
An Approach for Generalized Reversible

Functional Programming

Stefan Bohne1

Baltasar Trancón Widemann2

1 senTec Elektronik GmbH, Ilmenau
2 Fakultät für Informatik und Automatisierung, TU Ilmenau

In software engineering, one often comes across pairs of functions which look
�something-like-inverse� to each other; reading and writing a �le, sending and
receiving data, parsing and pretty-printing. Modern programming languages pro-
vide almost no support for keeping these function pairs consistent. The concepts
bijection and injection more often than not do not apply and there is no other
concept readily available for what it means for these function pairs to be consis-
tent. We make an attempt to categorize di�erent classes of such function pairs
and investigate their properties whilst providing the basis for a functional pro-
gramming language with some yet unseen advantages.

1 Introduction

It is not rare to come across pairs of functions that look like inverses of each other.
Parsing a grammar and pretty-printing the corresponding tree is one example.
These two functions are usually written independently of each other. A close
inspection often reveals that their source code shares a lot of structure. For
every case distinction in the parser there tends to be a corresponding case in
the pretty-printer. The �rst mathematical concept that comes to mind here are
bijective functions, or injective functions if we allow partiality. Unfortunately,
the parser/pretty-printer pair typically is not a partial injection. Whitespace
and super�uous parentheses are often dropped from the parsed tree. Yet one
can still formulate a consistency requirement: pretty-printing a tree and then
parsing the result should always yield exactly the same tree. Reading a �le while
allowing many old versions of the �le format and writing the �le in the latest
version is another function pair that falls into this category. More examples are
constructor/pattern pairs of algebraic data types, operations together with their
undo-operation in user interfaces, and conversion between di�erent �le formats.
Such a function pair is the type of mathematical object which we begin to study
in this paper.

Keeping both functions consistent with each other by hand can be very error-
prone in a large software project. Thus, it is not surprising that research in the
area of reversible computation and bidirectional transformations has already
investigated several solutions. In [6], simple bidirectional isomorphisms are com-
posed to construct more complex parser/pretty-printer pairs. Logic programming
and De�nite Clause Grammars are used in [4] to de�ne reversible grammars. The

problem of whitespace is not addressed in these frameworks. The programming
languages INV [5] for writing injective programs and Boomerang [1] for writing
lenses both use a point-free style to compose complex function pairs, which is
unfamiliar to many programmers and not always the best paradigm for a given
problem. The programming language Janus [9] is an applicative, imperative, re-
versible programming language. RFun [10] is an applicative, functional, reversible
programming language. Janus and RFun only deal with injective functions.

In this paper, we sketch a programming language for reversible programs,
that allows a point-free and an applicative style. To make best use of the point-
free style, the programming language also includes syntactical constructions com-
mon in functional languages. Moreover, we require that the semantics of the re-
versible sub-language are such that, when a reversible program is interpreted as
an irreversible one, it has exactly the same behavior. In other words, reversible
programs should be a subset of irreversible ones. Additionally, we will try to �nd
suitable concepts of programs beyond injective functions that are appropriate
for the examples given above.

Note that, we want to specify two functions, as opposed to �nding an arbi-
trary reverse function. A comparison between other techniques and the combi-
nator approach that we employ, can be found in [2]. As this is still much work
in progress, our results must be taken tentatively.

1.1 Notation and Assumptions

We write function composition using �;� in `computer science' order, i.e., f ;g =
λx • g (f x). Function application binds strongest, followed by function composi-
tion. The identity function on A is denoted by idA : A → A with idA x = x
for all x ∈ A. We will drop type subscripts most of the time. When talk-
ing about operators, we use dots to denote the operator itself. For example,
·;· : (A→ B)× (B → C)→ A→ C is the function composition operator.

We use a partial lambda term of the form λx | P (x) • E(x) that de�nes a
function only on those values x where the predicate P (x) is true. The function
is unde�ned on other values, including values on which P is unde�ned. This
notation is inspired by the Z-Notation [8].

We assume all functions to be continuous in the domain theoretic sense.
Thus, we also assume a complete partial order (v) with bottom (⊥) to exist on
all types. Top and Bot denote the type of all values and the type of no values
respectively.

We will use bold font to denote reversible functions and operators on re-
versible functions.

2 Structure of a Reversible Functional Program

As the title of this paper says, we are going to describe an approach for a
programming language that is both functional and reversible. By functional, we
mean that a program is a function. By functional programming we mean that a

program is constructed by composing functions. By reversible we mean programs
can be run in two directions: the normal direction, that assigns an output value
to an input value, and the reverse direction, that assigns an input value to an
output value.

