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Abstract. Systems that comprise accelerators (e.g., GPUs) promise high perfor-
mance, but their programming is still a challenge, mainly because of two rea-
sons: 1) two distinct programming models have to be used within an application:
one for the host CPU (e.g., C++), and one for the accelerator (e.g., OpenCL or
CUDA); 2) using Just-In-Time (JIT) compilation and its optimization opportuni-
ties in both OpenCL and CUDA requires a cumbersome preparation of the source
code. These two aspects currently lead to long, poorly structured, and error-prone
GPU codes. Our PACXX programming approach addresses both aspects: 1) par-
allel programs are written using exclusively the C++ programming language, with
modern C++14 features including variadic templates, generic lambda expres-
sions, as well as STL containers and algorithms; 2) a simple yet powerful API
(PACXX-Reflect) is offered for enabling JIT in GPU kernels; it uses lightweight
runtime reflection to modify the kernel’s behaviour during runtime. We show
that PACXX codes using the PACXX-Reflect are about 60% shorter than their
OpenCL and CUDA Toolkit equivalents and outperform them by 5% on average.

1 Introduction

Accelerators such as Graphics Processing Units (GPUs) are increasingly used in today’s
high-performance systems. However, programming such systems remains complicated,
because it requires the use of two distinct programming models: one for the host CPU
(e.g., C or C++) and one for the GPU (e.g., OpenCL or CUDA). The codes for GPUs
(so-called kernels) are written using limited subsets of the C/C++ language which miss
many advanced features of the current standards like C++14 [1]. Furthermore, specific
language constructs of CUDA and OpenCL for parallelization and synchronization have
to be additionally mastered by the GPU software developers. Last but not least, the Just-
In-Time (JIT) compilation which is a proven technique of simplifying and optimizing
the programming process is provided for GPUs on a very restricted scale.

This paper aims at simplifying and improving the programming process for systems
with GPUs and other accelerators by making two main contributions:

1. We present and implement PACXX (Programming Accelerators with C++) - a uni-
fied programming model based on the newest C++14 standard that uniformly cov-
ers both host and kernel programming without any language extensions.
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2. We develop PACXX-Reflect – a simple yet powerful API to enable lightweight JIT
compilation of PACXX programs in order to optimize the kernel code during pro-
gram execution by using values that become known at runtime.

We evaluate our programming approach for GPUs with C++14 and JIT compilation
using two case studies – matrix multiplication and Black-Scholes model for the option
market – and demonstrate that PACXX codes are about 60% shorter than their man-
ually optimized OpenCL and CUDA Toolkit equivalents and outperform them 5% on
average.

The structure of the paper is as follows. Section 2 provides an overview of the state
of the art and related work in programming systems with accelerators in general and
the JIT compilation approaches for such systems in particular. In Section 3, we explain
the PACXX programming approach and compare it to CUDA by way of example. We
present our approach to JIT compilation using the PACXX-Reflect API in Section 4.

In Section 5, we briefly describe the implementation of PACXX and we evaluate our
approach on two case studies by comparing the size and performance of PACXX codes
to the corresponding CUDA and OpenCL programs. Finally, we conclude in Section 6.

2 State of the Art and Related Work

In current programming approaches like CUDA and OpenCL, the code for a GPU (so-
called kernel) is written using a limited subset of the C/C++ language, e.g., CUDA
C++ [3] which misses many advanced features of the current standards like C++14 [1].
Memory management for the GPU memory has to be performed by the developer ex-
plicitly, because C++ has no language support for distinct memories. Memory is ex-
plicitly allocated twice - first in the host memory and then again in the GPU’s memory.
The developer is also responsible for performing explicit synchronization (copying) be-
tween the two distinct memories. This implies a significantly longer boilerplate (host-
)code for memory management as compared to C++ where allocation and initialization
are performed together through the RAII (Resource Acquisition Is Initialization) idiom
[4].

