
The Data-Flow Perspective on Static
Single-Assignment Form

Baltasar Trancón Y Widemann and Markus Lepper

1 TU Ilmenau
2 semantics GmbH

Abstract. The static single-assignment (SSA) form is a low-level in-
termediate representation of computer programs. It has been designed
to make the analysis and transformation of imperative code easier, by
providing just the right amount of referential transparency of local vari-
ables. That SSA does its job fairly well is proven by its central use in
many current state-of-the-art compilers. But the situation is something
of a paradox. The languages that are translated to SSA typically possess
many features that quite defy its purpose: Mutable arrays and objects
with reference semantics on the one hand; concurrency and non-local
control flow on the other. We take a fresh look at the design principles
of SSA from the perspective of a domain-specific, semantically rigorous
paradigm, namely total functional synchronous data-flow programming,
embodied in the prototypic language Sig. We demonstrate that the ex-
pressivity of SSA is far more complete and foundational there. The same
form has many interpretations, in notably as a data-flow diagram, the IR
of a functional program, and both an intensional (Z schema-like) and a
propositional definition of element-wise denotational semantics. We also
demonstrate how the single operation particular to SSA, the phi node,
naturally suggests semantically rigorous solutions to two principal se-
mantical problems of the data-flow approach, namely initialization and
control flow. Both are necessary for real-world applications, but notori-
ously ill-supported in many established practical programming systems.