Remark 1. What we mean by reversible here is di�erent from what is typically
referred to as reversible. A reversible function can be applied in reverse on its
own output to produce some input value, not necessarily the original value. The
reverse of functions that do have such a behavior are typically called inverse. A
better terminology for such functions would be invertible.

We always treat both directions in parallel resulting in the following de�ni-
tion. This is also called the combinator approach [2].

De�nition 1. A pair of functions t = (
−→
t ,
←−
t) with opposing types, i.e.,

−→
t :

A → B and
←−
t : B → A, is called a janus.

−→
t is called the normal direction

and
←−
t the reverse direction of t. We will sometimes write t =

(−→
t
←−
t

)
where it

improves readability. We write A � B as an abbreviation for (A→ B)× (B →
A). The composition, t1;t2 : A� C, of two januses t1 : A� B and t2 : B � C

is de�ned as t1;t2 = (
−→
t1 ;
−→
t2 ,
←−
t2 ;
←−
t1). The reverse, t† : B � A, of a janus t : A� B

is de�ned as t† = (
←−
t ,
−→
t).

Our approach can now be phrased: whereas functional programming consists
of composing functions, generalized reversible functional programming consists
of composing januses.

Remark 2. It is easy to see that janus composition is associative, (t†)† = t and

(t1;t2)† = t†2;t
†
1. Let idA = (idA, idA), then januses form a dagger category �

thus, the choice of symbol for janus reverse. Together with

A⊗B = A×B
t1 ⊗ t2 = (λ(a, b) • (

−→
t1 a,

−→
t2 b), λ(c, d) • (

←−
t1 c,
←−
t2 d))

swapA,B = (λ(a, b) • (b, a), λ(b, a) • (a, b))

assocA,B,C = (λ((a, b), c) • (a, (b, c)), λ(a, (b, c)) • ((a, b), c))

I = {()}
rightA = (λa • (a, ()), λ(a, ()) • a)

januses become a dagger symmetric monoidal category.

Even though this paper is about generalizing reversible programming be-
yond injective functions, they are a useful object of investigation for �nding
what makes reversible programs di�erent from irreversible ones. One important
observation is that injective functions cannot throw away information. The prime
example for functions that throw away information are the projection functions,
speci�cally π1 : A×B → A with π1 (a, b) = a. How could a janus look like whose
normal direction is that of a projection function? There does not seem to be a

generic way how the B-component can be recomputed from the A-component.
Thus, we provide one ourselves.

De�nition 2. The janus constructor forgetA,B : (A → B) → (A× B � A) is
de�ned as forgetA,B f = (π1, λa • (a, f a)).

Related to not using a variable at all is the issue of using the value of a
variable more than once. In the irreversible world, this is represented by the
function δA : A → A × A with δA a = (a, a). In the reverse direction, it is
possible that the two copies of the variable have di�erent values. Which do we
choose? Should we combine them? Disallow such combinations? And again, it
is up to the programmer to decide. (forgetA,A idA)† is one way � keep the �rst
value and ignore the second. Keeping the second value can be achieved by using
swap;(forget id)†. There also exists a canonical solution if the data type admits
equality testing.

De�nition 3. Let A be a type equipped with a binary function · == · : A×A→
Bool with (a1 == a2) v (a1 = a2). Then the janus dupA : A� A×A is de�ned
as dupA = (δA, λ(a1, a2) | a1 == a2 • a1).

2.1 Janus Classes

What we have described so far, are just arbitrary pairs of functions with reverse
type signatures. And actually, forget is su�cient to construct any janus from
its two directions.

Corollary 1. Any t : A� B can be decomposed as

t = (forgetA,B
−→
t)†;swapA,B;forgetB,A

←−
t .

If we assume that the relationship between normal and reverse direction in
simple januses is always useful, then the mere way in which complex januses are
constructed from simpler januses will likely result in a useful janus. Nonetheless,
it is possible � and interesting � to ensure certain consistency conditions.

Figure 1 shows the janus subsets, which we call janus classes, that are going
to be used in the remainder of this paper.

Class's name Condition Abbreviation

inverse
−→
t ;
←−
t v id ∧←−t ;−→t v id in

semi-inverse
−→
t ;
←−
t v id si

reverse semi-inverse
←−
t ;
−→
t v id rs

pseudoinverse
−→
t ;
←−
t ;
−→
t v −→t ∧←−t ;−→t ;−→t v ←−t pi

generic � gj

irreversible (
←−
t = ⊥) ir

Fig. 1: Janus classes

Inverse januses are similar to partial injective functions. The condition states
that, if both directions are de�ned at a point, information is never lost. The
di�erence to injective functions is that one direction may be de�ned and returns
a value at which the other direction is unde�ned.