Although CUDA and OpenCL (in a provisional version of the OpenCL 2.1 stan-
dard [5]) have been recently extended with static C++11 language features, these C++
extensions define new, for C++ developer unfamiliar, language elements (e.g., cast oper-
ators), while dynamic language features of C++ such as the Standard Template Library
are still not provided by neither CUDA nor OpenCL.

Several recent approaches aim at integrating the accelerator programming into C++.
The C++ AMP approach [6] extends C++ by an explicit data-parallel language con-
struct (parallel for each), and so-called array views provide functions for mem-
ory transfers. The developer still needs to use a wrapper (i.e., write an additional line of
code) for each memory allocation and use the C++ AMP views instead of the original
C++ data types in order to achieve that memory synchronization is done transparently
by the system. SYCL [7] is a high-level interface that integrates the OpenCL program-
ming model into C++ by using the lambda features of the C++11 standard, but it still
demands multiple memory allocations for so-called Buffers both in the host and kernel
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code. Nvidia Thrust [8] and AMD Bolt [9] are libraries implementing the functional-
ity of the C++ Standard Template Library (STL) in a data-parallel way, but they are
restricted to accelerators from the corresponding vendor and do not support modern
C++14 language features. Annotation-based approaches OpenMP [10] and OpenACC
[11] expect the user to use parallelism-specifying directives in addition to C++. STAPL
[12] offers STL functionality which is executed in parallel by the underlying runtime
system, but it targets distributed-memory systems rather than systems with GPUs.

None of the described programming models offers the possibility to transform and
optimize the kernel code during execution, i.e., in a Just-In-Time (JIT) manner. For
example, writing a kernel for a particular size of input data provides usually better
performance than a generic kernel, due to additional optimizations performed by the
compiler. However, writing separate kernels for different data sizes would lead to a
poorly structured, hardly maintainable codes. Just-in-time compilation can be used to
optimize code by taking into account values which become known during the execution
of the program: thereby, compilers can additionally optimize code when performance-
critical variables (e.g., exit conditions of loops) are resolved.

OpenCL and the newest releases of CUDA support JIT compilation of kernel code.
However, both approaches demand that the kernel code is provided as human-readable
code which has a security drawback: the source code may be disclosed to non-authorized
parties. The NVRTC [13] library supports all C++ features available in CUDA for JIT
compilation. Unfortunately, a complicated problem arises using NVRTC: to allow func-
tion overloading and template functions as kernels, CUDA C++ follows the C++ stan-
dard regarding function name mangling while kernel names are machine generated and
unknown to the developer. Without knowing the mangled name of a kernel, the func-
tion pointer for invoking the kernel cannot be retrieved and the kernel cannot be called.
Additionally, template kernels must be explicitly instantiated prior to their use by the de-
veloper. The current solution is to enforce the C naming policy using extern "C", but
this completely disables function overloading and templates for kernels, because func-
tion names are no longer unique and the right kernel cannot be resolved by its name.
Another solution could be an additional library providing function name de-mangling,
but this would introduce more development overhead and unnecessary boilerplate code,
because function names would have to be combined with the actual data types used in
the templates. Another recent JIT approach is LambdaJIT [14] that automatically par-
allelizes the lambda functions used in STL algorithms. Through different back-ends,
LambdaJIT is capable of offloading computations to a GPU.

This paper describes a novel approach to programming systems with GPUs and
other accelerators: our PACXX model relies exclusively on the newest C++14 standard
without any extensions, and we use lightweight runtime reflection to provide JIT com-
pilation and optimization of PACXX programs. PACXX provides the programmer with
all advanced features of C++14, e.g., variadic templates, generic lambda expressions,
as well as STL containers and algorithms. Reflection enables a program to modify its
behaviour and is well known in languages like Java and Scala [15] but is unavailable in
C++. In contrast to other approaches like Reflex [16] and XCppRefl [17] which aim to
integrate full runtime reflection of the type system into C++, PACXX-Reflect follows a
lightweight approach: we do not perform any type analysis or introspection.
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3 The PACXX Programming Model

To explain our C++-based approach to GPU programming, we consider a popular ex-
ample in parallel computing: vector addition. We start with a C++ program and then
compare how this program is parallelized for GPU using CUDA vs. our PACXX ap-
proach.

