby. https://github.com/jruby/jruby-cext,

2013.
7. Common Object Request Brooker Architecture (CORBA) Specification. http://

www.omg.org/spec/CORBA/3.3/, 2014.
8. E. Barrett, C. F. Bolz, and L. Tratt. Unipycation: A case study in cross-language

tracing. In Proceedings of VMIL ’13, New York, NY, USA.
9. M. Grimmer, M. Rigger, R. Schatz, L. Stadler, and H. Mössenböck. TruffleC:

Dynamic Execution of C on a Java Virtual Machine. In Proceedings of PPPJ ’14.
10. M. Grimmer, C. Seaton, T. Wuerthinger, and H. Moessenboeck. Dynamically com-

posing languages in a modular way: Supporting c extensions for dynamic languages.
In Proceedings of MODULARITY ’15.

11. M. Grimmer, T. Würthinger, A. Wöß, and H. Mössenböck. An Efficient Approach
for Accessing C Data Structures from JavaScript. In Proceedings of ICOOOLPS
’14.

12. U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In ECOOP’91, pages 21–38.

13. T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time. In Proceed-
ings of ISMM ’13’.

14. R. LeFevre. PSDNative, 2013.
15. S. Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1999.
16. E. Meijer and J. Gough. Technical overview of the common language runtime.

language, 29:7, 2001.
17. C. Nutter, T. Enebo, O. Bini, N. Sieger, et al. JRuby. http://jruby.org/, 2014.
18. Oracle. OpenJDK: Graal project. http://openjdk.java.net/projects/graal/, 2013.
19. K. S. Ryan LeFevre et al. PSD.rb from Layer Vault, 2013.
20. C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at full speed. In

Proceedings of DYLA’14. ACM.
21. L. Stadler, G. Duboscq, H. Mössenböck, and T. Würthinger. Compilation queuing

and graph caching for dynamic compilers. In Proceedings of VMIL ’12.
22. L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape analysis and scalar

replacement for java. In Proceedings of CGO ’14.
23. W. van Bergen et al. Chunky PNG, 2013.
24. W. van Bergen et al. OilyPNG, 2013.
25. M. Wegiel and C. Krintz. Cross-language, type-safe, and transparent object sharing

for co-located managed runtimes. Technical Report 2010-11, UC Santa Barbara,
2010.

26. T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to rule them all. In Proceedings
of ONWARD 2013. ACM.

27. T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-
optimizing AST interpreters. In Proceedings of DLS’12.

http://blog.bithug.org/2010/11/rsoc
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://en.wikipedia.org/wiki/Java_version_history
http://en.wikipedia.org/wiki/Java_version_history
https://github.com/twall/jna#readme
https://github.com/jruby/jruby-cext
http://www.omg.org/spec/CORBA/3.3/
http://www.omg.org/spec/CORBA/3.3/
http://jruby.org/
http://openjdk.java.net/projects/graal/

	High-Performance Language Composition: Supporting C Extensions for Dynamic Languages