Semi-inverse and reverse semi-inverse januses can be seen as transformations
that may lose information only in one direction. It is easy to see that forget f
is reverse semi-inverse for any f , since the information that is computed by f
the reverse direction is simply thrown away in the normal direction. All of the
example function pairs given in the introduction are actually either semi-inverse
or reverse semi-inverse.

Pseudoinverse januses are named so, because they have a lot in common
with Moore�Penrose pseudoinverses of matrices. The condition on pseudoin-
verse januses can be rewritten into t;t†;t v t, from which t†;t;t† v t† follows.
Also, the januses t;t† and t†;t are (partial) idempotent and self-reverse, which
loosely corresponds to being hermitian. Pseudoinverse januses can be seen as
those losing information in both directions, but only during the �rst pass. After
a pseudoinverse janus has been applied to a value in one direction, applying it
again backward and again forward will yield the same value or will be unde�ned.

Irreversible `januses' represent normal functions. They are, on one hand, iso-
morphic to the januses class given by the condition

←−
t = ⊥, but, on the other

hand, they can be seen as the type A → B × Top → Bot. Thus, they aren't
really januses from the typing perspective, but this view will be useful when we
de�ne the semantics. They basically are januses of which we promise never to
invoke the reverse direction.

In Figs. 2a and 2b we overload ·;· and ·† on janus classes, such that, if ti is in
janus class Ji for i ∈ {1, 2}, then t1;t2 is in janus class J1;J2 and t†1 is in janus class
J†1 . It is worth noting that inverse, semi-inverse and reverse semi-inverse januses
are closed under composition, but pseudoinverse januses are not. Nonetheless,
we can still compose pseudoinverse januses with semi-inverse januses from the
right and reverse semi-inverse januses from the left.

; in si rs pi gj ir

in in si rs pi gj ir

si si si gj gj gj ir

rs rs pi rs pi gj ir

pi pi pi gj gj gj ir

gj gj gj gj gj gj ir

ir ir ir ir ir ir ir

(a) Composition

J J†

in in

si rs

rs si

pi pi

gj gj

ir �

(b) Reverse

in

si rs

pi

gj

ir

(c) Inclusion lattice

Fig. 2: Relations between janus classes

The correctness proof for ·† is straight-forward. The correctness proof for ·;·
requires many case distinctions and is not very enlightening. We will only prove
one case here as an example.

Lemma 1. Let t1 : A � B be reverse semi-inverse and t2 : B � C be pseu-
doinverse. Then t1;t2 : A� C is pseudoinverse.

Proof. First, we have to prove
−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v

−−−−→
(t1;t2). The left-hand side

simpli�es by de�nition 1 to

−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) =

−→
t1 ;
−→
t2 ;
←−
t2 ;
←−
t1 ;
−→
t1 ;
−→
t2 .

Since
←−
t1 ;
−→
t1 v id by assumption, and

−→
t2 is continuous and thus monotone, we

have −−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v −→t1 ;

−→
t2 ;
←−
t2 ;
−→
t2 .

We also have
−→
t2 ;
←−
t2 ;
−→
t2 v

−→
t2 by assumption and can conclude

−−−−→
(t1;t2);

←−−−−
(t1;t2);

−−−−→
(t1;t2) v −→t1 ;

−→
t2 =

−−−−→
(t1;t2) .

←−−−−
(t1;t2);

−−−−→
(t1;t2);

←−−−−
(t1;t2) v

←−−−−
(t1;t2) is proven analogously, but using the assump-

tion
←−
t2 ;
−→
t2 ;
←−
t2 v

←−
t2 . Thus, t1;t2 is pseudoinverse. ut

Figure 2c shows how janus classes are included in each other. This complete
lattice de�nes a partial order, ≤, that we can use to broaden a janus type.

Finally, we look at how janus classes compose in parallel. We can prove in
general that they are closed under any bifunctor.

De�nition 4. A bifunctor F is a mapping from pairs of types to types and also
a (continuous) mapping from pairs of functions to functions, such that

1. f : A→ B ∧ g : C → D =⇒ F (f, g) : F (A,C)→ F (B,D),
2. F (idA, idB) = idF (A,B), and
3. F (f1;f2, g1;g2) = (F (f1, g1));(F (f2, g2)).

We extend a bifunctor F to januses, such that for any two januses t1 : A� B
and t2 : C � D, F (t1, t2) = (F (

−→
t1 ,
−→
t2), F (

←−
t1 ,
←−
t2)). Thus, we have F (id, id) =

id, F (t1;t2, t3;t4) = (F (t1, t3));(F (t2, t4)) and F (t†1, t
†
2) = (F (t1, t2))† from the

functor laws.