1 int main (){

2 vector <int > a{N}, b{N}, c{N};

3 for (int i = 0; i < N; ++i)

4 c[i] = a[i] + b[i];

5 }

Listing 1.1: Sequential vector addition in C++.

Listing 1.1 shows the sequential C++ source code for the vector addition. The mem-
ory is allocated and initialized with the default constructor of the vector’s element type,
here with 0 – following the RAII (Resource Acquisition Is Initialization) idiom – dur-
ing the construction of the three STL containers of type std::vector in line 2. The
calculation is performed by the for-loop in line 3.

1 __global__ void vadd (int* a,

2 int* b, int* c, size_t size){

3 auto i = threadIdx.x

4 + blockIdx.x * blockDim.x;

5 if (i < size)

6 c[i] = a[i] + b{i];

7 }

8 int main (){

9 vector <int > a{N}, b{N}, c{N};

10 int* da, db, dc;

11 cudaMalloc(da, N*sizeof(int));

12 cudaMemcpy(da ,&a[0], sizeof(int)

13 * N, cudaMemcpyHostToDevice );

14
... // 5 additional lines

15 // for vectors b and c

16 vadd <<<N/1024 + 1, 1024>>>

17 (da , db , dc, N);

18 cudaDeviceSynchronice ();

19 }

int main (){

vector <int > a{N}, b{N}, c{n};

auto vadd = kernel([](

const auto& a, const auto& b

auto& c){

auto i = Thread ::get(). global;

if (i < a.size ())

c[i.x] = a[i.x] + b[i.x];

}, {{N/1024 + 1}, {1024}} );

auto F = async(launch ::kernel ,

vadd , a, b);

F.wait ();

}

Listing 1.2: Two versions of parallel vector addition: in CUDA (left) and PACXX (right).

Listing 1.2 (left) shows how the vector addition is parallelized using CUDA. The
CUDA kernel replaces the sequential for-loop of the C++ version with an implicitly
data-parallel version of the vector addition. The vadd kernel is annotated with the
global keyword (line 1) and is, according to the CUDA standard, a free function with
void as return type. In CUDA, functions called by a kernel have to be annotated with
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the device keyword to explicitly mark them as GPU functions. This restriction pro-
hibits the use of the C++ Standard Template Library (STL) in the kernel code because
the functions provided in the STL are not annotated and, therefore, callable only from
the host code. The parameters of the vadd kernel are raw integer pointers. Memory
accessed by the kernel must be managed by the developer explicitly (line 11). To use
the kernel, memory is allocated on the GPU and the data is synchronized between both
memories (line 12). On the host side, three instances of std::vector are used for the
computation. Since STL features cannot be used in CUDA, three raw integer pointers
are defined in line 10 to represent the memory of the GPU. Memory is allocated using
the CUDA Runtime API; for brevity, the calls to this API are only shown for one vector.
For each allocation and synchronization, an additional line of code is necessary (e.g.,
line 11). Passing arguments to a kernel by reference which is common in C++, is not
possible in CUDA, so we have to use the pointers defined in line 10 and pass them by
value. To launch the kernel, a launch configuration must be specified within <<< >>>

in each kernel call (line 16), i.e., a CUDA-specific, non-C++ syntax is used. CUDA
threads are organized in a grid of blocks with up to three dimensions. In our example,
1024 threads are the maximal number of threads in one block, and N/1024+1 blocks
(N is the size of the vectors) form the so-called launch grid. While all threads execute the
same kernel code, the work is partitioned using the index ranges; in our example, each
thread computes a single addition depending on its absolute index in the x-dimension
(line 3). The identifier of the thread within the grid and the block are obtained using
variables threadIdx, blockIdx, blockDim and gridDim (not shown in the code). To
prevent an out-of-bounds access of threads with i >= N, a so-called if guard (line 5) is
used. However, the size of the vector has to be known in the kernel code and is passed
as additional parameter to the kernel (line 2). The GPU works asynchronously to the
host, therefore, the host execution must be explicitly synchronized with the GPU using
the CUDA Runtime API (line 18).