Remark 3. The parallel composition, ⊗, from remark 2 is actually a bifunctor
extended to januses. The bifunctor maps a pair of functions, (f, g), to the func-
tion λ(a, b).(f a, g b).

Again, we shall show proof for only one janus class as an example.

Lemma 2. Let t1 : A � B and t2 : C � D be both semi-inverse and F be a
bifunctor, then F (t1, t2) : F (A,C) � F (B,D) is also semi-inverse.

Proof. We have to prove
−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) v id. The left-hand side simpli-

�es as follows
−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) = F (

−→
t1 ,
−→
t2);F (

←−
t1 ,
←−
t2) = F (

−→
t1 ;
←−
t1 ,
−→
t2 ;
←−
t2)

by de�nition 4. Because F is monotone and
−→
ti ;
←−
ti v id for i ∈ {1, 2}, we have

−−−−−−−→
(F (t1, t2));

←−−−−−−−
(F (t1, t2)) v F (id, id) = id .

Thus, F (t1, t2) is semi-inverse. ut

2.2 Choice

With ⊗ it is possible to compose reversible functions in parallel. We now de�ne
the functor ⊕ that composes januses as alternatives of each other.

De�nition 5. Let ⊕ be the bifunctor with

A⊕B = A+B

t1 ⊕ t2 = λx |

{
x = inj1 a • inj1(

−→
t1 a)

x = inj2 b • inj2(
−→
t2 b)

where A + B is the sum type, and inj1 : A → A + B and inj2 : B → A + B are
the corresponding injections.

To actually make the choice, we use the following janus constructor.

De�nition 6. Let if si : (A→ Bool)→ (A� A+A) with

if si c =

 λx |
{

c x • inj1 x
¬c x • inj2 x

λy |
{
y = inj1 a • a
y = inj2 a • a

 .

Since there is an isomorphism between A + A and A × Bool, if si is just
a special form of forget†. Thus, if si is not inverse, but only semi-inverse. It
discards one bit of information in the reverse direction. Therefore, we cannot
use it to construct inverse, reverse semi-inverse, or pseudoinverse januses. We
de�ne an inverse version that checks whether the correct alternative was used in
the reverse direction.

De�nition 7. Let if in : (A→ Bool)→ (A� A+A) with

if in c =

 λx |
{

c x • inj1 x
¬c x • inj2 x

λy |
{
y = inj1 a ∧ c a • a
y = inj2 a ∧ ¬c a • a

 .

With these janus constructors as building blocks, it is possible to de�ne a
janus from alternative januses depending on a condition and an assertion. For
example, the janus if si c; (t⊕ e) ;(if in a)† is semi-inverse if t and e are semi-
inverse. For the compound janus to be de�ned at all, c and a should be related
predicates. One typically expresses the same condition as the other, but in terms
of a di�erent data type.

2.3 Higher-Order Januses

Since we want to create a reversible language that has as many features of
irreversible languages as possible, we have to look at januses over januses. The
�rst non-trivial higher-order janus that comes to mind, is the janus that reverses
other januses.

De�nition 8. Let revA,B : (A� B) � (B � A) with revA,B = (·†, ·†).

rev is a bijection and thus inverse.

A core concept of functional programming is the existence of a function
eval : A× (A→ B)→ B, that applies a function to a value and returns the result.
Turning this signature into a janus, like eval′ : A× (A� B) � B, is not going
to work. How are we supposed to compute from just a value the function and its
argument from which the value originated? Instead, we use a trick. If not only
the result of the janus application is returned, but also the janus, then we can
de�ne a useful, higher-order janus.

De�nition 9. Let jevalA,B : A× (A� B) � B × (A� B) with

−−−−−−→
jevalA,B (a, t) = (

−→
t a, t)

←−−−−−−
jevalA,B (b, t) = (

←−
t b, t) .

Currying is another core concept of functional programming. Since currying
is a bijection, we can de�ne it as a janus.

De�nition 10. Let curryA,B,C : (C → A→ B) � (A× C → B) with

−−−−−−−−→curryA,B,C f = λ(a, c) • f c a
←−−−−−−−−curryA,B,C f = λc • λa • f (a, c) .

Again, there is no obvious correspondent in the janus world. Using a similar
trick as above we can �nd the following janus.