Summarizing, the CUDA code is very different from the original C++ version. A
complete restructuring and new language constructes are necessary, and the size of code
increases significantly.

Listing 1.2 (right) shows the PACXX source code that performs the same compu-
tation. It is a pure C++14 code without any extensions (e.g., new keywords or spe-
cial syntax), with the kernel code inside of the host code, that uses std::async and
std::future from the STL concurrency library [1] to express parallelism on the GPU.
In PACXX, there are no restrictions which functions can be called from kernel code,
however, the code must be available at runtime, i.e., functions from pre-compiled li-
braries cannot be called. As in CUDA, a PACXX kernel is implicitly data parallel: it
is defined with a C++ lambda function (lines 5-9). PACXX provides the C++ template
class kernel (line 4) to identify kernels: instances of kernel will be executed in par-
allel on the GPU. The launch configuration (the second parameter in line 9) is defined
analogous to CUDA. As in CUDA, threads are identified with up to three-dimensional
index ranges which are used to partition the work amongst the GPU’s threads. The
thread’s index can be obtained through the Thread class (line 6). To retrieve values from
the thread’s block, the class Block is available. The kernel instance created in line 3 is
passed to the STL-function std::async (line 10) that invokes the kernel’s execution
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on the GPU. PACXX provides an STL implementation based on libc++ [18] where an
additional launch policy (launch::kernel) for std::async is defined to identify ker-
nel launches besides the standard policies of the C++ standard (launch::async and
launch::deferred). Passing the launch::kernel policy to std::async (line 10)
implies that the kernel should be executed on the GPU, rather than by another host
thread. The additional parameters passed to std::async (line 11) are forwarded to the
kernel. As a significant advantage over CUDA, parameters of a kernel in PACXX can
be passed by reference, as with any other C++ function. PACXX manages the GPU
memory implicitly [2], i.e., no additional API for memory management (as in CUDA
and OpenCL) has to be used by the developer. Non-array parameters passed by refer-
ence are copied to the GPU prior to the kernel launch and are automatically synchro-
nized back to the host when the kernel has finished. For arrays, the std::vector and
std::array classes are used. As in the original C++ version, memory is allocated us-
ing the std::vector class (line 2). PACXX extends the STL containers std::vector
and std::array with the lazy copying strategy: synchronization of the two distinct
memories happens only when a data access really occurs, either on the GPU or on the
host. This happens transparently for the developer and reduces the programming effort
significantly. As compared, to the CUDA version, the PACXX code only needs 13 LoC,
i.e., it is almost 50% shorter. The PACXX kernel also requires an if guard to prevent
out-of-bounds access, but there is no need to pass the size of the vectors to the kernel as
an additional parameter, because each instance of std::vector knows the number of
contained elements which can be obtained by the vector’s size function (line 7). The
std::async function used to execute the kernel on the GPU returns an std::future

object associated with the kernel launch (line 10); this object is used to synchronize the
host execution with the asynchronous kernel more flexibly than in CUDA: the wait

member function (line 12) blocks the host execution if the associated kernel has not
finished yet.

Due to the exclusive usage of the C++14 syntax and implicit memory management
of kernel parameters and STL containers, GPU programming using PACXX is shorter
and easier for C++ developers than when using CUDA.

4 The PACXX-Reflect API

To exploit JIT compilation in CUDA or OpenCL, the source code must be prepared
manually by the developer; it is commonly represented as a string, either in the exe-
cutable itself or loaded from a source file.

Listing 1.3 compares the JIT-compilable version of vector addition in CUDA (left)
and PACXX (right). In CUDA, a placeholder ("#VSIZE#") is introduced into the ker-
nel code. During program execution this placeholder is replaced by the string with the
actual size of vector a (line 12– 19). However, changing the kernel code at runtime
requires additional programming effort in the host code and, therefore, increases the
program length. Furthermore, during the JIT compilation the kernel code passes all
compiler stages including parsing, lexing and the generation of an abstract syntax tree
(AST). Since the AST for the kernel code is created at runtime of the program, errors
in the kernel code are found first at program execution which makes debugging more
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1 vector <int > a{N}, b{N}, c{N};

2 string str{ R"(

3 extern "C"

4 __global__ void vadd(int* a,

5 int* b, int* c){

6 auto i = threadIdx.x

7 + blockIdx.x * blockDim.x;

8 int size = #VSIZE #;

9 if (i < size)

10 c[i] = a[i] + b[i];

11 })" };

12 string v{to_string(a.size ())};

13 string p{"#VSIZE#"};

14 string vadd{str};

15 auto npos = string ::npos;

16 for(size_t i = 0;

17 (i = vadd.find(p, i))!= npos;

18 i += v.size ())

19 vadd.replace(i, p.size(), v);

vector <int > a{N}, b{N}, c{N};

auto vadd = []( const auto& a,

const auto& b,

auto& c){

auto i = Thread ::get(). global.x;

auto size =

reflect ([&]{ return a.size ();});

if (i < size)

c[i] = a[i] + b[i];

};

Listing 1.3: JIT-compilable vector addition in CUDA (left) and PACXX (right).

difficult. With the vector’s size hard-coded into the kernel code, the additional param-
eter for the vector size as in Listing 1.2 becomes unnecessary, but this is only a minor
optimization since kernel parameters are stored in the very fast constant memory of the
GPU.

On the right-hand side of Listing 1.3, the same modification to the if guard is made
using PACXX-Reflect: the dynamic part of the if guard condition is replaced by a con-
stant value using the Reflect API. This is accomplished using the reflect function
which is defined as a variadic template function that takes a lambda expression and an
arbitrary number of additional parameters. The reflect function forwards the return
value of the lambda expression passed to it (line 8); the expression is evaluated in the
host’s context, i.e., the instances of the reflect template function are JIT-compiled for
the host architecture and executed on the host prior to the kernel’s launch. Only con-
stant values and kernel parameters are allowed as arguments or captured values by the
lambda expression, because they are, from the kernel’s point of view, compile-time con-
stant values. In Listing 1.3 (right), a direct call to the size function of the std::vector
requires two loads (of the begin and the end iterator) from the GPUs memory which
might introduce overhead on some architectures. To avoid this, a lambda expression
which wraps the call to the size function of vector a is passed to the reflect func-
tion; the returned value from reflect is considered static for the kernel execution and
the function call is replaced by the computed value, such that no loads are necessary
to retrieve the vector’s size. Summarizing, the replacement of the function call with the
constant value happens transparently for the developer.
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5 Implementation and Evaluation

PACXX is implemented using LLVM [19] and uses its code generation libraries to gen-
erate PTX code [20] for Nvidia GPUs and SPIR code [21] for other architectures (e.g.,
Intel Xeon Phi accelerators). PACXX-Reflect operates on the LLVM IR (intermediate
representation) generated by the PACXX offline compiler (implemented in Clang [22]),
rather than on the source code itself, thus reducing the overhead of JIT compilation as
compared to the current solutions for OpenCL and CUDA and avoids the name man-
gling problem by design.

For evaluation, two case studies programmed in C++14 and implemented using
PACXX are compared to the reference implementations from the CUDA Toolkit [23]:
1) Black-Scholes computation [24] used in high-frequency stock trading, and 2) matrix
multiplication [25].