De�nition 11. Let jcurryA,B,C : (C → (A� B)) � (A× C � B × C) with

−−−−−−−−−→
jcurryA,B,C f = (λ(a, c) • (

−−→
(f c) a, c), λ(b, c) • (

←−−
(f c) b, c)

←−−−−−−−−−
jcurryA,B,C t = λc • (λa • π1 (

−→
t (a, c)), λb • π1 (

←−
t (b, c))) .

The argument of type C acts like a context in which the transformation
between A and B is performed (explaining our unusual choice of type variable
names).

Remark 4. An interesting fact is that jeval can be derived from jcurry by

jevalA,B =
−−−−−−−−−−−→
jcurryA,B,A�B idA�B .

−−−−→
jcurry suggests an idea how to bridge the irreversible and reversible world.

A function f : C → (A � B) could be any irreversible function that computes

a janus.
−−−−→
jcurry turns this into a janus, that we can use as a building block to

compose more complex januses from. One variable of type A (or more than one,
if A is a tuple) is consumed to produce a new variable of type B, while using �
but not consuming � a variable of type C in that transformation. What this also
suggests is that, when some expression is applied to a janus, the janus itself may
be computed in an irreversible fashion from all variables that are not consumed
in that expression.

2.4 Recursion

Since januses are just pairs of functions, de�ning a generic janus recursively by
taking the �xpoint, fix F , of a function F : (A � B) → (A � B) just works.
For recursion to make sense for other janus classes, the janus class has to be
ω-complete and contain ⊥. In this case, we can apply �xpoint induction. Again,
we prove this for semi-inverse januses as an example.

Lemma 3. Let F : (A � B) → (A � B) preserve semi-inverse januses. Then
fix F is semi-inverse.

Proof. By �xpoint induction.

1. Since
−→
⊥ ;
←−
⊥ = ⊥ v id, ⊥ is semi-inverse.

2. F preserves semi-inverse januses by assumption.

3. Let t1 v t2 v . . . be an ω-chain of semi-inverse januses, and let t =
⊔
i ti.

Then we have

−→
t ;
←−
t =

(⊔
i∈ω

−→
ti

)
;

(⊔
i∈ω

←−
ti

)
=
⊔
i1∈ω

⊔
i2∈ω

−→
ti1 ;
←−
ti2 =

⊔
i∈ω

−→
ti ;
←−
ti v

⊔
i∈ω

id = id .

Thus, t is semi-inverse and the set of semi-inverse januses is ω-complete. ut

3 Generalized Reversible Functional Programming

In the previous chapter, we have e�ectively de�ned a point-free language for
generalized reversible functional programming. This chapter will do the same in
an applicative style. The syntax for this language is given in Fig. 3.

J ::= in|si|rs|pi|gj|ir
E ::= V |?V
| (E, . . . , E)

| E E

| λJE ⇒ E| . . . |E ⇒ E

| S;E

T ::= Top|Bot|Equ|Bool|Int|List|
| T × · · · × T
| T J T

S ::= S;S

| let E ⇐ E

| forget E ⇐ E

| remember E ⇐ E

Fig. 3: Syntax of the reversible language

Not surprisingly we generalized function types (A→ B) to janus types (A J
B) by including the janus class. We also distinguish types with equality and
without equality. Those with equality are a subtype of Equ. As expected from
the type signature (A→ B)× (B → A), reversible januses are invariant in their
type arguments. But they are covariant in their janus class, i.e., a janus class
A J1 B is considered a subclass of A J2 B if and only if J1 ≤ J2.

What probably is most unusual is the omission of a sub-language for patterns.
In this language all expressions can be used as a pattern. A de�nition involving
a function application, let x = f e for example, can be easily reversed if f is
a reversible function. The reverse is let e = f† x. This is equivalent to writing
let f e = x in our language. Thus, when the term f e is used to pattern match a
value v, the reverse direction of the value of f is applied to v and this transformed
value is then pattern matched against e.

The only exception is that λ-constructs cannot be used as a pattern. Matching
against a λ-construct would mean �nding the values of the free variables in the λ-
construct that make it equal to the function matched against. This is undecidable
in general. Thus, λ-expressions have to be restricted to the body of irreversible
functions. Here, we do not enforce this restriction in the syntax to simplify the
denotational semantics.

The denotational semantics, J·KE , in Fig. 4 assigns each expression a janus
of type Γ � Top× Γ , where Γ = V → Top is the type of variable assignments.
The normal direction de�nes the semantics when the expression is used as a
value. The reverse direction de�nes the semantics when the expression is used
as a pattern.

Let-expressions are generalized to statements and the scoping expression,
s;e. The forget- and remember-statements allow the explicit discarding and
reconstruction of information. A statement's denotation, J·KS : Γ � Γ , is simply
a janus between environments, as it can only produce and consume variables.

Tuple expressions evaluate their components from left to right. Thus, values
consumed in the right sub-expression are available to the left sub-expression, but
not vice versa. Pattern matching of tuples happens necessarily in the opposite
direction, from right to left.

JvKE =

(
λγ • (γ v, γ)

λ(x, γ) | γ v == x • γ

)
J?vKE =

(
λγ • (γ v, γ\v)

λ(x, γ)|v /∈ dom •γ ∪ (v 7→ x)

)
J(e1, . . . , en)KE = Je1K ⊗̂(. . . ⊗̂ JenK)

where a⊗̂b = a;(id⊗ b);assoc†

Jf eKE = JeKE ;
−−−−→
jcurry (

−−→
JfKE ;π1)

JλJp1 ⇒ e1| . . . |pn ⇒ enKE =

(
λγ •

(
(forgetλx.γ)†;β;forgetλy.γ, γ

)
−

)
where β = Jp1K†E ; Je1KE ⊕̂

J
(. . . ⊕̂J JpnK†E ; JenKE)

where a ⊕̂J
b = ifJ (−→a · 6= U); (a⊕ b) ;(ifJ† (←−a · 6= U))†

where if in = if rs = ifpi and if si = ifgj = if ir = if ir†

Js;eKE = JsKS ; JeKE
Js1;s2KS = Js1KS ; Js2KS

Jlet p⇐ eKS = JeKE ; JpK†E
Jforget p⇐ eKS = JpKE ;swap;forget (

−−→
JeKE ;π1)

Jremember p⇐ eKS = Jforget p⇐ eK†S

Fig. 4: Denotational semantics of the reversible language

From the discussions about dup and jcurry we derive the following rules
regarding variables:

1. Variables of types with equality may be used multiple times. They act as
duplicates, when used as a value, or equality checks, when used as a pattern.
This allows us to omit literal values in the syntax. Literal values can be
emulated by de�ning them as variables in the outermost scope.

2. If the current scope is that of an irreversible function, variable usage is
loosened to the normal de�ne-before-use rule. There, even types without
equality may be duplicated.

3. The janus sub-expression of a janus application is an irreversible scope and
has access to all variables that are not consumed or produced in the argument
sub-expression. The same is true for the right sub-expression of a forget-
and remember-statement.

4. Otherwise, variables must be de�ned exactly once and then consumed exactly
once. In order to di�erentiate between a de�nition/consumption use and a
copy/equality test use of a variable, we introduce the ?V form. This is only
necessary in order to keep the semantics simple and compositional. Every
variable must be de�ned using the ?V form. In a reversible scope, the last
usage of every variable must also be a ?V form.

The other peculiarity of these semantics is how we treat pattern matching.
Januses de�ned in this system are implicitly using the Maybe (or Option) monad.
The special semantic value U is used to denote when a janus is unde�ned
at the given argument, the None (or Nothing) case. This includes the condi-
tional lambda expression, that we have used until now, i.e., ¬P (x) =⇒ (λy |
P (y) • E(y))x = U. All functions are implicitly strict in U, i.e., f U = U.
The lambda expression is the only place where we treat U in a special way
and this is where the pattern matching happens. Also, note that U is di�er-
ent from ⊥. We leave ⊥ as the semantic value for non-termination. Especially,
non-termination in a predicate still leads to a non-terminating function, i.e.,
P (x) = ⊥ =⇒ (λy | P (y) • E(y))x = ⊥.

Remark 5. This treatement is similar to exceptions in the programming language
Haskell [3]. U can be emulated by a special exception and pattern matching is
then just syntactic sugar for handling this exception.

Pattern matching generally happens in a similar way to other functional
languages. The sub-cases of a function are tried in order. The �rst case that
matches, i.e., is not U, is the one that determines the output. But from the
discussions about if si and if in, we know that, depending on the janus class, we
have to perform some consistency checking afterwards. For inverse, reverse semi-
inverse, and pseudoinverse januses, we have to ensure that none of the cases, that
were unde�ned in the normal direction, are de�ned in the reverse direction. The
same is true when going backwards for inverse, semi-inverse, and pseudoinverse
januses.

3.1 An Example

As an example, we will de�ne the janus parseInt : List rs Int that computes
from a list of digits the corresponding number and vice versa. parseInt shall
discard leading zeros and, therefore, is reverse semi-inverse. For this example, we
assume the constants true : Bool, false : Bool, nil : List and cons : Int×List in
List are already de�ned in the global context with their usual meaning. These
are usually de�ned as type constructors in irreversible languages. Since type
constructors are always injective, they extend naturally to januses. We assume
the binary operators + and ∗ of type Int ir (Int in Int) which perform
addition/subtraction and multiplication/partially de�ned division respectively.
The syntactic sugar for these operators swaps the arguments, i.e., l + r ≡ (· +
·) r l. Hence, it is the left operand which is consumed, and the right operand
stays untouched. We also assume // : Int ir (Int ir Int) which performs
integer division with rounding towards negative in�nity.