To evaluate the performance of PACXX codes on other architectures than GPUs,
the programs from the CUDA Toolkit were also manually re-written in OpenCL. The
PACXX and CUDA implementations are compiled at runtime for CUDA Compute Ca-
pability 3.5 with standard optimizations enabled (no additional floating point optimiza-
tions), using the latest CUDA Toolkit (release 7.0). The CUDA PTX code is generated
by the Nvidia NVRTC library; the host code is compiled by Clang 3.6 with standard O3

optimizations.
For evaluation we use the state-of-the-art accelerator hardware: an Nvidia Tesla

K20c GPU controlled by an Intel Xeon E5-1620 v2 at 3.7 GHz, and an Intel Xeon
Phi 5110p hosted in a dual-socket HPC-node equipped with two Intel Xeon E5-2695
v2 CPUs at 2.4 GHz. For the Intel Xeon Phi and Intel Xeon, we used the Intel OpenCL
SDK 2014. We employed the Nvidia profiler (nvprof) and the OpenCL internal facilities
for performance measurements.

5.1 Black-Scholes computation

Our first example is the Black-Scholes (BS) model which describes the financial option
market and its price evolution. Both programs, from CUDA Toolkit and the PACXX
implementation, compute the Black-Scholes equation on randomly generated input data
seeded with the same value to achieve reproducible and comparable results. Input data
are generated for 81.92 ·106 options.

Figure 1 shows the measured runtime and the program size in Lines of Code (LoC);
the latter is calculated for the source codes formatted by the Clang-format tool using the
LLVM coding style. We observe that the OpenCL version (273 LoC) is about 3 times
longer and the CUDA version (217 LoC) about 2 times longer than the PACXX code in
pure C++ (107 LoC). The advantages of PACXX regarding the code size arise from the
tasks performed transparently by the PACXX runtime: device initialization, memory
management and JIT compilation, whereas in CUDA and OpenCL these tasks have to
be performed explicitly.

The PACXX code has also advantages regarding runtime on the Nvidia K20c GPU
(about 4.3%) and on the dual socket cluster node (about 6.7%). On the Intel Xeon Phi,
the PACXX code is only about 0.1% slower than the OpenCL version. On the Nvidia
Tesla K20c, since the OpenCL implementation from Nvidia is still for the OpenCL 1.1
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Fig. 1: Evaluation results for the Black-Scholes application.

standard where floating point division are not IEEE 754 compliant, the higher speed of
the OpenCL version (16.1% faster than PACXX) is achieved for the lower accuracy.

5.2 Matrix Multiplication

Our second case study is the multiplication of dense, square matrices. The PACXX
code uses the Reflect API to compute the sizes of the matrices: the reflect function
retrieves the input vector’s size and computes its square root to get the number of rows/-
columns in the matrix. The reflect call is evaluated during the runtime compilation
and the value (our matrices are of size 4096×4096) is automatically embedded into the
kernel’s intermediate representation. For the OpenCL and CUDA codes, the values are
introduced into the kernel code by string replacement before it is JIT compiled.
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Fig. 2: Evaluation results for matrix multiplication.

Figure 2 (left) shows the runtime and size of the PACXX code as compared to the
CUDA code (compiled with NVRTC) and the OpenCL code on the three evaluation
platforms. The PACXX program is again much shorter than its CUDA and OpenCL
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counterparts. We observe that the kernel becomes 2.7% faster on the K20c GPU when
using PACXX-Reflect and its JIT capabilities. The PACXX code is about 0.2% slower
on the Intel architectures as compared to the OpenCL implementation. On the Nvidia
Tesla K20c, PACXX code outperforms CUDA NVRTC and OpenCL codes by 2.6%
and 3.3%, correspondingly.

6 Conclusion

We presented PACXX – a programming model for GPU-based systems using C++14
and JIT compilation. We demonstrated that on modern accelerators (GPUs and Intel
Xeon Phi) PACXX provides competitive performance and reduces the programming
effort by more than 60% of LoCs as compared to CUDA or OpenCL. The code size
reduction is achieved through JIT compilation and memory management tasks per-
formed by PACXX implicitly in contrast to CUDA and OpenCL where they must be
programmed explicitly. Additionally, PACXX enables application developers to pro-
gram OpenCL and CUDA capable accelerators (e.g., Nvidia GPU and Intel Xeon Phi)
in a modern object-oriented way using all advanced features of C++14 and the STL.
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