The janus d2n in Fig. 5 is a �rst step. It uses the janus constructor muladd :
Int ir (Int× Int rs Int) with the following behavior:

muladd k =

(
λ(a, b) • a ∗ k + b

λy • (by/kc , y mod k)

)
.

l e t muladd ⇐ λir ?k ⇒
λrs (?a , ?b) ⇒

l e t ?w ⇐ ?a ∗ k ;
l e t ?y ⇐ ?b + w ;
forget ?w ⇐ y // k ∗ k ;
?y ;

l e t d2n ⇐ λrs

n i l ⇒ 0
| cons (?d , ? l) ⇒

muladd 10 (d2n ? l , ?d) ;
l e t append ⇐ λin

(n i l , ?x) ⇒ cons (? x , n i l)
| (cons (?y , ? l) , ?x) ⇒

cons (?y , append (? l , ?x)) ;
l e t reverse ⇐ λin

n i l ⇒ n i l
| cons (? x , ? l) ⇒

append (reverse ? l , ?x) ;
l e t compose_rs ⇐ λir ? f ⇒ λir

?g ⇒ λrs ?x ⇒ g (f ?x) ;
l e t parseInt ⇐

compose_rs reverse d2n ;

l e t divmod ⇐ λir ?k ⇒
λsi ?y ⇒

remember ?w ⇐ y // k ∗ k ;
l e t ?b ⇐ ?y − w ;
l e t ?a ⇐ ?w / k ;
(?a , ?b) ;

l e t n2d ⇐ λsi

0 ⇒ n i l
| ?x ⇒ l e t (?n , ?d) ⇐ divmod 10 ?x ;

cons (?d , n2d ?n) ;
l e t unappend ⇐ λin

cons (? x , n i l) ⇒ (n i l , ?x)
| cons (?y , unappend† (? l , ?x)) ⇒

(cons (?y , ? l) , ?x) ;
l e t unreverse ⇐ λin

n i l ⇒ n i l
| ?y ⇒ l e t (? r , ?x) ⇐ unappend ?y ;

cons (? x , unreverse ? r) ;
l e t compose_si ⇐ λir ? f ⇒ λir

?g ⇒ λsi ?x ⇒ g (f ?x) ;
l e t pre t t yPr in t In t ⇐

compose_si n2d unreverse ;

Fig. 5: Semi-reversible number parser and its reverse

The statement let ?y ⇐ ?b+w is where we use
−−−−→
jcurry to its full extent. The

variable w is used here in an irreversible context, even though it is de�ned in a
reversible context. This is sound, because w does not appear in the argument to
the janus · + w, which is just b.

The implementation of d2n is straight-forward, but it has a problem: It reads
the digits in the wrong order. We want the most signi�cant digit to be the �rst
in the list. This is solved by the janus reverse, which is written in terms of
the janus append. Their de�nition is no di�erent from that in an irreversible,
functional language. The de�nition just happens to be reversible.

Finally, we de�ne parseInt in a point-free style, to show-case this possibility.
Figure 5 also shows an implementation of the reverse for each of the above

januses and janus constructors. The reverse of any lambda expression, λJp⇒ b,
is simply λJ†e⇒ p. This does not help much in understanding what is going on.
From the denotational semantics (Fig. 4) we can derive the simpli�cation rules
in Fig. 6. The implementations utilizes those simpli�cations, in order to make
the source code easier to understand.

Jlet e1 e2 ⇐ e3KS =
r
let e2 ⇐ e†1 e3

z

S

JλJlet e1 ⇐ e2; e3 ⇒ e4KE = JλJe3 ⇒ let e2 ⇐ e1; e4KE
JλJe1 e2 ⇒ e3KE = JλJe1 ?x⇒ let e2 ⇐ ?x; e2KE with x new variable

JλJforget e1 ⇐ e2; e3 ⇒ e4KE = JλJe3 ⇒ remember e1 ⇐ e2; e4KE

Fig. 6: Useful equivalences

4 Related Work

The observation that duplication in one direction requires equality testing in the
other direction � as in dup � has been noted before [5,10].

The construction if in c; (t⊕ e) ;(if in a)† is inspired and closely related to the
if-statement in the programming language Janus. Our pattern matching algo-
rithm is an instance of that construction. It actually generalizes the symmetric
�rst-match policy from RFun.

Our treatment of januses as irreversible expressions � as motivated by
−−−−→
jcurry

� is a generalization of reversible updates from [9].

Lenses are isomorphic to a subset of inverse januses. A lens l consists of two
functions l.get : A→ B and l.put : B ×A→ A adhering to the lens laws

l.get(l.put(b, a)) v b
l.put(l.get(a), a) v a .

These laws are equivalent to requiring the janus t : A � B × A to be inverse
and have

−→
t ;π2 = idA.

5 Future Work

Amore thorough domain theoretic treatment of the reversible language is needed.
Issues like recursion and loops will then have a stronger basis.

A proper type system should prove that de�ned januses actually belong to
their respective janus class. The janus class of a reversible λ-expression is almost
derivable from the denotational semantics from Fig. 4 using the foundations that
were laid out in Section 2. We must additionally prove that JvKE and J?vKE are

inverse, and that
−−−−→
jcurry (

−−→
JfKE ;π1) has the same janus class as

−−→
JfKE .

A category theoretic treatment might also be enlightening. Especially in re-
gards to quantum computation, which shares many properties with reversible
programming and in recent years got their share of category theory in [7].

The same holds for linear type systems. The language proposed here has a
lot in common with linear languages, only we do not consume variables in the
function part of a function application. This suggests a modi�cation of the modus

ponens in linear logic to
A→ B A

A→ B B
, where the implication may be reused.

A usability issue comes up when we de�ne binary operators like ·+ · : Int→
(Int � Int). Only one of its arguments can be consumed. The other one must
be constant in the current scope. But which one? Is it necessary to have two
versions of each binary operator? Is it useful to have typing rules that can deal
with overloaded operators? Or is our current approach, where the left operand
is always consumed, su�cient?

6 Introduction†

We have de�ned januses as the core concept of a reversible program along with
other concepts to compose large januses from smaller ones. The functors ⊗ and ⊕
for parallel and alternative execution, if as basis for choice and pattern matching,
forget as means to discard information and jcurry as the bridge between the
irreversible and reversible world. One fundamental observation is that, unlike in-
jective functions, general januses can discard information, but unlike irreversible
functions, they cannot discard information implicitly.

We have also given the syntax and semantics for a programming language
that allows to write reversible and irreversible januses. Recursion, pattern match-
ing, and higher order programming are possible and even look like functional
programming. The language allows to use irreversible functions to compute re-
versible januses and invoke them in even in a reversible context. As a side e�ect,
this language generalizes pattern matching to all expressions except lambda ab-
stractions. It especially allows to pattern-match against a janus application.

Januses with certain consistency requirements have been identi�ed. These
janus classes compose with relatively simple rules and form a complete lattice.
Our example program shows how a very simpli�ed parser can be written as a
reverse semi-inverse janus. Its reverse, the pretty-printer, is implicitly speci�ed
by the same source code.

References

1. Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and
Alan Schmitt. Boomerang: Resourceful Lenses for String Data. In ACM SIGPLAN
Notices, pages 407�419, 2008.

2. Nate Foster, Kazutaka Matsuda, and Janis Voigtländer. Three Complementary
Approaches to Bidirectional Programming. Generic and Indexed Programming,
pages 1�46, 2012.

3. Simon Peyton Jones, Alastair Reid, Tony Hoare, and Fergus Henderson. A Seman-
tics for Imprecise Exceptions. In ACM SIGPLAN Notices, pages 25�36, 1999.

4. Peter Kourzanov. Bidirectional Parsing � A Functional/Logic Perspective. In-
ternational Symposia on Implementation and Application of Functional Languages
(IFL 2014), 2014.

5. Shin-cheng Mu, Zhenjiang Hu, and Masato Takeichi. An Algebraic Approach to
Bi-directional Updating. In Programming Languages and Systems, pages 2�20,
2004.

6. Tillmann Rendel and Klaus Ostermann. Invertible Syntax Descriptions: Unifying
Parsing and Pretty Printing. In ACM Haskell Symposium, pages 1�12, 2010.

7. Peter Selinger. Dagger compact closed categories and completely positive maps (
extended abstract). pages 1�23, 2005.

8. John Michael Spivey. The Z Notation: A Reference Manual. Prentice Hall Inter-
national, 2nd edition, 1998.

9. Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a Re-
versible Programming Language. In Computing Frontiers, pages 43�54, 2008.

10. Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Towards a Reversible
Functional Language. In Reversible Computation, pages 14�29, 2012.

	An Approach for Generalized Reversible Functional Programming

